i.MX处理器知识库

取消
显示结果 
显示  仅  | 搜索替代 
您的意思是: 

i.MX Processors Knowledge Base

讨论

排序依据:
The Gui-guilder doesn't provide remote debug function in IDE and we still need use Yocto to build project or copy binary to board rootfs. This knowledge base will provide a solution about how to use VSCode to remote debug LVGL project on i.MX93 EVK board.    Yocto toolchain: L6.6.x GUI GUILDER: v1.8.0   Need to open GUI GUILDER project in VSCode.   1.Scripts in VScode   1.1 build.sh Modify build.sh in <LVGL project>/ports/linux     #!/bin/sh toolchain=$1 if [ -z "$toolchain" ];then toolchain=/opt/fsl-imx-xwayland/6.1-mickledore/sysroots/x86_64-pokysdk-linux/usr/share/cmake/armv8a-poky-linux-toolchain.cmake if [ ! -r $toolchain ];then toolchain=/opt/fsl-imx-xwayland/6.1-langdale/sysroots/x86_64-pokysdk-linux/usr/share/cmake/armv8a-poky-linux-toolchain.cmake fi fi toolchain_path=$(echo $toolchain |sed -E 's,^(.*)/sysroots/.*,\1,') toolchain_arch=armv8a-poky-linux if [ ! -r $toolchain -o ! -r "$toolchain_path/environment-setup-$toolchain_arch" ];then echo "ERROR: Yocto Toolchain not installed?" exit 1 fi if [ -n "$BASH_SOURCE" ]; then ROOTDIR="`readlink -f $BASH_SOURCE | xargs dirname`" elif [ -n "$ZSH_NAME" ]; then ROOTDIR="`readlink -f $0 | xargs dirname`" else ROOTDIR="`readlink -f $PWD | xargs dirname`" fi BUILDDIR=$ROOTDIR/../build rm -fr $BUILDDIR mkdir $BUILDDIR . "$toolchain_path/environment-setup-$toolchain_arch" echo "start build..." cd $ROOTDIR/linux/lv_drivers/wayland/ cmake . make cd $BUILDDIR toolchain_path=/opt/fsl-imx-wayland/6.6-scarthgap/sysroots/x86_64-pokysdk-linux/usr/share/cmake/armv8a-poky-linux-toolchain.cmake cmake -G 'Ninja' .. -DCMAKE_TOOLCHAIN_FILE=$toolchain_path -Wno-dev -DLV_CONF_BUILD_DISABLE_EXAMPLES=1 -DLV_CONF_BUILD_DISABLE_DEMOS=1 -DCMAKE_CXX_FLAGS="-ggd3 -O0" -DCMAKE_BUILD_TYPE=Debug ninja if [ -e gui_guider ];then echo "Binary locates at $(readlink -f gui_guider)" ls -lh gui_guider fi # Copy binary to board scp $BUILDDIR/gui_guider root@192.168.31.243:/opt     1.2 tasks.json     { "version": "2.0.0", "tasks": [ { "label": "Build", "type": "shell", "command": "./build.sh /opt/fsl-imx-wayland/6.6-scarthgap", "options": { "cwd": "${workspaceFolder}/ports/linux" }, "problemMatcher": [ "$gcc" ], } ] }       1.3 launch.json   miDebuggerServerAddress is board ip address.     { "version": "0.2.0", "configurations": [ { "name": "(gdb) Launch", "preLaunchTask": "Build", "type": "cppdbg", "request": "launch", "program": "${workspaceFolder}/build/gui_guider", "args": [], "stopAtEntry": false, "cwd": "${workspaceFolder}/", "environment": [], "externalConsole": false, "MIMode": "gdb", "logging": { "engineLogging": true, "trace": true, "traceResponse": true }, "debugStdLib":true, "miDebuggerPath":"/usr/bin/gdb-multiarch", //DO NOT USE GDB IN SDK!!!! "miDebuggerServerAddress": "192.168.31.243:12345", "setupCommands": [ { "description": "Enable pretty-printing for gdb", "text": "-enable-pretty-printing", "ignoreFailures": true, "text": "set remotetimeout 100", } ] }] }       2. Launch gdbserver on board     export SHELL=/opt/gui_guider gdbserver 192.168.31.243:12345 /opt/gui_guider       3. Debug in VSCode   Click (gdb)launch, the source code will be compiled. Then you will see the breakpoint in program. Enjoy your debug~    
查看全文
  Environment i.MX8MP EVK, SDK2.15   The default rpmsg buffer size in SDK is 512Bytes(16 Bytes header + 496Bytes payload). This knowledge base will try to change the default buffer size in rpmsg framework. Steps:   1.Modify rpmsg payload size in SDK PATH: SDK\evkmimx8mp_rpmsg_lite_str_echo_rtos_imxcm7\rpmsg_config.h     //! RL_BUFFER_PAYLOAD_SIZE //! //! Size of the buffer payload, it must be equal to (240, 496, 1008, ...) //! [2^n - 16]. Ensure the same value is defined on both sides of rpmsg //! communication. The default value is 496U. #define RL_BUFFER_PAYLOAD_SIZE (1008)     2. Modify buffer size in rpmsg linux framework and buffer pool in dts. PATH: drivers/rpmsg/virtio_rpmsg_bus.c            arch/arm64/boot/dts/freescale/imx8mp-evk-rpmsg.dts   Test steps:   Modify the send buffer in imx_rpmsg_tty.c     #define MSG "hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world! hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world! hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!"       Modify buffer limitation in SDK PATH: evkmimx8mp_rpmsg_lite_str_echo_rtos_imxcm7\main_remote.c     /* Globals */ static char app_buf[1024]; /* Each RPMSG buffer can carry less than 512 payload */       Terminal output We can see that the MAX buffer size received in SDK is not limited to 512Bytes     Nameservice sent, ready for incoming messages... Get Message From Master Side : "hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world! hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world! hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!hello world!" [len : 674]       If we use a larger buffer like 2022 Bytes, we will see error when driver load.     [ 2673.447384] imx_rpmsg_tty virtio0.rpmsg-virtual-tty-channel-1.-1.30: message is too big (2022) [ 2673.456271] imx_rpmsg_tty virtio0.rpmsg-virtual-tty-channel-1.-1.30: rpmsg_send failed: -90 [ 2673.465556] imx_rpmsg_tty virtio0.rpmsg-virtual-tty-channel-1.-1.30: rpmsg_dev_probe: failed: -90 [ 2673.474496] imx_rpmsg_tty: probe of virtio0.rpmsg-virtual-tty-channel-1.-1.30 failed with error -90          
查看全文
  Platform & BSP : i.MX8MPlus EVK , L6.12.3, uboot lf_v2024.04   The attachments enable the i.MX8MPlus pci function in uboot. lspci in Linux root@imx8mpevk:~# lspci -nn 00:00.0 PCI bridge [0604]: Synopsys, Inc. DWC_usb3 / PCIe bridge [16c3:abcd] (rev 01) 01:00.0 Ethernet controller [0200]: Marvell Technology Group Ltd. Device [1b4b:2b42] (rev 11) pci test results in uboot:  u-boot=> pci BusDevFun VendorId DeviceId Device Class Sub-Class _____________________________________________________________ 00.00.00 0x16c3 0xabcd Bridge device 0x04 01.00.00 0x1b4b 0x2b42 Network controller 0x00 u-boot=> pci bar 00.00.00 ID Base Size Width Type ---------------------------------------------------------- 0 0x0000000018000000 0x0000000000100000 32 MEM u-boot=> pci regions 00 Buses 00-01 # Bus start Phys start Size Flags 0 0x0000000000000000 0x000000001ff80000 0x0000000000010000 io 1 0x0000000018000000 0x0000000018000000 0x0000000007f00000 mem 2 0x0000000040000000 0x0000000040000000 0x0000000016000000 mem sysmem 3 0x0000000058000000 0x0000000058000000 0x00000000a8000000 mem sysmem 4 0x0000000100000000 0x0000000100000000 0x00000000c0000000 mem sysmem u-boot=> pci header 00.00.00 vendor ID = 0x16c3 device ID = 0xabcd command register ID = 0x0007 status register = 0x0010 revision ID = 0x01 class code = 0x06 (Bridge device) sub class code = 0x04 programming interface = 0x00 cache line = 0x08 latency time = 0x00 header type = 0x01 BIST = 0x00 base address 0 = 0x18000000 base address 1 = 0x00000000 primary bus number = 0x00 secondary bus number = 0x01 subordinate bus number = 0x01 secondary latency timer = 0x00 IO base = 0x10 IO limit = 0x00 secondary status = 0x0000 memory base = 0x1820 memory limit = 0x1810 prefetch memory base = 0xfff0 prefetch memory limit = 0x0000 prefetch memory base upper = 0x00000000 prefetch memory limit upper = 0x00000000 IO base upper 16 bits = 0x0000 IO limit upper 16 bits = 0x0000 expansion ROM base address = 0x18100000 interrupt line = 0xff interrupt pin = 0x01 bridge control = 0x0000 u-boot=> pci header 01.00.00 vendor ID = 0x1b4b device ID = 0x2b42 command register ID = 0x0006 status register = 0x0010 revision ID = 0x11 class code = 0x02 (Network controller) sub class code = 0x00 programming interface = 0x00 cache line = 0x08 latency time = 0x00 header type = 0x00 BIST = 0x00 base address 0 = 0x1810000c base address 1 = 0x00000000 base address 2 = 0x1820000c base address 3 = 0x00000000 base address 4 = 0x00000000 base address 5 = 0x00000000 cardBus CIS pointer = 0x00000000 sub system vendor ID = 0x0000 sub system ID = 0x0000 expansion ROM base address = 0x00000000 interrupt line = 0xff interrupt pin = 0x01 min Grant = 0x00 max Latency = 0x00
查看全文
What is a device tree? The device tree is a data structure that is passed to the Linux kernel to describe the physical devices in a system. Before device trees came into use, the bootloader (for example, U-Boot) had to tell the kernel what machine type it was booting. Moreover, it had to pass other information such as memory size and location, kernel command line, etc. Sometimes, the device tree is confused with the Linux Kernel configuration, but the device tree specifies what devices are available and how they are accessed, not whether the hardware is used. The device tree is a structure composed of nodes and properties: Nodes: The node name is a label used to identify the node. Properties: A node may contain multiple properties arranged with a name and a value. Phandle: Property in one node that contains a pointer to another node. Aliases: The aliases node is an index of other nodes. A device tree is defined in a human-readable device tree syntax text file such as .dts or .dtsi. The machine has one or several .dts files that correspond to different hardware configurations. With these .dts files we can compile them into a device tree binary (.dtb) blobs that can either be attached to the kernel binary (for legacy compatibility) or, as is more commonly done, passed to the kernel by a bootloader like U-Boot. What is Devshell? The Devshell is a terminal shell that runs in the same context as the BitBake task engine. It is possible to run Devshell directly or it may spawn automatically. The advantage of this tool is that is automatically included when you configure and build a platform project so, you can start using it by installing the packages and following the setup of i.MX Yocto Project User's Guide on section 3 “Host Setup”. Steps: Now, let’s see how to compile your device tree files of i.MX devices using Devshell. On host machine. Modify or make your device tree on the next path: - 64 bits. ~/imx-yocto-bsp/<build directory>/tmp/work-shared/<machine>/kernel-source/arch/arm64/boot/dts/freescale - 32 bits. ~/imx-yocto-bsp/<build directory>/tmp/work-shared/<machine>/kernel-source/arch/arm/boot/dts To compile, it is needed to prepare the environment as is mentioned on i.MX Yocto Project User's Guide on section 5.1 “Build Configurations”. $ cd ~/imx-yocto-bsp $ DISTRO=fsl-imx-xwayland MACHINE=<machine> source imx-setup-release.sh -b <build directory> $ bitbake -c devshell virtual/kernel (it will open a new window) On Devshell window. $ make dtbs (after finished, close the Devshell window) On host machine. $ bitbake -c compile -f virtual/kernel $ bitbake -c deploy -f virtual/kernel This process will compile all the device tree files linked to the machine declared on setup environment and your device tree files will be deployed on the next path: ~/imx-yocto-bsp/<build directory>/tmp/deploy/images/<machine> I hope this article will be helpful. Best regards. Jorge.
查看全文
SoC: i.MX8MP LDP: Ubuntu22.04 and Ubuntu 20.04 Yocto: 6.1.22 mickledore   This doc includes two parts: 1)How to enable qt5 in LDP 2)How to enable qt5 in Yocto Linux 6.1.22     How to use qt5 in LDP(Linux Distribution Poc): The gcc and glibc is diffrent from Yocto Linux and Linux Distribution Poc. To cross compile the file between Linux and Ubuntu, we need to care about that.   To full enable the GPU usage of QT lib, please use "-gles" libs by apt-get command. Qt source code is not suggested, for it has not been tested. Building Qt5, for example: sudo apt-get update sudo apt-get -y install libqt5gui5-gles sudo apt-get -y install libqt5quick5-gles sudo apt-get -y install qtbase5-gles-dev   opengles test case glmark: sudo apt-get -y install glmark2-es2-wayland How to find the missing lib for apt-get: sudo apt-get install apt-file apt-file search xx   open wifi if needed NXP internal internet has limitation: sudo modprobe moal mod_para=nxp/wifi_mod_para.conf   and add "nameserver 8.8.8.8" in vi /etc/resolv.conf. You can also try:  echo "nameserver 8.8.8.8" | sudo tee /etc/resolv.conf > /dev/null   some times system time is not automatically update, and that cause apt-get update fail User and choose manually configure it by: sudo date -s "2023-08-31 14:00:00"   For Chinese support for ubuntu, please use: sudo apt-get install ttf-wqy-microhei ttf-wqy-zenhei xfonts-wqy   possible env path you need to export: XDG_RUNTIME_DIR="/run/user/1000" export QT_QPA_PLATFORM=wayland   User can choose root login by command like: user@imx8mpevk:~$ sudo passwd New password: Retype new password:   please use qmake to build qt project: 1)qmake -o Makefile HelloWorld.pro 2)make   some other qt libs: sudo apt-get install -y qtwayland5 sudo apt-get install -y qml-module-qtquick-controls sudo apt-get install -y qml-module-qtquick-controls2 sudo apt-get install -y qml-module-qtcharts sudo apt-get install -y libqt5multimedia5 sudo apt-get install -y libqt5serialport5 sudo apt-get install -y libqt5script5 sudo apt-get install -y qml-module-qt-labs-settings sudo apt-get install -y qml-module-qt-labs-platform sudo apt-get install -y qml-module-qtmultimedia sudo apt-get install -y libqt5webengine5 sudo apt-get install -y qml-module-qtwebengine sudo apt-get install -y qml-module-qtquick-dialogs     How to enable qt5 in Yocto 6.1.22: 1.download meta-qt5 git clone https://github.com/meta-qt5/meta-qt5.git git checkout origin/mickledore   copy Yocto version 5.10.72_2.2.0 sources\meta-imx\meta-sdk\dynamic-layers\qt5-layer to the same path of Yocto 6.1.22   2.apply two patches qt5-1.patch: modify the path from qt6 to qt5 qt5-2.patch: modify the qt5 related in meta-imx, including: 1)Yocto grammer update,from "_" to ":";  2)NXP grammer,from mx8 to mx8-nxp-sdk;  3)remove gstreamer1.0-plugins-good-qt, for qt5 has been natively added into gst-plugin-good-1.22(which is not in 1.18)   3.after input command like "DISTRO=fsl-imx-xwayland MACHINE=imx8mp-lpddr4-evk source imx-setup-release.sh -b build-xwayland", comment the "meta-nxp-demo-experience"   # i.MX Yocto Project Release layers BBLAYERS += "${BSPDIR}/sources/meta-imx/meta-bsp" BBLAYERS += "${BSPDIR}/sources/meta-imx/meta-sdk" BBLAYERS += "${BSPDIR}/sources/meta-imx/meta-ml" BBLAYERS += "${BSPDIR}/sources/meta-imx/meta-v2x" #BBLAYERS += "${BSPDIR}/sources/meta-nxp-demo-experience"      
查看全文
GUI Guider version: 1.6.x, 1.7.x, 1.8x LVGL version: v8.x.x Host software requirements: Ubuntu 20.04, Ubuntu 22.04 or Debian 12 Hardware requirements: Evaluation Kit for the i.MX 93 Applications Processor. (i.MX 93 Evaluation Kit | NXP Semiconductors) On this guide we will use the IMX-MIPI-HDMI accessory board to connect the iMX93 with a HDMI Monitor. (IMX-MIPI-HDMI Product Information|NXP) This board is usually provided with the iMX8M Mini and the iMX8M Nano.  Steps: 1. Copy your project from the folder GUI-Guider-Projects to your Linux PC.  2. Build an image for iMX93 using The Yocto Project.    a. Based on iMX Yocto Porject Users Guide set directories and download the repo $ mkdir imx-bsp-6.1.1-1.0.0 $ cd imx-bsp-6.1.1-1.0.0 $ repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-langdale -m imx-6.1.1-1.0.0.xml $ repo sync Use distro fsl-imx-xwayland and select machine imx93evk and use this commnad with a build folder name: $ MACHINE=imx93evk DISTRO=fsl-imx-xwayland source ./imx-setup-release.sh - b bld-imx93evk b. Use bitbake command to start the build process. Also, add the -c populate_sdk to get the toolchain. $ bitbake imx-image-multimedia -c populate_sdk  c. Install the Yocto toolchain located on <build-folder>/tmp/deploy/sdk/.  $ sudo sh ./fsl-imx-xwayland-glibc-x86_64-imx-image-multimedia-armv8a-imx93evk-toolchain-6.1-langdale.sh d. Install ninja utility on the build host $ sudo apt install ninja-build e. For Ubuntu 20.04 and Ubuntu 22.04, copy the lv_conf.h file from lvgl-simulator to lvgl $ cp lvgl-simulator/lv_conf.h lvgl/ f. Change the interpreter on build.sh from #!/bin/sh to #!/bin/bash. This is an important step! g. Then, enter to linux folder and use the following commands to make build.sh executable $ dos2unix build.sh $ chmod +x build.sh h. Execute the build.sh $ ./build.sh i. Copy the binary to the iMX93 using a USB or SCP.  2. On the target iMX93 follow these steps. a. On Uboot, use fatls interface device:partition fatls mmc 0:1 (Device 0 : Partition 1) With this command, we will be able to list device tree files. => fatls mmc 0:1 b. Select imx93-11x11-evk-rm67199.dtb and use the command editenv fdtfile  => editenv fdtfile Output example edit: imx93-11x11-evk-rm67199.dtb c. In edit command line put the selected device tree .dtb d. Use saveenv command to save environment and continue with the boot process. e. Finally, run the GUI Application $ ./gui_guider&   I hope this article will be helpful. Best regards, Brian.
查看全文
Hello everyone, We have recently migrated our Source code from CAF (Codeaurora) to Github, so i.MX NXP old recipes/manifest that point to Codeaurora eventually will be modified so it points correctly to Github to avoid any issues while fetching using Yocto. Also, all repo init commands for old releases should be changed from: $ repo init -u https://source.codeaurora.org/external/imx/imx-manifest -b <branch name> [ -m <release manifest>] To: $ repo init -u https://github.com/nxp-imx/imx-manifest -b <branch name> [ -m <release manifest>] This will also apply to all source code that was stored in Codeaurora, the new repository for all i.MX NXP source code is: https://github.com/nxp-imx For any issues regarding this, please create a community thread and/or a support ticket. Regards, Aldo.
查看全文
BSP: L5.15.5_1.0.0 Platform: i.MX8MPlus EVK Background   The function lpddr4_mr_read in BSP always return zero and this casue the customer can't use it to read MR registers in DRAM. This is a simple demo for reading MR registers. Patch Code   diff --git a/arch/arm/include/asm/arch-imx8m/ddr.h b/arch/arm/include/asm/arch-imx8m/ddr.h index 0f1e832c03..fd68996a23 100644 --- a/arch/arm/include/asm/arch-imx8m/ddr.h +++ b/arch/arm/include/asm/arch-imx8m/ddr.h @@ -721,6 +721,8 @@ int wait_ddrphy_training_complete(void); void ddrphy_init_set_dfi_clk(unsigned int drate); void ddrphy_init_read_msg_block(enum fw_type type); +unsigned int lpddr4_mr_read(unsigned int mr_rank, unsigned int mr_addr); + void update_umctl2_rank_space_setting(unsigned int pstat_num); void get_trained_CDD(unsigned int fsp); diff --git a/board/freescale/imx8mp_evk/spl.c b/board/freescale/imx8mp_evk/spl.c index 33bbbc09ac..85e40ffbbe 100644 --- a/board/freescale/imx8mp_evk/spl.c +++ b/board/freescale/imx8mp_evk/spl.c @@ -150,6 +150,40 @@ int board_fit_config_name_match(const char *name) return 0; } #endif +void lpddr4_get_info() +{ + int i = 0, attempts = 5; + + unsigned int ddr_info = 0; + unsigned int regs[] = { 5, 6, 7, 8 }; + + for(i = 0; i < ARRAY_SIZE(regs); i++){ + unsigned int data = 0; + data = lpddr4_mr_read(0xF,regs[i]); + ddr_info <<= 8; + ddr_info += (data & 0xFF); + switch (i) + { + case 0: + printf("DRAM INFO : Manufacturer ID = 0x%x",ddr_info); + if(ddr_info & 0Xff) + printf(", Micron\n"); + break; + case 1: + printf("DRAM INFO : Revision ID1 = 0x%x\n",ddr_info); + break; + case 2: + printf("DRAM INFO : Revision ID2 = 0x%x\n",ddr_info); + break; + case 3: + printf("DRAM INFO : I/O Width and Density = 0x%x\n",ddr_info); + break; + default: + break; + } + } + +} void board_init_f(ulong dummy) { @@ -187,6 +221,8 @@ void board_init_f(ulong dummy) /* DDR initialization */ spl_dram_init(); + + lpddr4_get_info(); board_init_r(NULL, 0); } diff --git a/drivers/ddr/imx/imx8m/ddrphy_utils.c b/drivers/ddr/imx/imx8m/ddrphy_utils.c index 326b92d784..f45eeaf552 100644 --- a/drivers/ddr/imx/imx8m/ddrphy_utils.c +++ b/drivers/ddr/imx/imx8m/ddrphy_utils.c @@ -194,8 +194,15 @@ unsigned int lpddr4_mr_read(unsigned int mr_rank, unsigned int mr_addr) tmp = reg32_read(DRC_PERF_MON_MRR0_DAT(0)); } while ((tmp & 0x8) == 0); tmp = reg32_read(DRC_PERF_MON_MRR1_DAT(0)); - tmp = tmp & 0xff; reg32_write(DRC_PERF_MON_MRR0_DAT(0), 0x4); + + while (tmp) { //try to find a significant byte in the word + if (tmp & 0xff) { + tmp &= 0xff; + break; + } + tmp >>= 8; + } return tmp; }     Test Result  
查看全文
Materials: i.MX8M Plus EVK Rev. A USB cable type-C USB cable type-B AC Adapter EA1045CR Micro SD (Optional) 88W8997-based wireless modules Software: Yocto Project Mobaxterm Personal Edition v20.2 Build 4296 This test was done on an i.MX8M Plus EVK with Linux 5.10. Hardknott.   To achieve this, you need to identify your WI-FI module and look for the necessary drivers for that module, in my case I am using the 88W8997 module that comes with the i.MX8M Plus, but you can select any other WI-FI module you want.   In my case I build a basic image on Yocto, following the Yocto users guide, I bitbake just the core boot image that allows me to boot the i.MX8M plus. Deploy your image on an SD or eMMC. These instructions apply to SD and MMC cards although for brevity, and usually, only the SD card is listed. For a Linux image to be able to run, four separate pieces are needed: Linux OS kernel image (zImage/Image) Device tree file (*.dtb) Bootloader image Root file system (i.e., EXT4)   The Yocto Project build creates an SD card image that can be flashed directly. This is the simplest way to load everything needed onto the card with one command. A .wic image contains all four images properly configured for an SD card. The release contains a pre-built .wic image that is built specifically for the one board configuration. It runs the Wayland graphical backend. It does not run on other boards unless U-Boot, the device tree, and rootfs are changed. When more flexibility is desired, the individual components can be loaded separately, and those instructions are included here as well. An SD card can be loaded with the individual components one-by-one or the .wic image can be loaded and the individual parts can be overwritten with specific components. The rootfs on the default .wic image is limited to a bit less than 4 GB, but re-partitioning and re-loading the rootfs can increase that to the size of the card. The rootfs can also be changed to specify the graphical backend that is used. Carry out the following command to copy the SD card image to the SD/MMC card. Change sdx below to match the one used by the SD card. $ sudo dd if=<image name>.wic of=/dev/sdx bs=1M && sync The entire contents of the SD card are replaced. If the SD card is larger than 4 GB, the additional space is not accessible. As this build does not contain the driver integrated we need to add it manually on Linux user space. Follow these instructions to load the driver modules and bring up the 88W8987-based wireless module, more info can be found on the next link: https://www.nxp.com/products/wireless/wi-fi-plus-bluetooth/2-4-5-ghz-dual-band-2x2-wi-fi-5-802-11ac-plus-bluetooth-5-3-solution:88W8997?tab=Documentation_Tab   Use the nano editor included in the pre-built image to edit and verify the module parameters in the wifi_mod_para.conf configuration file.   Add the following lines to the configuration file: PCIE8997 = { cfg80211_wext=0xf wfd_name=p2p max_vir_bss=1 cal_data_cfg=none drv_mode=7 ps_mode=2 auto_ds=2 fw_name=nxp/pcieuart8997_combo_v4.bin } Load the modules in the kernel:   Verify the kernel debug messages in the command output   Verify that the module is now visible to the system:     Now that the module is ready to work, we need to enable it, in my case the Wi-Fi is named mlan0, it could vary on other Linux systems.   In the case you need to see which networks are available you can scan it and select the one you need.   Identify your network and add it to the  WPA supplicant file:     Associate the Wi-Fi with config:   Check if you have right SSID associated:   Use DHPC to get the IP   Ping any public site you know to check the network.   In the case you have a Temporary failure in name resolution you will need to change the default DNS that was assigned by DHCP:     Modify /etc/resolv.conf file and add the DNS of your preference, for my case I add the one that uses Google, as they have access to the most common web pages.   And with that should work.    
查看全文
This is a quick article focused on how to add the support of the ssh on the i.MX devices using Yocto to add that packages.   Refer to the pdf attached.
查看全文
This document describes the steps to create your own out-of-tree kernel module recipe for Yocto.
查看全文
  1.overwrite the sources/meta-freescale/recipes-security/optee-imx with optee-imx.zip 2.add below code to conf/local.conf DISTRO_FEATURES_append += " systemd" DISTRO_FEATURES_BACKFILL_CONSIDERED += "sysvinit" VIRTUAL-RUNTIME_init_manager = "systemd" VIRTUAL-RUNTIME_initscripts = "systemd-compat-units" MACHINE_FEATURES_append += "optee" DISTRO_FEATURES_append += "optee" IMAGE_INSTALL_append += "optee-test optee-os optee-client optee-examples" 3.bitbake optee-examples or bitbake imx-image-xxx You can directly install optee-examples_3.11.0-r0_arm64.deb in your device.  
查看全文
Application Note AN13872  Enabling SWUpdate on i.MX 6ULL, i.MX 8M Mini, and i.MX 93 is available on www.nxp.com    SWUpdate: Embedded Systems become more and more complex. Software for Embedded Systems have new features and fixes can be updated in a reliable way. Most of time, we need OTA(Over-The-Air) to upgrade the system. Like Android has its own update system. Linux also need an update system. SWUpdate project is thought to help to update an embedded system from a storage media or from network. However, it should be mainly considered as a framework, where further protocols or installers (in SWUpdate they are called handlers) can be easily added to the application. Mongoose daemon mode: Mongoose is a daemon mode of SWUpdate that provides a web server, web interface and web application. Mongoose is running on the target board(i.MX8MM EVK/i.MX8QXP MEK).Using Web browser to access it.   Suricatta daemon mode: Suricatta regularly polls a remote server for updates, downloads, and installs them. Thereafter, it reboots the system and reports the update status to the server. The screenshot is SWUpdate scuricatta working with hawkbit server.          
查看全文
    The meta layer is designed for those guys who want to use i.MX8M series SOC and Yocto system to develop AGV and Robot.    The platform includes some key components: 1, ROS1 (kinetic, melodic) and ROS2(dashing, eloquent, foxy) 2, Real-time Linux solution : Xenomai 3.1 with ipipe 5.4.47 patch 3, Industrial protocol : libmodbus, linuxptp, ros-canopen, EtherCAT(TBD) 4, Security: Enhanced OpenSSL, Enhanced GmSSL, Enhanced eCryptfs, secure key store, secure boot(TBD), SE-Linux(TBD),  Dm-verity(TBD) The first release bases on i.MX Yocto release L5.4.47 2.2.0 and You need download Linux 5.4.47_2.2.0 according to​​ https://www.nxp.com/docs/en/user-guide/IMX_YOCTO_PROJECT_USERS_GUIDE.pdf  firstly. And then you can follow the below guide to build and test ROS and Xenomai. A, clone meta-robot-platform from gitee.com git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v0.1-L5.4.47-2.2.0 B, Adding the meta-robot-platform layer to your build 1,  copy meta-robot-platform into <i.MX Yocto folder>/source 2, You should create a symbol link: setup-imx-robot.sh -> sources/meta-robot-platform/imx/meta-robot/tools/setup-imx-robot.sh C, How to build Robot image (example for i.MX8MQ EVK board) $ DISTRO=imx-robot-xwayland MACHINE=imx8mqevk source setup-imx-robot.sh -r kinetic -b imx8mqevk-robot-kinetic [or DISTRO=imx-robot-xwayland MACHINE=imx8mqevk source setup-imx-robot.sh -r melodic -b imx8mqevk-robot-melodic ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mqevk source setup-imx-robot.sh -r dashing -b imx8mqevk-robot-dashing ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mqevk source setup-imx-robot.sh -r eloquent -b imx8mqevk-robot-eloquent ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mqevk source setup-imx-robot.sh -r foxy -b imx8mqevk-robot-foxy ] $ bitbake imx-robot-core [or bitbake imx-robot-system ] [or bitbake imx-robot-sdk ] And if you add XENOMAI_KERNEL_MODE = "cobalt" or XENOMAI_KERNEL_MODE = "mercury" in local.conf, you also can build real-time image with Xenomai by the below command: $ bitbake imx-robot-core-rt [or bitbake imx-robot-system-rt ] D, Robot image sanity testing //ROS1 Sanity Test #source /opt/ros/kinetic/setup.sh [or # source /opt/ros/melodic/setup.sh ] #echo $LD_LIBRARY_PATH #roscore & #rosnode list #rostopic list #only kinetic #rosmsg list #rosnode info /rosout //ROS2 Sanity Test #source ros_setup.sh #echo $LD_LIBRARY_PATH #ros2 topic list #ros2 msg list #only dashing #ros2 interface list #(sleep 5; ros2 topic pub /chatter std_msgs/String "data: Hello world") & #ros2 topic echo /chatter E, Xenomai sanity testing #/usr/xenomai/demo/cyclictest -p 50 -t 5 -m -n -i 1000 F, vSLAM demo You can find orb-slam2 demo under <i.MX Yocto folder>/sources/meta-robot-platform/imx/meta-robot/recipes-demo/orb-slam2. You should choose DISTRO=imx-robot-xwayland due to it depends on OpenCV with gtk+.   //////////////////////////////////////// update for Yocto L5.4.70 2.3.0  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v0.2-L5.4.70-2.3.0 for Yocto release L5.4.70 2.3.0 and it supports i.MX8M series (8MQ,8MM,8MN and 8MP) and i.MX8QM/QXP.  git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v0.2-L5.4.70-2.3.0 Updating: 1, Support i.MX8QM and i.MX8QXP 2, Add ROS driver of RPLIDAR and Orbbec 3D cameras in ROS1 3, Upgrade OpenCV to 3.4.13. 4, Add imx-robot-agv image with orb-slam2 demo 5, Fix the issue which failed to create image when adding orb-slam2 6, Fix the issue which failed to create imx-robot sdk image when add package ISP and ML Note: Currently, orb-slam2 demo don't run on i.MX8MM platform due to its GPU don't support OpenGL ES3. imx-robot-sdk image is just for building ROS package on i.MX board, not  for cross-compile. You can try "bitbake imx-robot-system -c populate_sdk" to create cross-compile sdk without gmssl-bin. diff --git a/imx/meta-robot/recipes-core/images/imx-robot-system.bb b/imx/meta-robot/recipes-core/images/imx-robot-system.bb index 1991ab10..68f9ad31 100644 --- a/imx/meta-robot/recipes-core/images/imx-robot-system.bb +++ b/imx/meta-robot/recipes-core/images/imx-robot-system.bb @@ -35,7 +35,7 @@ CORE_IMAGE_EXTRA_INSTALL += " \ ${@bb.utils.contains('DISTRO_FEATURES', 'x11 wayland', 'weston-xwayland xterm', '', d)} \ ${ISP_PKGS} \ " -IMAGE_INSTALL += " clblast openblas libeigen opencv gmssl-bin" +IMAGE_INSTALL += " clblast openblas libeigen opencv" IMAGE_INSTALL += " \ ${ML_PKGS} \   //////////////////////////////////////// Update for Yocto L5.4.70 2.3.2  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v0.3-L5.4.70-2.3.2 for Yocto release L5.4.70 2.3.2 .  git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v0.3-L5.4.70-2.3.2 Updated: 1, Upgrade to L5.4.70-2.3.2 2, Enable xenomai rtdm driver 3, Add NXP Software Content Register and BSP patches of i.MX8M Plus AI Robot board. Note: How to build for AI Robot board 1, DISTRO=imx-robot-wayland MACHINE=imx8mp-ddr4-ipc source setup-imx-robot.sh -r melodic -b imx8mp-ddr4-ipc-robot-melodic 2, Add BBLAYERS += " ${BSPDIR}/sources/meta-robot-platform/imx/meta-imx8mp-ai-robot " in bblayers.conf 3, bitbake imx-robot-sdk or bitbake imx-robot-agv   //////////////////////////////////////// Update for v1.0-L5.4.70-2.3.2  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v1.0-L5.4.70-2.3.2 .  git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v1.0-L5.4.70-2.3.2 Updated: 1, Upgrade ROS1 Kinetic Kame to Release 2021-05-11 which is final sync. 2, Add IgH EtherCAT Master for Linux in i.MX Robot platform. //////////////////////////////////////// Update for v1.1-L5.4.70-2.3.2  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v1.1-L5.4.70-2.3.2 .  git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v1.1-L5.4.70-2.3.2 Updated: 1, Add more packages passed building in ROS1 Kinetic Kame. 2, Change the board name (From IPC to AI-Robot) in Uboot and kernel for i.MX8M Plus AI Robot board. You can use the below setup command to build ROS image for AI Robot board: DISTRO=imx-robot-xwayland MACHINE=imx8mp-ai-robot source setup-imx-robot.sh -r kinetic -b imx8mp-ai-robot-robot-kinetic DISTRO=imx-robot-xwayland MACHINE=imx8mp-ai-robot source setup-imx-robot.sh -r melodic -b imx8mp-ai-robot-robot-melodic DISTRO=imx-robot-xwayland MACHINE=imx8mp-ai-robot source setup-imx-robot.sh -r dashing -b imx8mp-ai-robot-robot-dashing DISTRO=imx-robot-xwayland MACHINE=imx8mp-ai-robot source setup-imx-robot.sh -r eloquent -b imx8mp-ai-robot-robot-eloquent DISTRO=imx-robot-xwayland MACHINE=imx8mp-ai-robot source setup-imx-robot.sh -r foxy -b imx8mp-ai-robot-robot-foxy BTW, you should add BBLAYERS += " ${BSPDIR}/sources/meta-robot-platform/imx/meta-imx8mp-ai-robot " in conf/bblayers.conf.   //////////////////////////////////////// Update for v1.2-L5.4.70-2.3.3  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v1.2-L5.4.70-2.3.3 .  git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v1.2-L5.4.70-2.3.3 Updated: 1, Update to Yocto release L5.4.70-2.3.3 2, Enable RTNet FEC driver, test on i.MX8M Mini EVK and i.MX8M Plus EVK. For the detailed information,  Please refer to the community post 移植实时Linux方案Xenomai到i.MX ARM64平台 (Enable Xenomai on i.MX ARM64 Platform)    //////////////////////////////////////// Update for v2.1-L5.10.52-2.1.0  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v2.1-L5.10.52-2.1.0 .  git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v2.1.1-L5.10.52-2.1.0 Updated: 1, Update to Yocto release L5.10.52-2.1.0 2, Add ROS1 noetic, ROS2 galactic and rolling 3, Upgrade Xenomai to v3.2 4, Add vSLAM demo orb-slam3 5, Upgrade OpenCV to 3.4.15 for ROS1 A, Adding the meta-robot-platform layer to your build 1,  copy meta-robot-platform into <i.MX Yocto folder>/source 2, You should create a symbol link: setup-imx-robot.sh -> sources/meta-robot-platform/imx/meta-robot/tools/setup-imx-robot.sh B, How to build Robot image (example for i.MX8M Plus EVK board) $ DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r kinetic -b imx8mpevk-robot-kinetic [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r melodic -b imx8mpevk-robot-melodic ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r noetic-b imx8mpevk-robot-noetic] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r dashing -b imx8mpevk-robot-dashing ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r eloquent -b imx8mpevk-robot-eloquent ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r foxy -b imx8mpevk-robot-foxy ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r galactic -b imx8mpevk-robot-galactic ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r rolling -b imx8mpevk-robot-rolling ] $ bitbake imx-robot-agv [or bitbake imx-robot-core ] [or bitbake imx-robot-system ] [or bitbake imx-robot-sdk ]   //////////////////////////////////////// Update for v2.2-L5.10.72-2.2.0  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v2.2-L5.10.72-2.2.0 .  git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v2.2.0-L5.10.72-2.2.0 Updated: 1, Update to Yocto release L5.10.72-2.2.0   //////////////////////////////////////// Update for v2.2.3-L5.10.72-2.2.3  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v2.2.3-L5.10.72-2.2.3.  repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-hardknott -m imx-5.10.72-2.2.3.xml git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v2.2.3-L5.10.72-2.2.3 1,  copy meta-robot-platform into <i.MX Yocto folder>/source 2, You should create a symbol link: setup-imx-robot.sh -> sources/meta-robot-platform/imx/meta-robot/tools/setup-imx-robot.sh Updated: 1, Update to Yocto release L5.10.72-2.2.3 2, Update ISP SDK (isp-imx) patch for Github changing.   //////////////////////////////////////// Update for v3.1-L5.15.71-2.2.0  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v3.1-L5.15.71-2.2.0.  repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-kirkstone -m imx-5.15.71-2.2.0.xml git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v3.1-L5.15.71-2.2.0 1,  copy meta-robot-platform into <i.MX Yocto folder>/source 2, You should create a symbol link: setup-imx-robot.sh -> sources/meta-robot-platform/imx/meta-robot/tools/setup-imx-robot.sh Updated: 1, Update to Yocto release L5.15.71-2.2.0 and ROS1 Noetic and ROS2 Foxy to last version 2, Add ROS2 Humble and remove EOL distributions (ROS1 Kinetic, Melodic and ROS2 Dashing, Eloquent and Galactic). How to build Robot image (example for i.MX8M Plus EVK board) $DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r noetic-b imx8mpevk-robot-noetic [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r foxy -b imx8mpevk-robot-foxy ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r humble -b imx8mpevk-robot-humble ] $ bitbake imx-robot-sdk [or bitbake imx-robot-core ] [or bitbake imx-robot-system ] [or bitbake imx-robot-agv ]   //////////////////////////////////////// Update for v3.3-L5.15.71-2.2.0  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v3.3-L5.15.71-2.2.0.  repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-kirkstone -m imx-5.15.71-2.2.0.xml git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v3.3-L5.15.71-2.2.0 1,  copy meta-robot-platform into <i.MX Yocto folder>/source 2, You should create a symbol link: setup-imx-robot.sh -> sources/meta-robot-platform/imx/meta-robot/tools/setup-imx-robot.sh Updated: 1, Add vSLAM ROS demo based on i.MX vSLAM SDK and i.MX AIBot. The demo video is here: Autonomous Navigation with vSLAM, Based on the i.MX 8M Plus Applications Processor   2, Enable DDS Security and SROS2 for ROS 2’s security features. How to build Robot image (example for i.MX8M Plus EVK board) $DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r noetic-b imx8mpevk-robot-noetic [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r foxy -b imx8mpevk-robot-foxy ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r humble -b imx8mpevk-robot-humble ] $ bitbake imx-robot-sdk [or bitbake imx-robot-agv ] [or bitbake imx-robot-system ] [or bitbake imx-robot-core ]   //////////////////////////////////////// Update for v4.0-L6.1.55-2.2.0  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v4.0-L6.1.55-2.2.0.  repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-mickledore -m imx-6.1.55-2.2.0.xml git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout mickledore-6.1.55 1,  copy meta-robot-platform into <i.MX Yocto folder>/source 2, You should create a symbol link: setup-imx-robot.sh -> sources/meta-robot-platform/imx/meta-robot/tools/setup-imx-robot.sh Updated: 1, Migrate i.MX Robot platform to Yocto mickledore with L6.1.55. 2, Add ROS2 iron. How to build Robot image (example for i.MX8M Plus EVK board) $DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r humble -b imx8mpevk-robot-humble [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r iron -b imx8mpevk-robot-iron ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r noetic-b imx8mpevk-robot-noetic] $ bitbake -k imx-robot-sdk [or bitbake imx-robot-agv ] [or bitbake imx-robot-system ] [or bitbake imx-robot-core ]       //////////////////////////////////////// Update for v5.0-L6.6.52-2.2.0  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v5.0-L6.6.52-2.2.0.  repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-scarthgap -m imx-6.6.52-2.2.0.xml git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git -b scarthgap-6.6.52 1,  copy meta-robot-platform into <i.MX Yocto folder>/source 2, You should create a symbol link: setup-imx-robot.sh -> sources/meta-robot-platform/imx/meta-robot/tools/setup-imx-robot.sh Updated: 1, Migrate i.MX Robot platform to Yocto scarthgap with L6.6.52 and support i.MX95 EVK. 2, Add ROS2 jazzy and remove ROS1. How to build Robot image (example for i.MX95 EVK board) $DISTRO=imx-robot-xwayland MACHINE=imx95-15x15-lpddr4x-evk source setup-imx-robot.sh -r humble -b imx95-15x15-lpddr4x-evk-humble [or DISTRO=imx-robot-xwayland MACHINE=imx95-15x15-lpddr4x-evk source setup-imx-robot.sh -r jazzy -b imx95-15x15-lpddr4x-evk-jazzy ] $ bitbake -k imx-robot-sdk [or bitbake imx-robot-agv ] [or bitbake imx-robot-system ] [or bitbake imx-robot-core ]
查看全文
    Xenomai is real-time framework, which can run seamlessly side-by-side Linux as a co-kernel system, or natively over mainline Linux kernels (with or without PREEMPT-RT patch). The dual kernel nicknamed Cobalt, is a significant rework of the Xenomai 2.x system. Cobalt implements the RTDM specification for interfacing with real-time device drivers. The native linux version, an enhanced implementation of the experimental Xenomai/SOLO work, is called Mercury. In this environment, only a standalone implementation of the RTDM specification in a kernel module is required, for interfacing the RTDM-compliant device drivers with the native kernel. You can get more detailed information from Home · Wiki · xenomai / xenomai · GitLab       I have ported xenomai 3.1 to i.MX Yocto 4.19.35-1.1.0, and currently support ARM64 and test on i.MX8MQ EVK board. I did over night test( 5 real-time threads + GPU SDK test case) and stress test by tool stress-ng on i.MX8MQ EVK board. It looks lile pretty good. Current version (20200730) also support i.MX8MM EVK.     You need git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git, and git checkout xenomai-4.19.35-1.1.0-20200818 (which inlcudes all patches and bb file) and add the following variable in conf/local.conf before build xenomai by command bitbake xenomai.  XENOMAI_KERNEL_MODE = "cobalt"  PREFERRED_VERSION_linux-imx = "4.19-${XENOMAI_KERNEL_MODE}" IMAGE_INSTALL_append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" PREFERRED_VERSION_linux-imx = "4.19-${XENOMAI_KERNEL_MODE}" IMAGE_INSTALL_append += " xenomai" If XENOMAI_KERNEL_MODE = "cobalt", you can build dual kernel version. And If XENOMAI_KERNEL_MODE = "mercury", it is single kernel with PREEMPT-RT patch. The following is test result by the command (/usr/xenomai/demo/cyclictest -p 99 -t 5 -m -n -i 1000  -l 100000😞 //Over normal Linux kernel without GPU SDK test case T: 0 ( 4220) P:99 I:1000 C: 100000 Min: 7 Act: 10 Avg: 9 Max: 23 T: 1 ( 4221) P:99 I:1500 C: 66672 Min: 7 Act: 10 Avg: 10 Max: 20 T: 2 ( 4222) P:99 I:2000 C: 50001 Min: 7 Act: 12 Avg: 10 Max: 81 T: 3 ( 4223) P:99 I:2500 C: 39998 Min: 7 Act: 11 Avg: 10 Max: 29 T: 4 ( 4224) P:99 I:3000 C: 33330 Min: 7 Act: 13 Avg: 10 Max: 26 //Over normal Linux kernel with GPU SDK test case T: 0 ( 4177) P:99 I:1000 C: 100000 Min: 7 Act: 10 Avg: 11 Max: 51 T: 1 ( 4178) P:99 I:1500 C: 66673 Min: 7 Act: 12 Avg: 10 Max: 35 T: 2 ( 4179) P:99 I:2000 C: 50002 Min: 7 Act: 12 Avg: 11 Max: 38 T: 3 ( 4180) P:99 I:2500 C: 39999 Min: 7 Act: 12 Avg: 11 Max: 42 T: 4 ( 4181) P:99 I:3000 C: 33330 Min: 7 Act: 12 Avg: 11 Max: 36   //Cobalt with stress-ng --cpu 4 --io 2 --vm 1 --vm-bytes 512M --timeout 600s --metrics-brief T: 0 ( 4259) P:50 I:1000 C:3508590 Min:      0 Act:    0 Avg:    0 Max:      42 T: 1 ( 4260) P:50 I:1500 C:2338831 Min:      0 Act:    1 Avg:    0 Max:      36 T: 2 ( 4261) P:50 I:2000 C:1754123 Min:      0 Act:    1 Avg:    1 Max:      42 T: 3 ( 4262) P:50 I:2500 C:1403298 Min:      0 Act:    1 Avg:    1 Max:      45 T: 4 ( 4263) P:50 I:3000 C:1169415 Min:      0 Act:    1 Avg:    1 Max:      22   //Cobalt without GPU SDK test case T: 0 ( 4230) P:50 I:1000 C: 100000 Min: 0 Act: 0 Avg: 0 Max: 4 T: 1 ( 4231) P:50 I:1500 C:   66676 Min: 0 Act: 1 Avg: 0 Max: 4 T: 2 ( 4232) P:50 I:2000 C:   50007 Min: 0 Act: 1 Avg: 0 Max: 8 T: 3 ( 4233) P:50 I:2500 C:   40005 Min: 0 Act: 1 Avg: 0 Max: 3 T: 4 ( 4234) P:50 I:3000 C:   33338 Min: 0 Act: 1 Avg: 0 Max: 5 //Cobalt with GPU SDK test case T: 0 ( 4184) P:99 I:1000 C:37722968 Min: 0 Act: 1 Avg: 0 Max: 24 T: 1 ( 4185) P:99 I:1500 C:25148645 Min: 0 Act: 1 Avg: 0 Max: 33 T: 2 ( 4186) P:99 I:2000 C:18861483 Min: 0 Act: 1 Avg: 0 Max: 22 T: 3 ( 4187) P:99 I:2500 C:15089187 Min: 0 Act: 1 Avg: 0 Max: 23 T: 4 ( 4188) P:99 I:3000 C:12574322 Min: 0 Act: 1 Avg: 0 Max: 29 //Mercury without GPU SDK test case T: 0 ( 4287) P:99 I:1000 C:1000000 Min: 6 Act: 7 Avg: 7 Max: 20 T: 1 ( 4288) P:99 I:1500 C:  666667 Min: 6 Act: 9 Avg: 7 Max: 17 T: 2 ( 4289) P:99 I:2000 C:  499994 Min: 6 Act: 8 Avg: 7 Max: 24 T: 3 ( 4290) P:99 I:2500 C:  399991 Min: 6 Act: 9 Avg: 7 Max: 19 T: 4 ( 4291) P:99 I:3000 C:  333322 Min: 6 Act: 8 Avg: 7 Max: 21 //Mercury with GPU SDK test case T: 0 ( 4222) P:99 I:1000 C:1236790 Min: 6 Act: 7 Avg: 7 Max: 55 T: 1 ( 4223) P:99 I:1500 C:  824518 Min: 6 Act: 7 Avg: 7 Max: 44 T: 2 ( 4224) P:99 I:2000 C:  618382 Min: 6 Act: 8 Avg: 8 Max: 88 T: 3 ( 4225) P:99 I:2500 C:  494701 Min: 6 Act: 7 Avg: 8 Max: 49 T: 4 ( 4226) P:99 I:3000 C:  412247 Min: 6 Act: 7 Avg: 8 Max: 53 //////////////////////////////////////// Update for Yocto L5.4.47 2.2.0  /////////////////////////////////////////////////////////// New release for Yocto release L5.4.47 2.2.0 and it supports i.MX8M series (8MQ,8MM,8MN and 8MP). You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git,  and git checkout xenomai-5.4.47-2.2.0. You need to add the following variable in conf/local.conf before build xenomai by command bitbake imx-image-multimedia.  XENOMAI_KERNEL_MODE = "cobalt"  PREFERRED_VERSION_linux-imx = "5-${XENOMAI_KERNEL_MODE}" IMAGE_INSTALL_append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" PREFERRED_VERSION_linux-imx = "5-${XENOMAI_KERNEL_MODE}" IMAGE_INSTALL_append += " xenomai" //////////////////////////////////////// Update for Yocto L5.4.70 2.3.0  /////////////////////////////////////////////////////////// New release  for Yocto release L5.4.70 2.3.0 and it supports i.MX8M series (8MQ,8MM,8MN and 8MP) and i.MX8QM/QXP. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git and git checkout xenomai-5.4.70-2.3.0. Updating: 1, Support i.MX8QM and i.MX8QXP 2, Fix altency's the issue which uses legacy API to get time   //////////////////////////////////////// update for Yocto L5.4.70 2.3.2  /////////////////////////////////////////////////////////// New release for Yocto release L5.4.70 2.3.2. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git, and git checkout xenomai-5.4.70-2.3.2. Updating: 1, Enable Xenomai RTDM driver in Linux Kernel 2, Currently CAN, UART, GPIO,  SPI and Ethernet (in debug for RTNet)  are added in Xenomai. 3, Add KERNEL_DEVICETREE += " freescale/imx8mp-rt-evk.dtb " in sources/meta-imx/meta-bsp/conf/machine/imx8mpevk.conf to enable relative device in Xenomai domain, for example rt-imx8mp-flexcan.   //////////////////////////////////////// Update for Yocto L5.4.70 2.3.4  /////////////////////////////////////////////////////////// New release for Yocto release L5.4.70 2.3.4. You need to git clone  https://gitee.com/zxd2021-imx/xenomai-arm64.git and git checkout xenomai-5.4.70-2.3.4. Updating: 1, Enable RTNet FEC driver 2, Currently CAN, UART, GPIO,  SPI and Ethernet ( FEC Controller)  are added in Xenomai. 3, Add KERNEL_DEVICETREE += " freescale/imx8mp-rt-evk.dtb " in sources/meta-imx/meta-bsp/conf/machine/imx8mpevk.conf and KERNEL_DEVICETREE += " freescale/imx8mm-rt-ddr4-evk.dtb " in sources/meta-imx/meta-bsp/conf/machine/imx8mmddr4evk.conf to enable rt_fec device in Xenomai domain. Verifying the network connection by RTnet Ping Between i.MX8M Mini EVK and i.MX8M Plus EVK a, Setup test environment 1, Connect ENET1 of  i.MX8M Plus EVK (used as a master) and  ENET of i.MX8M Mini EVK (used as a slave) of  to a switch or hub 2, Modify /usr/xenomai/etc/rtnet.conf in i.MX8M Plus EVK board as the following: @@ -16,7 +16,7 @@ MODULE_EXT=".ko" # RT-NIC driver -RT_DRIVER="rt_eepro100" +RT_DRIVER="rt_fec" RT_DRIVER_OPTIONS="" # PCI addresses of RT-NICs to claim (format: 0000:00:00.0) @@ -30,8 +30,8 @@ REBIND_RT_NICS="" # The TDMA_CONFIG file overrides these parameters for masters and backup # masters. Leave blank if you do not use IP addresses or if this station is # intended to retrieve its IP from the master based on its MAC address. -IPADDR="10.0.0.1" -NETMASK="" +IPADDR="192.168.100.101" +NETMASK="255.255.255.0" # Start realtime loopback device ("yes" or "no") RT_LOOPBACK="yes" @@ -65,7 +65,7 @@ TDMA_MODE="master" # Master parameters # Simple setup: List of TDMA slaves -TDMA_SLAVES="10.0.0.2 10.0.0.3 10.0.0.4" +TDMA_SLAVES="192.168.100.102" # Simple setup: Cycle time in microsecond TDMA_CYCLE="5000" 3, Modify /usr/xenomai/etc/rtnet.conf in i.MX8M Mini EVK board as the following: @@ -16,7 +16,7 @@ MODULE_EXT=".ko" # RT-NIC driver -RT_DRIVER="rt_eepro100" +RT_DRIVER="rt_fec" RT_DRIVER_OPTIONS="" # PCI addresses of RT-NICs to claim (format: 0000:00:00.0) @@ -30,8 +30,8 @@ REBIND_RT_NICS="" # The TDMA_CONFIG file overrides these parameters for masters and backup # masters. Leave blank if you do not use IP addresses or if this station is # intended to retrieve its IP from the master based on its MAC address. -IPADDR="10.0.0.1" -NETMASK="" +IPADDR="192.168.100.102" +NETMASK="255.255.255.0" # Start realtime loopback device ("yes" or "no") RT_LOOPBACK="yes" @@ -59,13 +59,13 @@ STAGE_2_CMDS="" # TDMA mode of the station ("master" or "slave") # Start backup masters in slave mode, it will then be switched to master # mode automatically during startup. -TDMA_MODE="master" +TDMA_MODE="slave" # Master parameters # Simple setup: List of TDMA slaves -TDMA_SLAVES="10.0.0.2 10.0.0.3 10.0.0.4" +TDMA_SLAVES="192.168.100.102" # Simple setup: Cycle time in microsecond TDMA_CYCLE="5000" 4, rename imx8mm-rt-ddr4-evk.dtb to imx8mm-ddr4-evk.dtb in /run/media/mmcblk1p1,  rename imx8mp-rt-evk.dtb to imx8mp-evk.dtb in /run/media/mmcblk1p1, and reboot board. 5, Run the below command on i.MX8M Mini EVK board. cd /usr/xenomai/sbin/ ./rtnet start & 5, Run the below command on i.MX8M Plus EVK board. cd /usr/xenomai/sbin/ ./rtnet start & When you see the log (rt_fec_main 30be0000.ethernet (unnamed net_device) (uninitialized): Link is Up - 100Mbps/Full - flow control rx/tx) and you can run command "./rtroute" to check route table if the slave IP (192.168.100.102) is in route.. b, Verify the network connection using the command below: ./rtping -s 1024 192.168.100.102 //////////////////////////////////////// Update for Yocto L5.10.52 2.1.0  /////////////////////////////////////////////////////////// New release for Yocto release L5.10.52 2.1.0. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git and git checkout xenomai-5.10.52-2.1.0. Updating: 1, Upgrade Xenomai to v3.2 2, Enable Dovetail instead of ipipe. Copy xenomai-arm64 to <Yocto folder>/sources/meta-imx/meta-bsp/recipes-kernel, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitbake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL_append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL_append += " xenomai" Notice: If XENOMAI_KERNEL_MODE = "cobalt", you can build dual kernel version. And If XENOMAI_KERNEL_MODE = "mercury", it is single kernel with PREEMPT-RT patch.  Latency testing of Xenomai3.2+Dovetail with isolating CPU 2,3 ( Xenomai 3.2 on 8MM DDR4 EVK with GPU test case (GLES2/S08_EnvironmentMappingRefraction_Wayland) + iperf3 + 2 ping 65000 size + stress-ng --cpu 2 --io 2 --vm 1 --vm-bytes 256M --metrics-brief )😞 The following is test result by the command (/usr/xenomai/demo/cyclictest -a 2,3 -p 50 -t 5 -m -n -i 1000) root@imx8mmddr4evk:~# /usr/xenomai/demo/cyclictest -a 2,3 -p 50 -t 5 -m -n -i 1000 # /dev/cpu_dma_latency set to 0us policy: fifo: loadavg: 5.96 6.04 6.03 7/155 1349 T: 0 ( 615) P:50 I:1000 C:63448632 Min: 0 Act: 0 Avg: 0 Max: 55 T: 1 ( 616) P:50 I:1500 C:42299087 Min: 0 Act: 0 Avg: 1 Max: 43 T: 2 ( 617) P:50 I:2000 C:31724315 Min: 0 Act: 0 Avg: 1 Max: 51 T: 3 ( 618) P:50 I:2500 C:25379452 Min: 0 Act: 0 Avg: 1 Max: 53 T: 4 ( 619) P:50 I:3000 C:21149543 Min: 0 Act: 0 Avg: 1 Max: 47 //////////////////////////////////////// Update for Yocto L5.10.72 2.2.2  /////////////////////////////////////////////////////////// New release for Yocto release L5.10.72 2.2.2. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git and git checkout xenomai-5.10.72-2.2.2. Updating: 1, Upgrade Xenomai to v3.2.1 Copy xenomai-arm64 to <Yocto folder>/sources/meta-imx/meta-bsp/recipes-kernel, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitbake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL_append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL_append += " xenomai" //////////////////////////////////////// Update for Yocto L5.15.71 2.2.0  /////////////////////////////////////////////////////////// New release for Yocto release L5.15.71 2.2.0. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git and git checkout xenomai-5.15.71-2.2.0. Updating: 1, Upgrade Xenomai to v3.2.2 Copy xenomai-arm64 to <Yocto folder>/sources/meta-imx/meta-bsp/recipes-kernel, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitbake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL:append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL:append += " xenomai"   //////////////////////////////////////// Update for Yocto L6.1.55 2.2.0  /////////////////////////////////////////////////////////// New release for Yocto release L6.1.55 2.2.0. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git recipes-rtlinux-xenomai -b Linux-6.1.x Updating: 1, Upgrade Xenomai to v3.2.4 and support i.MX93 2, Enable EVL (aka Xenomai 4) for i.MX93 and legacy i.MX(6/7D/8X/8M) Copy recipes-rtlinux-xenomai to <Yocto folder>/sources/meta-imx/meta-bsp/, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitbake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL:append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL:append += " xenomai" or XENOMAI_KERNEL_MODE = "evl" IMAGE_INSTALL:append += " libevl"   //////////////////////////////////////// Update for Yocto L6.6.52 2.2.0  /////////////////////////////////////////////////////////// New release for Yocto release L6.6.52 2.2.0. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git recipes-rtlinux-xenomai -b Linux-6.6.52 Updating: 1, Upgrade Xenomai to v3.3 and support i.MX91/93/95 2, Upgrade EVL (aka Xenomai 4),  libevl to r50 and support i.MX91/93/95 Copy recipes-rtlinux-xenomai to <Yocto folder>/sources/meta-imx/meta-bsp/, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitbake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL:append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL:append += " xenomai" or XENOMAI_KERNEL_MODE = "evl" IMAGE_INSTALL:append += " libevl"    
查看全文
  Just sharing some experiences during the development and studying.   Although, it appears some hardwares, it focuses on software to speed up your developing on your  hardware.     杂记共享一下在开发和学习过程中的经验。    虽然涉及一些硬件,但其本身关注软件,希望这些能加速您在自己硬件上的开发。 3/4/2025 GPIO USB ID GPIO USB ID - NXP Community   1/20/2025 MDIO on GPIOs MDIO on GPIOs - NXP Community   12/09/2024 GPIO LEDs https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/GPIO-LEDs/ta-p/2009743     10/22/2024 iMX93-EVK PWM LED https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/iMX93-EVK-PWM-LED/ta-p/1978047   07/25/2024 iMX secondary boot collection https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/iMX-secondary-boot-collection/ta-p/1916915   07/25/2024 HSM Code-Signing Journey https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/HSM-Code-Signing-Journey/ta-p/1882244 25JUL2024 - add pkcs11 proxy                         HSM Code-Signing Journey_25JUL2024.pdf                          HSM Code-Signing Journey_25JUL2024.txt   06/06/2024 HSM Code-Signing Journey https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/HSM-Code-Signing-Journey/ta-p/1882244     02/07/2024 Device Tree Standalone Compile under Windows https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/Device-Tree-Standalone-Compile-under-Windows/ta-p/1855271   02/07/2024 i.MX8X security overview and AHAB deep dive i.MX8X security overview and AHAB deep dive - NXP Community   11/23/2023 “Standalone” Compile Device Tree https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/Standalone-Compile-Device-Tree/ta-p/1762373     10/26/2023 Linux Dynamic Debug https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/Linux-Dynamic-Debug/ta-p/1746611   08/10/2023 u-boot environment preset for sdcard mirror u-boot environment preset for sdcard mirror - NXP Community   06/06/2023 all(bootloader, device tree, Linux kernel, rootfs) in spi nor demo imx8qxpc0 mek all(bootloader, device tree, Linux kernel, rootfs)... - NXP Community     09/26/2022 parseIVT - a script to help i.MX6 Code Signing parseIVT - a script to help i.MX6 Code Signing - NXP Community   Provide  run under windows   09/16/2022   create sdcard mirror under windows create sdcard mirror under windows - NXP Community     08/03/2022   i.MX8MM SDCARD Secondary Boot Demo https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX8MM-SDCARD-Secondary-Boot-Demo/ta-p/1500011     02/16/2022 mx8_ddr_stress_test without UI   https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/mx8-ddr-stress-test-without-UI/ta-p/1414090   12/23/2021 i.MX8 i.MX8X Board Reset https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX8-i-MX8X-Board-Reset/ta-p/1391130       12/21/2021 regulator userspace-consumer https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/regulator-userspace-consumer/ta-p/1389948     11/24/2021 crypto af_alg blackkey demo crypto af_alg blackkey demo - NXP Community   09/28/2021 u-boot runtime modify Linux device tree(dtb) u-boot runtime modify Linux device tree(dtb) - NXP Community     08/17/2021 gpio-poweroff demo https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/gpio-poweroff-demo/ta-p/1324306         08/04/2021 How to use gpio-hog demo https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/How-to-use-gpio-hog-demo/ta-p/1317709       07/14/2021 SWUpdate OTA i.MX8MM EVK / i.MX8QXP MEK https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/SWUpdate-OTA-i-MX8MM-EVK-i-MX8QXP-MEK/ta-p/1307416     04/07/2021 i.MX8QXP eMMC Secondary Boot https://community.nxp.com/t5/i-MX-Community-Articles/i-MX8QXP-eMMC-Secondary-Boot/ba-p/1257704#M45       03/25/2021 sc_misc_board_ioctl to access the M4 partition from A core side sc_misc_board_ioctl to access the M4 partition fr... - NXP Community     03/17/2021 How to Changei.MX8X MEK+Base Board  Linux Debug UART https://community.nxp.com/t5/i-MX-Community-Articles/How-to-Change-i-MX8X-MEK-Base-Board-Linux-Debug-UART/ba-p/1246779#M43     03/16/2021 How to Change i.MX8MM evk Linux Debug UART https://community.nxp.com/t5/i-MX-Community-Articles/How-to-Change-i-MX8MM-evk-Linux-Debug-UART/ba-p/1243938#M40       05/06/2020 Linux fw_printenv fw_setenv to access U-Boot's environment variables Linux fw_printenv fw_setenv to access U-Boot's env... - NXP Community     03/30/2020 i.MX6 DDR calibration/stress for Mass Production https://community.nxp.com/docs/DOC-346065     03/25/2020 parseIVT - a script to help i.MX6 Code Signing https://community.nxp.com/docs/DOC-345998     02/17/2020 Start your machine learning journey from tensorflow playground Start your machine learning journey from tensorflow playground      01/15/2020 How to add  iMX8QXP PAD(GPIO) Wakeup How to add iMX8QXP PAD(GPIO) Wakeup    01/09/2020 Understand iMX8QX Hardware Partitioning By Making M4 Hello world Running Correctly https://community.nxp.com/docs/DOC-345359   09/29/2019 Docker On i.MX6UL With Ubuntu16.04 https://community.nxp.com/docs/DOC-344462   09/25/2019 Docker On i.MX8MM With Ubuntu https://community.nxp.com/docs/DOC-344473 Docker On i.MX8QXP With Ubuntu https://community.nxp.com/docs/DOC-344474     08/28/2019 eMMC5.0 vs eMMC5.1 https://community.nxp.com/docs/DOC-344265     05/24/2019 How to upgrade  Linux Kernel and dtb on eMMC without UUU How to upgrade Linux Kernel and dtb on eMMC without UUU     04/12/2019 eMMC RPMB Enhance and GP https://community.nxp.com/docs/DOC-343116   04/04/2019 How to Dump a GPT SDCard Mirror(Android O SDCard Mirror) https://community.nxp.com/docs/DOC-343079   04/04/2019 i.MX Create Android SDCard Mirror https://community.nxp.com/docs/DOC-343078   04/02/2019: i.MX Linux Binary_Demo Files Tips  https://community.nxp.com/docs/DOC-343075   04/02/2019:       Update Set fast boot        eMMC_RPMB_Enhance_and_GP.pdf   02/28/2019: imx_builder --- standalone build without Yocto https://community.nxp.com/docs/DOC-342702   08/10/2018: i.MX6SX M4 MPU Settings For RPMSG update    Update slide CMA Arrangement Consideration i.MX6SX_M4_MPU_Settings_For_RPMSG_08102018.pdf   07/26/2018 Understand ML With Simplest Code https://community.nxp.com/docs/DOC-341099     04/23/2018:     i.MX8M Standalone Build     i.MX8M Standalone Build.pdf     04/13/2018:      i.MX6SX M4 MPU Settings For RPMSG  update            Add slide CMA Arrangement  Consideration     i.MX6SX_M4_MPU_Settings_For_RPMSG_04132018.pdf   09/05/2017:       Update eMMC RPMB, Enhance  and GP       eMMC_RPMB_Enhance_and_GP.pdf 09/01/2017:       eMMC RPMB, Enhance  and GP       eMMC_RPMB_Enhance_and_GP.pdf 08/30/2017:     Dual LVDS for High Resolution Display(For i.MX6DQ/DLS)     Dual LVDS for High Resolution Display.pdf 08/27/2017:  L3.14.28 Ottbox Porting Notes:         L3.14.28_Ottbox_Porting_Notes-20150805-2.pdf MFGTool Uboot Share With the Normal Run One:        MFGTool_Uboot_share_with_NormalRun_sourceCode.pdf Mass Production with programmer        Mass_Production_with_NAND_programmer.pdf        Mass_Production_with_emmc_programmer.pdf AndroidSDCARDMirrorCreator https://community.nxp.com/docs/DOC-329596 L3.10.53 PianoPI Porting Note        L3.10.53_PianoPI_PortingNote_151102.pdf Audio Codec WM8960 Porting L3.10.53 PianoPI        AudioCodec_WM8960_Porting_L3.10.53_PianoPI_151012.pdf TouchScreen PianoPI Porting Note         TouchScreen_PianoPI_PortingNote_151103.pdf Accessing GPIO From UserSpace        Accessing_GPIO_From_UserSpace.pdf        https://community.nxp.com/docs/DOC-343344 FreeRTOS for i.MX6SX        FreeRTOS for i.MX6SX.pdf i.MX6SX M4 fastup        i.MX6SX M4 fastup.pdf i.MX6 SDCARD Secondary Boot Demo        i.MX6_SDCARD_Secondary_Boot_Demo.pdf i.MX6SX M4 MPU Settings For RPMSG        i.MX6SX_M4_MPU_Settings_For_RPMSG_10082016.pdf Security        Security03172017.pdf    NOT related to i.MX, only a short memo
查看全文
    Test envs: BOARD: i.MX 8MN EVK BSP: L6.6.36   The L6.6.y includes the feature about supporting starting Cortex-M33 from non-TCM address for i.MX93, but not for i.MX8M series.    LF-7815 remoteproc: imx_rproc: support starting Cortex-M33 from non-TCM address for i.MX93 https://github.com/nxp-imx/linux-imx/commit/680aa11c7bdaddf6bbffd74bc0a94ef67593b69b#diff-66a34e17e82d281936f559217adc3983b39abeb2e478967f3d5cef2eed5b67fcR693   For older BSP, customer can refer this full patch set https://patchew.org/linux/20230209063816.2782206-1-peng.fan@oss.nxp.com/   If you want to test ELF in DDR on i.MX8M series and i.MX93 platform with L6.6.y, please use below patch set.  
查看全文
The purpose of this article is to show how to reduce the boot time on i.MX 8QXP using U-Boot Falcon Mode. The general technique is presented in the AN14093. This article was tested on LF-6.6.23-2.0.0 BSP. How to do it 1. Follow the steps in the i.MX Yocto Project User's Guide and prepare your Yocto building environment. We will further assume that the BSP is in the ~/imx-yocto-bsp directory and the build directory is ~/imx-yocto-bsp/build. 2. Unpack the attached archive in ~/imx-yocto-bsp/sources. This should create the ~/imx-yocto-bsp/sources/meta-imx-fastboot directory.  3. Add the meta-imx-fastboot layer to your build using the following command: bitbake-layers add-layer ~/imx-yocto-bsp/sources/meta-imx-fastboot 4. If you've previously built an image in the same tree, clean the u-boot-imx and imx-boot packages using the following command: bitbake -c clean u-boot-imx imx-boot 5. Build the new image. Out of the box, this package is configured for core-image-minimal. We will show you below how to adapt it for other images: bitbake core-image-minimal 6. Write the resulted image on eMMC/SD using your preferred method and boot the board. 7. By default, the board will boot normally. To enable fast boot, stop the board in U-Boot, and run the following command: u-boot => run prepare_fdt 8. Reboot the board. From this point on, the board should boot in fast mode. Far less messages will be printed by the kernel or systemd during boot. You may further optimize the boot time by removing unnecessary features from the kernel and/or removing unnecessary services started by systemd. Please refer to AN14093. 9. If you ever want to re-enter U-Boot, please keep the 'c' key pressed in the serial console during board power-on. It's easiest if you press and keep the 'c' key pressed before powering on/pressing the reset button. How it works The layer we've added contains patches for U-Boot, ATF and imx-mkimage. In addition, it modifies the core-image-minimal recipe. In U-Boot, the necessary options for Falcon Mode are added in a new configuration file, named imx8qxp_mek_falcon_defconfig, as well as an implementation of the spl_start_uboot() function. In ATF, the device tree load address is added in the correct parameter. In mkimage, two new targets are created: kernel-atf-container.img (to be deployed in the boot partition) and uImage (to be deployed in the rootfs). The change in the core-image-minimal recipe ensures that the new files are copied in the resulting image. If you want to build a different image, you need to copy the content of core-image-minimal.bbappend in a new file, named according to the image you want to build. For example, if you want to build imx-image-full, you could use the following command: cp ~/imx-yocto-bsp/sources/meta-imx-fastboot/recipes-fsl/images/core-image-minimal.bbappend ~/imx-yocto-bsp/sources/meta-imx-fastboot/recipes-fsl/images/imx-image-full.bbappend       *** DISCLAIMER *** Any support, information, and technology (“Materials”) provided by NXP are provided AS IS, without any warranty express or implied, and NXP disclaims all direct and indirect liability and damages in connection with the Material to the maximum extent permitted by the applicable law. NXP accepts no liability for any assistance with applications or product design. Materials may only be used in connection with NXP products. Any feedback provided to NXP regarding the Materials may be used by NXP without restriction.
查看全文
This article describes how to use the Preempt-RT Linux kernel in the i.MX Linux BSP 6.6.23_2.0.0. This is particularly useful for platforms such as i.MX 95, for which there is not yet a Real-Time Edge Software release.    How to do it    1. Follow the steps in the i.MX Yocto Project User's Guide and build your preferred image, for example core-image-minimal. Will further assume that the BSP is in the ~/imx-yocto-bsp directory and the build directory is ~/imx-yocto-bsp/build. 2. Unpack the attached archive in ~/imx-yocto-bsp/sources. This should create the ~/imx-yocto-bsp/sources/meta-otherkernels directory. This archive will work out of the box for i.MX 95 and i.MX 93, and may require some modifications for other platforms, as described below. 3. Add the meta-otherkernels to your build using the following command: bitbake-layers add-layer ~/imx-yocto-bsp/sources/meta-otherkernels 4. Add the OVERRIDES .= ":preempt-rt" to ~/imx-yocto-bsp/build/conf/local.conf file using the following command: echo 'OVERRIDES .= ":preempt-rt"' >> ~/imx-yocto-bsp/build/conf/local.conf This enables the Preempt-RT kernel for your build. You can always go back to your regular kernel by removing this line from ~/imx-yocto-bsp/build/conf/local.conf. 5. Build again your image. After booting this image, you can check the kernel version using: uname -a      How it works    The meta-otherkernels layer contains a .bbappend  for the linux-imx kernel recipe which replaces the sources URL with the Real-Time Edge kernel when the "preempt-rt" override is active. In addition, due to the fact that the current real-time kernel does not support all the board configurations, the layer config file (meta-otherkernels/conf/layer.conf) removes from the build the device tree files that are not supported (when "preempt-rt" override is active).   If you use this layer for other SoCs (other than i.MX 93/i.MX 95), you may need to edit the meta-otherkernels/conf/layer.conf and add the unsupported device trees. If an  unsupported device tree is left, Yocto will give an error during build.        *** DISCLAIMER *** Any support, information, and technology (“Materials”) provided by NXP are provided AS IS, without any warranty express or implied, and NXP disclaims all direct and indirect liability and damages in connection with the Material to the maximum extent permitted by the applicable law. NXP accepts no liability for any assistance with applications or product design. Materials may only be used in connection with NXP products. Any feedback provided to NXP regarding the Materials may be used by NXP without restriction.
查看全文
This guide is a continuation from our latest Debian 12 Installation Guide for iMX8MM, iMX8MP, iMX8MN and iMX93. Here we will describe the process to install the multimedia and hardware acceleration packages, specifically GPU, VPU and Gstreamer on i.MX8M Mini, i.MX8M Plus and i.MX8M Nano. The guide is based on the one provided by our colleague Build Ubuntu For i.MX8 Series Platform - NXP Community, which requires to previously build an image using Yocto Project with the following distro and image name. Distro name - fsl-imx-wayland Image name – imx-image-multimedia For more information please check our BSP documentation i.MX Yocto Project User’s Guide.   Hardware Requirements Linux Host Computer (Ubuntu 20.04 or later) USB Card reader or Micro SD to SD adapter SD Card Evaluation Kit Board for the i.MX8M Nano, i.MX8M Mini, i.MX8M Plus   Software Requirements Linux Ubuntu (20.04 tested) or Debian for Host Computer BSP version 6.1.55 built with Yocto Project   After built the image we can start the installation by following the steps below:   GPU Installation The GPU Installation consists of copy the files from packages imx-gpu-g2d, imx-gpu-viv, libdrm to the Debian system. As our latest installation guide, we will continue naming “mountpoint” to the directory where Debian system is mounted on our host machine. Regarding the path provided on each step, we put labels <build-path> and <machine> that you will need to change based on your environment. These are the paths that Yocto Project uses to save the packages. However, this could change on your environment and you can find the work directory from each package using the following command: bitbake -e <package-name> | grep ^WORKDIR= This command will show you the absolute path of the package work directory. 1. Install GPU Packages $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/imx-gpu-g2d/6.4.11.p2.2-r0/image/* mountpoint $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/imx-gpu-viv/1_6.4.11.p2.2-aarch64-r0/image/* mountpoint $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/libdrm/2.4.115.imx-r0/image/* mountpoint   2. Install Linux IMX Headers and IMX Parser $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/linux-imx-headers/6.1-r0/image/* mountpoint $ sudo cp -Pra <build-path>/tmp/work/armv8a-poky-linux/imx-parser/4.8.2-r0/image/* mountpoint   3. Use chroot $ sudo LANG=C.UTF-8 chroot mountpoint/ qemu-aarch64-static /bin/bash   4. Install Dependencies $ apt install libudev-dev libinput-dev libxkbcommon-dev libpam0g-dev libx11-xcb-dev libxcb-xfixes0-dev libxcb-composite0-dev libxcursor-dev libxcb-shape0-dev libdbus-1-dev libdbus-glib-1-dev libsystemd-dev libpixman-1-dev libcairo2-dev libffi-dev libxml2-dev kbd libexpat1-dev autoconf automake libtool meson cmake ssh net-tools network-manager iputils-ping rsyslog bash-completion htop resolvconf dialog vim udhcpc udhcpd git v4l-utils alsa-utils git gcc less autoconf autopoint libtool bison flex gtk-doc-tools libglib2.0-dev libpango1.0-dev libatk1.0-dev kmod pciutils libjpeg-dev   5. Create a folder for Multimedia Installation. Here we will clone all the multimedia repositories.  $ mkdir multimedia_packages $ cd multimedia_packages   6. Build Wayland $ git clone https://gitlab.freedesktop.org/wayland/wayland.git $ cd wayland $ git checkout 1.22.0 $ meson setup build --prefix=/usr -Ddocumentation=false -Ddtd_validation=true $ cd build $ ninja install   7. Build Wayland Protocols IMX $ git clone https://github.com/nxp-imx/wayland-protocols-imx.git $ cd wayland-protocols-imx $ git checkout wayland-protocols-imx-1.32 $ meson setup build --prefix=/usr -Dtests=false $ cd build $ ninja install   8. Build Weston $ git clone https://github.com/nxp-imx/weston-imx.git $ cd weston-imx $ git checkout weston-imx-11.0.3 $ meson setup build --prefix=/usr -Dpipewire=false -Dsimple-clients=all -Ddemo-clients=true -Ddeprecated-color-management-colord=false -Drenderer-gl=true -Dbackend-headless=false -Dimage-jpeg=true -Drenderer-g2d=true -Dbackend-drm=true -Dlauncher-libseat=false -Dcolor-management-lcms=false -Dbackend-rdp=false -Dremoting=false -Dscreenshare=true -Dshell-desktop=true -Dshell-fullscreen=true -Dshell-ivi=true -Dshell-kiosk=true -Dsystemd=true -Dlauncher-logind=true -Dbackend-drm-screencast-vaapi=false -Dbackend-wayland=false -Dimage-webp=false -Dbackend-x11=false -Dxwayland=false $ cd build $ ninja install   VPU Installation To install VPU and Gstreamer please follow the steps below: 1. Install firmware-imx $ sudo cp -Pra <build-path>/tmp/work/all-poky-linux/firmware-imx/1_8.22-r0/image/lib/* mountpoint/lib/   2. Install VPU Driver $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/imx-vpu-hantro/1.31.0-r0/image/* mountpoint $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/imx-vpuwrap/git-r0/image/* mountpoint   3. Use chroot $ sudo LANG=C.UTF-8 chroot mountpoint/ qemu-aarch64-static /bin/bash   4. Install dependencies for Gstreamer Plugins $ apt install libgirepository1.0-dev gettext liborc-0.4-dev libasound2-dev libogg-dev libtheora-dev libvorbis-dev libbz2-dev libflac-dev libgdk-pixbuf-2.0-dev libmp3lame-dev libmpg123-dev libpulse-dev libspeex-dev libtag1-dev libbluetooth-dev libusb-1.0-0-dev libcurl4-openssl-dev libssl-dev librsvg2-dev libsbc-dev libsndfile1-dev   5. Change directory to multimedia packages. $ cd multimedia-packages   6. Build gstreamer $ git clone https://github.com/nxp-imx/gstreamer -b lf-6.1.55-2.2.0 $ cd gstreamer $ meson setup build --prefix=/usr -Dintrospection=enabled -Ddoc=disabled -Dexamples=disabled -Ddbghelp=disabled -Dnls=enabled -Dbash-completion=disabled -Dcheck=enabled -Dcoretracers=disabled -Dgst_debug=true -Dlibdw=disabled -Dtests=enabled -Dtools=enabled -Dtracer_hooks=true -Dlibunwind=disabled -Dc_args=-I/usr/include/imx $ cd build $ ninja install   7. Build gst-plugins-base $ git clone https://github.com/nxp-imx/gst-plugins-base -b lf-6.1.55-2.2.0 $ cd gst-plugins-base $ meson setup build --prefix=/usr -Dalsa=enabled -Dcdparanoia=disabled -Dgl-graphene=disabled -Dgl-jpeg=disabled -Dopus=disabled -Dogg=enabled -Dorc=enabled -Dpango=enabled -Dgl-png=enabled -Dqt5=disabled -Dtheora=enabled -Dtremor=disabled -Dvorbis=enabled -Dlibvisual=disabled -Dx11=disabled -Dxvideo=disabled -Dxshm=disabled -Dc_args=-I/usr/include/imx $ cd build $ ninja install   8. Build gst-plugins-good $ git clone https://github.com/nxp-imx/gst-plugins-good -b lf-6.1.55-2.2.0 $ cd gst-plugins-good $ meson setup build --prefix=/usr -Dexamples=disabled -Dnls=enabled -Ddoc=disabled -Daalib=disabled -Ddirectsound=disabled -Ddv=disabled -Dlibcaca=disabled -Doss=enabled -Doss4=disabled -Dosxaudio=disabled -Dosxvideo=disabled -Dshout2=disabled -Dtwolame=disabled -Dwaveform=disabled -Dasm=disabled -Dbz2=enabled -Dcairo=enabled -Ddv1394=disabled -Dflac=enabled -Dgdk-pixbuf=enabled -Dgtk3=disabled -Dv4l2-gudev=enabled -Djack=disabled -Djpeg=enabled -Dlame=enabled -Dpng=enabled -Dv4l2-libv4l2=disabled -Dmpg123=enabled -Dorc=enabled -Dpulse=enabled -Dqt5=disabled -Drpicamsrc=disabled -Dsoup=enabled -Dspeex=enabled -Dtaglib=enabled -Dv4l2=enabled -Dv4l2-probe=true -Dvpx=disabled -Dwavpack=disabled -Dximagesrc=disabled -Dximagesrc-xshm=disabled -Dximagesrc-xfixes=disabled -Dximagesrc-xdamage=disabled -Dc_args=-I/usr/include/imx $ cd build $ ninja install   9. Build gst-plugins-bad $ git clone https://github.com/nxp-imx/gst-plugins-bad -b lf-6.1.55-2.2.0 $ cd gst-plugins-bad $ meson setup build --prefix=/usr -Dintrospection=enabled -Dexamples=disabled -Dnls=enabled -Dgpl=disabled -Ddoc=disabled -Daes=enabled -Dcodecalpha=enabled -Ddecklink=enabled -Ddvb=enabled -Dfbdev=enabled -Dipcpipeline=enabled -Dshm=enabled -Dtranscode=enabled -Dandroidmedia=disabled -Dapplemedia=disabled -Dasio=disabled -Dbs2b=disabled -Dchromaprint=disabled -Dd3dvideosink=disabled -Dd3d11=disabled -Ddirectsound=disabled -Ddts=disabled -Dfdkaac=disabled -Dflite=disabled -Dgme=disabled -Dgs=disabled -Dgsm=disabled -Diqa=disabled -Dkate=disabled -Dladspa=disabled -Dldac=disabled -Dlv2=disabled -Dmagicleap=disabled -Dmediafoundation=disabled -Dmicrodns=disabled -Dmpeg2enc=disabled -Dmplex=disabled -Dmusepack=disabled -Dnvcodec=disabled -Dopenexr=disabled -Dopenni2=disabled -Dopenaptx=disabled -Dopensles=disabled -Donnx=disabled -Dqroverlay=disabled -Dsoundtouch=disabled -Dspandsp=disabled -Dsvthevcenc=disabled -Dteletext=disabled -Dwasapi=disabled -Dwasapi2=disabled -Dwildmidi=disabled -Dwinks=disabled -Dwinscreencap=disabled -Dwpe=disabled -Dzxing=disabled -Daom=disabled -Dassrender=disabled -Davtp=disabled -Dbluez=enabled -Dbz2=enabled -Dclosedcaption=enabled -Dcurl=enabled -Ddash=enabled -Ddc1394=disabled -Ddirectfb=disabled -Ddtls=disabled -Dfaac=disabled -Dfaad=disabled -Dfluidsynth=disabled -Dgl=enabled -Dhls=enabled -Dkms=enabled -Dcolormanagement=disabled -Dlibde265=disabled -Dcurl-ssh2=disabled -Dmodplug=disabled -Dmsdk=disabled -Dneon=disabled -Dopenal=disabled -Dopencv=disabled -Dopenh264=disabled -Dopenjpeg=disabled -Dopenmpt=disabled -Dhls-crypto=openssl -Dopus=disabled -Dorc=enabled -Dresindvd=disabled -Drsvg=enabled -Drtmp=disabled -Dsbc=enabled -Dsctp=disabled -Dsmoothstreaming=enabled -Dsndfile=enabled -Dsrt=disabled -Dsrtp=disabled -Dtinyalsa=disabled -Dtinycompress=enabled -Dttml=enabled -Duvch264=enabled -Dv4l2codecs=disabled -Dva=disabled -Dvoaacenc=disabled -Dvoamrwbenc=disabled -Dvulkan=disabled -Dwayland=enabled -Dwebp=enabled -Dwebrtc=disabled -Dwebrtcdsp=disabled -Dx11=disabled -Dx265=disabled -Dzbar=disabled -Dc_args=-I/usr/include/imx $ cd build $ ninja install   10. Build imx-gst1.0-plugin $ git clone https://github.com/nxp-imx/imx-gst1.0-plugin -b lf-6.1.55-2.2.0 $ cd imx-gst1.0-plugin $ meson setup build --prefix=/usr -Dplatform=MX8 -Dc_args=-I/usr/include/imx $ cd build $ ninja install   11. Exit chroot $ exit   Verify Installation For verification process, boot your target from the SD Card. (Review your specific target documentation) 1. Verify Weston For this verification you will need to be root user. # export XDG_RUNTIME_DIR=/run/user/0 # weston   2. Verify VPU and Gstreamer Use the following Gstreamer pipeline for Hardware Accelerated VPU Encode. # gst-launch-1.0 videotestsrc ! video/x-raw, format=I420, width=640, height=480 ! vpuenc_h264 ! filesink location=test.mp4   Then you can reproduce the file with this command: # gplay-1.0 test.mp4   Finally, you have installed and verified the GPU, VPU and Multimedia packages. Now, you can start testing audio and video applications.
查看全文