i.MX Processors Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

i.MX Processors Knowledge Base

Discussions

Sort by:
  Just sharing some experiences during the development and studying.   Although, it appears some hardwares, it focuses on software to speed up your developing on your  hardware.     杂记共享一下在开发和学习过程中的经验。    虽然涉及一些硬件,但其本身关注软件,希望这些能加速您在自己硬件上的开发。 3/4/2025 GPIO USB ID GPIO USB ID - NXP Community   1/20/2025 MDIO on GPIOs MDIO on GPIOs - NXP Community   12/09/2024 GPIO LEDs https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/GPIO-LEDs/ta-p/2009743     10/22/2024 iMX93-EVK PWM LED https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/iMX93-EVK-PWM-LED/ta-p/1978047   07/25/2024 iMX secondary boot collection https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/iMX-secondary-boot-collection/ta-p/1916915   07/25/2024 HSM Code-Signing Journey https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/HSM-Code-Signing-Journey/ta-p/1882244 25JUL2024 - add pkcs11 proxy                         HSM Code-Signing Journey_25JUL2024.pdf                          HSM Code-Signing Journey_25JUL2024.txt   06/06/2024 HSM Code-Signing Journey https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/HSM-Code-Signing-Journey/ta-p/1882244     02/07/2024 Device Tree Standalone Compile under Windows https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/Device-Tree-Standalone-Compile-under-Windows/ta-p/1855271   02/07/2024 i.MX8X security overview and AHAB deep dive i.MX8X security overview and AHAB deep dive - NXP Community   11/23/2023 “Standalone” Compile Device Tree https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/Standalone-Compile-Device-Tree/ta-p/1762373     10/26/2023 Linux Dynamic Debug https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/Linux-Dynamic-Debug/ta-p/1746611   08/10/2023 u-boot environment preset for sdcard mirror u-boot environment preset for sdcard mirror - NXP Community   06/06/2023 all(bootloader, device tree, Linux kernel, rootfs) in spi nor demo imx8qxpc0 mek all(bootloader, device tree, Linux kernel, rootfs)... - NXP Community     09/26/2022 parseIVT - a script to help i.MX6 Code Signing parseIVT - a script to help i.MX6 Code Signing - NXP Community   Provide  run under windows   09/16/2022   create sdcard mirror under windows create sdcard mirror under windows - NXP Community     08/03/2022   i.MX8MM SDCARD Secondary Boot Demo https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX8MM-SDCARD-Secondary-Boot-Demo/ta-p/1500011     02/16/2022 mx8_ddr_stress_test without UI   https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/mx8-ddr-stress-test-without-UI/ta-p/1414090   12/23/2021 i.MX8 i.MX8X Board Reset https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX8-i-MX8X-Board-Reset/ta-p/1391130       12/21/2021 regulator userspace-consumer https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/regulator-userspace-consumer/ta-p/1389948     11/24/2021 crypto af_alg blackkey demo crypto af_alg blackkey demo - NXP Community   09/28/2021 u-boot runtime modify Linux device tree(dtb) u-boot runtime modify Linux device tree(dtb) - NXP Community     08/17/2021 gpio-poweroff demo https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/gpio-poweroff-demo/ta-p/1324306         08/04/2021 How to use gpio-hog demo https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/How-to-use-gpio-hog-demo/ta-p/1317709       07/14/2021 SWUpdate OTA i.MX8MM EVK / i.MX8QXP MEK https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/SWUpdate-OTA-i-MX8MM-EVK-i-MX8QXP-MEK/ta-p/1307416     04/07/2021 i.MX8QXP eMMC Secondary Boot https://community.nxp.com/t5/i-MX-Community-Articles/i-MX8QXP-eMMC-Secondary-Boot/ba-p/1257704#M45       03/25/2021 sc_misc_board_ioctl to access the M4 partition from A core side sc_misc_board_ioctl to access the M4 partition fr... - NXP Community     03/17/2021 How to Changei.MX8X MEK+Base Board  Linux Debug UART https://community.nxp.com/t5/i-MX-Community-Articles/How-to-Change-i-MX8X-MEK-Base-Board-Linux-Debug-UART/ba-p/1246779#M43     03/16/2021 How to Change i.MX8MM evk Linux Debug UART https://community.nxp.com/t5/i-MX-Community-Articles/How-to-Change-i-MX8MM-evk-Linux-Debug-UART/ba-p/1243938#M40       05/06/2020 Linux fw_printenv fw_setenv to access U-Boot's environment variables Linux fw_printenv fw_setenv to access U-Boot's env... - NXP Community     03/30/2020 i.MX6 DDR calibration/stress for Mass Production https://community.nxp.com/docs/DOC-346065     03/25/2020 parseIVT - a script to help i.MX6 Code Signing https://community.nxp.com/docs/DOC-345998     02/17/2020 Start your machine learning journey from tensorflow playground Start your machine learning journey from tensorflow playground      01/15/2020 How to add  iMX8QXP PAD(GPIO) Wakeup How to add iMX8QXP PAD(GPIO) Wakeup    01/09/2020 Understand iMX8QX Hardware Partitioning By Making M4 Hello world Running Correctly https://community.nxp.com/docs/DOC-345359   09/29/2019 Docker On i.MX6UL With Ubuntu16.04 https://community.nxp.com/docs/DOC-344462   09/25/2019 Docker On i.MX8MM With Ubuntu https://community.nxp.com/docs/DOC-344473 Docker On i.MX8QXP With Ubuntu https://community.nxp.com/docs/DOC-344474     08/28/2019 eMMC5.0 vs eMMC5.1 https://community.nxp.com/docs/DOC-344265     05/24/2019 How to upgrade  Linux Kernel and dtb on eMMC without UUU How to upgrade Linux Kernel and dtb on eMMC without UUU     04/12/2019 eMMC RPMB Enhance and GP https://community.nxp.com/docs/DOC-343116   04/04/2019 How to Dump a GPT SDCard Mirror(Android O SDCard Mirror) https://community.nxp.com/docs/DOC-343079   04/04/2019 i.MX Create Android SDCard Mirror https://community.nxp.com/docs/DOC-343078   04/02/2019: i.MX Linux Binary_Demo Files Tips  https://community.nxp.com/docs/DOC-343075   04/02/2019:       Update Set fast boot        eMMC_RPMB_Enhance_and_GP.pdf   02/28/2019: imx_builder --- standalone build without Yocto https://community.nxp.com/docs/DOC-342702   08/10/2018: i.MX6SX M4 MPU Settings For RPMSG update    Update slide CMA Arrangement Consideration i.MX6SX_M4_MPU_Settings_For_RPMSG_08102018.pdf   07/26/2018 Understand ML With Simplest Code https://community.nxp.com/docs/DOC-341099     04/23/2018:     i.MX8M Standalone Build     i.MX8M Standalone Build.pdf     04/13/2018:      i.MX6SX M4 MPU Settings For RPMSG  update            Add slide CMA Arrangement  Consideration     i.MX6SX_M4_MPU_Settings_For_RPMSG_04132018.pdf   09/05/2017:       Update eMMC RPMB, Enhance  and GP       eMMC_RPMB_Enhance_and_GP.pdf 09/01/2017:       eMMC RPMB, Enhance  and GP       eMMC_RPMB_Enhance_and_GP.pdf 08/30/2017:     Dual LVDS for High Resolution Display(For i.MX6DQ/DLS)     Dual LVDS for High Resolution Display.pdf 08/27/2017:  L3.14.28 Ottbox Porting Notes:         L3.14.28_Ottbox_Porting_Notes-20150805-2.pdf MFGTool Uboot Share With the Normal Run One:        MFGTool_Uboot_share_with_NormalRun_sourceCode.pdf Mass Production with programmer        Mass_Production_with_NAND_programmer.pdf        Mass_Production_with_emmc_programmer.pdf AndroidSDCARDMirrorCreator https://community.nxp.com/docs/DOC-329596 L3.10.53 PianoPI Porting Note        L3.10.53_PianoPI_PortingNote_151102.pdf Audio Codec WM8960 Porting L3.10.53 PianoPI        AudioCodec_WM8960_Porting_L3.10.53_PianoPI_151012.pdf TouchScreen PianoPI Porting Note         TouchScreen_PianoPI_PortingNote_151103.pdf Accessing GPIO From UserSpace        Accessing_GPIO_From_UserSpace.pdf        https://community.nxp.com/docs/DOC-343344 FreeRTOS for i.MX6SX        FreeRTOS for i.MX6SX.pdf i.MX6SX M4 fastup        i.MX6SX M4 fastup.pdf i.MX6 SDCARD Secondary Boot Demo        i.MX6_SDCARD_Secondary_Boot_Demo.pdf i.MX6SX M4 MPU Settings For RPMSG        i.MX6SX_M4_MPU_Settings_For_RPMSG_10082016.pdf Security        Security03172017.pdf    NOT related to i.MX, only a short memo
View full article
    Xenomai is real-time framework, which can run seamlessly side-by-side Linux as a co-kernel system, or natively over mainline Linux kernels (with or without PREEMPT-RT patch). The dual kernel nicknamed Cobalt, is a significant rework of the Xenomai 2.x system. Cobalt implements the RTDM specification for interfacing with real-time device drivers. The native linux version, an enhanced implementation of the experimental Xenomai/SOLO work, is called Mercury. In this environment, only a standalone implementation of the RTDM specification in a kernel module is required, for interfacing the RTDM-compliant device drivers with the native kernel. You can get more detailed information from Home · Wiki · xenomai / xenomai · GitLab       I have ported xenomai 3.1 to i.MX Yocto 4.19.35-1.1.0, and currently support ARM64 and test on i.MX8MQ EVK board. I did over night test( 5 real-time threads + GPU SDK test case) and stress test by tool stress-ng on i.MX8MQ EVK board. It looks lile pretty good. Current version (20200730) also support i.MX8MM EVK.     You need git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git, and git checkout xenomai-4.19.35-1.1.0-20200818 (which inlcudes all patches and bb file) and add the following variable in conf/local.conf before build xenomai by command bitbake xenomai.  XENOMAI_KERNEL_MODE = "cobalt"  PREFERRED_VERSION_linux-imx = "4.19-${XENOMAI_KERNEL_MODE}" IMAGE_INSTALL_append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" PREFERRED_VERSION_linux-imx = "4.19-${XENOMAI_KERNEL_MODE}" IMAGE_INSTALL_append += " xenomai" If XENOMAI_KERNEL_MODE = "cobalt", you can build dual kernel version. And If XENOMAI_KERNEL_MODE = "mercury", it is single kernel with PREEMPT-RT patch. The following is test result by the command (/usr/xenomai/demo/cyclictest -p 99 -t 5 -m -n -i 1000  -l 100000😞 //Over normal Linux kernel without GPU SDK test case T: 0 ( 4220) P:99 I:1000 C: 100000 Min: 7 Act: 10 Avg: 9 Max: 23 T: 1 ( 4221) P:99 I:1500 C: 66672 Min: 7 Act: 10 Avg: 10 Max: 20 T: 2 ( 4222) P:99 I:2000 C: 50001 Min: 7 Act: 12 Avg: 10 Max: 81 T: 3 ( 4223) P:99 I:2500 C: 39998 Min: 7 Act: 11 Avg: 10 Max: 29 T: 4 ( 4224) P:99 I:3000 C: 33330 Min: 7 Act: 13 Avg: 10 Max: 26 //Over normal Linux kernel with GPU SDK test case T: 0 ( 4177) P:99 I:1000 C: 100000 Min: 7 Act: 10 Avg: 11 Max: 51 T: 1 ( 4178) P:99 I:1500 C: 66673 Min: 7 Act: 12 Avg: 10 Max: 35 T: 2 ( 4179) P:99 I:2000 C: 50002 Min: 7 Act: 12 Avg: 11 Max: 38 T: 3 ( 4180) P:99 I:2500 C: 39999 Min: 7 Act: 12 Avg: 11 Max: 42 T: 4 ( 4181) P:99 I:3000 C: 33330 Min: 7 Act: 12 Avg: 11 Max: 36   //Cobalt with stress-ng --cpu 4 --io 2 --vm 1 --vm-bytes 512M --timeout 600s --metrics-brief T: 0 ( 4259) P:50 I:1000 C:3508590 Min:      0 Act:    0 Avg:    0 Max:      42 T: 1 ( 4260) P:50 I:1500 C:2338831 Min:      0 Act:    1 Avg:    0 Max:      36 T: 2 ( 4261) P:50 I:2000 C:1754123 Min:      0 Act:    1 Avg:    1 Max:      42 T: 3 ( 4262) P:50 I:2500 C:1403298 Min:      0 Act:    1 Avg:    1 Max:      45 T: 4 ( 4263) P:50 I:3000 C:1169415 Min:      0 Act:    1 Avg:    1 Max:      22   //Cobalt without GPU SDK test case T: 0 ( 4230) P:50 I:1000 C: 100000 Min: 0 Act: 0 Avg: 0 Max: 4 T: 1 ( 4231) P:50 I:1500 C:   66676 Min: 0 Act: 1 Avg: 0 Max: 4 T: 2 ( 4232) P:50 I:2000 C:   50007 Min: 0 Act: 1 Avg: 0 Max: 8 T: 3 ( 4233) P:50 I:2500 C:   40005 Min: 0 Act: 1 Avg: 0 Max: 3 T: 4 ( 4234) P:50 I:3000 C:   33338 Min: 0 Act: 1 Avg: 0 Max: 5 //Cobalt with GPU SDK test case T: 0 ( 4184) P:99 I:1000 C:37722968 Min: 0 Act: 1 Avg: 0 Max: 24 T: 1 ( 4185) P:99 I:1500 C:25148645 Min: 0 Act: 1 Avg: 0 Max: 33 T: 2 ( 4186) P:99 I:2000 C:18861483 Min: 0 Act: 1 Avg: 0 Max: 22 T: 3 ( 4187) P:99 I:2500 C:15089187 Min: 0 Act: 1 Avg: 0 Max: 23 T: 4 ( 4188) P:99 I:3000 C:12574322 Min: 0 Act: 1 Avg: 0 Max: 29 //Mercury without GPU SDK test case T: 0 ( 4287) P:99 I:1000 C:1000000 Min: 6 Act: 7 Avg: 7 Max: 20 T: 1 ( 4288) P:99 I:1500 C:  666667 Min: 6 Act: 9 Avg: 7 Max: 17 T: 2 ( 4289) P:99 I:2000 C:  499994 Min: 6 Act: 8 Avg: 7 Max: 24 T: 3 ( 4290) P:99 I:2500 C:  399991 Min: 6 Act: 9 Avg: 7 Max: 19 T: 4 ( 4291) P:99 I:3000 C:  333322 Min: 6 Act: 8 Avg: 7 Max: 21 //Mercury with GPU SDK test case T: 0 ( 4222) P:99 I:1000 C:1236790 Min: 6 Act: 7 Avg: 7 Max: 55 T: 1 ( 4223) P:99 I:1500 C:  824518 Min: 6 Act: 7 Avg: 7 Max: 44 T: 2 ( 4224) P:99 I:2000 C:  618382 Min: 6 Act: 8 Avg: 8 Max: 88 T: 3 ( 4225) P:99 I:2500 C:  494701 Min: 6 Act: 7 Avg: 8 Max: 49 T: 4 ( 4226) P:99 I:3000 C:  412247 Min: 6 Act: 7 Avg: 8 Max: 53 //////////////////////////////////////// Update for Yocto L5.4.47 2.2.0  /////////////////////////////////////////////////////////// New release for Yocto release L5.4.47 2.2.0 and it supports i.MX8M series (8MQ,8MM,8MN and 8MP). You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git,  and git checkout xenomai-5.4.47-2.2.0. You need to add the following variable in conf/local.conf before build xenomai by command bitbake imx-image-multimedia.  XENOMAI_KERNEL_MODE = "cobalt"  PREFERRED_VERSION_linux-imx = "5-${XENOMAI_KERNEL_MODE}" IMAGE_INSTALL_append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" PREFERRED_VERSION_linux-imx = "5-${XENOMAI_KERNEL_MODE}" IMAGE_INSTALL_append += " xenomai" //////////////////////////////////////// Update for Yocto L5.4.70 2.3.0  /////////////////////////////////////////////////////////// New release  for Yocto release L5.4.70 2.3.0 and it supports i.MX8M series (8MQ,8MM,8MN and 8MP) and i.MX8QM/QXP. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git and git checkout xenomai-5.4.70-2.3.0. Updating: 1, Support i.MX8QM and i.MX8QXP 2, Fix altency's the issue which uses legacy API to get time   //////////////////////////////////////// update for Yocto L5.4.70 2.3.2  /////////////////////////////////////////////////////////// New release for Yocto release L5.4.70 2.3.2. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git, and git checkout xenomai-5.4.70-2.3.2. Updating: 1, Enable Xenomai RTDM driver in Linux Kernel 2, Currently CAN, UART, GPIO,  SPI and Ethernet (in debug for RTNet)  are added in Xenomai. 3, Add KERNEL_DEVICETREE += " freescale/imx8mp-rt-evk.dtb " in sources/meta-imx/meta-bsp/conf/machine/imx8mpevk.conf to enable relative device in Xenomai domain, for example rt-imx8mp-flexcan.   //////////////////////////////////////// Update for Yocto L5.4.70 2.3.4  /////////////////////////////////////////////////////////// New release for Yocto release L5.4.70 2.3.4. You need to git clone  https://gitee.com/zxd2021-imx/xenomai-arm64.git and git checkout xenomai-5.4.70-2.3.4. Updating: 1, Enable RTNet FEC driver 2, Currently CAN, UART, GPIO,  SPI and Ethernet ( FEC Controller)  are added in Xenomai. 3, Add KERNEL_DEVICETREE += " freescale/imx8mp-rt-evk.dtb " in sources/meta-imx/meta-bsp/conf/machine/imx8mpevk.conf and KERNEL_DEVICETREE += " freescale/imx8mm-rt-ddr4-evk.dtb " in sources/meta-imx/meta-bsp/conf/machine/imx8mmddr4evk.conf to enable rt_fec device in Xenomai domain. Verifying the network connection by RTnet Ping Between i.MX8M Mini EVK and i.MX8M Plus EVK a, Setup test environment 1, Connect ENET1 of  i.MX8M Plus EVK (used as a master) and  ENET of i.MX8M Mini EVK (used as a slave) of  to a switch or hub 2, Modify /usr/xenomai/etc/rtnet.conf in i.MX8M Plus EVK board as the following: @@ -16,7 +16,7 @@ MODULE_EXT=".ko" # RT-NIC driver -RT_DRIVER="rt_eepro100" +RT_DRIVER="rt_fec" RT_DRIVER_OPTIONS="" # PCI addresses of RT-NICs to claim (format: 0000:00:00.0) @@ -30,8 +30,8 @@ REBIND_RT_NICS="" # The TDMA_CONFIG file overrides these parameters for masters and backup # masters. Leave blank if you do not use IP addresses or if this station is # intended to retrieve its IP from the master based on its MAC address. -IPADDR="10.0.0.1" -NETMASK="" +IPADDR="192.168.100.101" +NETMASK="255.255.255.0" # Start realtime loopback device ("yes" or "no") RT_LOOPBACK="yes" @@ -65,7 +65,7 @@ TDMA_MODE="master" # Master parameters # Simple setup: List of TDMA slaves -TDMA_SLAVES="10.0.0.2 10.0.0.3 10.0.0.4" +TDMA_SLAVES="192.168.100.102" # Simple setup: Cycle time in microsecond TDMA_CYCLE="5000" 3, Modify /usr/xenomai/etc/rtnet.conf in i.MX8M Mini EVK board as the following: @@ -16,7 +16,7 @@ MODULE_EXT=".ko" # RT-NIC driver -RT_DRIVER="rt_eepro100" +RT_DRIVER="rt_fec" RT_DRIVER_OPTIONS="" # PCI addresses of RT-NICs to claim (format: 0000:00:00.0) @@ -30,8 +30,8 @@ REBIND_RT_NICS="" # The TDMA_CONFIG file overrides these parameters for masters and backup # masters. Leave blank if you do not use IP addresses or if this station is # intended to retrieve its IP from the master based on its MAC address. -IPADDR="10.0.0.1" -NETMASK="" +IPADDR="192.168.100.102" +NETMASK="255.255.255.0" # Start realtime loopback device ("yes" or "no") RT_LOOPBACK="yes" @@ -59,13 +59,13 @@ STAGE_2_CMDS="" # TDMA mode of the station ("master" or "slave") # Start backup masters in slave mode, it will then be switched to master # mode automatically during startup. -TDMA_MODE="master" +TDMA_MODE="slave" # Master parameters # Simple setup: List of TDMA slaves -TDMA_SLAVES="10.0.0.2 10.0.0.3 10.0.0.4" +TDMA_SLAVES="192.168.100.102" # Simple setup: Cycle time in microsecond TDMA_CYCLE="5000" 4, rename imx8mm-rt-ddr4-evk.dtb to imx8mm-ddr4-evk.dtb in /run/media/mmcblk1p1,  rename imx8mp-rt-evk.dtb to imx8mp-evk.dtb in /run/media/mmcblk1p1, and reboot board. 5, Run the below command on i.MX8M Mini EVK board. cd /usr/xenomai/sbin/ ./rtnet start & 5, Run the below command on i.MX8M Plus EVK board. cd /usr/xenomai/sbin/ ./rtnet start & When you see the log (rt_fec_main 30be0000.ethernet (unnamed net_device) (uninitialized): Link is Up - 100Mbps/Full - flow control rx/tx) and you can run command "./rtroute" to check route table if the slave IP (192.168.100.102) is in route.. b, Verify the network connection using the command below: ./rtping -s 1024 192.168.100.102 //////////////////////////////////////// Update for Yocto L5.10.52 2.1.0  /////////////////////////////////////////////////////////// New release for Yocto release L5.10.52 2.1.0. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git and git checkout xenomai-5.10.52-2.1.0. Updating: 1, Upgrade Xenomai to v3.2 2, Enable Dovetail instead of ipipe. Copy xenomai-arm64 to <Yocto folder>/sources/meta-imx/meta-bsp/recipes-kernel, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitbake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL_append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL_append += " xenomai" Notice: If XENOMAI_KERNEL_MODE = "cobalt", you can build dual kernel version. And If XENOMAI_KERNEL_MODE = "mercury", it is single kernel with PREEMPT-RT patch.  Latency testing of Xenomai3.2+Dovetail with isolating CPU 2,3 ( Xenomai 3.2 on 8MM DDR4 EVK with GPU test case (GLES2/S08_EnvironmentMappingRefraction_Wayland) + iperf3 + 2 ping 65000 size + stress-ng --cpu 2 --io 2 --vm 1 --vm-bytes 256M --metrics-brief )😞 The following is test result by the command (/usr/xenomai/demo/cyclictest -a 2,3 -p 50 -t 5 -m -n -i 1000) root@imx8mmddr4evk:~# /usr/xenomai/demo/cyclictest -a 2,3 -p 50 -t 5 -m -n -i 1000 # /dev/cpu_dma_latency set to 0us policy: fifo: loadavg: 5.96 6.04 6.03 7/155 1349 T: 0 ( 615) P:50 I:1000 C:63448632 Min: 0 Act: 0 Avg: 0 Max: 55 T: 1 ( 616) P:50 I:1500 C:42299087 Min: 0 Act: 0 Avg: 1 Max: 43 T: 2 ( 617) P:50 I:2000 C:31724315 Min: 0 Act: 0 Avg: 1 Max: 51 T: 3 ( 618) P:50 I:2500 C:25379452 Min: 0 Act: 0 Avg: 1 Max: 53 T: 4 ( 619) P:50 I:3000 C:21149543 Min: 0 Act: 0 Avg: 1 Max: 47 //////////////////////////////////////// Update for Yocto L5.10.72 2.2.2  /////////////////////////////////////////////////////////// New release for Yocto release L5.10.72 2.2.2. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git and git checkout xenomai-5.10.72-2.2.2. Updating: 1, Upgrade Xenomai to v3.2.1 Copy xenomai-arm64 to <Yocto folder>/sources/meta-imx/meta-bsp/recipes-kernel, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitbake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL_append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL_append += " xenomai" //////////////////////////////////////// Update for Yocto L5.15.71 2.2.0  /////////////////////////////////////////////////////////// New release for Yocto release L5.15.71 2.2.0. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git and git checkout xenomai-5.15.71-2.2.0. Updating: 1, Upgrade Xenomai to v3.2.2 Copy xenomai-arm64 to <Yocto folder>/sources/meta-imx/meta-bsp/recipes-kernel, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitbake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL:append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL:append += " xenomai"   //////////////////////////////////////// Update for Yocto L6.1.55 2.2.0  /////////////////////////////////////////////////////////// New release for Yocto release L6.1.55 2.2.0. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git recipes-rtlinux-xenomai -b Linux-6.1.x Updating: 1, Upgrade Xenomai to v3.2.4 and support i.MX93 2, Enable EVL (aka Xenomai 4) for i.MX93 and legacy i.MX(6/7D/8X/8M) Copy recipes-rtlinux-xenomai to <Yocto folder>/sources/meta-imx/meta-bsp/, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitbake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL:append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL:append += " xenomai" or XENOMAI_KERNEL_MODE = "evl" IMAGE_INSTALL:append += " libevl"   //////////////////////////////////////// Update for Yocto L6.6.52 2.2.0  /////////////////////////////////////////////////////////// New release for Yocto release L6.6.52 2.2.0. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git recipes-rtlinux-xenomai -b Linux-6.6.52 Updating: 1, Upgrade Xenomai to v3.3 and support i.MX91/93/95 2, Upgrade EVL (aka Xenomai 4),  libevl to r50 and support i.MX91/93/95 Copy recipes-rtlinux-xenomai to <Yocto folder>/sources/meta-imx/meta-bsp/, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitbake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL:append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL:append += " xenomai" or XENOMAI_KERNEL_MODE = "evl" IMAGE_INSTALL:append += " libevl"    
View full article
    The meta layer is designed for those guys who want to use i.MX8M series SOC and Yocto system to develop AGV and Robot.    The platform includes some key components: 1, ROS1 (kinetic, melodic) and ROS2(dashing, eloquent, foxy) 2, Real-time Linux solution : Xenomai 3.1 with ipipe 5.4.47 patch 3, Industrial protocol : libmodbus, linuxptp, ros-canopen, EtherCAT(TBD) 4, Security: Enhanced OpenSSL, Enhanced GmSSL, Enhanced eCryptfs, secure key store, secure boot(TBD), SE-Linux(TBD),  Dm-verity(TBD) The first release bases on i.MX Yocto release L5.4.47 2.2.0 and You need download Linux 5.4.47_2.2.0 according to​​ https://www.nxp.com/docs/en/user-guide/IMX_YOCTO_PROJECT_USERS_GUIDE.pdf  firstly. And then you can follow the below guide to build and test ROS and Xenomai. A, clone meta-robot-platform from gitee.com git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v0.1-L5.4.47-2.2.0 B, Adding the meta-robot-platform layer to your build 1,  copy meta-robot-platform into <i.MX Yocto folder>/source 2, You should create a symbol link: setup-imx-robot.sh -> sources/meta-robot-platform/imx/meta-robot/tools/setup-imx-robot.sh C, How to build Robot image (example for i.MX8MQ EVK board) $ DISTRO=imx-robot-xwayland MACHINE=imx8mqevk source setup-imx-robot.sh -r kinetic -b imx8mqevk-robot-kinetic [or DISTRO=imx-robot-xwayland MACHINE=imx8mqevk source setup-imx-robot.sh -r melodic -b imx8mqevk-robot-melodic ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mqevk source setup-imx-robot.sh -r dashing -b imx8mqevk-robot-dashing ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mqevk source setup-imx-robot.sh -r eloquent -b imx8mqevk-robot-eloquent ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mqevk source setup-imx-robot.sh -r foxy -b imx8mqevk-robot-foxy ] $ bitbake imx-robot-core [or bitbake imx-robot-system ] [or bitbake imx-robot-sdk ] And if you add XENOMAI_KERNEL_MODE = "cobalt" or XENOMAI_KERNEL_MODE = "mercury" in local.conf, you also can build real-time image with Xenomai by the below command: $ bitbake imx-robot-core-rt [or bitbake imx-robot-system-rt ] D, Robot image sanity testing //ROS1 Sanity Test #source /opt/ros/kinetic/setup.sh [or # source /opt/ros/melodic/setup.sh ] #echo $LD_LIBRARY_PATH #roscore & #rosnode list #rostopic list #only kinetic #rosmsg list #rosnode info /rosout //ROS2 Sanity Test #source ros_setup.sh #echo $LD_LIBRARY_PATH #ros2 topic list #ros2 msg list #only dashing #ros2 interface list #(sleep 5; ros2 topic pub /chatter std_msgs/String "data: Hello world") & #ros2 topic echo /chatter E, Xenomai sanity testing #/usr/xenomai/demo/cyclictest -p 50 -t 5 -m -n -i 1000 F, vSLAM demo You can find orb-slam2 demo under <i.MX Yocto folder>/sources/meta-robot-platform/imx/meta-robot/recipes-demo/orb-slam2. You should choose DISTRO=imx-robot-xwayland due to it depends on OpenCV with gtk+.   //////////////////////////////////////// update for Yocto L5.4.70 2.3.0  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v0.2-L5.4.70-2.3.0 for Yocto release L5.4.70 2.3.0 and it supports i.MX8M series (8MQ,8MM,8MN and 8MP) and i.MX8QM/QXP.  git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v0.2-L5.4.70-2.3.0 Updating: 1, Support i.MX8QM and i.MX8QXP 2, Add ROS driver of RPLIDAR and Orbbec 3D cameras in ROS1 3, Upgrade OpenCV to 3.4.13. 4, Add imx-robot-agv image with orb-slam2 demo 5, Fix the issue which failed to create image when adding orb-slam2 6, Fix the issue which failed to create imx-robot sdk image when add package ISP and ML Note: Currently, orb-slam2 demo don't run on i.MX8MM platform due to its GPU don't support OpenGL ES3. imx-robot-sdk image is just for building ROS package on i.MX board, not  for cross-compile. You can try "bitbake imx-robot-system -c populate_sdk" to create cross-compile sdk without gmssl-bin. diff --git a/imx/meta-robot/recipes-core/images/imx-robot-system.bb b/imx/meta-robot/recipes-core/images/imx-robot-system.bb index 1991ab10..68f9ad31 100644 --- a/imx/meta-robot/recipes-core/images/imx-robot-system.bb +++ b/imx/meta-robot/recipes-core/images/imx-robot-system.bb @@ -35,7 +35,7 @@ CORE_IMAGE_EXTRA_INSTALL += " \ ${@bb.utils.contains('DISTRO_FEATURES', 'x11 wayland', 'weston-xwayland xterm', '', d)} \ ${ISP_PKGS} \ " -IMAGE_INSTALL += " clblast openblas libeigen opencv gmssl-bin" +IMAGE_INSTALL += " clblast openblas libeigen opencv" IMAGE_INSTALL += " \ ${ML_PKGS} \   //////////////////////////////////////// Update for Yocto L5.4.70 2.3.2  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v0.3-L5.4.70-2.3.2 for Yocto release L5.4.70 2.3.2 .  git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v0.3-L5.4.70-2.3.2 Updated: 1, Upgrade to L5.4.70-2.3.2 2, Enable xenomai rtdm driver 3, Add NXP Software Content Register and BSP patches of i.MX8M Plus AI Robot board. Note: How to build for AI Robot board 1, DISTRO=imx-robot-wayland MACHINE=imx8mp-ddr4-ipc source setup-imx-robot.sh -r melodic -b imx8mp-ddr4-ipc-robot-melodic 2, Add BBLAYERS += " ${BSPDIR}/sources/meta-robot-platform/imx/meta-imx8mp-ai-robot " in bblayers.conf 3, bitbake imx-robot-sdk or bitbake imx-robot-agv   //////////////////////////////////////// Update for v1.0-L5.4.70-2.3.2  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v1.0-L5.4.70-2.3.2 .  git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v1.0-L5.4.70-2.3.2 Updated: 1, Upgrade ROS1 Kinetic Kame to Release 2021-05-11 which is final sync. 2, Add IgH EtherCAT Master for Linux in i.MX Robot platform. //////////////////////////////////////// Update for v1.1-L5.4.70-2.3.2  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v1.1-L5.4.70-2.3.2 .  git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v1.1-L5.4.70-2.3.2 Updated: 1, Add more packages passed building in ROS1 Kinetic Kame. 2, Change the board name (From IPC to AI-Robot) in Uboot and kernel for i.MX8M Plus AI Robot board. You can use the below setup command to build ROS image for AI Robot board: DISTRO=imx-robot-xwayland MACHINE=imx8mp-ai-robot source setup-imx-robot.sh -r kinetic -b imx8mp-ai-robot-robot-kinetic DISTRO=imx-robot-xwayland MACHINE=imx8mp-ai-robot source setup-imx-robot.sh -r melodic -b imx8mp-ai-robot-robot-melodic DISTRO=imx-robot-xwayland MACHINE=imx8mp-ai-robot source setup-imx-robot.sh -r dashing -b imx8mp-ai-robot-robot-dashing DISTRO=imx-robot-xwayland MACHINE=imx8mp-ai-robot source setup-imx-robot.sh -r eloquent -b imx8mp-ai-robot-robot-eloquent DISTRO=imx-robot-xwayland MACHINE=imx8mp-ai-robot source setup-imx-robot.sh -r foxy -b imx8mp-ai-robot-robot-foxy BTW, you should add BBLAYERS += " ${BSPDIR}/sources/meta-robot-platform/imx/meta-imx8mp-ai-robot " in conf/bblayers.conf.   //////////////////////////////////////// Update for v1.2-L5.4.70-2.3.3  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v1.2-L5.4.70-2.3.3 .  git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v1.2-L5.4.70-2.3.3 Updated: 1, Update to Yocto release L5.4.70-2.3.3 2, Enable RTNet FEC driver, test on i.MX8M Mini EVK and i.MX8M Plus EVK. For the detailed information,  Please refer to the community post 移植实时Linux方案Xenomai到i.MX ARM64平台 (Enable Xenomai on i.MX ARM64 Platform)    //////////////////////////////////////// Update for v2.1-L5.10.52-2.1.0  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v2.1-L5.10.52-2.1.0 .  git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v2.1.1-L5.10.52-2.1.0 Updated: 1, Update to Yocto release L5.10.52-2.1.0 2, Add ROS1 noetic, ROS2 galactic and rolling 3, Upgrade Xenomai to v3.2 4, Add vSLAM demo orb-slam3 5, Upgrade OpenCV to 3.4.15 for ROS1 A, Adding the meta-robot-platform layer to your build 1,  copy meta-robot-platform into <i.MX Yocto folder>/source 2, You should create a symbol link: setup-imx-robot.sh -> sources/meta-robot-platform/imx/meta-robot/tools/setup-imx-robot.sh B, How to build Robot image (example for i.MX8M Plus EVK board) $ DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r kinetic -b imx8mpevk-robot-kinetic [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r melodic -b imx8mpevk-robot-melodic ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r noetic-b imx8mpevk-robot-noetic] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r dashing -b imx8mpevk-robot-dashing ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r eloquent -b imx8mpevk-robot-eloquent ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r foxy -b imx8mpevk-robot-foxy ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r galactic -b imx8mpevk-robot-galactic ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r rolling -b imx8mpevk-robot-rolling ] $ bitbake imx-robot-agv [or bitbake imx-robot-core ] [or bitbake imx-robot-system ] [or bitbake imx-robot-sdk ]   //////////////////////////////////////// Update for v2.2-L5.10.72-2.2.0  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v2.2-L5.10.72-2.2.0 .  git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v2.2.0-L5.10.72-2.2.0 Updated: 1, Update to Yocto release L5.10.72-2.2.0   //////////////////////////////////////// Update for v2.2.3-L5.10.72-2.2.3  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v2.2.3-L5.10.72-2.2.3.  repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-hardknott -m imx-5.10.72-2.2.3.xml git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v2.2.3-L5.10.72-2.2.3 1,  copy meta-robot-platform into <i.MX Yocto folder>/source 2, You should create a symbol link: setup-imx-robot.sh -> sources/meta-robot-platform/imx/meta-robot/tools/setup-imx-robot.sh Updated: 1, Update to Yocto release L5.10.72-2.2.3 2, Update ISP SDK (isp-imx) patch for Github changing.   //////////////////////////////////////// Update for v3.1-L5.15.71-2.2.0  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v3.1-L5.15.71-2.2.0.  repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-kirkstone -m imx-5.15.71-2.2.0.xml git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v3.1-L5.15.71-2.2.0 1,  copy meta-robot-platform into <i.MX Yocto folder>/source 2, You should create a symbol link: setup-imx-robot.sh -> sources/meta-robot-platform/imx/meta-robot/tools/setup-imx-robot.sh Updated: 1, Update to Yocto release L5.15.71-2.2.0 and ROS1 Noetic and ROS2 Foxy to last version 2, Add ROS2 Humble and remove EOL distributions (ROS1 Kinetic, Melodic and ROS2 Dashing, Eloquent and Galactic). How to build Robot image (example for i.MX8M Plus EVK board) $DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r noetic-b imx8mpevk-robot-noetic [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r foxy -b imx8mpevk-robot-foxy ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r humble -b imx8mpevk-robot-humble ] $ bitbake imx-robot-sdk [or bitbake imx-robot-core ] [or bitbake imx-robot-system ] [or bitbake imx-robot-agv ]   //////////////////////////////////////// Update for v3.3-L5.15.71-2.2.0  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v3.3-L5.15.71-2.2.0.  repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-kirkstone -m imx-5.15.71-2.2.0.xml git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v3.3-L5.15.71-2.2.0 1,  copy meta-robot-platform into <i.MX Yocto folder>/source 2, You should create a symbol link: setup-imx-robot.sh -> sources/meta-robot-platform/imx/meta-robot/tools/setup-imx-robot.sh Updated: 1, Add vSLAM ROS demo based on i.MX vSLAM SDK and i.MX AIBot. The demo video is here: Autonomous Navigation with vSLAM, Based on the i.MX 8M Plus Applications Processor   2, Enable DDS Security and SROS2 for ROS 2’s security features. How to build Robot image (example for i.MX8M Plus EVK board) $DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r noetic-b imx8mpevk-robot-noetic [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r foxy -b imx8mpevk-robot-foxy ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r humble -b imx8mpevk-robot-humble ] $ bitbake imx-robot-sdk [or bitbake imx-robot-agv ] [or bitbake imx-robot-system ] [or bitbake imx-robot-core ]   //////////////////////////////////////// Update for v4.0-L6.1.55-2.2.0  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v4.0-L6.1.55-2.2.0.  repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-mickledore -m imx-6.1.55-2.2.0.xml git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout mickledore-6.1.55 1,  copy meta-robot-platform into <i.MX Yocto folder>/source 2, You should create a symbol link: setup-imx-robot.sh -> sources/meta-robot-platform/imx/meta-robot/tools/setup-imx-robot.sh Updated: 1, Migrate i.MX Robot platform to Yocto mickledore with L6.1.55. 2, Add ROS2 iron. How to build Robot image (example for i.MX8M Plus EVK board) $DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r humble -b imx8mpevk-robot-humble [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r iron -b imx8mpevk-robot-iron ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r noetic-b imx8mpevk-robot-noetic] $ bitbake -k imx-robot-sdk [or bitbake imx-robot-agv ] [or bitbake imx-robot-system ] [or bitbake imx-robot-core ]       //////////////////////////////////////// Update for v5.0-L6.6.52-2.2.0  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v5.0-L6.6.52-2.2.0.  repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-scarthgap -m imx-6.6.52-2.2.0.xml git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git -b scarthgap-6.6.52 1,  copy meta-robot-platform into <i.MX Yocto folder>/source 2, You should create a symbol link: setup-imx-robot.sh -> sources/meta-robot-platform/imx/meta-robot/tools/setup-imx-robot.sh Updated: 1, Migrate i.MX Robot platform to Yocto scarthgap with L6.6.52 and support i.MX95 EVK. 2, Add ROS2 jazzy and remove ROS1. How to build Robot image (example for i.MX95 EVK board) $DISTRO=imx-robot-xwayland MACHINE=imx95-15x15-lpddr4x-evk source setup-imx-robot.sh -r humble -b imx95-15x15-lpddr4x-evk-humble [or DISTRO=imx-robot-xwayland MACHINE=imx95-15x15-lpddr4x-evk source setup-imx-robot.sh -r jazzy -b imx95-15x15-lpddr4x-evk-jazzy ] $ bitbake -k imx-robot-sdk [or bitbake imx-robot-agv ] [or bitbake imx-robot-system ] [or bitbake imx-robot-core ]
View full article
Please notice the following patches are only tested in the environment that is listed below. For the environment with other software versions or hardware equipment, some other editing  may be required Environment: i.MX 8MP EVK LVDS:LVDS BOE EV121WXM-N10-1850  LVDS to MiniSAS panel:XMX-LVDS-MINISAS Software: LF5.15.71 U-boot: 1. Apply '0001-Enable-DY1212W-4856-in-U-boot-for-i.MX8MP.patch' to enable EV121WXM-N10-1850  in U-boot stage. If other LVDS panel is used here, you will need porting your specific LVDS device in this step. 2. Apply '0002-Modify-u-boot-to-show-logo-seamlessly-for-i.MX8MP.patch' to make sure display related models won't be power off, which will help to achieve seamless display. 3. In the original U-boot driver, PWM isn't enable. Therefore, apply '0003-Enable-PWM-and-BACKLIGHT-in-U-boot-and-modify-to-sho.patch' to enable PWM. Kernel: 1. Apply '0001-Enable-DY1212W-4856-in-Kernl-for-i.MX8MP.patch' to enable EV121WXM-N10-1850  in Kernel. If other LVDS panel is used here, you will need porting your specific LVDS device in this step. 2. Apply '0002-Modify-Kernel-to-show-logo-seamlessly-for-i.MX8MP.patch' to make sure LVDS related models won't be init in the booting progress. 3. Apply '0003-Enable-PWM-and-BACKLIGHT-in-Kernel-and-modify-to-sho.patch' to make sure we could edit backlight of panel in Kernel. 
View full article
Please notice the following patches are only tested in the environment that is listed below. For the environment with other software versions or hardware equipment, some other editing  may be required Environment: i.MX 8MP EVK MIPI DSI: MX8-DSI-OLED1 (RM67191) Software: LF5.15.71 U-boot: 1. Apply '0001-Modify-u-boot-to-show-logo-seamlessly.patch' to make sure display related models won't be power off, which will help to achieve seamless display. Kernel: 1. Apply '0001-Keep-NXP-logo-until-Weston-is-booted-8MP-MIPI.patch' to make sure MIPI-DSI related models won't be re-init in the booting progress.
View full article
    Test envs: BOARD: i.MX 8MN EVK BSP: L6.6.36   The L6.6.y includes the feature about supporting starting Cortex-M33 from non-TCM address for i.MX93, but not for i.MX8M series.    LF-7815 remoteproc: imx_rproc: support starting Cortex-M33 from non-TCM address for i.MX93 https://github.com/nxp-imx/linux-imx/commit/680aa11c7bdaddf6bbffd74bc0a94ef67593b69b#diff-66a34e17e82d281936f559217adc3983b39abeb2e478967f3d5cef2eed5b67fcR693   For older BSP, customer can refer this full patch set https://patchew.org/linux/20230209063816.2782206-1-peng.fan@oss.nxp.com/   If you want to test ELF in DDR on i.MX8M series and i.MX93 platform with L6.6.y, please use below patch set.  
View full article
  JEIDA-24 is adopted in most use-cases, and also the default format in Linux BSP(6.x)  Actually, JEIDA-18 is also supported in Linux BSP by not mentioned explicitly.   JEIDA-18 can be supported in two configuration: 1. Keep JEIDA-24 setting to display controllers, skip 4th data-lane in hardware connection: according JEIDA-24 output waveform, it has 4 data-lane enabled on LVDS bus: since the data-bits on TxOUT3 are the LSBs of the pixels, to change from JEIDA-24(RGB888, 4 data-lane) to JEIDA-18(RGB666, 3 data-lane), it can be achieved by skipping the TxOUT3 output(4th data-lane) in hardware connection, to make the JEIDA-18 format as the picture below(JEIDA-18 LCD panels only require 3 data-lanes)   2. Change the display controller settings to JEIDA-18: one reference by Variscite, one of the SoM vendor: https://variwiki.com/index.php?title=DART-MX8M-PLUS_Display&release=mx8mp-yocto-mickledore-6.1.36_2.1.0-v1.3 related setting quoted from the link above: Supported "data-mapping" values are "jeida-18", "jeida-24" and "vesa-24". Supported "fsl,data-mapping" values are "jeida", and "spwg". Supported "fsl,data-width" values are <18>, and <24>.    "data-mapping"= "jeida-18", "jeida-24" and "vesa-24" are handled in DRM driver, as the link below: https://github.com/nxp-imx/linux-imx/blob/d23d64eea5111e1607efcce1d601834fceec92cb/drivers/gpu/drm/drm_of.c#L451 if (!strcmp(mapping, "jeida-18")) return MEDIA_BUS_FMT_RGB666_1X7X3_SPWG; if (!strcmp(mapping, "jeida-24")) return MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA; if (!strcmp(mapping, "vesa-24")) return MEDIA_BUS_FMT_RGB888_1X7X4_SPWG;    Here the variable “MEDIA_BUS_FMT_RGB666_1X7X3_SPWG" is handled in ldb driver(MX8MP) as the link below: https://github.com/nxp-imx/linux-imx/blob/d23d64eea5111e1607efcce1d601834fceec92cb/drivers/gpu/drm/bridge/fsl-ldb.c#L144 switch (bridge_state->output_bus_cfg.format) { case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG: lvds_format_24bpp = false; lvds_format_jeida = true; break; case MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA: lvds_format_24bpp = true;  the bus_format would be "MEDIA_BUS_FMT_RGB666_1X18" in this configuration:  https://github.com/nxp-imx/linux-imx/blob/d23d64eea5111e1607efcce1d601834fceec92cb/drivers/gpu/drm/imx/imx8mp-ldb.c#L178 switch (ldb_ch->bus_format) { case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG: imx_crtc_state->bus_format = MEDIA_BUS_FMT_RGB666_1X18; break;    “MEDIA_BUS_FMT_RGB666_1X18” is not handled in LCDIF driver:  https://github.com/nxp-imx/linux-imx/blob/d23d64eea5111e1607efcce1d601834fceec92cb/drivers/gpu/imx/lcdifv3/lcdifv3-common.c#L310 switch (bus_format) { case MEDIA_BUS_FMT_RGB565_1X16: disp_para |= DISP_PARA_LINE_PATTERN(LP_RGB565); break; case MEDIA_BUS_FMT_RGB888_1X24: disp_para |= DISP_PARA_LINE_PATTERN(LP_RGB888_OR_YUV444); break; default: dev_err(lcdifv3->dev, "unknown bus format: %#x\n", bus_format); return;    hence there would be error message below in this configuration, which can be ignored: imx-lcdifv3 32e80000.lcd-controller: unknown bus format: 0x1009  
View full article
Customers are experiencing significant and unexpected performance issues in their applications running on Android 14 relative to the performance that they saw on older versions of the OS (such as A12 or A13). This is a known issue on Android Community and is note related to NXP implementation of AOSP (Android Open Source Project). The information Android 14 can recollect from any debuggable application is a lot. With the help of Perfetto you can get and incredible analysis of all processes running on Android OS or an analysis of the memory usages. All this features have a side effect on debuggable applications, where debuggable application can experiment low performance. The degradation on the performance is around 1.5x and 2.0x the time taken on a previous Android version. In order to take really measurements on the application performance it is necessary to disable those features when building the apk . Quick Workaround There are two ways of disabling debug features: Build a release variant by adding a dummy key to Android-Studio. Read the following link to get further details on how to do it. Set debuggable feature to false on build.gradle (Module :app) . Here an example: android { buildTypes { debug { applicationIdSuffix '.debug' debuggable false // The important line! } } } Rebuild the apk and installed to the target with adb install <my-apk> . The application should now have the same performances it was having with A13 or older. References: Debuggable APP lag after updating to Android14
View full article
Important: If you have any questions or would like to report any issues with the DDR tools or supporting documents please create a support ticket in the  i.MX community. Please note that any private messages or direct emails are not monitored and will not receive a response. NOTE: Please note that DDR support for the i.MX 8M Family and has also been added in the Config Tools for i.MX Applications Processors | NXP Semiconductors Please consider using this tool with more enhanced features. i.MX 8M Family DDR Tools Overview The i.MX 8M Family DDR Tool is a Windows-based software to help users to do LPDDR4/DDR4/DDR3L training, stress test and DDR initial code generation for u-boot SPL. This page contains the latest releases for the i.MX 8M Family DDR Tools and cover the following SoCs : i.MX 8M Quad and its derivatives i.MX 8M Quadlite and i.MX 8M Dual i.MX 8M Mini Quad and its derivatives i.MX 8M Mini Quadlite/Dual/DualLite/Solo/SoloLite  i.MX 8M Nano Quad and its derivatives i.MX 8M Nano Quadlite/Dual/DualLite/Solo/SoloLite  i.MX 8M Plus   NOTE: For the i.MX 8/8X Family of DDR tools please refer to the: i.MX 8/8X Family DDR Tools Release   The purpose of the i.MX 8M Family DDR Tools is to enable users to generate and test a custom DRAM initialization based on their device configuration (density, number of chip selects, etc.) and board layout (data bus bit swizzling, etc.).  This process equips the user to then proceed with the bring-up of a boot loader and an OS.  Once the OS is brought up, it is recommended to run an OS-based memory test (like Linux memtester) to further verify and test the DDR memory interface.     The i.MX 8M Family DDR Tools consist of: DDR Register Programming Aid (RPA) MSCALE DDR Tool   For more details regarding these DDR tools and their usage, refer to the i.MX 8M DDR Tools User Guide.   i.MX 8M Family DDR Tool    The i.MX 8M Family DDR stress test tool is a Windows-based software tool that is used as a mechanism to verify that the DDR initialization is operational for use with u-boot and OS bring-up. To install the DDR Stress Test, save and extract the zip file mscale_ddr_tool_vXXX_setup.exe.zip   (where 'xxx' is the current version number) and follow the on-screen installation instructions.   i.MX 8M Family DDR Tool Requirements   The tool requires access to the Windows registry, hence users must run it in administrator mode. When users design new i.MX 8M Family boards, please make sure to follow the rules outlined in the respective Hardware Developers Guide and the MSCALE_DDR_Tool_User_Guide, which can help users bring up DDR devices on their respective i.MX 8M boards.   i.MX 8M Family DDR Tool User Guide   The i.MX 8M DDR tool includes the document: MSCALE_DDR_Tool_User_Guide NOTE: Please read the MSCALE_DDR_Tool_User_Guide inside the package carefully before you use this tool.   i.MX8M DDR Tool Revision History   Rev Major Changes* (Features) Comments 3.31 Integration of the workaround for 8MQ ERR051273   3.30 Fix DBI enabled issue for all i.MX 8M series Automatically identify ROHM and PCA9450 PMICs on i.MX 8M Nano board Fix 4GB/8GB memory tester issues   3.20 Add support to i.MX 8M Plus   3.10 Fixe UART communication issues for some specific characters between the PC software and the target board. Fine-tune DDRPHY registers in generated C code.   3.00 Add support to i.MX8M-nano Add support to different PMIC or PMIC configuration Add support to stress test for all DDR frequency points RPA tools for Nano include support for DDR3L, DDR4, and LPDDR4.   Note that the DDR3L and LPDDR4 RPAs contain the name preliminary only to denote that these RPAs are based on internal NXP validation boards where the DDR4 RPA is based on the released EVK.   2.10 Change DDR4 capacity computing method   2.00 Add support to i.MX8M-mini   * Further details available in the release notes   Sample configuration in the .ds script for i.MX 8M debug UART2: ################step 0: configure debug uart port. Assumes use of UART IO Pads.   ##### ##### If using non-UART pads (i.e. using other pads to mux out the UART signals), ##### ##### then it is up to the user to overwrite the following IO register settings   ##### memory set 0x3033023C 32 0x00000000 #IOMUXC_SW_MUX_UART2_RXD memory set 0x30330240 32 0x00000000 #IOMUXC_SW_MUX_UART2_TXD memory set 0x303304A4 32 0x0000000E #IOMUXC_SW_PAD_UART2_RXD memory set 0x303304A8 32 0x0000000E #IOMUXC_SW_PAD_UART2_TXD memory set 0x303304FC 32 0x00000000 #IOMUXC_SW_MUX_UART2_SEL_RXD sysparam set debug_uart   1 #UART index from 0 ('0' = UART1, '1' = UART2, '2' = UART3, '3' = UART4)   Sample configuration in the front of the .ds script for i.MX 8M debug UART3  ################step 0: configure debug uart port. Assumes use of UART IO Pads.   ##### ##### If using non-UART pads (i.e. using other pads to mux out the UART signals), ##### ##### then it is up to the user to overwrite the following IO register settings   ##### memory set 0x30330244 32 0x00000000 #IOMUXC_SW_MUX_UART3_RXD memory set 0x30330248 32 0x00000000 #IOMUXC_SW_MUX_UART3_TXD memory set 0x303304AC 32 0x0000000E #IOMUXC_SW_PAD_UART3_RXD memory set 0x303304B0 32 0x0000000E #IOMUXC_SW_PAD_UART3_TXD memory set 0x30330504 32 0x00000002 #IOMUXC_SW_MUX_UART3_SEL_RXD sysparam set debug_uart   2 #UART index from 0 ('0' = UART1, '1' = UART2, '2' = UART3, '3' = UART4)   Sample configuration in the front of the .ds script for i.MX 8M Mini PMIC configuration: ##############step 0.5: configure I2C port IO pads according to your PCB design.   ##### ########### You can modify the following instructions to adapt to your board PMIC ####### memory set 0x30330214 32 0x00000010  #IOMUXC_SW_MUX_I2C1_SCL memory set 0x30330218 32 0x00000010  #IOMUXC_SW_MUX_I2C1_SDA memory set 0x3033047C 32 0x000000C6 #IOMUXC_SW_PAD_I2C1_SCL memory set 0x30330480 32 0x000000C6  #IOMUXC_SW_PAD_I2C1_SDA sysparam set pmic_cfg 0x004B #bit[7:0] = PMIC addr,bit[15:8]=I2C Bus. Bus index from 0 ('0' = I2C1, '1' = I2C2, '2' = I2C3, '3' = I2C4) sysparam set pmic_set 0x2F01 #bit[7:0] = Reg val, bit[15:8]=Reg addr. #REG(0x2F) = 0x01 sysparam set pmic_set 0x0C02   #REG(0x0C) = 0x02 sysparam set pmic_set 0x171E   #REG(0x17) = 0x1E sysparam set pmic_set 0x0C00   #REG(0x0C) = 0x00 sysparam set pmic_set 0x2F11    #REG(0x2F)=0x11     i.MX 8M Family DDR Register Programming Aid (RPA) The i.MX 8M DDR RPA (or simply RPA) is an Excel spreadsheet tool used to develop DDR initialization for a user’s specific DDR configuration (DDR device type, density, etc.). The RPA generates the DDR initialization(in a separate Excel worksheet tab):   DDR Stress Test Script: This format is used specifically with the DDR stress test by first copying the contents in this worksheet tab and then pasting it to a text file, naming the document with the “.ds” file extension. The user will select this file when executing the DDR stress test. The How to Use Excel worksheet tab provides instructions on using the RPA   i.MX 8M Family DDR Register Programming Aid (RPA): Current Versions To obtain the latest RPAs, please refer to the following links (note, existing RPAs have been removed from this main page and moved to the SoC specific links below): i.MX 8M Quad : https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX8M-m850D-DDR-Register-Programming-Aid-RPA/ta-p/1172441 i.MX 8M Mini : https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX8MMini-m845S-DDR-Register-Programming-Aid-RPA/ta-p/1172443 i.MX 8M Nano: https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX8MNano-m815S-DDR-Register-Programming-Aid-RPA/ta-p/1172444 i.MX 8M Plus: https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX-8MPlus-m865S-DDR-Register-Programming-Aids-RPA/ta-p/1235352   Processor Mask Revisions Memory Supported Latest RPA Version * i.MX 8M Quad & Derivatives All LPDDR4 Rev 33 i.MX 8M Quad & Derivatives All DDR4 Rev 18 i.MX 8M Quad & Derivatives All DDR3L Rev 9 i.MX 8M Mini & Derivatives A0 LPDDR4 Rev 22 i.MX 8M Mini & Derivatives A0 DDR4 Rev 21 i.MX 8M Mini & Derivatives A0 DDR3L Rev 10 i.MX 8M Nano & Derivatives A0 LPDDR4 Rev 9 i.MX 8M Nano & Derivatives A0 DDR4 Rev 12 i.MX 8M Nano & Derivatives A0 DDR3L Rev 6 i.MX 8M Plus & Derivatives A1 LPDDR4 Rev 9 i.MX 8M Plus & Derivatives A1 DDR4 Rev 9 * For the details about the updates, please refer to the Revision History tab of the respective RPA.    To modify the DRAM Frequency for a custom setting refer to iMX 8M Mini Register Programming Aid DRAM PLL setting    Related Resources Links: Config Tools for i.MX Applications Processors | NXP Semiconductors i.MX 8M Mini Register Programming Aid DRAM PLL setting  i.MX 8/8X Series DDR Tool Release  i.MX 6/7 DDR Stress test GUI Tool i.MX 8M Application Processor Related Resources i.MX8M (m850D) DDR Register Programming Aid (RPA)  i.MX8MMini (m845S) DDR Register Programming Aid (RPA)  i.MX8MNano (m815S) DDR Register Programming Aid (RPA) i.MX 8MPlus (m865S) DDR Register Programming Aids (RPA)   i.MX 8ULP DDR tools: i.MX Software and Development Tools | NXP Semiconductors Scroll down to “Other Resources --> Tools --> DDR Tools”  
View full article
Information about the transition from the NXP Demo Experience to GoPoint for i.MX Application Processors.
View full article
share more detailed steps how to bring up stereo capture of basler camera by imx8mp
View full article
Since U-Boot can read/write/update nodes inside the device tree blob before booting the kernel, the idea is to have a generic display node in the device tree which U-Boot will populate with the proper values. You can see in our source tree that all our device trees contain: fb_hdmi alias to setup HDMI configuration fb_lcd alias to setup LCD displays fb_lvds and t_lvds to setup LVDS1 display fb_lvds2 and t_lvds2 to setup LVDS2 display (when available) So U-Boot is now is charged to setup those nodes which will configure your display(s) easily. First of all it requires the U-Boot, Once you have a recent U-Boot, you can have a look at the supported display for your board by issuing: => fbpanel clock-frequency hactive vactive hback-porch hfront-porch vback-porch vfront-porch hsync-len vsync-len hdmi: 1280x720M@60:m24x1,50:74161969,1280,720,220,110,20,5,40,5 74161969 1280 720 220 110 20 5 40 5 hdmi: 1920x1080M@60:m24x1,50:148500148,1920,1080,148,88,36,4,44,5 148500148 1920 1080 148 88 36 4 44 5 ... Since the list is actually pretty long and not always easy to read, you can also filter by type of display (hdmi, lcd or lvds) => fbpanel lcd clock-frequency hactive vactive hback-porch hfront-porch vback-porch vfront-porch hsync-len vsync-len lcd: fusion7:m18x2,10:33264586,800,480,96,24,31,11,136,3 33264586 800 480 96 24 31 11 136 3 lcd: CLAA-WVGA:m18x2,48:27000027,800,480,40,60,10,10,20,10 27000027 800 480 40 60 10 10 20 10 ... => fbpanel lvds clock-frequency hactive vactive hback-porch hfront-porch vback-porch vfront-porch hsync-len vsync-len lvds: hannstar7:18x2,38:71108582,1280,800,80,48,15,2,32,6 71108582 1280 800 80 48 15 2 32 6 ... The above command just lists the available displays, when you want to set one, you need will to set the following variables: fb_hdmi controls HDMI display selection fb_lcd controls LCD display selection fb_lvds controls LVDS display selection fb_lvds2 controls LVDS2 display selection Also, when a display isn't used, you need to set it to off. Here is an example on how to setup the HDMI to display at 1080P and LVDS display to be the Hannstar 10' => setenv fb_lvds hannstar => setenv fb_hdmi 1920x1080M@60 => setenv fb_lcd off => saveenv Saving Environment to SPI Flash... SF: Detected SST25VF016B with page size 256 Bytes, erase size 4 KiB, total 2 MiB Erasing SPI flash...Writing to SPI flash...done => reset Once rebooted, you can have a look at the cmd_hdmi, cmd_lcd and cmd_lvds that U-Boot will have set => print cmd_hdmi cmd_hdmi=fdt set fb_hdmi status okay;fdt set fb_hdmi mode_str 1920x1080M@60; => print cmd_lvds cmd_lvds=fdt set fb_lvds status okay;fdt set fb_lvds interface_pix_fmt RGB666;fdt set ldb/lvds-channel@0 fsl,data-width ;fdt set ldb/lvds-channel@0 fsl,data-mapping spwg;fdt set t_lvds clock-frequency ;fdt set t_lvds hactive ;fdt set t_lvds vactive ;fdt set t_lvds hback-porch ;fdt set t_lvds hfront-porch ;fdt set t_lvds vback-porch ;fdt set t_lvds vfront-porch ;fdt set t_lvds hsync-len ;fdt set t_lvds vsync-len ; => print cmd_lcd cmd_lcd=fdt set fb_lcd status disabled Do not try to set those cmd_* variables yourself, they will be overwritten by U-Boot at bootup anyway. That's it, you should now be able to list, select and setup the displays the way you want. For another type of display, It depends on the type of display: LVDS: yes, since all the timings are inside the device tree node you can change them. Here is an example for our latest 7"1280x800 display, although only the latest U-Boot binary lists it, you can have it running by entering: => setenv fb_lvds tm070jdhg30:24:68152388,1280,800,5,63,2,39,1,1 => saveenv Note that it goes like this: setenv fb_xxx mode_str:connection-type:clk-frequency,hactive,vactive,hback-porch,hfront-porch,vback-porch,vfront-porch,hsync-len,vsync-len The connection-type is very important since it allows to specify: The data mapping: default is SPWG, need to add "j" to switch to JEIDA The split mode: for dual LVDS channels operations (for 1080P display for instance) need to add "s" The data width: can be 18 or 24 For instance, here is a fb_lvds setup for a dual channel JEIDA LVDS display with 24-bit witdth: => setenv fb_lvds 1080P60:js24:148500148,1920,1080,148,88,36,4,44,5 LCD: yes for U-Boot display, no for the kernel You can set the fb_lcd like it is done for LVDS above, however the timings will only be used to setup U-Boot, only the mode_str will be passed on to the kernel. This means that the kernel needs to know about the LCD beforehand. Here is an example for the ASIT500MA6F5D display: => setenv fb_lcd ASIT500MA6F5D:m24:32341861,800,480,88,40,32,13,48,3 => saveenv HDMI: yes (well more or less) Same as the LCD setting, only the mode_str is passed on to the kernel. The difference is that it can work out of the box on the kernel side if you ask for a standard resolution and standard refresh rate. For instance, setting fb_hdmi to 1920x1080M@30 will work automatically since the kernel is smart enough to recognize a known resolution (1080P) with a standard refresh rate (30fps).    
View full article
This is an example for user to transfer files between i.MX8MP Linux platform and other devices via Bluetooth. Environment : Hardware : i.MX8MP LPDDR4 EVK Board, Android Phone Software : L6.6.23-2.0.0   Step1 : Build Yocto image and burnt to the SD card or EMMC repo init -u https://github.com/nxp-imx/imx-manifest.git -b imx-linux-scarthgap -m imx-6.6.23-2.0.0.xml repo sync DISTRO=fsl-imx-xwayland MACHINE=imx8mp-lpddr4-evk source imx-setup-release.sh -b build-xwayland Add the following code to "conf/local.conf"          IMAGE_INSTALL:append = " glibc-gconv-utf-16" bitbake imx-image-full uuu -b emmc_all imx-image-full-imx8mp-lpddr4-evk.rootfs-20240919015845.wic Step2 : Test steps Boot board with "imx8mp-evk-usdhc1-m2.dtb" file. load Wi-Fi Firmware           root@imx8mp-lpddr4-evk:~# modprobe moal mod_para=nxp/wifi_mod_para.conf Load BT firmware and enable BT          root@imx8mp-lpddr4-evk:~# modprobe btnxpuart          root@imx8mp-lpddr4-evk:~# hciconfig                    root@imx8mp-lpddr4-evk:~# hciconfig hci0 up connect  the BT of Android Phone          root@imx8mp-lpddr4-evk:~# bluetoothctl          [bluetooth]# default-agent          [bluetooth]# agent on          [bluetooth]# discoverable on          [bluetooth]# scan on          [bluetooth]# scan off                    [bluetooth]# pair 90:F0:52:92:A6:6C          we need to type Yes on board and click 配对 on phone.                           [bluetooth]# connect 90:F0:52:92:A6:6C                 [Meizu16m]# quit          Transfer file          1). Android Phone-> i.MX8MP EVK Board          root@imx8mp-lpddr4-evk:~# /usr/libexec/bluetooth/obexd -a -n -r /root/ & obexctl                   Then select a file on your phone ad choose transfer by Bluetooth.                   2).i.MX8MP EVK Board -> Android Phone          [obex]# connect 90:F0:52:92:A6:6C                   [90:F0:52:92:A6:6C]# send /home/root/test.txt          Note :  1. Do not suggestion use IOS phone. 2. If your i.MX8MP board can not scan your BT device, Suggest change the device BT name and run on "scan on" command again.  
View full article
This knowledge base add imx8ulp swupdate support based on AN13872. Uboot patch: add_swupdate_support_for_imx8ulp_in_uboot.patch swupdate-scripts patch: 0001-add-imx8ulp-support-in-swupdate-scripts.patch Note You must generate new key referring  5.4.3.3 Generating a key before build. Commands 1. base image build command   ./assemble_base_image.sh -b imx8ulp -e emmc -d doublecopy -m   2. update image build command   ./swu_update_image_build.sh -e -s ./priv.pem -b imx8ulp -g   3. flash command:   uuu -b emmc_all .\imx-boot-imx8ulp-lpddr4-evk-sd.bin-flash_singleboot_m33 .\swu_doublecopy_rescue_imx8ulp_emmc_20240914.sdcard       Useful links: https://sbabic.github.io/swupdate/building-with-yocto.html#automatic-sha256-in-sw-description https://sbabic.github.io/swupdate/sw-description.html?highlight=hwrevision   
View full article
This article describe i.MX8MP normal HAB security boot, and server/client mode. For server/client mode, it is based on customer requirement, because private is stored in server can't be accessed.
View full article
  This guide assumes that the developer has knowledge of the V4L2 API and has worked or is familiar with sensor drivers and their operation within the Linux kernel. This guide does not focus on the details of the sensor driver development that you want to port. It is assumed that you already have an existing driver for your sensor, before making the port. The version of the ISP's was 6.6.36 Linux BSP. If a different version is used, it is the developer's responsibility to review the API documentation for the corresponding version, since there may be changes that affect what is indicated in this guide. To port the camera sensor, the following steps must be taken as described in the following sections: Define sensor attributes and create instances. ISS Driver and ISP Media Server. Sensor Calibration Files. VVCAM Driver Creation. Device Tree Modifications. Define Sensor Attributes and Create Instances The following three steps are already implemented in CamDevice and are included for reference only. Step 1: Define the sensor attributes in the IsiSensor_s data structure. Step 2: Define the IsiSensorInstanceConfig_t configuration structure that will be used to create a new sensor instance. Step 3: Call the IsiCreateSensorIss() function to create a new sensor instance. ISS Driver and ISP Media Server Step 0 - Use a driver template as base code: Drivers can be found in $ISP_SOURCES_TOP/units/isi/drv/. For example, the ISP sources, come with the OV4656 and OS08a20 drivers. $ISP_SOURCES_TOP indicates the path of your working directory, where the respective sources are located. Step 1 - Add your <SENSOR> ISS Driver: Create the driver entry for your sensor in the path $ISP_SOURCES_TOP/units/isi/drv/<SENSOR>/source/<SENSOR>.c. Change all occurrences of the respective sensor name within the code, for instance, OV4656 -> <SENSOR>, respecting capital letters where applicable. Step 2 - Check the information on the IsiCamDrvConfig_s data structure: Data members defined in this data structure include the sensor ID (CameraDriverID) and the function pointer to the IsiSensor data structure. By using the address of the IsiCamDrvConfig_s structure, the driver can then access the sensor API attached to the function pointer. The following is an example of the structure: /***************************************************************************** * Each sensor driver needs to declare this struct for ISI load *****************************************************************************/ IsiCamDrvConfig_t IsiCamDrvConfig = {     .CameraDriverID = 0x0000,     .pIsiHalQuerySensor = <SENSOR>_IsiHalQuerySensorIss,     .pfIsiGetSensorIss = <SENSOR>_IsiGetSensorIss, };   Important Note: Modify the CameraDriverID according to the chip ID of your sensor. Apply this change to any Chip ID occurrence within the code. Step 3 - Check sensor macro definitions: In case there is any macro definition in the ISS Driver code, which involves specific properties of the sensor, you should modify it according to your requirements. For example: #define <SENSOR>_MIN_GAIN_STEP         (1.0f/16.0f)   Step 4 - Modify ISP Media Server build tools: Changes required in this step include: Add a CMakeLists.txt file in $ISP_SOURCES_TOP/units/isi/drv/<SENSOR>/ that builds your sensor module. Modify the CMakeLists.txt located at $ISP_SOURCES_TOP/units/isi/drv/CMakeLists.txt to include and reference your sensor directory. Modify the $ISP_SOURCES_TOP/appshell/ and $ISP_SOURCES_TOP/mediacontrol/ build tools, since by default they refer to the construction of a particular sensor, for example, the OV4656, so it is necessary to change the name of the corresponding sensor. Modify the $ISP_SOURCES_TOP/build-all-isp.sh script to reference the sensor modules and generate the corresponding binaries when building the ISP media server instance.   Step 5 - ISP Media Server run script: You need to add the operation modes defined for your sensor in the script. Each operating mode is associated with an order (mode 0, mode 1 ... mode N), a name used to execute the command in the terminal (e.g <sensor>_custom_mode_1), a resolution, and a specific calibration file for the sensor. The script is located at $ISP_SOURCES_TOP/imx/run.sh .   Step 6 - Sensor<X> config: At $ISP_SOURCES_TOP/units/isi/drv/ you can find the files to configure each sensor entry to the ISP, called Sensor0_Entry.cfg and Sensor1_Entry.cfg. There, the associated calibration files are indicated for each sensor operating mode, including the calibration files in XML format and the Dewarp Unit configuration files in JSON format. In addition, the .drv file generated for your sensor is referenced, creating the association between the respective /dev/video<X> node and the sensor driver module outputted from the ISP Media Server. In case you are using only one ISP channel, just modify Sensor0_Entry.cfg. In case you require both instances of the ISP, you will need to modify both files. Sensor Calibration Files It is a requirement for using the ISP, to have a calibration file in XML format, specific to the sensor you are using and according to the resolution and working mode. To obtain the calibration files in XML format, there are 3 options: Use the NXP ISP tuning tool for this you will need to ask for access or sign a NDA document. Pay NXP professional services to do the tune. Pay a third-party vendor to do the tune   VVCAM Driver Creation The changes indicated below are based on the assumption that there is a functional sensor driver in its base form, and that it is compatible with the V4L2 API. From now on we focus on applying the changes suggested in the NXP documentation, specifically to establish the communication of the VVCAM Driver (kernel side) and the ISI Layer. Step 0 - Create the sensor driver entry: Developers must add the driver code to the file located at $ISP_SOURCES_TOP/vvcam/v4l2/sensor/<sensor>/<sensor>_xxxx.c, along with a Makefile for the sensor driver module. In the same way, as indicated in the ISS Driver section, you can refer to one of the sample drivers that are included as part of the ISP sources, to review details about the implementation of the driver and the structure of the required Makefile.   Step 1 - Add the VVCAM mode info data structure array: This array stores all the supported modes information for your sensor. The ISI layer can get all the modes with the VVSENSORIOC_QUERY command. The following is an example of the structure, please fill in the information using the attributes of your sensor and the modes it supports. #include "vvsensor.h" . . .   static struct vvcam_mode_info_s <sensor>_mode_info[] = {         {         .index = 0,         .width = ... ,         .height = ... ,         .hdr_mode = ... ,         .bit_width = ... ,         .data_compress.enable = ... ,         .bayer_pattern = ... ,         .ae_info = {                        .                        .                        .                        },         .mipi_info = {                        .mipi_lane = ... ,                        },         },         {         .index = 1,         .         .         .         }, }; Step 2 - Define sensor client to i2c : Define the client_to_sensor macro (in case you don't have any already) and check the segments of the driver code that require this macro. #define client_to_<sensor>(client)\         container_of(i2c_get_clientdata(client), struct <sensor>, subdev)   Step 3 - Define the V4L2-subdev IOCTL function: Define and implement the <sensor>_priv_ioctl, which is used to receive the commands and parameters passed down by the user space through ioctl() and control the sensor. long <sensor>_priv_ioctl(struct v4l2_subdev *subdev, unsigned int cmd, void *arg) {         struct i2c_client *client = v4l2_get_subdevdata(subdev);         struct <sensor> *sensor = client_to_<sensor>(client);         struct vvcam_sccb_data_s reg;         uint32_t value = 0;         long ret = 0;           if(!sensor){                return -EINVAL;         }           switch (cmd) {         case VVSENSORIOC_G_CLK: {                ret = custom_implementation();                break;         }         case VIDIOC_QUERYCAP: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_QUERY: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_G_CHIP_ID: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_G_RESERVE_ID: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_G_SENSOR_MODE:{                ret = custom_implementation();                break;         }         case VVSENSORIOC_S_SENSOR_MODE: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_S_STREAM: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_WRITE_REG: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_READ_REG: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_S_EXP: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_S_POWER:         case VVSENSORIOC_S_CLK:         case VVSENSORIOC_RESET:         case VVSENSORIOC_S_FPS:         case VVSENSORIOC_G_FPS:         case VVSENSORIOC_S_LONG_GAIN:         case VVSENSORIOC_S_GAIN:         case VVSENSORIOC_S_VSGAIN:         case VVSENSORIOC_S_LONG_EXP:         case VVSENSORIOC_S_VSEXP:          case VVSENSORIOC_S_WB:         case VVSENSORIOC_S_BLC:         case VVSENSORIOC_G_EXPAND_CURVE:                break;         default:                break;         }           return ret; }   As you can see in the example, some cases are implemented but others are not. Developers are free to implement the features they consider necessary, as long as a minimum base of operation of the driver is guaranteed (query commands, read and write registers, among others). It is the developer's responsibility to implement each custom function, for each case or scenario that may arise when interacting with the sensor. In addition to what was shown previously, a link must be created to make the ioctl connection with the driver in question. Link your priv_ioctl function on the v4l2_subdev_core_ops struct, as in the example below: static const struct v4l2_subdev_core_ops <sensor>_core_ops = {         .s_power       = v4l2_s_power,         .subscribe_event = v4l2_ctrl_subdev_subscribe_event,         .unsubscribe_event = v4l2_event_subdev_unsubscribe,      // IOCTL link         .ioctl = <sensor>_priv_ioctl, };   Step 4 - Verify your sensor's private data structure: After performing the modifications suggested, it would be a good practice to double-check your sensor's private data structure properties, in case there is one missing, and also check that the properties are initialized correctly on the driver's probe.   Step 5 - Modify VVCAM V4L2 sensor Makefile : At $ISP_SOURCES_TOP/vvcam/v4l2/sensor/Makefile, include your sensor object as follows: ... obj-m += <sensor>/ ... Important Note: There is a very common issue that appears when working with camera sensor drivers in i.MX8MP platforms. The kernel log message shows something similar to the following: mxc-mipi-csi2.<X>: is_entity_link_setup, No remote pad found! The link setup callback is required by the Media Controller when performing the linking process of the media entities involved in the capture process of the camera. Normally, this callback is triggered by the imx8-media-dev driver included as part of the Kernel sources. To make sure that the problem is not related to your sensor driver, verify the link setup callback is already created in the code, and if is not, you can add the following template: /* Function needed by i.MX8MP */ static int <sensor>_camera_link_setup(struct media_entity *entity,                                    const struct media_pad *local,                                    const struct media_pad *remote, u32 flags) {     /* Return always zero */         return 0; }   /* Add the link setup callback to the media entity operations struct */ static const struct media_entity_operations <sensor>_camera_subdev_media_ops = {         .link_setup = <sensor>_camera_link_setup, };     /* Verify the initialization process of the media entity ops in the sensor driver's probe function*/ static int <sensor>_probe(struct i2c_client *client, ...) {         /* Initialize subdev */         sd = &<sensor>->subdev;         sd->dev = &client->dev;         <sensor>->subdev.internal_ops = ...         <sensor>->subdev.flags |= ...         <sensor->subdev.entity.function = ...     /* Entity ops initialization */         <sensor->subdev.entity.ops = &<sensor>_camera_subdev_media_ops; } In most cases, adding the link setup function will solve the media controller issue, or at least it discards problems on the driver side. Device Tree Modifications On the Device Tree side, it is necessary to enable the ISP channels that will be used. Likewise, it is necessary to disable the ISI channels, which are normally the ones that connect to the MIPI_CSI2 ports to extract raw data from the sensor (in case the ISP is not used). A MIPI_CSI2 port can be mapped to either an ISI channel or an ISP channel, but not both simultaneously. In this guide, we focus on using the ISP, so any other custom configuration that you want to implement may vary from what is shown. In the code below, ISP channel 0 is enabled, and the connection is made to the port where the sensor is connected (mipi_csi_0). &mipi_csi_0 {         status = "okay";         port@0 {         // Example endpoint to <sensor>_ep                mipi0_sensor_ep: endpoint@1 {                        remote-endpoint = <&<sensor>_ep>;                };         }; };   &cameradev {         status = "okay"; };   &isi_0 {         status = "disabled"; };   &isi_1 {         status = "disabled"; };   &isp_0 {         status = "okay"; };   &isp_1 {         status = "disabled"; };   &dewarp {         status = "okay"; }; What is shown above does not represent a complete device tree file, is only a general skeleton of the points you should pay attention to when working with ISP channels. For simplicity, we omitted all the attributes that are normally defined when working with camera sensor drivers and their respective configurations in the i2c port of the hardware.   Note: Due to hardware restrictions when using ISP channels, it is recommended to use the isp_0 channel, when working with only one sensor. In case you need to use two sensors, you can enable both channels, taking into account the limitations regarding the output resolutions and the clock frequency when both channels are working simultaneously. What is not recommended is to use the isp_1 channel when working with a single sensor.   References ISP Independent Sensor Interface (ISI) API reference, I.MX8M Plus Camera Sensor Porting User guide: https://www.nxp.com/webapp/Download?colCode=IMX8MPCSPUG Sensor Calibration tool: https://www.nxp.com/webapp/Download?colCode=AN13565 i.MX8M Plus reference manual: https://www.nxp.com/webapp/Download?colCode=IMX8MPRM  
View full article
Note: This guide is specifically for use with VS Code. For standalone with Segger software please refer to this guide. (How to Use Segger J-Link Plus with i.MX 8M Process... - NXP Community) In this guide we will describe the process to start using VS Code to debug an SDK application. The board used for this guide specifically is the i.MX 8M Nano EVK, but it also applies to all processors of the i.MX 8M Family. This guide covers the following topics: Hardware requirements Software requirements How to find, build, and download the i.MX SDK Debug Probe and i.MX 8M Nano EVK connection Create an SDK Application with MCUXpresso for VS Code Run and debug your SDK Application with MCUXpresso for VS Code Hardware requirements Evaluation Kit for the i.MX8M Nano Applications Processor (i.MX 8M Nano Evaluation Kit | NXP Semiconductors) Quick Start Guide for i.MX8M Nano (I.MX 8M Nano EVK Quick Start Guide (nxp.com)) J-Link Plus JTAG/SWD debug probe with USB interface (SEGGER J-Link PLUS) Features Download speed up to 1MB/s Unlimited breakpoints in flash memory Supports direct download into RAM and flash memory Supported NXP Devices Supported Devices - Search results "nxp" (segger.com) 9 Pin Cortex-M Adapter (9-Pin Cortex-M Adapter (segger.com)) Description Adapts from the 20-pin 0.1'' JTAG connector to a 9-pin 0.05'' Samtec FTSH connector as defined by Arm. Software requirements Windows 10 OS (host) J-Link Software and Documentation Pack for Windows (https://www.segger.com/products/debug-probes/j-link/models/j-link-plus/) i.MX 8M Nano SDK (Welcome | MCUXpresso SDK Builder (nxp.com)) VS Code for Windows (Installation Guide: Running Visual Studio Code on Windows) MCUXpresso Extension for VS Code (Installation Guide: Training: Walkthrough of MCUXpresso for VS Code - NXP Community)   How to find, build, and download the i.MX 8M Nano SDK Enter Welcome | MCUXpresso SDK Builder (nxp.com) Click on "Select Development Board"  Select EVK-MIMX8MN (MIMX8MN6xxxJZ) from Boards -> i.MX -> EVK-MIMX8MN Click on the Build MCUXpresso SDK button Click on Download SDK, you'll be redirected to the MCUXpresso SDK Dashboard Look for the i.MX 8M Nano SDK and click on Download SDK Click on Download SDK archive and documentation, accept the Software Terms and Conditions and the .zip file for the SDK will be downloaded. Debug Probe and i.MX 8M Nano EVK connection Connect the debug cable (USB-UART) to the board and the other end to your PC. Connect the power cable to the second USB-C port and to a wall socket. Don't turn on the board yet. Connect the JLink Plus to your PC with the USB cable. Connect the JLink Plus to the JTAG of the i.MX 8M Nano EVK board In this part we will need to identify pin number 1 from the 9 Pin Cortex-M adapter and from the i.MX 8M Nano EVK board. For the first one identifies pin 7 identifiable by a "non-connect pin". For the i.MX 8M Nano, you can identify easily with a number 1 in one corner of the connectors.    The whole setup should look similar to this:   Create an SDK Application with MCUXpresso for VS Code Before delving into the details of creating an SDK Application it is important to recognize the sections of VS Code User Interface. This will help us to describe accurately the buttons' position. Click on MCUXpresso for VS Code extension icon from the Activity Bar.  In the section “Quickstart Panel” located in the Side Bar click on “Import Repository.” On this window, go to “Local” and select your previously downloaded SDK folder location. Then, click on “Import.” Expand the section “Installed Repositories” from Side Bar and verify your selected SDK. Expand the section “Projects” from Side Bar and click on “Import Example from Repository” and complete the options: Choose a toolchain Choose a board Choose a template Name Location Finally, click on the "Create" button. Click on the gear icon located in the project folder to build the code. In “Projects” expand the “Settings” options and select “mcuxpresso-tools.json.” Here you will find a JSON file with different parameters. Defines the device that will be used to connect with the J-Link Plus. Code: “segger”: { “device”: “MIMX8MN6_M7” } Expand the section “Debug Probes” and verify that your J-Link Plus debug probe appears. Start SEGGER J-Link GDB Server. On section “Target Device” select MIMX8MN6_M7 and click “OK”. You will see the following window. Run and debug your SDK Application with MCUXpresso for VS Code Click on “Debug” located in the project folder, to start with the debugging session. In the Panel click on “Serial Monitor,” set it to the serial debug port with the lowest numbered port with the following settings: Baud rate: 115200 Line ending: None Click on "Start Monitoring" Use the debug controls to run the code. Verify your code output in the “Serial Monitor.”
View full article
P3T1755 Demo   In this space I want to show you the things that you can create usign our products.   In  this demo I demostrate a use case creating a GUI for a Temperature Sensor.   We can create modern GUIs and more with LVGL combined with our powerful processors.               CPU USAGE As we can see  the CPU usage for this demo is around 2%   Pictures         This demo is based on the previous publused articles.   References: https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/Adding-support-to-P3T1755-on-Linux/ta-p/1855874 https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/How-to-run-LGVL-on-iMX-using-framebuffer/ta-p/1853768  
View full article
This guide is a continuation from our latest Debian 12 Installation Guide for iMX8MM, iMX8MP, iMX8MN and iMX93. Here we will describe the process to install the multimedia and hardware acceleration packages, specifically GPU, VPU and Gstreamer on i.MX8M Mini, i.MX8M Plus and i.MX8M Nano. The guide is based on the one provided by our colleague Build Ubuntu For i.MX8 Series Platform - NXP Community, which requires to previously build an image using Yocto Project with the following distro and image name. Distro name - fsl-imx-wayland Image name – imx-image-multimedia For more information please check our BSP documentation i.MX Yocto Project User’s Guide.   Hardware Requirements Linux Host Computer (Ubuntu 20.04 or later) USB Card reader or Micro SD to SD adapter SD Card Evaluation Kit Board for the i.MX8M Nano, i.MX8M Mini, i.MX8M Plus   Software Requirements Linux Ubuntu (20.04 tested) or Debian for Host Computer BSP version 6.1.55 built with Yocto Project   After built the image we can start the installation by following the steps below:   GPU Installation The GPU Installation consists of copy the files from packages imx-gpu-g2d, imx-gpu-viv, libdrm to the Debian system. As our latest installation guide, we will continue naming “mountpoint” to the directory where Debian system is mounted on our host machine. Regarding the path provided on each step, we put labels <build-path> and <machine> that you will need to change based on your environment. These are the paths that Yocto Project uses to save the packages. However, this could change on your environment and you can find the work directory from each package using the following command: bitbake -e <package-name> | grep ^WORKDIR= This command will show you the absolute path of the package work directory. 1. Install GPU Packages $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/imx-gpu-g2d/6.4.11.p2.2-r0/image/* mountpoint $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/imx-gpu-viv/1_6.4.11.p2.2-aarch64-r0/image/* mountpoint $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/libdrm/2.4.115.imx-r0/image/* mountpoint   2. Install Linux IMX Headers and IMX Parser $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/linux-imx-headers/6.1-r0/image/* mountpoint $ sudo cp -Pra <build-path>/tmp/work/armv8a-poky-linux/imx-parser/4.8.2-r0/image/* mountpoint   3. Use chroot $ sudo LANG=C.UTF-8 chroot mountpoint/ qemu-aarch64-static /bin/bash   4. Install Dependencies $ apt install libudev-dev libinput-dev libxkbcommon-dev libpam0g-dev libx11-xcb-dev libxcb-xfixes0-dev libxcb-composite0-dev libxcursor-dev libxcb-shape0-dev libdbus-1-dev libdbus-glib-1-dev libsystemd-dev libpixman-1-dev libcairo2-dev libffi-dev libxml2-dev kbd libexpat1-dev autoconf automake libtool meson cmake ssh net-tools network-manager iputils-ping rsyslog bash-completion htop resolvconf dialog vim udhcpc udhcpd git v4l-utils alsa-utils git gcc less autoconf autopoint libtool bison flex gtk-doc-tools libglib2.0-dev libpango1.0-dev libatk1.0-dev kmod pciutils libjpeg-dev   5. Create a folder for Multimedia Installation. Here we will clone all the multimedia repositories.  $ mkdir multimedia_packages $ cd multimedia_packages   6. Build Wayland $ git clone https://gitlab.freedesktop.org/wayland/wayland.git $ cd wayland $ git checkout 1.22.0 $ meson setup build --prefix=/usr -Ddocumentation=false -Ddtd_validation=true $ cd build $ ninja install   7. Build Wayland Protocols IMX $ git clone https://github.com/nxp-imx/wayland-protocols-imx.git $ cd wayland-protocols-imx $ git checkout wayland-protocols-imx-1.32 $ meson setup build --prefix=/usr -Dtests=false $ cd build $ ninja install   8. Build Weston $ git clone https://github.com/nxp-imx/weston-imx.git $ cd weston-imx $ git checkout weston-imx-11.0.3 $ meson setup build --prefix=/usr -Dpipewire=false -Dsimple-clients=all -Ddemo-clients=true -Ddeprecated-color-management-colord=false -Drenderer-gl=true -Dbackend-headless=false -Dimage-jpeg=true -Drenderer-g2d=true -Dbackend-drm=true -Dlauncher-libseat=false -Dcolor-management-lcms=false -Dbackend-rdp=false -Dremoting=false -Dscreenshare=true -Dshell-desktop=true -Dshell-fullscreen=true -Dshell-ivi=true -Dshell-kiosk=true -Dsystemd=true -Dlauncher-logind=true -Dbackend-drm-screencast-vaapi=false -Dbackend-wayland=false -Dimage-webp=false -Dbackend-x11=false -Dxwayland=false $ cd build $ ninja install   VPU Installation To install VPU and Gstreamer please follow the steps below: 1. Install firmware-imx $ sudo cp -Pra <build-path>/tmp/work/all-poky-linux/firmware-imx/1_8.22-r0/image/lib/* mountpoint/lib/   2. Install VPU Driver $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/imx-vpu-hantro/1.31.0-r0/image/* mountpoint $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/imx-vpuwrap/git-r0/image/* mountpoint   3. Use chroot $ sudo LANG=C.UTF-8 chroot mountpoint/ qemu-aarch64-static /bin/bash   4. Install dependencies for Gstreamer Plugins $ apt install libgirepository1.0-dev gettext liborc-0.4-dev libasound2-dev libogg-dev libtheora-dev libvorbis-dev libbz2-dev libflac-dev libgdk-pixbuf-2.0-dev libmp3lame-dev libmpg123-dev libpulse-dev libspeex-dev libtag1-dev libbluetooth-dev libusb-1.0-0-dev libcurl4-openssl-dev libssl-dev librsvg2-dev libsbc-dev libsndfile1-dev   5. Change directory to multimedia packages. $ cd multimedia-packages   6. Build gstreamer $ git clone https://github.com/nxp-imx/gstreamer -b lf-6.1.55-2.2.0 $ cd gstreamer $ meson setup build --prefix=/usr -Dintrospection=enabled -Ddoc=disabled -Dexamples=disabled -Ddbghelp=disabled -Dnls=enabled -Dbash-completion=disabled -Dcheck=enabled -Dcoretracers=disabled -Dgst_debug=true -Dlibdw=disabled -Dtests=enabled -Dtools=enabled -Dtracer_hooks=true -Dlibunwind=disabled -Dc_args=-I/usr/include/imx $ cd build $ ninja install   7. Build gst-plugins-base $ git clone https://github.com/nxp-imx/gst-plugins-base -b lf-6.1.55-2.2.0 $ cd gst-plugins-base $ meson setup build --prefix=/usr -Dalsa=enabled -Dcdparanoia=disabled -Dgl-graphene=disabled -Dgl-jpeg=disabled -Dopus=disabled -Dogg=enabled -Dorc=enabled -Dpango=enabled -Dgl-png=enabled -Dqt5=disabled -Dtheora=enabled -Dtremor=disabled -Dvorbis=enabled -Dlibvisual=disabled -Dx11=disabled -Dxvideo=disabled -Dxshm=disabled -Dc_args=-I/usr/include/imx $ cd build $ ninja install   8. Build gst-plugins-good $ git clone https://github.com/nxp-imx/gst-plugins-good -b lf-6.1.55-2.2.0 $ cd gst-plugins-good $ meson setup build --prefix=/usr -Dexamples=disabled -Dnls=enabled -Ddoc=disabled -Daalib=disabled -Ddirectsound=disabled -Ddv=disabled -Dlibcaca=disabled -Doss=enabled -Doss4=disabled -Dosxaudio=disabled -Dosxvideo=disabled -Dshout2=disabled -Dtwolame=disabled -Dwaveform=disabled -Dasm=disabled -Dbz2=enabled -Dcairo=enabled -Ddv1394=disabled -Dflac=enabled -Dgdk-pixbuf=enabled -Dgtk3=disabled -Dv4l2-gudev=enabled -Djack=disabled -Djpeg=enabled -Dlame=enabled -Dpng=enabled -Dv4l2-libv4l2=disabled -Dmpg123=enabled -Dorc=enabled -Dpulse=enabled -Dqt5=disabled -Drpicamsrc=disabled -Dsoup=enabled -Dspeex=enabled -Dtaglib=enabled -Dv4l2=enabled -Dv4l2-probe=true -Dvpx=disabled -Dwavpack=disabled -Dximagesrc=disabled -Dximagesrc-xshm=disabled -Dximagesrc-xfixes=disabled -Dximagesrc-xdamage=disabled -Dc_args=-I/usr/include/imx $ cd build $ ninja install   9. Build gst-plugins-bad $ git clone https://github.com/nxp-imx/gst-plugins-bad -b lf-6.1.55-2.2.0 $ cd gst-plugins-bad $ meson setup build --prefix=/usr -Dintrospection=enabled -Dexamples=disabled -Dnls=enabled -Dgpl=disabled -Ddoc=disabled -Daes=enabled -Dcodecalpha=enabled -Ddecklink=enabled -Ddvb=enabled -Dfbdev=enabled -Dipcpipeline=enabled -Dshm=enabled -Dtranscode=enabled -Dandroidmedia=disabled -Dapplemedia=disabled -Dasio=disabled -Dbs2b=disabled -Dchromaprint=disabled -Dd3dvideosink=disabled -Dd3d11=disabled -Ddirectsound=disabled -Ddts=disabled -Dfdkaac=disabled -Dflite=disabled -Dgme=disabled -Dgs=disabled -Dgsm=disabled -Diqa=disabled -Dkate=disabled -Dladspa=disabled -Dldac=disabled -Dlv2=disabled -Dmagicleap=disabled -Dmediafoundation=disabled -Dmicrodns=disabled -Dmpeg2enc=disabled -Dmplex=disabled -Dmusepack=disabled -Dnvcodec=disabled -Dopenexr=disabled -Dopenni2=disabled -Dopenaptx=disabled -Dopensles=disabled -Donnx=disabled -Dqroverlay=disabled -Dsoundtouch=disabled -Dspandsp=disabled -Dsvthevcenc=disabled -Dteletext=disabled -Dwasapi=disabled -Dwasapi2=disabled -Dwildmidi=disabled -Dwinks=disabled -Dwinscreencap=disabled -Dwpe=disabled -Dzxing=disabled -Daom=disabled -Dassrender=disabled -Davtp=disabled -Dbluez=enabled -Dbz2=enabled -Dclosedcaption=enabled -Dcurl=enabled -Ddash=enabled -Ddc1394=disabled -Ddirectfb=disabled -Ddtls=disabled -Dfaac=disabled -Dfaad=disabled -Dfluidsynth=disabled -Dgl=enabled -Dhls=enabled -Dkms=enabled -Dcolormanagement=disabled -Dlibde265=disabled -Dcurl-ssh2=disabled -Dmodplug=disabled -Dmsdk=disabled -Dneon=disabled -Dopenal=disabled -Dopencv=disabled -Dopenh264=disabled -Dopenjpeg=disabled -Dopenmpt=disabled -Dhls-crypto=openssl -Dopus=disabled -Dorc=enabled -Dresindvd=disabled -Drsvg=enabled -Drtmp=disabled -Dsbc=enabled -Dsctp=disabled -Dsmoothstreaming=enabled -Dsndfile=enabled -Dsrt=disabled -Dsrtp=disabled -Dtinyalsa=disabled -Dtinycompress=enabled -Dttml=enabled -Duvch264=enabled -Dv4l2codecs=disabled -Dva=disabled -Dvoaacenc=disabled -Dvoamrwbenc=disabled -Dvulkan=disabled -Dwayland=enabled -Dwebp=enabled -Dwebrtc=disabled -Dwebrtcdsp=disabled -Dx11=disabled -Dx265=disabled -Dzbar=disabled -Dc_args=-I/usr/include/imx $ cd build $ ninja install   10. Build imx-gst1.0-plugin $ git clone https://github.com/nxp-imx/imx-gst1.0-plugin -b lf-6.1.55-2.2.0 $ cd imx-gst1.0-plugin $ meson setup build --prefix=/usr -Dplatform=MX8 -Dc_args=-I/usr/include/imx $ cd build $ ninja install   11. Exit chroot $ exit   Verify Installation For verification process, boot your target from the SD Card. (Review your specific target documentation) 1. Verify Weston For this verification you will need to be root user. # export XDG_RUNTIME_DIR=/run/user/0 # weston   2. Verify VPU and Gstreamer Use the following Gstreamer pipeline for Hardware Accelerated VPU Encode. # gst-launch-1.0 videotestsrc ! video/x-raw, format=I420, width=640, height=480 ! vpuenc_h264 ! filesink location=test.mp4   Then you can reproduce the file with this command: # gplay-1.0 test.mp4   Finally, you have installed and verified the GPU, VPU and Multimedia packages. Now, you can start testing audio and video applications.
View full article
On this tutorial we will review the implementation of Flutter on the i.MX8MP using the Linux Desktop Image. Please find more information about Flutter using the following link: Flutter: Option to create GUIs for Embedded System... - NXP Community Requirements: Evaluation Kit for the i.MX 8M Plus Applications Processor. (i.MX 8M Plus Evaluation Kit | NXP Semiconductors) NXP Desktop Image for i.MX 8M Plus (GitHub - nxp-imx/meta-nxp-desktop at lf-6.1.1-1.0.0-langdale) Note: This tutorial is based on the NXP Desktop Image with Yocto version 6.1.1 – Langdale. Steps: 1. First, run commands to update packages. $ sudo apt update $ sudo apt upgrade 2. Install Flutter for Linux using the following command. $ sudo snap install flutter --classic 3. Run the command to verify the correct installation. $ flutter doctor With this command you will find information about the installation. The important part for our purpose is the parameter "Linux toolchain - develop for Linux desktop". 4. Run the command “flutter create .” to create a flutter project, this framework will create different folders and files used to develop the application.  $ cd Documents $ mkdir flutter_hello $ cd flutter_hello $ flutter create .​ 5. Finally, you can run the “hello world” application using: $ flutter run Verify the program behavior incrementing the number displayed on the window.  
View full article