Wireless Connectivity Knowledge Base

cancel
Showing results for 
Search instead for 
Did you mean: 

Wireless Connectivity Knowledge Base

Discussions

Sort by:
Please find here all the information needed to build your own PCB based on K32W061/041(AM/A), QN9090/9030(T) or JN5189/5188(T). Your first task before to send any inquiry to NXP support is to fill the KW38 Design In CHECK LIST available in this ticket.   K32W061 Manufacturing package Find here all the product pages, most of the HW documents are in the corresponding platforms web pages: K32W061/041 (AM/A) QN9090/9030(T) JN5189/5188(T)   The K32W EVK getting started webpage: IOT_ZTB-DK006 Get started page (nxp.com) IoT_ZTB getting started manual (nxp.com)   HW: HW design consideration : JN-RM-2078-JN5189-Module-Development_1V4.pdf (see attached file) JN-RM-2079-QN9090-Module-Development_1V0.pdf (see attached file) JN-RM-2080-K32W-Module-Development_1V0.pdf (see attached file)   Radio: RF report:  JN5189: https://www.nxp.com/docs/en/application-note/AN12154.pdf (nxp.com) QN9090: https://www.nxp.com/docs/en/nxp/application-notes/AN12610.pdf (nxp.com) K32W: https://www.nxp.com/docs/en/application-note/AN12798.pdf (nxp.com) Antenna:  https://www.nxp.com/docs/en/application-note/AN2731.pdf (nxp.com)   Low Power Consumption:  JN5189: https://www.nxp.com/docs/en/application-note/AN12898.pdf (nxp.com) QN9090: https://www.nxp.com/docs/en/application-note/AN12902.pdf (nxp.com) K32W: https://www.nxp.com/docs/en/application-note/AN12846.pdf (nxp.com)   SW tools: Customer Module Evaluation Tool  (nxp.com) Bluetooth Low Energy Certification Tool (nxp.com) K32W041/K32W061/QN9090(T)/QN9030(T) Bluetooth Low Energy Certification Tool User's Guide (nxp.com)     Certification: Certificates/Declarations of conformity (nxp community)  
View full article
The radio certification has been performed on JN5189, QN9090 and K32W products. The certificates or declaration of conformity are available in attached files.
View full article
Please, find the important link to build a PCB using a KW38 and all concerning the radio performances, low power and radio certification (CE/FCC/IC). Your first task before to send any inquiry to NXP support is to fill the KW38 Design In CHECK LIST available in this ticket.   KW38 product NXP web page: KW39/38/37 32-bit Bluetooth 5.0 Long-Range MCUs|NXP | NXP Semiconductors   FRDM-KW38 getting started NXP web page Getting Started with the FRDM-KW38 | NXP Semiconductors   HW: FRDM-KW38 User Guide: FRDM-KW38 Freedom Development Board User’s Guide (nxp.com.cn) Hardware design consideration: Hardware Design Considerations for MKW39A/38A/37A/38Z/37Z Bluetooth LE Devices (nxp.com) Minimum BoM: KW37_38_39 Minimum BoM Presentation.pdf - NXP Community DCDC management guide : MKW4xZ/3xZ/3xA/2xZ DC-DC Power Management (nxp.com)          Migration guide: KW36 to KW38: Migration Guide from MKW36A512xxx4 to MKW38A512xxx4 (nxp.com)          Design-In check list: attached excel file         Configuration for Unused Pins/GPIOs on Kinetis Radio: RF report: https://www.nxp.com.cn/docs/en/application-note/AN12517.pdf Annex: MIIT (China) sharpened Homologation on FRDM-KW38 &... - NXP Community          Radio co-existance: FRDM-KW38 Co-existence with RF System Evaluation Report for Bluetooth® Low Energy Application (nxp.com) Low Power Consumption: https://www.nxp.com/docs/en/application-note/AN12459.pdf Distance performances: KW37_38_39_Bluetooth LE Range Performance.pdf - NXP Community Antenna: https://www.nxp.com/docs/en/application-note/AN2731.pdf          Generic FSK Link Layer Quick Start: Connectivity test SW user guide in attached pdf file          Binary file attached: Connectivity test frdmkw38.bin          Return loss (S11) measurement: attached file          Loadpull: attached file SW tools:          IoT Tool box          Connectivity test tool for connectivity products KW39/38/37 32-bit Bluetooth 5.0 Long-Range MCUs|NXP | NXP Semiconductors          DTM: How to use the HCI_bb on Kinetis family products a... - NXP Community https://community.nxp.com/t5/Wireless-Connectivity-Knowledge/BLE-HCI-Application-to-set-transmitter-receiver-test-commands/ta-p/1126093 Certification:          Zip attached file and the community link: KW39 KW38 KW37 Radio certification documents - NXP Community
View full article
This document describes a simple process for enabling the user controls the radio through serial commands. Hardware requirements: • FRDM-KW41Z/QN902x board or a board programmed with HCI black box application. Software requirements: • Test Tool 12 application. It can be downloaded from the NXP web page. • HCI Black Box binary.   Running Demo 1. Load the board with hci_black_box example. 2. Open the Test Tool 12 software 3. Set up the correct Serial Configuration. If there were no changes in the application the default configuration will correspond to the one showed in the following figure. 4. Double click on the active device that you want to test, this will open the COM port in the command console. 5. Set the command set to the BLE_HCI.xml. This file has a list of the HCI commands that the user can send to the device, some of the commands have some options to be configured if necessary or some data to be filled. 6. To make easier the use of frequent commands, there is the option to add a shortcut to the command and the chosen behavior will be added to the panel. 7. Once you add the shortcut or choose the command or your preference, just double click over it and the tool will send the command to the device. In this case, we will send a reset on the board, this command does not receive any extra parameters, data or need any extra configuration.   8. If successful there will be a response or acknowledge of the behavior that will be shown in the right panel. Hope it helps. Regards, Mario
View full article
Based on i.MX8MN-EVK And Linux 5.4.70_2.3.0 BSP As an example of NXP Bluetooth Bluetooth application, this article describes how to use Bluetooth to realize file transfer between windows PC and i.MX8MN-EVK (linux), and between Android mobile phone and i.MX8MN-EVK. The test architecture used in this example is as follows: The following steps are for the application example: Step 1 Preparation  --Downloading DEMO Image For i.MX8MN-EVK  --Downloading uuu tool  --Compiling L5.4.70_2.3.0 BSP for i.MX8MN-EVK  --Copying rootfs to the DEMO Image directory  --Modifying example_kernel_emmc.uuu as uuu programming script  --Programming images to i.MX8MN-EVK board  Booting i.MX8MN-EVK board Step 2 Loading WIFI/BT driver and Enable Bluetooth Step 3 File Transter between Windows 10 PC and i.MX8MN-EVK board Step 4 File Transter between Android Mobile and i.MX8MN-EVK board [Summary] More detailed information, see attachment, please!
View full article
The homologation requirements in China (MIIT [2002]353) obviously are planned (end of December 2022) to be sharpened (MIIT publication from 2021-01-27: “Notice on Matters Related to Radio Management in the 2400MHz, 5100MHz and 5800MHz Bands”).   A modification register is need on the KW38 and KW36 to pass the new Chinese  requirement with acceptable margin: PA_RAMP_SEL value must be set to 0x02h (2us) instead of 0x01h (1us default value) Modification SW: XCVR_TX_DIG_PA_CTRL_PA_RAMP_SEL(2) in the nxp_xcvr_common_config.c All the details are in the attached file.   Note: This SW modification is for China country only.
View full article
In the process of practical application, customers often need the combination of ble + NFC. At present, our IOT-DK006 is the only development board with NFC module. But the NFC example is not perfect. So we porting the library of NFC reader- PN7150, to support KW series microcomputer so that KW series can handle the demand of ble + NFC function. Now I will introduce you how to port the NFC lib to KW. 1 PN7150 Introduction PN7150 is the high-performance version of PN7120, the plug’n play NFC solution for easy integration into any OS environment, reducing Bill of Material (BOM) size and cost. PN71xx controllers are ideal for home-automation applications such as gateways and work seamlessly with NFC connected tags. 2 Tools hardware : FRDM-KW36 , PN7150 , some wire software : mcuxpresso11.3 package : NXP-NCI MCUXpresso example Project This package contains the nfc library and example that we need. We will refer the ‘NXPNCI-K64F_example’ firstly. Sdk version: 2.2.8 , Example: frdmkw36_rtos_examples_freertos_i2c  3  Steps Hardware part : We need connect the PN7150 to KW36 like the picture. Although we can connect the PN7150 to board through the ardunio connector, the pin’s voltage is not enough to drive the PN7150. So we need a wire connected to U1 to get 3.3V.   PN7150 FRDM-KW36 VBAT/PVDD 3.3V VANT 5V GND GND IRQ PTA16 VEN PTC15 SCL PTB0 , I2C0 SDA PTB1 , I2C0 Software part : We should add the nfc library and directory into our project. You can check the following picture to know what file is necessary. If you want to know how to add directory into our project, you can refer this link. The red line shows what file we need. Please notice that when we add file path into the mcuxpresso configuration, we also need add the path into ‘Path and Symbols’ .   We need add some macro into ‘Preprocessor’.   We copy the NXPNCI-K64F_example’s main file content into our ‘freertos_i2c.c’. Next, we need modify the file pin_mux.c, tml.c and board.h   In file board.h , add the following macro. /* NXPNCI NFC related declaration */ #define BOARD_NXPNCI_I2C_INSTANCE I2C0 #define BOARD_NXPNCI_I2C_BAUDRATE (100000) #define BOARD_NXPNCI_I2C_ADDR       (0x28) #define BOARD_NXPNCI_IRQ_PORTIRQn PORTA_IRQn #define BOARD_NXPNCI_IRQ_GPIO     (GPIOA) #define BOARD_NXPNCI_IRQ_PORT     (PORTA) #define BOARD_NXPNCI_IRQ_PIN      (16U) #define BOARD_NXPNCI_VEN_GPIO     (GPIOC) #define BOARD_NXPNCI_VEN_PORT     (PORTC) #define NXPNCI_VEN_PIN            (5U)     In file pin_mux.c, add head file ‘board.h’. Add the following code in function ’ BOARD_InitPins’. The step is to configure the VEN, IRQ and I2C0. This example contains the I2C1’s code, you can comment them.     /* Initialize NXPNCI GPIO pins below */   /* IRQ and VEN PIN_MUX Configuration */   PORT_SetPinMux(BOARD_NXPNCI_IRQ_PORT, BOARD_NXPNCI_IRQ_PIN, kPORT_MuxAsGpio);   PORT_SetPinMux(BOARD_NXPNCI_VEN_PORT, NXPNCI_VEN_PIN, kPORT_MuxAsGpio);   /* IRQ interrupt Configuration */   NVIC_SetPriority(BOARD_NXPNCI_IRQ_PORTIRQn, 6);   EnableIRQ(BOARD_NXPNCI_IRQ_PORTIRQn);   PORT_SetPinInterruptConfig(BOARD_NXPNCI_IRQ_PORT, BOARD_NXPNCI_IRQ_PIN, kPORT_InterruptRisingEdge);   Finally, in file tml.c, modify PORTC_IRQHandler as PORTA_IRQHandler We finished all steps. 4 Results We use ntag to test the reading and writing operation.   When the tag is closed to the PN7150, we will get the following message.   The text recording is ‘VER=03’. Next, we will modify the text recording We need add the new macro to preprocessor.   We can modify the variable NDEF_MESSAGE in function task_nfc_reader to modify the text recording.   Then we download the program again. We will see the original text ‘VER=03’ and the text has been modified. Then we read the tag again. We will see the new text.   If we want to send the larger text, what should we do? We need modify the macro ‘ADD’. When only 4 characters are sent, ‘ADD’ is 0. And every additional character is added, the ‘ADD’ will add. We modify the tag as ‘Ver=03’, and we have two more characters. So ‘ADD’ needs to be defined as 2   It firstly shows the text ‘Test’. Then it will show the new text ‘Ver=03’. Other tags’ reading and writing operation can be enabled by defining some macro.      
View full article
[Summary]        This article demonstrates two ways to compile the driver for x86 linux kernel: Compile the driver for 4.19.35 kernel. Compile the current kernel of the driver for ubuntu 16.04.        If setting CROSS_COMPILE and ARCH, the driver can be generated with make command, but the bin_sd8978 subdirectory will not be generated. The utility needs to be compiled separately. Only for x86 arch, when compiling the driver using make build, the bin_sd8978 directory will be generated. Users need to pay attention to this.     3. For USB drivers of IW416, The usb.h in the original ubuntu 16.04 kernel has no update, struct usb_interface structure, lack of pm_usage_cnt members, so we must update the ubuntu kernel. More detaled information, see attachment, please!
View full article
       The article describes how to integrate 88W8997 PCIE to Linux 5.4.24_2.1.0 based on i.MX8MM-EVK platform, and how to solve issues encountered during the integration. [Contents] Chapter 1 Connections & environments Connections Environments Hardware devices Software M.2 NGFF KEY E interface on i.MX8MM-EVK Chapter 2 Preparation For Software        2.1 Cross Compile Toolchain        2.2 Demo Image for iMX8MM-EVK        2.3 L5.4.21_2.1.0 kernel source code        2.4 88W8997 PCIe Driver source code        2.5 uuu manufacturing Tool Chapter 3 Steps For Integration        2.1 Cross compiling L5.4.21_2.1.0 kernel source code Copying Image to Demo Image directory On windows 2.2 Cross compiling 88W8997 PCIe driver Copying mlan.ko & pcie8xxx.ko to windows directory Copying Firmware to windows to windows directory 2.3 Burning Linux Images to iMX8MM-EVK board        2.4 Copying .ko and firmware files to iMX8MM-EVK board via MobaXterm        2.5 Loading 88W8997 driver Chapter 4 Troubleshooting        4.1 PCIe card can’t be found via lspci command        4.2 Errors on MSI interrupt when using PCIe Switch AW-CM276MA (88W8997 Inside)  
View full article
This article describes the detailed steps for integrating 88W8801 to i.MX6ULL-EVK and L5.4.70_2.3.0. If you are not proficient in compiling Linux BSP for I.MX platform, you can refer to this link: https://community.nxp.com/t5/Wireless-Connectivity-Knowledge/WiFi-BT-Integretion-Linux-BSP-compilation-for-iMX-platform/ta-p/1277199 For more detailed information, see attachment, please!  
View full article
This article describes how to compile the Linux BSP of the i.MX platform under ubuntu 18.04, 20.04 LTS and debian-10. This is a necessary step to integrate WIFI/BT to the I.MX platform. See the attachment for detailed steps.
View full article
This article describes how to use the tcpdump tool to capture wireless network data packets. The test block diagram is as follows: For more detailed information, See attachment,please!   NXP CAS-TIC Wireless MCU team Weidong Sun
View full article
This example of custom profile uses the Temperature Sensor and Temperature Collector examples as a base, so it can be easily modified. Both examples are in the SDK, so this document explains how to add the Humidity profile, and how to modify the code to get the Humidity Sensor and Collector working. Introduction Generic Attribute Profile (GATT) establishes in detail how to exchange all profile and user data over a BLE connection. GATT deals only with actual data transfer procedures and formats. All standard BLE profiles are based on GATT and must comply with it to operate correctly. This makes GATT a key section of the BLE specification, because every single item of data relevant to applications and users must be formatted, packed, and sent according to the rules. GATT defines two roles: Server and Client. The GATT server stores the data transported over the Attribute Protocol (ATT) and accepts Attribute Protocol requests, commands and confirmations from the GATT client. The GATT client accesses data on the remote GATT server via read, write, notify, or indicate operations. Notify and indicate operations are enabled by the client but initiated by the server, providing a way to push data to the client. Notifications are unacknowledged, while indications are acknowledged. Notifications are therefore faster, but less reliable.   GATT Database establishes a hierarchy to organize attributes. These are the Profile, Service, Characteristic and Descriptor. Profiles are high level definitions that define how services can be used to enable an application and Services are collections of characteristics. Descriptors defined attributes that describe a characteristic value.     To define a GATT Database several macros are provided by the GATT_DB API in the Freescale BLE Stack, which is part KW38 SDK. Server (Sensor)  First, we need to use the Temperature Sensor project as a base, to create our Humidity Custom Profile Server (Sensor). BLE SIG profiles To know if the Profile or service is already defined in the specification, you have to look for in Bluetooth SIG profiles and check in the ble_sig_defines.h file (${workspace_loc:/${ProjName}/bluetooth/host/interface) if this is already declared in the code. In our case, the service is not declared, but the characteristic of the humidity is declared in the specification. Then, we need to check if the characteristic is already included in ble_sig_defines.h. Since, the characteristic is not included, we need to define it as shown next:   /*! Humidity Charactristic UUID */ #define gBleSig_Humidity_d 0x2A6F   GATT Database The Humidity Sensor is going to have the GATT Server, because is going to be the device that has all the information for the GATT Client. On the Temperature Sensor demo have the Battery Service and Device Information, so you only have to change the Temperature Service to Humidity Service     In order to create the demo we need to define or develop a service that has to be the same as in the GATT Client, this is declared in the gatt_uuid128.h .If the new service is not the same, they will never be able to communicate each other. All macros, function or structure in SDK have a common template which helps the application to act accordingly. Hence, we need to define this service in the gatt_uuid128.h as shown next:    /* Humidity */ UUID128(uuid_service_humidity, 0xfe ,0x34 ,0x9b ,0x5f ,0x80 ,0x00 ,0x00 ,0x80 ,0x00 ,0x10 ,0x00 ,0x02 ,0x00 ,0xfa ,0x10 ,0x10)   All the Service and Characteristics is declared in gattdb.h. Descriptors are declared after the Characteristic Value declaration but before the next Characteristic declaration. In this case the permission is the CharPresFormatDescriptor that have specific description by the standard. The Units of the Humidity Characteristic is on Percentage that is 0x27AD. Client Characteristic Configuration Descriptor (CCCD) is a descriptor where clients write some of the bits to activate Server notifications and/or indications.   PRIMARY_SERVICE_UUID128(service_humidity, uuid_service_humidity) CHARACTERISTIC(char_humidity, gBleSig_Humidity_d, (gGattCharPropNotify_c)) VALUE(value_humidity, gBleSig_Humidity_d, (gPermissionNone_c), 2, 0x00, 0x25) DESCRIPTOR(desc_humidity, gBleSig_CharPresFormatDescriptor_d, (gPermissionFlagReadable_c), 7, 0x0E, 0x00, 0xAD, 0x27, 0x00, 0x00, 0x00) CCCD(cccd_humidity)   After that, create a folder humidity in the next path ${workspace_loc:/${ProjName}/bluetooth/profiles. Found the temperature folder, copy the temperature_service.c and paste inside of the humidity folder with another name (humidity_service.c). Then go back and look for the interface folder, copy temperature_interface.h and change the name (humidity_interface.h) in the same path. You need to include the path of the created folder. Project properties>C/C+ Build>Settings>Tool Settings>MCU C Compiler>Includes: Humidity Interface The humidity_interface.h file should have the following code. The Service structure has the service handle, and the initialization value.   /*! Humidity Service - Configuration */ typedef struct humsConfig_tag { uint16_t serviceHandle; int16_t initialHumidity; } humsConfig_t; /*! Humidity Client - Configuration */ typedef struct humcConfig_tag { uint16_t hService; uint16_t hHumidity; uint16_t hHumCccd; uint16_t hHumDesc; gattDbCharPresFormat_t humFormat; } humcConfig_t;   Humidity Service At minimum on humidity_service.c file, should have the following code. The service stores the device identification for the connected client. This value is changed on subscription and non-subscription events.   /*! Humidity Service - Subscribed Client*/ static deviceId_t mHums_SubscribedClientId;   The initialization of the service is made by calling the start procedure. This function is usually called when the application is initialized. In this case is on the BleApp_Config().   bleResult_t Hums_Start(humsConfig_t *pServiceConfig) { mHums_SubscribedClientId = gInvalidDeviceId_c; /* Set the initial value of the humidity characteristic */ return Hums_RecordHumidityMeasurement(pServiceConfig->serviceHandle, pServiceConfig->initialHumidity); }   On stop function, the unsubscribe function is called.   bleResult_t Hums_Stop(humsConfig_t *pServiceConfig) { /* Stop functionality by unsubscribing */ return Hums_Unsubscribe(); } bleResult_t Hums_Unsubscribe(void) { /* Unsubscribe by invalidating the client ID */ mHums_SubscribedClientId = gInvalidDeviceId_c; return gBleSuccess_c; }   The subscribe function will be used in the main file, to subscribe the GATT client to the Humidity service.   bleResult_t Hums_Subscribe(deviceId_t clientDeviceId) { /* Subscribe by saving the client ID */ mHums_SubscribedClientId = clientDeviceId; return gBleSuccess_c; }   Depending on the complexity of the service, the API will implement additional functions. For the Humidity Sensor only have a one characteristic. The measurement will be saving on the GATT database and send the notification to the client. This function will need the service handle and the new value as input parameters.   bleResult_t Hums_RecordHumidityMeasurement(uint16_t serviceHandle, int16_t humidity) { uint16_t handle; bleResult_t result; bleUuid_t uuid = Uuid16(gBleSig_Humidity_d); /* Get handle of Humidity characteristic */ result = GattDb_FindCharValueHandleInService(serviceHandle, gBleUuidType16_c, &uuid, &handle); if (result != gBleSuccess_c) return result; /* Update characteristic value */ result = GattDb_WriteAttribute(handle, sizeof(uint16_t), (uint8_t*) &humidity); if (result != gBleSuccess_c) return result; Hts_SendHumidityMeasurementNotification(handle); return gBleSuccess_c; }   After save the measurement on the GATT database with GattDb_WriteAttribute function we send the notification. To send the notification, first have to get the CCCD and after check if the notification is active, if is active send the notification.   static void Hts_SendHumidityMeasurementNotification ( uint16_t handle ) { uint16_t hCccd; bool_t isNotificationActive; /* Get handle of CCCD */ if (GattDb_FindCccdHandleForCharValueHandle(handle, &hCccd) != gBleSuccess_c) return; if (gBleSuccess_c == Gap_CheckNotificationStatus (mHums_SubscribedClientId, hCccd, &isNotificationActive) && TRUE == isNotificationActive) { GattServer_SendNotification(mHums_SubscribedClientId, handle); } }   Humidity Sensor Main file There are some modifications that have to be done, to use the new Humidity profile in our sensor example. First, we need to declare the humidity service:   static humsConfig_t humsServiceConfig = {(uint16_t)service_humidity, 0};   Then, we need to add or modify the following functions: BleApp_Start You need to modify this line:   /* Device is connected, send humidity value */ BleApp_SendHumidity();   BleApp_Config You need to start the Humidity Service, and to modify the PrintString line:   humsServiceConfig.initialHumidity = 0; (void)Hums_Start(&humsServiceConfig);     AppPrintString("\r\nHumidity sensor -> Press switch to start advertising.\r\n");   BleApp_ConnectionCallback There are some modifications required in two Connection Events. gConnEvtConnected_c   (void)Hums_Subscribe(peerDeviceId); gConnEvtDisconnected_c   gConnEvtDisconnected_c   (void)Hums_Unsubscribe();   BleApp_GattServerCallback   /* Notify the humidity value when CCCD is written */ BleApp_SendHumidity()   BleApp_SendHumidity And, we need to add this function:   static void BleApp_SendHumidity(void) { (void)TMR_StopTimer(appTimerId); /* Update with initial humidity */ (void)Hums_RecordHumidityMeasurement((uint16_t)service_humidity, (int16_t)(BOARD_GetTemperature())); #if defined(cPWR_UsePowerDownMode) && (cPWR_UsePowerDownMode) /* Start Sleep After Data timer */ (void)TMR_StartLowPowerTimer(appTimerId, gTmrLowPowerSecondTimer_c, TmrSeconds(gGoToSleepAfterDataTime_c), DisconnectTimerCallback, NULL); #endif }   In this example, the Record Humidity uses the BOARD_GetTemperature, to use the example without any external sensor and to be able to see a change in the collector, but, in this section would be a GetHumidity function. Client (Collector)  First, we need to use the Temperature Collector project as a base, to create our Humidity Custom Profile Client (Collector). BLE SIG profiles The same applies for the Client. To know if the Profile or service is already defined in the specification, you have to look for in Bluetooth SIG profiles and check in the ble_sig_defines.h file (${workspace_loc:/${ProjName}/bluetooth/host/interface) if this is already declared in the code. In our case, the service is not declared, but the characteristic of the humidity is declared in the specification. Then, we need to check if the characteristic is already included in ble_sig_defines.h. Since, the characteristic is not included, we need to define it as shown next:   /*! Humidity Charactristic UUID */ #define gBleSig_Humidity_d 0x2A6F   GATT Database The Humidity Collector is going to have the GATT client; this is the device that will receive all information from  the GATT server. Demo provided in this post works like the Temperature Collector. When the Collector enables the notifications from the sensor, received notifications will be printed in the serial terminal. In order to create the demo we need to define or develop a service that has to be the same as in the GATT Server, this is declared in the gatt_uuid128.h.If the new service is not the same, they will never be able to communicate each other. All macros, function or structure in SDK have a common template which helps the application to act accordingly. Hence, we need to define this service in the gatt_uuid128.h as shown next:   /* Humidity */ UUID128(uuid_service_humidity, 0xfe ,0x34 ,0x9b ,0x5f ,0x80 ,0x00 ,0x00 ,0x80 ,0x00 ,0x10 ,0x00 ,0x02 ,0x00 ,0xfa ,0x10 ,0x10)   After that, copy the humidity profile folder from the Sensor project, to the Collector project ${workspace_loc:/${ProjName}/bluetooth/profiles. And also for this project, include the path of the new folder. Project properties>C/C+ Build>Settings>Tool Settings>MCU C Compiler>Includes: Humidity Collector Main file In the Collector source file, we need to do also some modifications, to use the Humidity Profile. First, we need to modify the Custom Information of the Peer device:   humcConfig_t humsClientConfig;   BleApp_StoreServiceHandles   static void BleApp_StoreServiceHandles ( gattService_t *pService ) { uint8_t i,j; if ((pService->uuidType == gBleUuidType128_c) && FLib_MemCmp(pService->uuid.uuid128, uuid_service_humidity, 16)) { /* Found Humidity Service */ mPeerInformation.customInfo.humsClientConfig.hService = pService->startHandle; for (i = 0; i < pService->cNumCharacteristics; i++) { if ((pService->aCharacteristics[i].value.uuidType == gBleUuidType16_c) && (pService->aCharacteristics[i].value.uuid.uuid16 == gBleSig_Humidity_d)) { /* Found Humudity Char */ mPeerInformation.customInfo.humsClientConfig.hHumidity = pService->aCharacteristics[i].value.handle; for (j = 0; j < pService->aCharacteristics[i].cNumDescriptors; j++) { if (pService->aCharacteristics[i].aDescriptors[j].uuidType == gBleUuidType16_c) { switch (pService->aCharacteristics[i].aDescriptors[j].uuid.uuid16) { /* Found Humidity Char Presentation Format Descriptor */ case gBleSig_CharPresFormatDescriptor_d: { mPeerInformation.customInfo.humsClientConfig.hHumDesc = pService->aCharacteristics[i].aDescriptors[j].handle; break; } /* Found Humidity Char CCCD */ case gBleSig_CCCD_d: { mPeerInformation.customInfo.humsClientConfig.hHumCccd = pService->aCharacteristics[i].aDescriptors[j].handle; break; } default: ; /* No action required */ break; } } } } } } }   BleApp_StoreDescValues   if (pDesc->handle == mPeerInformation.customInfo.humsClientConfig.hHumDesc) { /* Store Humidity format*/ FLib_MemCpy(&mPeerInformation.customInfo.humsClientConfig.humFormat, pDesc->paValue, pDesc->valueLength); }   BleApp_PrintHumidity   /*www.bluetooth.com/specifications/assigned-numbers/units */ if (mPeerInformation.customInfo.humsClientConfig.humFormat.unitUuid16 == 0x27ADU) { AppPrintString(" %\r\n"); } else { AppPrintString("\r\n"); }   BleApp_GattNotificationCallback   if (characteristicValueHandle == mPeerInformation.customInfo.humsClientConfig.hHumidity) { BleApp_PrintHumidity(Utils_ExtractTwoByteValue(aValue)); }    CheckScanEvent   foundMatch = MatchDataInAdvElementList(&adElement, &uuid_service_humidity, 16);   BleApp_StateMachineHandler mAppIdle_c   if (mPeerInformation.customInfo.humsClientConfig.hHumidity != gGattDbInvalidHandle_d)   mAppServiceDisc_c   if (mPeerInformation.customInfo.humsClientConfig.hHumDesc != 0U) mpCharProcBuffer->handle = mPeerInformation.customInfo.humsClientConfig.hHumDesc;   mAppReadDescriptor_c   if (mPeerInformation.customInfo.humsClientConfig.hHumCccd != 0U)   BleApp_ConfigureNotifications   mpCharProcBuffer->handle = mPeerInformation.customInfo.humsClientConfig.hHumCccd;   Demonstration Now, after connection, every time that you press the SW3 on KW38 Humidity Sensor is going to send the value to KW38 Humidity Collector.  
View full article
       The article will describe how to configure A2DP audio application Based On NXP platform and WIFI/BT chipset step by step. Users can easily make her A2DP audio based on NXP WIFI module work normally by following steps in the article. Environment for the validation Hardware Platform        i.MX8MN-EVK Software Kernel version: L5.4.70_2.3.0 rootfs : imx-image-multimedia WiFi module        AW-CM358SM: NXP 88W8987 chipset   For more detailed information, see attachment, please!   NXP CAS-TIC wireless MCU team Weidong Sun    
View full article
1 Introduction Two development boards transmit control information through ble. One development board connects to paj7620 and provides gesture information through IIC bus. The other development board uses ble and USB HID. Ble is used to receive data, and USB HID is used to simulate keyboard input and control ppt                  Figure  1 2 Preparation We need two development boards qn908x and gesture control device paj7620. We use IAR as development enviroment.The example we use is temperature_sensor, and temperature_ colloctor. The SDK version is 2.2.3   3 Code 3.1  temperature_sensor code We want to implement IIC to read gesture information from paj7620 and send data. The pins used by IIC are PA6 and PA7 Simply encapsulate the IIC reading and writing code in the code to create i2c_ operation.c and i2c_ operation.h. Realize IIC initialization and reading / writing register function in it                        Figure  2                        Figure  3   3.1.1 After having these functions, we begin to write gesture recognition code. First, we add two blank files paj7620.c and paj7620.h into our project.   Select bank register area                               Figure 4   Wake up paj7620 to read device state                    Figure 5   Initialize device                    Figure 6   Gesture test function                                   Figure 7   3.1.2 When you are ready to read the device information, You should initialize IIC and paj7620 in BleApp_Init function                                Figure 8 In principle, we need to create a custom service for the PAJ device, but we replace the temperature data as our gesture control data. If you want to create a custom service, refer to this link custom profile   3.1.3 Create a timer that sends gesture data regularly. In file temerature_sensor.c Define a timer , static tmrTimerID_t dataTimerId; Allocate a timer, dataTimerId = TMR_AllocateTimer(); Define the callback function of this timer                                           Figure 9 Start timer                                    Figure 10 Close the low power mode. #define cPWR_UsePowerDownMode 0 3.2 temperature_collector code The most important thing here is to port USB HID into our project. The USB  example we use is the USB keyboard and mouse. 3.2.1 Add the OSA and USB folder under the example to the project directory, and copy the file to the corresponding folder according to the file structure of the original example.                      Figure 11 3.2.2 Add header file directory after completion                                           Figure 12 At the same time, in this tab, add two macro definitions USB_STACK_FREERTOS_HEAP_SIZE=16384 USB_STACK_FREERTOS   3.2.3 Next, we need to modify the main function in usb example . Open composite.c file.                      Figure 13 It calls the APP_task. So this function also need to be modified.                                   Figure 14 3.2.4 Find hid_mouse.c , Comment function USB_DeviceHidMouseAction Find hid_keyboard.h. Define the gesture information.                                   Figure 15 Find hid_keyboard.c. We need to modify the function USB_DeviceHidKeyboardAction as following figure.                                                  Figure 16   Among them, we also need to implement the following function. When the up hand gesture is detected, the previous ppt will be played. The down hand gesture will be the next PPT, the left hand gesture will exit PPT, and the forward hand gesture will play ppt                                                  Figure 17 It also refers to an external variable gesture_from_server. The variable definition is in file temperature_ collocation.c,.     3.2.5 After that, let's go to BleApp_Statemachinehandler function in temperature_colloctor.c. In case mApppRunning_c, we will call usb_main to initialize USB HID                                                  Figure 18 3.2.6 In BleApp_PrintTemperature, we will save the gesture data to gesture_from_server                                                         Figure 19 We finished the all steps.        
View full article
      The article will describe how to configure Access Point Based On NXP platform and WIFI chipset step by step. Users can easily make her AP based on NXP WIFI module work normally by following steps in the article. 1. Environment for the validation - Hardware Platform     i.MX8MN-EVK - Software    Kernel version: L5.4.70_2.3.0    rootfs : imx-image-multimedia -WiFi module   AW-CM358SM: NXP 88W8987 chipset 2. Diagram for Connections   For More detailed information, See attached document, please!   NXP CAS-TIC Wireless MCU team Weidong sun 04-16-2021  
View full article
Where can I find the KW20-30-40 radio certification documents?     FRDM-KW40 platforms have passed the CE RED & FCC radio certification (BLE & 15.4).  Find below for information the certification documents and test reports.  For further information on the FRDM board and the product please refer to the corresponding KW40 Product Summary page and   FRDM-KW40.
View full article
KW39_38_37 radio certification information 
View full article
This guide describes the hardware for the KW38 minimum BoM development board . The KW38 Minimum BoM development board is configurable, low-power, and cost-effective evaluation and development board for application prototyping and demonstration of the KW39A/38A/37A/39Z/38Z family of devices. The KW38 is an ultra-low-power, highly integrated single-chip device that enables Bluetooth Low Energy (Bluetooth LE) or Generic FSK (at 250, 500 and 1000 kbps) for portable, extremely low-power embedded systems. The KW38 integrates a radio transceiver operating in the 2.36 GHz to 2.48 GHz range supporting a range of GFSK, an ARM Cortex-M0+ CPU, up to 512 KB Flash and up to 64 KB SRAM, Bluetooth LE Link Layer hardware and peripherals optimized to meet the requirements of the target applications . MKW38 device is also available on the FRDM-KW38 Freedom Development Board. For more information about the FRDM-KW38 Freedom Development Board, see the FRDM-KW38 Freedom Development Board User's Guide (document FRDMKW38ZUG available in the NXP Connectivity website also).
View full article
This guide will show a way to set up and enable an I2C Serial Interface to send a string of data instances using one of the Wireless Bluetooth SDK examples and the Serial Manager API.
View full article