i.MX Processors Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

i.MX Processors Knowledge Base

Discussions

Sort by:
Hello, here Jorge. On this post I will explain how to enable MQS1 on i.MX8ULP. As background about how to setup the environment to build the image using Yocto, please take a look on our i.MX Yocto Project User's Guide: Requirements: i.MX 8ULP EVK. Serial console emulator (Tera Term, Putty, etc.). USB Type-C cable. Micro USB cable. Headphones/speakers. Linux PC. Build done in Linux 6.6.23_2.0.0. i.MX8ULP audio subsystem. i.MX 8ULP extends audio capabilities on i.MX 7ULP by adding dedicated DSP cores for voice trigger and audio processing, enabling lower latency and power efficiency to support variety of audio applications. Some of hardware blocks implemented on 8ULP to support audio use cases are the next: Cadence Fusion F1 DSP processor. Cadence HiFi4 DSP processor. PowerQuad hardware accelerator with fixed and floating + FFT. Digital Microphone interface with support of up-to 8 PDM channels. Up-to 8 independent SAI instances. Up-to 2 Medium Quality Sound (MQS). Sony/Philips Digital interface (SPDIF). As is described before, MQS0 and MQS1 are part of real time domain and application domain respectively. I’m going to focus this post on how to enable MQS1 on application domain. Medium Quality Sound (MQS)  This module is basically generates a PWM from PCM audio data. For the major part of typical audio applications will require an external CODEC to deliver the audio quality but, sometimes where the application does not demand this quality, MQS can provide a medium quality audio via GPIO pin that can directly drive the audio output to a speaker or headphone via inexpensive external amplifier/buffer instead of CODEC. The design of the MQS can be described as follows: Input the PCM audio data (from SAI) into a 16-bit register. Up-sample data to match PWM switching frequency. Perform a simple 2nd order Sigma-Delta smooth on the current data versus previous data. Convert the PCM register into a 6-bit PWM width register and output through a GPIO pin.   How to enable it? By default, our BSP does not enable clock for MQS1. This clock is controlled on CGC1 (AD), specifically on MQS1CLK (Multiplexer to select the audio clock connected to the MQS clock input). So, it is needed to modify imx8ulp-clock.h and clk-imx8ulp.c. Please take a look on patch attached at the end of this post to see the modification in drivers easily. These drivers have the definition/configuration for MQS1_SEL in CGC1 and needs to be added as follows: MQS1_SEL definition needs to be added in imx8ulp-clock.h: #define IMX8ULP_CLK_MQS1_SEL 56 #define IMX8ULP_CLK_CGC1_END 57 MQS1_SEL configuration needs to be added in imx8ulp_clk_cgc1_init of clk-imx8ulp.c: clks[IMX8ULP_CLK_MQS1_SEL] = imx_clk_hw_mux2("mqs1_sel", base + 0x90c, 0, 2, sai45_sels, ARRAY_SIZE(sai45_sels)); Also, it is necessary to configure MQS1 on device tree of i.MX8ULP. Add this in soc: soc@0 of imx8ulp.dtsi: mqs1: mqs@0x29290064 { reg = <0x29290064 0x4>; compatible = "fsl,imx8qm-mqs"; assigned-clocks = <&cgc1 IMX8ULP_CLK_MQS1_SEL>; assigned-clock-parents = <&cgc1 IMX8ULP_CLK_SPLL3_PFD1_DIV1>; clocks = <&cgc1 IMX8ULP_CLK_MQS1_SEL>, <&cgc1 IMX8ULP_CLK_MQS1_SEL>; clock-names = "core", "mclk"; status = "disabled"; }; And create a new device tree, in this case is going to be named imx8ulp-evk-mqs.dts and is as follows: #include "imx8ulp-evk.dts" / { sound-simple-mqs { compatible = "simple-audio-card"; simple-audio-card,name = "imx-simple-mqs"; simple-audio-card,frame-master = <&sndcpu>; simple-audio-card,bitclock-master = <&sndcpu>; simple-audio-card,dai-link@0 { format = "left_j"; sndcpu: cpu { sound-dai = <&sai4>; }; codec { sound-dai = <&mqs1>; }; }; }; }; &cgc1 { assigned-clock-rates = <24576000>; }; &iomuxc1 { pinctrl_mqs1: mqs1grp { fsl,pins = < MX8ULP_PAD_PTF7__MQS1_LEFT 0x43 >; }; }; &mqs1 { #sound-dai-cells = <0>; pinctrl-names = "default"; pinctrl-0 = <&pinctrl_mqs1>; status = "okay"; }; &sai4 { #sound-dai-cells = <0>; assigned-clocks = <&cgc1 IMX8ULP_CLK_SAI4_SEL>; assigned-clock-parents = <&cgc1 IMX8ULP_CLK_SPLL3_PFD1_DIV1>; status = "okay"; }; Let’s apply these changes on our BSP, in my case I’m going to create a new layer in Yocto to add these modifications with a patch that can be found at the end on this post, here the steps: Install essential Yocto Project host packages: $ sudo apt install gawk wget git diffstat unzip texinfo gcc build-essential chrpath socat cpio python3 python3-pip python3-pexpect xz-utils debianutils iputils-ping python3-git python3-jinja2 python3-subunit zstd liblz4-tool file locales libacl1 Install the “repo” utility: $ mkdir ~/bin $ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo $ chmod a+x ~/bin/repo $ export PATH=~/bin:$PATH Set up Git: $ git config --global user.name "Your Name" $ git config --global user.email "Your Email" $ git config –list Download the i.MX Yocto Project Community BSP recipe layers and create build folder: $ mkdir imx-yocto-bsp $ cd imx-yocto-bsp $ repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-scarthgap -m imx-6.6.23-2.0.0.xml $ repo sync $ DISTRO=fsl-imx-wayland MACHINE=imx8ulp-lpddr4-evk source imx-setup-release.sh -b 8ulp_build Create the new layer: $ cd ~/imx-yocto-bsp/sources $ bibake-layers create-layer meta-mqs $ cd meta-mqs conf/layer.conf should be as follows: BBPATH .= ":${LAYERDIR}" BBFILES += "${LAYERDIR}/recipes-*/*/*.bb \ ${LAYERDIR}/recipes-*/*/*.bbappend" BBFILE_COLLECTIONS += "meta-mqs" BBFILE_PATTERN_meta-mqs = "^${LAYERDIR}/" BBFILE_PRIORITY_meta-mqs = "6" LAYERSERIES_COMPAT_meta-mqs = "nanbield" Let’s change the recipe: $ sudo rm -r recipes-example $ mkdir -p recipes-kernel/linux/files 0001-8ULP-MQS-Enable.patch should be copied to ~/imx-yocto-bsp/sources/meta-mqs/recipes-kernel/linux/files Add an append (on this case is called “linux-imx_%.bbappend”)to change the recipe with next content: FILESEXTRAPATHS:prepend := "${THISDIR}/files:" SRC_URI += "file:// 0001-8ULP-MQS-Enable.patch " addtask copy_dts after do_unpack before do_prepare_recipe_sysroot do_copy_dts () { if [ -n "${DTS_FILE}" ]; then if [ -f ${DTS_FILE} ]; then echo "do_copy_dts: copying ${DTS_FILE} in ${S}/arch/arm64/boot/dts/freescale" cp ${DTS_FILE} ${S}/arch/arm64/boot/dts/freescale/ fi fi } The next step is add the layer and build the image: $ cd ~/imx-yocto-bsp/8ulp_build $ bitbake-layers add-layer ~/imx-yocto-bsp/sources/meta-mqs Confirm that the layer has been added: $ bitbake-layers show-layers Build the image: $ bitbake imx-image-multimedia i.MX8ULP EVK limitations The i.MX8ULP has the next MQS1 pins available: But, in the EVK board, the mayor part of these pins are used for other functions such as: - Push button: - MIPI DSI:  - Etc… So, take the output signal of MQS1 pins of EVK board is difficult, in this article, I’m going to configure PTF7 only (MQS1_left) for practicality. If you are working with this board and you need to use these pins for MQS function you will need to manipulate the traces and take the required signals. If you are designing a custom board, planning is essential to avoid this issue. Flash the board. One the build has been finished, we will have the necessary files to flash the board and test it. If you are not too familiarized with this process I suggest you take a look on this post. First, put the board in serial download mode changing the boot configuration switches on the board:   The next step is connecting the power cable, micro-USB cable on the debug port and USB-C type cable to USB0 connector on the board. Then, turn-on the board and run the next command in terminal of build directory: uuu -b emmc_all imx-boot-imx8ulpevk-sd.bin-flash_singleboot_m33 imx-image-multimedia-imx8ulpevk.wic Now, power-off the board, change the boot mode to single boot-eMMC and power it on to test it. Test MQS1 in i.MX8ULP. To test MQS1 it is needed to change the device tree we created, we can do it with the next commands in U-boot: u-boot=> setenv fdtfile imx8ulp-evk-mqs.dtb u-boot=> saveenv u-boot=> boot Now we can test MQS1 on i.MX8ULP EVK, let's confirm that the clock is active in MQS module with the next command: $ cat /sys/kernel/debug/clk/clk_summary -n As you can see mqs1_sel is active and running at 24576000 Hz: And the card appears if we run the next command: $ aplay -l To play audio through MQS we can do it as any sound card: $ speaker-test -D sysdefault:CARD=imxsimplemqs -c 2 -f 48000 -F S16_LE -t pink -P 3 The signal should look like this in the pin output: And like this after a filter, for example the filter used in i.MX93 EVK.   With this post we have been able check the general operation of MQS, configure and compile the image with the required changes to enable MQS1 on EVK board and measure the output on the board. There is a considerable limitation on EVK board since we cannot test left and right outputs without intervene the base board, but this can be helpful as a reference to who would like to use this audio output on i.MX8ULP processor. Best regards. References. Yocto Project customization guide - NXP Community How to add a new layer and a new recipe in Yocto - NXP Community Flashing Linux BSP using UUU - NXP.  i.MX8ULP reference manual. Embedded Linux Projects Using Yocto Project Cookbook.
View full article
In the IMX8MM SDK unfortunately we cannot find any example about of use a GPIO as an input with interrupt.  To use a GPIO as input with interrupt we need to keep in mind how the GPIO IRQs works in the ARM Cortex M4.   We can find in Table 7-2 (CM4 Interrupt Summary) of IMX8MMRM (IMX8MM Reference Manual) the GPIOs IRQs are divided by two parts:     Combined interrupt indication for GPIOn signal 0 throughout 15  Combined interrupt indication for GPIOn signal 16 throughout 31    This basically means, the pines of GPIOn from 0 to 15 are handled by Combined interrupt indication for GPIOn signal 0 throughout 15 and the pines from 16 to 31 are handled by Combined interrupt indication for GPIOn signal 16 throughout 31.    In SDK we can find these definitions in:  <SDK root>/devices/MIMX8MM6/MIMX8MM6_cm4.h (Remember this is for IM8MM SDK)    In this example I will use GPIO5_IO12 (ECSPI2_MISO) as Input with IRQ and GPIO5_IO11 (ECSPI_MOSI) as Output of IMX8MM-EVK. I will connect the Output to the Input and will see the behavior of the IRQ in Rising and Falling edge.    For this example I will connect ECSPI2_MOSI (GPIO5_IO11) to ECSPI_MISO (GPIO5_IO12):   See the below definitions:   #define IN_GPIO   GPIO5  This define the GPIO base of the IN pin  #define IN_GPIO_PIN  12u  This define the pin number (for in)  #define IN_IRQ  GPIO5_Combined_0_15_IRQn  This define the IRQ number (72 in this case)  #define GPIO_IRQ_HANDLER  GPIO5_Combined_0_15_IRQHandler  This is a "pointer" to function that will handle the interrupt  #define IN_NAME  "IN GPIO5_IO12"  This is only a name or description for the pin    See below definitions:    #define OUT_GPIO  GPIO5  This is the GPIO base of OUT pin  #define OUT_GPIO_PIN  11u  This define the pin number (for out)  #define OUT_NAME  "OUT GPIO5_IO11"  This is only a name or description for the pin      Now the below section is the IRQ handler (which was defined before)😞   The GPIO_ClearPinsInterruptFlags(IN_GPIO, 1u << IN_GPIO_PIN); refers to GPIOx_ISR register:      For this example, the IRQ Handler will print "IRQ detected ............" in each interrupt.    We will create two different GPIOs config, one for Output and other one for Input with IRQ Falling edge:    Then configure the GPIOs and IRQ:     EnableIRQ refers to enable the 72 IRQ.   GPIO_PortEnableInterrupts refers to GPIOx_IMR: Finally, the example put the out GPIO5_IO11 in High state and then in low state many. First the IRQ is configured as Falling edge, then as Rising edge.     I will attach the complete source file.    To compile it you can use ARMGCC toolchain directly, but I like to use VSCode with MCUXpresso integration.  Once, when you have your .bin file (in my case igpio_led_output.bin) you can load to board with UUU tool: In your Linux machine: sudo uuu -b fat_write igpio_led_output.bin mmc 2:1 gpio.bin In U-boot board: u-boot=> fastboot 0   Then, when the .bin file was loaded, you can load to the CORTEX M4 in U-boot with: u-boot=> fatload mmc 2:1 ${loadaddr} gpio.bin 7076 bytes read in 14 ms (493.2 KiB/s) u-boot=> cp.b 0x80000000 0x7e0000 0x10000 u-boot=> bootaux 0x7e0000 ## No elf image ar address 0x007e0000 ## Starting auxiliary core stack = 0x20020000, pc = 0x1FFE02CD... u-boot=>   NOTE: You can load the binary to cortex m4 with Custom bootscripts for practicity.   Once the binary loaded in M4 core you should see in seria terminal this logs (Remember GPIO5_IO11 and GPIO5_IO12 must be connected to get the same logs):    And the logs when you disconnect the GPIO5_IO11 and GPIO5_IO12 in execution time:  🔴Disconnection (Red color) 🔵Reconnection (Blue color)   I hope this can helps.     Best regards!    Salas. 
View full article
Traditional non-matter devices cannot directly join the matter network. But Matter Bridge solves the problem. Matter bridge can join a Matter network as a Matter device and nonmatter devices need to be mapped to Matter network as a dynamic endpoint. In this way, other Matter devices can communicate with non-matter devices through dynamic endpoints. The Guide is a Matter Zigbee Bridge implement based on i.MX93 + K32W0.     Feature List • Matter over Ethernet • Matter over Wi-Fi • Register and Remove Zigbee Deivces • Connect Zigbee devices into Matter ecosystem seamlessly • Zigbee Devices • On/Off cluster • Temperature Sensor Cluster • Matter Actions • Start Zigbee Network • Zigbee Network Permit Join • Factory Reset • No limitation if migrating to other i.MX MPU like i.MX6ULL, i.MX8MP • OTBR and Zigbee bridge can be integrated into one single device
View full article
current bsp fixed the lvds pixel clock up to 74.25Mhz for single channel and 148.5Mhz for dual channel, if customer wants to know why and how to change it, maybe can refer to the enclosed file, hope helpful for you
View full article
  Platform & BSP : i.MX8MPlus EVK , L6.12.3, uboot lf_v2024.04   The attachments enable the i.MX8MPlus pci function in uboot. lspci in Linux root@imx8mpevk:~# lspci -nn 00:00.0 PCI bridge [0604]: Synopsys, Inc. DWC_usb3 / PCIe bridge [16c3:abcd] (rev 01) 01:00.0 Ethernet controller [0200]: Marvell Technology Group Ltd. Device [1b4b:2b42] (rev 11) pci test results in uboot:  u-boot=> pci BusDevFun VendorId DeviceId Device Class Sub-Class _____________________________________________________________ 00.00.00 0x16c3 0xabcd Bridge device 0x04 01.00.00 0x1b4b 0x2b42 Network controller 0x00 u-boot=> pci bar 00.00.00 ID Base Size Width Type ---------------------------------------------------------- 0 0x0000000018000000 0x0000000000100000 32 MEM u-boot=> pci regions 00 Buses 00-01 # Bus start Phys start Size Flags 0 0x0000000000000000 0x000000001ff80000 0x0000000000010000 io 1 0x0000000018000000 0x0000000018000000 0x0000000007f00000 mem 2 0x0000000040000000 0x0000000040000000 0x0000000016000000 mem sysmem 3 0x0000000058000000 0x0000000058000000 0x00000000a8000000 mem sysmem 4 0x0000000100000000 0x0000000100000000 0x00000000c0000000 mem sysmem u-boot=> pci header 00.00.00 vendor ID = 0x16c3 device ID = 0xabcd command register ID = 0x0007 status register = 0x0010 revision ID = 0x01 class code = 0x06 (Bridge device) sub class code = 0x04 programming interface = 0x00 cache line = 0x08 latency time = 0x00 header type = 0x01 BIST = 0x00 base address 0 = 0x18000000 base address 1 = 0x00000000 primary bus number = 0x00 secondary bus number = 0x01 subordinate bus number = 0x01 secondary latency timer = 0x00 IO base = 0x10 IO limit = 0x00 secondary status = 0x0000 memory base = 0x1820 memory limit = 0x1810 prefetch memory base = 0xfff0 prefetch memory limit = 0x0000 prefetch memory base upper = 0x00000000 prefetch memory limit upper = 0x00000000 IO base upper 16 bits = 0x0000 IO limit upper 16 bits = 0x0000 expansion ROM base address = 0x18100000 interrupt line = 0xff interrupt pin = 0x01 bridge control = 0x0000 u-boot=> pci header 01.00.00 vendor ID = 0x1b4b device ID = 0x2b42 command register ID = 0x0006 status register = 0x0010 revision ID = 0x11 class code = 0x02 (Network controller) sub class code = 0x00 programming interface = 0x00 cache line = 0x08 latency time = 0x00 header type = 0x00 BIST = 0x00 base address 0 = 0x1810000c base address 1 = 0x00000000 base address 2 = 0x1820000c base address 3 = 0x00000000 base address 4 = 0x00000000 base address 5 = 0x00000000 cardBus CIS pointer = 0x00000000 sub system vendor ID = 0x0000 sub system ID = 0x0000 expansion ROM base address = 0x00000000 interrupt line = 0xff interrupt pin = 0x01 min Grant = 0x00 max Latency = 0x00
View full article
GUI Guider version: 1.6.x, 1.7.x, 1.8x LVGL version: v8.x.x Host software requirements: Ubuntu 20.04, Ubuntu 22.04 or Debian 12 Hardware requirements: Evaluation Kit for the i.MX 93 Applications Processor. (i.MX 93 Evaluation Kit | NXP Semiconductors) On this guide we will use the IMX-MIPI-HDMI accessory board to connect the iMX93 with a HDMI Monitor. (IMX-MIPI-HDMI Product Information|NXP) This board is usually provided with the iMX8M Mini and the iMX8M Nano.  Steps: 1. Copy your project from the folder GUI-Guider-Projects to your Linux PC.  2. Build an image for iMX93 using The Yocto Project.    a. Based on iMX Yocto Porject Users Guide set directories and download the repo $ mkdir imx-bsp-6.1.1-1.0.0 $ cd imx-bsp-6.1.1-1.0.0 $ repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-langdale -m imx-6.1.1-1.0.0.xml $ repo sync Use distro fsl-imx-xwayland and select machine imx93evk and use this commnad with a build folder name: $ MACHINE=imx93evk DISTRO=fsl-imx-xwayland source ./imx-setup-release.sh - b bld-imx93evk b. Use bitbake command to start the build process. Also, add the -c populate_sdk to get the toolchain. $ bitbake imx-image-multimedia -c populate_sdk  c. Install the Yocto toolchain located on <build-folder>/tmp/deploy/sdk/.  $ sudo sh ./fsl-imx-xwayland-glibc-x86_64-imx-image-multimedia-armv8a-imx93evk-toolchain-6.1-langdale.sh d. Install ninja utility on the build host $ sudo apt install ninja-build e. For Ubuntu 20.04 and Ubuntu 22.04, copy the lv_conf.h file from lvgl-simulator to lvgl $ cp lvgl-simulator/lv_conf.h lvgl/ f. Change the interpreter on build.sh from #!/bin/sh to #!/bin/bash. This is an important step! g. Then, enter to linux folder and use the following commands to make build.sh executable $ dos2unix build.sh $ chmod +x build.sh h. Execute the build.sh $ ./build.sh i. Copy the binary to the iMX93 using a USB or SCP.  2. On the target iMX93 follow these steps. a. On Uboot, use fatls interface device:partition fatls mmc 0:1 (Device 0 : Partition 1) With this command, we will be able to list device tree files. => fatls mmc 0:1 b. Select imx93-11x11-evk-rm67199.dtb and use the command editenv fdtfile  => editenv fdtfile Output example edit: imx93-11x11-evk-rm67199.dtb c. In edit command line put the selected device tree .dtb d. Use saveenv command to save environment and continue with the boot process. e. Finally, run the GUI Application $ ./gui_guider&   I hope this article will be helpful. Best regards, Brian.
View full article
  Just sharing some experiences during the development and studying.   Although, it appears some hardwares, it focuses on software to speed up your developing on your  hardware.     杂记共享一下在开发和学习过程中的经验。    虽然涉及一些硬件,但其本身关注软件,希望这些能加速您在自己硬件上的开发。 3/4/2025 GPIO USB ID GPIO USB ID - NXP Community   1/20/2025 MDIO on GPIOs MDIO on GPIOs - NXP Community   12/09/2024 GPIO LEDs https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/GPIO-LEDs/ta-p/2009743     10/22/2024 iMX93-EVK PWM LED https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/iMX93-EVK-PWM-LED/ta-p/1978047   07/25/2024 iMX secondary boot collection https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/iMX-secondary-boot-collection/ta-p/1916915   07/25/2024 HSM Code-Signing Journey https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/HSM-Code-Signing-Journey/ta-p/1882244 25JUL2024 - add pkcs11 proxy                         HSM Code-Signing Journey_25JUL2024.pdf                          HSM Code-Signing Journey_25JUL2024.txt   06/06/2024 HSM Code-Signing Journey https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/HSM-Code-Signing-Journey/ta-p/1882244     02/07/2024 Device Tree Standalone Compile under Windows https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/Device-Tree-Standalone-Compile-under-Windows/ta-p/1855271   02/07/2024 i.MX8X security overview and AHAB deep dive i.MX8X security overview and AHAB deep dive - NXP Community   11/23/2023 “Standalone” Compile Device Tree https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/Standalone-Compile-Device-Tree/ta-p/1762373     10/26/2023 Linux Dynamic Debug https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/Linux-Dynamic-Debug/ta-p/1746611   08/10/2023 u-boot environment preset for sdcard mirror u-boot environment preset for sdcard mirror - NXP Community   06/06/2023 all(bootloader, device tree, Linux kernel, rootfs) in spi nor demo imx8qxpc0 mek all(bootloader, device tree, Linux kernel, rootfs)... - NXP Community     09/26/2022 parseIVT - a script to help i.MX6 Code Signing parseIVT - a script to help i.MX6 Code Signing - NXP Community   Provide  run under windows   09/16/2022   create sdcard mirror under windows create sdcard mirror under windows - NXP Community     08/03/2022   i.MX8MM SDCARD Secondary Boot Demo https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX8MM-SDCARD-Secondary-Boot-Demo/ta-p/1500011     02/16/2022 mx8_ddr_stress_test without UI   https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/mx8-ddr-stress-test-without-UI/ta-p/1414090   12/23/2021 i.MX8 i.MX8X Board Reset https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX8-i-MX8X-Board-Reset/ta-p/1391130       12/21/2021 regulator userspace-consumer https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/regulator-userspace-consumer/ta-p/1389948     11/24/2021 crypto af_alg blackkey demo crypto af_alg blackkey demo - NXP Community   09/28/2021 u-boot runtime modify Linux device tree(dtb) u-boot runtime modify Linux device tree(dtb) - NXP Community     08/17/2021 gpio-poweroff demo https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/gpio-poweroff-demo/ta-p/1324306         08/04/2021 How to use gpio-hog demo https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/How-to-use-gpio-hog-demo/ta-p/1317709       07/14/2021 SWUpdate OTA i.MX8MM EVK / i.MX8QXP MEK https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/SWUpdate-OTA-i-MX8MM-EVK-i-MX8QXP-MEK/ta-p/1307416     04/07/2021 i.MX8QXP eMMC Secondary Boot https://community.nxp.com/t5/i-MX-Community-Articles/i-MX8QXP-eMMC-Secondary-Boot/ba-p/1257704#M45       03/25/2021 sc_misc_board_ioctl to access the M4 partition from A core side sc_misc_board_ioctl to access the M4 partition fr... - NXP Community     03/17/2021 How to Changei.MX8X MEK+Base Board  Linux Debug UART https://community.nxp.com/t5/i-MX-Community-Articles/How-to-Change-i-MX8X-MEK-Base-Board-Linux-Debug-UART/ba-p/1246779#M43     03/16/2021 How to Change i.MX8MM evk Linux Debug UART https://community.nxp.com/t5/i-MX-Community-Articles/How-to-Change-i-MX8MM-evk-Linux-Debug-UART/ba-p/1243938#M40       05/06/2020 Linux fw_printenv fw_setenv to access U-Boot's environment variables Linux fw_printenv fw_setenv to access U-Boot's env... - NXP Community     03/30/2020 i.MX6 DDR calibration/stress for Mass Production https://community.nxp.com/docs/DOC-346065     03/25/2020 parseIVT - a script to help i.MX6 Code Signing https://community.nxp.com/docs/DOC-345998     02/17/2020 Start your machine learning journey from tensorflow playground Start your machine learning journey from tensorflow playground      01/15/2020 How to add  iMX8QXP PAD(GPIO) Wakeup How to add iMX8QXP PAD(GPIO) Wakeup    01/09/2020 Understand iMX8QX Hardware Partitioning By Making M4 Hello world Running Correctly https://community.nxp.com/docs/DOC-345359   09/29/2019 Docker On i.MX6UL With Ubuntu16.04 https://community.nxp.com/docs/DOC-344462   09/25/2019 Docker On i.MX8MM With Ubuntu https://community.nxp.com/docs/DOC-344473 Docker On i.MX8QXP With Ubuntu https://community.nxp.com/docs/DOC-344474     08/28/2019 eMMC5.0 vs eMMC5.1 https://community.nxp.com/docs/DOC-344265     05/24/2019 How to upgrade  Linux Kernel and dtb on eMMC without UUU How to upgrade Linux Kernel and dtb on eMMC without UUU     04/12/2019 eMMC RPMB Enhance and GP https://community.nxp.com/docs/DOC-343116   04/04/2019 How to Dump a GPT SDCard Mirror(Android O SDCard Mirror) https://community.nxp.com/docs/DOC-343079   04/04/2019 i.MX Create Android SDCard Mirror https://community.nxp.com/docs/DOC-343078   04/02/2019: i.MX Linux Binary_Demo Files Tips  https://community.nxp.com/docs/DOC-343075   04/02/2019:       Update Set fast boot        eMMC_RPMB_Enhance_and_GP.pdf   02/28/2019: imx_builder --- standalone build without Yocto https://community.nxp.com/docs/DOC-342702   08/10/2018: i.MX6SX M4 MPU Settings For RPMSG update    Update slide CMA Arrangement Consideration i.MX6SX_M4_MPU_Settings_For_RPMSG_08102018.pdf   07/26/2018 Understand ML With Simplest Code https://community.nxp.com/docs/DOC-341099     04/23/2018:     i.MX8M Standalone Build     i.MX8M Standalone Build.pdf     04/13/2018:      i.MX6SX M4 MPU Settings For RPMSG  update            Add slide CMA Arrangement  Consideration     i.MX6SX_M4_MPU_Settings_For_RPMSG_04132018.pdf   09/05/2017:       Update eMMC RPMB, Enhance  and GP       eMMC_RPMB_Enhance_and_GP.pdf 09/01/2017:       eMMC RPMB, Enhance  and GP       eMMC_RPMB_Enhance_and_GP.pdf 08/30/2017:     Dual LVDS for High Resolution Display(For i.MX6DQ/DLS)     Dual LVDS for High Resolution Display.pdf 08/27/2017:  L3.14.28 Ottbox Porting Notes:         L3.14.28_Ottbox_Porting_Notes-20150805-2.pdf MFGTool Uboot Share With the Normal Run One:        MFGTool_Uboot_share_with_NormalRun_sourceCode.pdf Mass Production with programmer        Mass_Production_with_NAND_programmer.pdf        Mass_Production_with_emmc_programmer.pdf AndroidSDCARDMirrorCreator https://community.nxp.com/docs/DOC-329596 L3.10.53 PianoPI Porting Note        L3.10.53_PianoPI_PortingNote_151102.pdf Audio Codec WM8960 Porting L3.10.53 PianoPI        AudioCodec_WM8960_Porting_L3.10.53_PianoPI_151012.pdf TouchScreen PianoPI Porting Note         TouchScreen_PianoPI_PortingNote_151103.pdf Accessing GPIO From UserSpace        Accessing_GPIO_From_UserSpace.pdf        https://community.nxp.com/docs/DOC-343344 FreeRTOS for i.MX6SX        FreeRTOS for i.MX6SX.pdf i.MX6SX M4 fastup        i.MX6SX M4 fastup.pdf i.MX6 SDCARD Secondary Boot Demo        i.MX6_SDCARD_Secondary_Boot_Demo.pdf i.MX6SX M4 MPU Settings For RPMSG        i.MX6SX_M4_MPU_Settings_For_RPMSG_10082016.pdf Security        Security03172017.pdf    NOT related to i.MX, only a short memo
View full article
    Xenomai is real-time framework, which can run seamlessly side-by-side Linux as a co-kernel system, or natively over mainline Linux kernels (with or without PREEMPT-RT patch). The dual kernel nicknamed Cobalt, is a significant rework of the Xenomai 2.x system. Cobalt implements the RTDM specification for interfacing with real-time device drivers. The native linux version, an enhanced implementation of the experimental Xenomai/SOLO work, is called Mercury. In this environment, only a standalone implementation of the RTDM specification in a kernel module is required, for interfacing the RTDM-compliant device drivers with the native kernel. You can get more detailed information from Home · Wiki · xenomai / xenomai · GitLab       I have ported xenomai 3.1 to i.MX Yocto 4.19.35-1.1.0, and currently support ARM64 and test on i.MX8MQ EVK board. I did over night test( 5 real-time threads + GPU SDK test case) and stress test by tool stress-ng on i.MX8MQ EVK board. It looks lile pretty good. Current version (20200730) also support i.MX8MM EVK.     You need git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git, and git checkout xenomai-4.19.35-1.1.0-20200818 (which inlcudes all patches and bb file) and add the following variable in conf/local.conf before build xenomai by command bitbake xenomai.  XENOMAI_KERNEL_MODE = "cobalt"  PREFERRED_VERSION_linux-imx = "4.19-${XENOMAI_KERNEL_MODE}" IMAGE_INSTALL_append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" PREFERRED_VERSION_linux-imx = "4.19-${XENOMAI_KERNEL_MODE}" IMAGE_INSTALL_append += " xenomai" If XENOMAI_KERNEL_MODE = "cobalt", you can build dual kernel version. And If XENOMAI_KERNEL_MODE = "mercury", it is single kernel with PREEMPT-RT patch. The following is test result by the command (/usr/xenomai/demo/cyclictest -p 99 -t 5 -m -n -i 1000  -l 100000😞 //Over normal Linux kernel without GPU SDK test case T: 0 ( 4220) P:99 I:1000 C: 100000 Min: 7 Act: 10 Avg: 9 Max: 23 T: 1 ( 4221) P:99 I:1500 C: 66672 Min: 7 Act: 10 Avg: 10 Max: 20 T: 2 ( 4222) P:99 I:2000 C: 50001 Min: 7 Act: 12 Avg: 10 Max: 81 T: 3 ( 4223) P:99 I:2500 C: 39998 Min: 7 Act: 11 Avg: 10 Max: 29 T: 4 ( 4224) P:99 I:3000 C: 33330 Min: 7 Act: 13 Avg: 10 Max: 26 //Over normal Linux kernel with GPU SDK test case T: 0 ( 4177) P:99 I:1000 C: 100000 Min: 7 Act: 10 Avg: 11 Max: 51 T: 1 ( 4178) P:99 I:1500 C: 66673 Min: 7 Act: 12 Avg: 10 Max: 35 T: 2 ( 4179) P:99 I:2000 C: 50002 Min: 7 Act: 12 Avg: 11 Max: 38 T: 3 ( 4180) P:99 I:2500 C: 39999 Min: 7 Act: 12 Avg: 11 Max: 42 T: 4 ( 4181) P:99 I:3000 C: 33330 Min: 7 Act: 12 Avg: 11 Max: 36   //Cobalt with stress-ng --cpu 4 --io 2 --vm 1 --vm-bytes 512M --timeout 600s --metrics-brief T: 0 ( 4259) P:50 I:1000 C:3508590 Min:      0 Act:    0 Avg:    0 Max:      42 T: 1 ( 4260) P:50 I:1500 C:2338831 Min:      0 Act:    1 Avg:    0 Max:      36 T: 2 ( 4261) P:50 I:2000 C:1754123 Min:      0 Act:    1 Avg:    1 Max:      42 T: 3 ( 4262) P:50 I:2500 C:1403298 Min:      0 Act:    1 Avg:    1 Max:      45 T: 4 ( 4263) P:50 I:3000 C:1169415 Min:      0 Act:    1 Avg:    1 Max:      22   //Cobalt without GPU SDK test case T: 0 ( 4230) P:50 I:1000 C: 100000 Min: 0 Act: 0 Avg: 0 Max: 4 T: 1 ( 4231) P:50 I:1500 C:   66676 Min: 0 Act: 1 Avg: 0 Max: 4 T: 2 ( 4232) P:50 I:2000 C:   50007 Min: 0 Act: 1 Avg: 0 Max: 8 T: 3 ( 4233) P:50 I:2500 C:   40005 Min: 0 Act: 1 Avg: 0 Max: 3 T: 4 ( 4234) P:50 I:3000 C:   33338 Min: 0 Act: 1 Avg: 0 Max: 5 //Cobalt with GPU SDK test case T: 0 ( 4184) P:99 I:1000 C:37722968 Min: 0 Act: 1 Avg: 0 Max: 24 T: 1 ( 4185) P:99 I:1500 C:25148645 Min: 0 Act: 1 Avg: 0 Max: 33 T: 2 ( 4186) P:99 I:2000 C:18861483 Min: 0 Act: 1 Avg: 0 Max: 22 T: 3 ( 4187) P:99 I:2500 C:15089187 Min: 0 Act: 1 Avg: 0 Max: 23 T: 4 ( 4188) P:99 I:3000 C:12574322 Min: 0 Act: 1 Avg: 0 Max: 29 //Mercury without GPU SDK test case T: 0 ( 4287) P:99 I:1000 C:1000000 Min: 6 Act: 7 Avg: 7 Max: 20 T: 1 ( 4288) P:99 I:1500 C:  666667 Min: 6 Act: 9 Avg: 7 Max: 17 T: 2 ( 4289) P:99 I:2000 C:  499994 Min: 6 Act: 8 Avg: 7 Max: 24 T: 3 ( 4290) P:99 I:2500 C:  399991 Min: 6 Act: 9 Avg: 7 Max: 19 T: 4 ( 4291) P:99 I:3000 C:  333322 Min: 6 Act: 8 Avg: 7 Max: 21 //Mercury with GPU SDK test case T: 0 ( 4222) P:99 I:1000 C:1236790 Min: 6 Act: 7 Avg: 7 Max: 55 T: 1 ( 4223) P:99 I:1500 C:  824518 Min: 6 Act: 7 Avg: 7 Max: 44 T: 2 ( 4224) P:99 I:2000 C:  618382 Min: 6 Act: 8 Avg: 8 Max: 88 T: 3 ( 4225) P:99 I:2500 C:  494701 Min: 6 Act: 7 Avg: 8 Max: 49 T: 4 ( 4226) P:99 I:3000 C:  412247 Min: 6 Act: 7 Avg: 8 Max: 53 //////////////////////////////////////// Update for Yocto L5.4.47 2.2.0  /////////////////////////////////////////////////////////// New release for Yocto release L5.4.47 2.2.0 and it supports i.MX8M series (8MQ,8MM,8MN and 8MP). You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git,  and git checkout xenomai-5.4.47-2.2.0. You need to add the following variable in conf/local.conf before build xenomai by command bitbake imx-image-multimedia.  XENOMAI_KERNEL_MODE = "cobalt"  PREFERRED_VERSION_linux-imx = "5-${XENOMAI_KERNEL_MODE}" IMAGE_INSTALL_append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" PREFERRED_VERSION_linux-imx = "5-${XENOMAI_KERNEL_MODE}" IMAGE_INSTALL_append += " xenomai" //////////////////////////////////////// Update for Yocto L5.4.70 2.3.0  /////////////////////////////////////////////////////////// New release  for Yocto release L5.4.70 2.3.0 and it supports i.MX8M series (8MQ,8MM,8MN and 8MP) and i.MX8QM/QXP. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git and git checkout xenomai-5.4.70-2.3.0. Updating: 1, Support i.MX8QM and i.MX8QXP 2, Fix altency's the issue which uses legacy API to get time   //////////////////////////////////////// update for Yocto L5.4.70 2.3.2  /////////////////////////////////////////////////////////// New release for Yocto release L5.4.70 2.3.2. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git, and git checkout xenomai-5.4.70-2.3.2. Updating: 1, Enable Xenomai RTDM driver in Linux Kernel 2, Currently CAN, UART, GPIO,  SPI and Ethernet (in debug for RTNet)  are added in Xenomai. 3, Add KERNEL_DEVICETREE += " freescale/imx8mp-rt-evk.dtb " in sources/meta-imx/meta-bsp/conf/machine/imx8mpevk.conf to enable relative device in Xenomai domain, for example rt-imx8mp-flexcan.   //////////////////////////////////////// Update for Yocto L5.4.70 2.3.4  /////////////////////////////////////////////////////////// New release for Yocto release L5.4.70 2.3.4. You need to git clone  https://gitee.com/zxd2021-imx/xenomai-arm64.git and git checkout xenomai-5.4.70-2.3.4. Updating: 1, Enable RTNet FEC driver 2, Currently CAN, UART, GPIO,  SPI and Ethernet ( FEC Controller)  are added in Xenomai. 3, Add KERNEL_DEVICETREE += " freescale/imx8mp-rt-evk.dtb " in sources/meta-imx/meta-bsp/conf/machine/imx8mpevk.conf and KERNEL_DEVICETREE += " freescale/imx8mm-rt-ddr4-evk.dtb " in sources/meta-imx/meta-bsp/conf/machine/imx8mmddr4evk.conf to enable rt_fec device in Xenomai domain. Verifying the network connection by RTnet Ping Between i.MX8M Mini EVK and i.MX8M Plus EVK a, Setup test environment 1, Connect ENET1 of  i.MX8M Plus EVK (used as a master) and  ENET of i.MX8M Mini EVK (used as a slave) of  to a switch or hub 2, Modify /usr/xenomai/etc/rtnet.conf in i.MX8M Plus EVK board as the following: @@ -16,7 +16,7 @@ MODULE_EXT=".ko" # RT-NIC driver -RT_DRIVER="rt_eepro100" +RT_DRIVER="rt_fec" RT_DRIVER_OPTIONS="" # PCI addresses of RT-NICs to claim (format: 0000:00:00.0) @@ -30,8 +30,8 @@ REBIND_RT_NICS="" # The TDMA_CONFIG file overrides these parameters for masters and backup # masters. Leave blank if you do not use IP addresses or if this station is # intended to retrieve its IP from the master based on its MAC address. -IPADDR="10.0.0.1" -NETMASK="" +IPADDR="192.168.100.101" +NETMASK="255.255.255.0" # Start realtime loopback device ("yes" or "no") RT_LOOPBACK="yes" @@ -65,7 +65,7 @@ TDMA_MODE="master" # Master parameters # Simple setup: List of TDMA slaves -TDMA_SLAVES="10.0.0.2 10.0.0.3 10.0.0.4" +TDMA_SLAVES="192.168.100.102" # Simple setup: Cycle time in microsecond TDMA_CYCLE="5000" 3, Modify /usr/xenomai/etc/rtnet.conf in i.MX8M Mini EVK board as the following: @@ -16,7 +16,7 @@ MODULE_EXT=".ko" # RT-NIC driver -RT_DRIVER="rt_eepro100" +RT_DRIVER="rt_fec" RT_DRIVER_OPTIONS="" # PCI addresses of RT-NICs to claim (format: 0000:00:00.0) @@ -30,8 +30,8 @@ REBIND_RT_NICS="" # The TDMA_CONFIG file overrides these parameters for masters and backup # masters. Leave blank if you do not use IP addresses or if this station is # intended to retrieve its IP from the master based on its MAC address. -IPADDR="10.0.0.1" -NETMASK="" +IPADDR="192.168.100.102" +NETMASK="255.255.255.0" # Start realtime loopback device ("yes" or "no") RT_LOOPBACK="yes" @@ -59,13 +59,13 @@ STAGE_2_CMDS="" # TDMA mode of the station ("master" or "slave") # Start backup masters in slave mode, it will then be switched to master # mode automatically during startup. -TDMA_MODE="master" +TDMA_MODE="slave" # Master parameters # Simple setup: List of TDMA slaves -TDMA_SLAVES="10.0.0.2 10.0.0.3 10.0.0.4" +TDMA_SLAVES="192.168.100.102" # Simple setup: Cycle time in microsecond TDMA_CYCLE="5000" 4, rename imx8mm-rt-ddr4-evk.dtb to imx8mm-ddr4-evk.dtb in /run/media/mmcblk1p1,  rename imx8mp-rt-evk.dtb to imx8mp-evk.dtb in /run/media/mmcblk1p1, and reboot board. 5, Run the below command on i.MX8M Mini EVK board. cd /usr/xenomai/sbin/ ./rtnet start & 5, Run the below command on i.MX8M Plus EVK board. cd /usr/xenomai/sbin/ ./rtnet start & When you see the log (rt_fec_main 30be0000.ethernet (unnamed net_device) (uninitialized): Link is Up - 100Mbps/Full - flow control rx/tx) and you can run command "./rtroute" to check route table if the slave IP (192.168.100.102) is in route.. b, Verify the network connection using the command below: ./rtping -s 1024 192.168.100.102 //////////////////////////////////////// Update for Yocto L5.10.52 2.1.0  /////////////////////////////////////////////////////////// New release for Yocto release L5.10.52 2.1.0. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git and git checkout xenomai-5.10.52-2.1.0. Updating: 1, Upgrade Xenomai to v3.2 2, Enable Dovetail instead of ipipe. Copy xenomai-arm64 to <Yocto folder>/sources/meta-imx/meta-bsp/recipes-kernel, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitbake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL_append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL_append += " xenomai" Notice: If XENOMAI_KERNEL_MODE = "cobalt", you can build dual kernel version. And If XENOMAI_KERNEL_MODE = "mercury", it is single kernel with PREEMPT-RT patch.  Latency testing of Xenomai3.2+Dovetail with isolating CPU 2,3 ( Xenomai 3.2 on 8MM DDR4 EVK with GPU test case (GLES2/S08_EnvironmentMappingRefraction_Wayland) + iperf3 + 2 ping 65000 size + stress-ng --cpu 2 --io 2 --vm 1 --vm-bytes 256M --metrics-brief )😞 The following is test result by the command (/usr/xenomai/demo/cyclictest -a 2,3 -p 50 -t 5 -m -n -i 1000) root@imx8mmddr4evk:~# /usr/xenomai/demo/cyclictest -a 2,3 -p 50 -t 5 -m -n -i 1000 # /dev/cpu_dma_latency set to 0us policy: fifo: loadavg: 5.96 6.04 6.03 7/155 1349 T: 0 ( 615) P:50 I:1000 C:63448632 Min: 0 Act: 0 Avg: 0 Max: 55 T: 1 ( 616) P:50 I:1500 C:42299087 Min: 0 Act: 0 Avg: 1 Max: 43 T: 2 ( 617) P:50 I:2000 C:31724315 Min: 0 Act: 0 Avg: 1 Max: 51 T: 3 ( 618) P:50 I:2500 C:25379452 Min: 0 Act: 0 Avg: 1 Max: 53 T: 4 ( 619) P:50 I:3000 C:21149543 Min: 0 Act: 0 Avg: 1 Max: 47 //////////////////////////////////////// Update for Yocto L5.10.72 2.2.2  /////////////////////////////////////////////////////////// New release for Yocto release L5.10.72 2.2.2. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git and git checkout xenomai-5.10.72-2.2.2. Updating: 1, Upgrade Xenomai to v3.2.1 Copy xenomai-arm64 to <Yocto folder>/sources/meta-imx/meta-bsp/recipes-kernel, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitbake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL_append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL_append += " xenomai" //////////////////////////////////////// Update for Yocto L5.15.71 2.2.0  /////////////////////////////////////////////////////////// New release for Yocto release L5.15.71 2.2.0. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git and git checkout xenomai-5.15.71-2.2.0. Updating: 1, Upgrade Xenomai to v3.2.2 Copy xenomai-arm64 to <Yocto folder>/sources/meta-imx/meta-bsp/recipes-kernel, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitbake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL:append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL:append += " xenomai"   //////////////////////////////////////// Update for Yocto L6.1.55 2.2.0  /////////////////////////////////////////////////////////// New release for Yocto release L6.1.55 2.2.0. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git recipes-rtlinux-xenomai -b Linux-6.1.x Updating: 1, Upgrade Xenomai to v3.2.4 and support i.MX93 2, Enable EVL (aka Xenomai 4) for i.MX93 and legacy i.MX(6/7D/8X/8M) Copy recipes-rtlinux-xenomai to <Yocto folder>/sources/meta-imx/meta-bsp/, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitbake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL:append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL:append += " xenomai" or XENOMAI_KERNEL_MODE = "evl" IMAGE_INSTALL:append += " libevl"   //////////////////////////////////////// Update for Yocto L6.6.52 2.2.0  /////////////////////////////////////////////////////////// New release for Yocto release L6.6.52 2.2.0. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git recipes-rtlinux-xenomai -b Linux-6.6.52 Updating: 1, Upgrade Xenomai to v3.3 and support i.MX91/93/95 2, Upgrade EVL (aka Xenomai 4),  libevl to r50 and support i.MX91/93/95 Copy recipes-rtlinux-xenomai to <Yocto folder>/sources/meta-imx/meta-bsp/, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitbake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL:append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL:append += " xenomai" or XENOMAI_KERNEL_MODE = "evl" IMAGE_INSTALL:append += " libevl"    
View full article
    The meta layer is designed for those guys who want to use i.MX8M series SOC and Yocto system to develop AGV and Robot.    The platform includes some key components: 1, ROS1 (kinetic, melodic) and ROS2(dashing, eloquent, foxy) 2, Real-time Linux solution : Xenomai 3.1 with ipipe 5.4.47 patch 3, Industrial protocol : libmodbus, linuxptp, ros-canopen, EtherCAT(TBD) 4, Security: Enhanced OpenSSL, Enhanced GmSSL, Enhanced eCryptfs, secure key store, secure boot(TBD), SE-Linux(TBD),  Dm-verity(TBD) The first release bases on i.MX Yocto release L5.4.47 2.2.0 and You need download Linux 5.4.47_2.2.0 according to​​ https://www.nxp.com/docs/en/user-guide/IMX_YOCTO_PROJECT_USERS_GUIDE.pdf  firstly. And then you can follow the below guide to build and test ROS and Xenomai. A, clone meta-robot-platform from gitee.com git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v0.1-L5.4.47-2.2.0 B, Adding the meta-robot-platform layer to your build 1,  copy meta-robot-platform into <i.MX Yocto folder>/source 2, You should create a symbol link: setup-imx-robot.sh -> sources/meta-robot-platform/imx/meta-robot/tools/setup-imx-robot.sh C, How to build Robot image (example for i.MX8MQ EVK board) $ DISTRO=imx-robot-xwayland MACHINE=imx8mqevk source setup-imx-robot.sh -r kinetic -b imx8mqevk-robot-kinetic [or DISTRO=imx-robot-xwayland MACHINE=imx8mqevk source setup-imx-robot.sh -r melodic -b imx8mqevk-robot-melodic ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mqevk source setup-imx-robot.sh -r dashing -b imx8mqevk-robot-dashing ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mqevk source setup-imx-robot.sh -r eloquent -b imx8mqevk-robot-eloquent ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mqevk source setup-imx-robot.sh -r foxy -b imx8mqevk-robot-foxy ] $ bitbake imx-robot-core [or bitbake imx-robot-system ] [or bitbake imx-robot-sdk ] And if you add XENOMAI_KERNEL_MODE = "cobalt" or XENOMAI_KERNEL_MODE = "mercury" in local.conf, you also can build real-time image with Xenomai by the below command: $ bitbake imx-robot-core-rt [or bitbake imx-robot-system-rt ] D, Robot image sanity testing //ROS1 Sanity Test #source /opt/ros/kinetic/setup.sh [or # source /opt/ros/melodic/setup.sh ] #echo $LD_LIBRARY_PATH #roscore & #rosnode list #rostopic list #only kinetic #rosmsg list #rosnode info /rosout //ROS2 Sanity Test #source ros_setup.sh #echo $LD_LIBRARY_PATH #ros2 topic list #ros2 msg list #only dashing #ros2 interface list #(sleep 5; ros2 topic pub /chatter std_msgs/String "data: Hello world") & #ros2 topic echo /chatter E, Xenomai sanity testing #/usr/xenomai/demo/cyclictest -p 50 -t 5 -m -n -i 1000 F, vSLAM demo You can find orb-slam2 demo under <i.MX Yocto folder>/sources/meta-robot-platform/imx/meta-robot/recipes-demo/orb-slam2. You should choose DISTRO=imx-robot-xwayland due to it depends on OpenCV with gtk+.   //////////////////////////////////////// update for Yocto L5.4.70 2.3.0  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v0.2-L5.4.70-2.3.0 for Yocto release L5.4.70 2.3.0 and it supports i.MX8M series (8MQ,8MM,8MN and 8MP) and i.MX8QM/QXP.  git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v0.2-L5.4.70-2.3.0 Updating: 1, Support i.MX8QM and i.MX8QXP 2, Add ROS driver of RPLIDAR and Orbbec 3D cameras in ROS1 3, Upgrade OpenCV to 3.4.13. 4, Add imx-robot-agv image with orb-slam2 demo 5, Fix the issue which failed to create image when adding orb-slam2 6, Fix the issue which failed to create imx-robot sdk image when add package ISP and ML Note: Currently, orb-slam2 demo don't run on i.MX8MM platform due to its GPU don't support OpenGL ES3. imx-robot-sdk image is just for building ROS package on i.MX board, not  for cross-compile. You can try "bitbake imx-robot-system -c populate_sdk" to create cross-compile sdk without gmssl-bin. diff --git a/imx/meta-robot/recipes-core/images/imx-robot-system.bb b/imx/meta-robot/recipes-core/images/imx-robot-system.bb index 1991ab10..68f9ad31 100644 --- a/imx/meta-robot/recipes-core/images/imx-robot-system.bb +++ b/imx/meta-robot/recipes-core/images/imx-robot-system.bb @@ -35,7 +35,7 @@ CORE_IMAGE_EXTRA_INSTALL += " \ ${@bb.utils.contains('DISTRO_FEATURES', 'x11 wayland', 'weston-xwayland xterm', '', d)} \ ${ISP_PKGS} \ " -IMAGE_INSTALL += " clblast openblas libeigen opencv gmssl-bin" +IMAGE_INSTALL += " clblast openblas libeigen opencv" IMAGE_INSTALL += " \ ${ML_PKGS} \   //////////////////////////////////////// Update for Yocto L5.4.70 2.3.2  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v0.3-L5.4.70-2.3.2 for Yocto release L5.4.70 2.3.2 .  git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v0.3-L5.4.70-2.3.2 Updated: 1, Upgrade to L5.4.70-2.3.2 2, Enable xenomai rtdm driver 3, Add NXP Software Content Register and BSP patches of i.MX8M Plus AI Robot board. Note: How to build for AI Robot board 1, DISTRO=imx-robot-wayland MACHINE=imx8mp-ddr4-ipc source setup-imx-robot.sh -r melodic -b imx8mp-ddr4-ipc-robot-melodic 2, Add BBLAYERS += " ${BSPDIR}/sources/meta-robot-platform/imx/meta-imx8mp-ai-robot " in bblayers.conf 3, bitbake imx-robot-sdk or bitbake imx-robot-agv   //////////////////////////////////////// Update for v1.0-L5.4.70-2.3.2  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v1.0-L5.4.70-2.3.2 .  git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v1.0-L5.4.70-2.3.2 Updated: 1, Upgrade ROS1 Kinetic Kame to Release 2021-05-11 which is final sync. 2, Add IgH EtherCAT Master for Linux in i.MX Robot platform. //////////////////////////////////////// Update for v1.1-L5.4.70-2.3.2  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v1.1-L5.4.70-2.3.2 .  git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v1.1-L5.4.70-2.3.2 Updated: 1, Add more packages passed building in ROS1 Kinetic Kame. 2, Change the board name (From IPC to AI-Robot) in Uboot and kernel for i.MX8M Plus AI Robot board. You can use the below setup command to build ROS image for AI Robot board: DISTRO=imx-robot-xwayland MACHINE=imx8mp-ai-robot source setup-imx-robot.sh -r kinetic -b imx8mp-ai-robot-robot-kinetic DISTRO=imx-robot-xwayland MACHINE=imx8mp-ai-robot source setup-imx-robot.sh -r melodic -b imx8mp-ai-robot-robot-melodic DISTRO=imx-robot-xwayland MACHINE=imx8mp-ai-robot source setup-imx-robot.sh -r dashing -b imx8mp-ai-robot-robot-dashing DISTRO=imx-robot-xwayland MACHINE=imx8mp-ai-robot source setup-imx-robot.sh -r eloquent -b imx8mp-ai-robot-robot-eloquent DISTRO=imx-robot-xwayland MACHINE=imx8mp-ai-robot source setup-imx-robot.sh -r foxy -b imx8mp-ai-robot-robot-foxy BTW, you should add BBLAYERS += " ${BSPDIR}/sources/meta-robot-platform/imx/meta-imx8mp-ai-robot " in conf/bblayers.conf.   //////////////////////////////////////// Update for v1.2-L5.4.70-2.3.3  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v1.2-L5.4.70-2.3.3 .  git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v1.2-L5.4.70-2.3.3 Updated: 1, Update to Yocto release L5.4.70-2.3.3 2, Enable RTNet FEC driver, test on i.MX8M Mini EVK and i.MX8M Plus EVK. For the detailed information,  Please refer to the community post 移植实时Linux方案Xenomai到i.MX ARM64平台 (Enable Xenomai on i.MX ARM64 Platform)    //////////////////////////////////////// Update for v2.1-L5.10.52-2.1.0  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v2.1-L5.10.52-2.1.0 .  git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v2.1.1-L5.10.52-2.1.0 Updated: 1, Update to Yocto release L5.10.52-2.1.0 2, Add ROS1 noetic, ROS2 galactic and rolling 3, Upgrade Xenomai to v3.2 4, Add vSLAM demo orb-slam3 5, Upgrade OpenCV to 3.4.15 for ROS1 A, Adding the meta-robot-platform layer to your build 1,  copy meta-robot-platform into <i.MX Yocto folder>/source 2, You should create a symbol link: setup-imx-robot.sh -> sources/meta-robot-platform/imx/meta-robot/tools/setup-imx-robot.sh B, How to build Robot image (example for i.MX8M Plus EVK board) $ DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r kinetic -b imx8mpevk-robot-kinetic [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r melodic -b imx8mpevk-robot-melodic ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r noetic-b imx8mpevk-robot-noetic] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r dashing -b imx8mpevk-robot-dashing ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r eloquent -b imx8mpevk-robot-eloquent ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r foxy -b imx8mpevk-robot-foxy ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r galactic -b imx8mpevk-robot-galactic ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r rolling -b imx8mpevk-robot-rolling ] $ bitbake imx-robot-agv [or bitbake imx-robot-core ] [or bitbake imx-robot-system ] [or bitbake imx-robot-sdk ]   //////////////////////////////////////// Update for v2.2-L5.10.72-2.2.0  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v2.2-L5.10.72-2.2.0 .  git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v2.2.0-L5.10.72-2.2.0 Updated: 1, Update to Yocto release L5.10.72-2.2.0   //////////////////////////////////////// Update for v2.2.3-L5.10.72-2.2.3  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v2.2.3-L5.10.72-2.2.3.  repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-hardknott -m imx-5.10.72-2.2.3.xml git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v2.2.3-L5.10.72-2.2.3 1,  copy meta-robot-platform into <i.MX Yocto folder>/source 2, You should create a symbol link: setup-imx-robot.sh -> sources/meta-robot-platform/imx/meta-robot/tools/setup-imx-robot.sh Updated: 1, Update to Yocto release L5.10.72-2.2.3 2, Update ISP SDK (isp-imx) patch for Github changing.   //////////////////////////////////////// Update for v3.1-L5.15.71-2.2.0  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v3.1-L5.15.71-2.2.0.  repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-kirkstone -m imx-5.15.71-2.2.0.xml git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v3.1-L5.15.71-2.2.0 1,  copy meta-robot-platform into <i.MX Yocto folder>/source 2, You should create a symbol link: setup-imx-robot.sh -> sources/meta-robot-platform/imx/meta-robot/tools/setup-imx-robot.sh Updated: 1, Update to Yocto release L5.15.71-2.2.0 and ROS1 Noetic and ROS2 Foxy to last version 2, Add ROS2 Humble and remove EOL distributions (ROS1 Kinetic, Melodic and ROS2 Dashing, Eloquent and Galactic). How to build Robot image (example for i.MX8M Plus EVK board) $DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r noetic-b imx8mpevk-robot-noetic [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r foxy -b imx8mpevk-robot-foxy ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r humble -b imx8mpevk-robot-humble ] $ bitbake imx-robot-sdk [or bitbake imx-robot-core ] [or bitbake imx-robot-system ] [or bitbake imx-robot-agv ]   //////////////////////////////////////// Update for v3.3-L5.15.71-2.2.0  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v3.3-L5.15.71-2.2.0.  repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-kirkstone -m imx-5.15.71-2.2.0.xml git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v3.3-L5.15.71-2.2.0 1,  copy meta-robot-platform into <i.MX Yocto folder>/source 2, You should create a symbol link: setup-imx-robot.sh -> sources/meta-robot-platform/imx/meta-robot/tools/setup-imx-robot.sh Updated: 1, Add vSLAM ROS demo based on i.MX vSLAM SDK and i.MX AIBot. The demo video is here: Autonomous Navigation with vSLAM, Based on the i.MX 8M Plus Applications Processor   2, Enable DDS Security and SROS2 for ROS 2’s security features. How to build Robot image (example for i.MX8M Plus EVK board) $DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r noetic-b imx8mpevk-robot-noetic [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r foxy -b imx8mpevk-robot-foxy ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r humble -b imx8mpevk-robot-humble ] $ bitbake imx-robot-sdk [or bitbake imx-robot-agv ] [or bitbake imx-robot-system ] [or bitbake imx-robot-core ]   //////////////////////////////////////// Update for v4.0-L6.1.55-2.2.0  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v4.0-L6.1.55-2.2.0.  repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-mickledore -m imx-6.1.55-2.2.0.xml git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout mickledore-6.1.55 1,  copy meta-robot-platform into <i.MX Yocto folder>/source 2, You should create a symbol link: setup-imx-robot.sh -> sources/meta-robot-platform/imx/meta-robot/tools/setup-imx-robot.sh Updated: 1, Migrate i.MX Robot platform to Yocto mickledore with L6.1.55. 2, Add ROS2 iron. How to build Robot image (example for i.MX8M Plus EVK board) $DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r humble -b imx8mpevk-robot-humble [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r iron -b imx8mpevk-robot-iron ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r noetic-b imx8mpevk-robot-noetic] $ bitbake -k imx-robot-sdk [or bitbake imx-robot-agv ] [or bitbake imx-robot-system ] [or bitbake imx-robot-core ]       //////////////////////////////////////// Update for v5.0-L6.6.52-2.2.0  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v5.0-L6.6.52-2.2.0.  repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-scarthgap -m imx-6.6.52-2.2.0.xml git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git -b scarthgap-6.6.52 1,  copy meta-robot-platform into <i.MX Yocto folder>/source 2, You should create a symbol link: setup-imx-robot.sh -> sources/meta-robot-platform/imx/meta-robot/tools/setup-imx-robot.sh Updated: 1, Migrate i.MX Robot platform to Yocto scarthgap with L6.6.52 and support i.MX95 EVK. 2, Add ROS2 jazzy and remove ROS1. How to build Robot image (example for i.MX95 EVK board) $DISTRO=imx-robot-xwayland MACHINE=imx95-15x15-lpddr4x-evk source setup-imx-robot.sh -r humble -b imx95-15x15-lpddr4x-evk-humble [or DISTRO=imx-robot-xwayland MACHINE=imx95-15x15-lpddr4x-evk source setup-imx-robot.sh -r jazzy -b imx95-15x15-lpddr4x-evk-jazzy ] $ bitbake -k imx-robot-sdk [or bitbake imx-robot-agv ] [or bitbake imx-robot-system ] [or bitbake imx-robot-core ]
View full article
Please notice the following patches are only tested in the environment that is listed below. For the environment with other software versions or hardware equipment, some other editing  may be required Environment: i.MX 8MP EVK LVDS:LVDS BOE EV121WXM-N10-1850  LVDS to MiniSAS panel:XMX-LVDS-MINISAS Software: LF5.15.71 U-boot: 1. Apply '0001-Enable-DY1212W-4856-in-U-boot-for-i.MX8MP.patch' to enable EV121WXM-N10-1850  in U-boot stage. If other LVDS panel is used here, you will need porting your specific LVDS device in this step. 2. Apply '0002-Modify-u-boot-to-show-logo-seamlessly-for-i.MX8MP.patch' to make sure display related models won't be power off, which will help to achieve seamless display. 3. In the original U-boot driver, PWM isn't enable. Therefore, apply '0003-Enable-PWM-and-BACKLIGHT-in-U-boot-and-modify-to-sho.patch' to enable PWM. Kernel: 1. Apply '0001-Enable-DY1212W-4856-in-Kernl-for-i.MX8MP.patch' to enable EV121WXM-N10-1850  in Kernel. If other LVDS panel is used here, you will need porting your specific LVDS device in this step. 2. Apply '0002-Modify-Kernel-to-show-logo-seamlessly-for-i.MX8MP.patch' to make sure LVDS related models won't be init in the booting progress. 3. Apply '0003-Enable-PWM-and-BACKLIGHT-in-Kernel-and-modify-to-sho.patch' to make sure we could edit backlight of panel in Kernel. 
View full article
Please notice the following patches are only tested in the environment that is listed below. For the environment with other software versions or hardware equipment, some other editing  may be required Environment: i.MX 8MP EVK MIPI DSI: MX8-DSI-OLED1 (RM67191) Software: LF5.15.71 U-boot: 1. Apply '0001-Modify-u-boot-to-show-logo-seamlessly.patch' to make sure display related models won't be power off, which will help to achieve seamless display. Kernel: 1. Apply '0001-Keep-NXP-logo-until-Weston-is-booted-8MP-MIPI.patch' to make sure MIPI-DSI related models won't be re-init in the booting progress.
View full article
    Test envs: BOARD: i.MX 8MN EVK BSP: L6.6.36   The L6.6.y includes the feature about supporting starting Cortex-M33 from non-TCM address for i.MX93, but not for i.MX8M series.    LF-7815 remoteproc: imx_rproc: support starting Cortex-M33 from non-TCM address for i.MX93 https://github.com/nxp-imx/linux-imx/commit/680aa11c7bdaddf6bbffd74bc0a94ef67593b69b#diff-66a34e17e82d281936f559217adc3983b39abeb2e478967f3d5cef2eed5b67fcR693   For older BSP, customer can refer this full patch set https://patchew.org/linux/20230209063816.2782206-1-peng.fan@oss.nxp.com/   If you want to test ELF in DDR on i.MX8M series and i.MX93 platform with L6.6.y, please use below patch set.  
View full article
Introduction LVGL is a graphics library to run on devices using a limited amount of resources. Previously, we have ran an LVGL demo from the LVGL repository, this contains a couple more demos which all of them are pieces of code included and lends us the opportunity to evaluate the library in a quick and easy way. GUI projects are developed by customers through a lot more options than bare code, there are GUI tools that translate a graphic asset into LVGL code, in this demonstration we will use a tool that's widely used in MCU GUI development and translate the GUI created into LVGL code; SquareLine. NOTE: refer to the appendix for precedent LVGL documents on i.MX series processors. HW set-up i.MX 93 EVK boot over eMMC/uSD to Linux Factory or Ubuntu. Connect power and debug receptables. Connect MX8_DSI_OLED1 to J701 (MIPI DSI) through MiniSAS cable. SquareLine set-up Download the latest version of SquareLine under the following link according to your host system. NOTE: This document is intended for demonstration of templates included within the tool, so it's recommended to download a free trial, for formal development please refer to the appendix of this document. Unzip and execute the installer, this is the windows prompt.   Demo download After setting SquareLine up go to the example section, we will demonstrate the thermostat capabilities with the Thermostat Demo. We can directly export these UI files and they would be graphically ready to be build, click on Export -> Export UI Files and select your preferred destination to save these.   LVGL setup. Option 1 Fresh Environment Clone LVGL and LV_DRIVERS repositories, this is a .gitmodules file that points to the specific branches needed. [submodule "lvgl"] path = lvgl url = https://github.com/lvgl/lvgl.git branch = release/v8.3 [submodule "lv_drivers"] path = lv_drivers url = https://github.com/lvgl/lv_drivers.git branch = release/v8.3 NOTE: If you are using other methods, you should point to these commits, lv_drivers @ 8cdabe8 and lvgl @ f2c1032. Gather the necessary files described below from the LVGL Linux Port example found here. Makefile lv_conf.h lv_drv_conf.h main.c mouse_cursor_icon.c Patch the Makefile. + include $(LVGL_DIR)/thermostat/thermostat.mk Patch the lv_drv_conf.h # define EVDEV_NAME "/dev/input/event10" /*You can use the "evtest" Linux tool to get the list of devices and test them*/ +# define EVDEV_NAME "/dev/input/event<Number>" NOTE: This changes according to the output of # evtest. Patch lv_conf.h -#define LV_FONT_MONTSERRAT_20 0 +#define LV_FONT_MONTSERRAT_20 1 Patch the main.c - disp_drv.hor_res = 800; - disp_drv.ver_res = 480; + disp_drv.hor_res = 1080; + disp_drv.ver_res = 1920; … - /*Create a Demo*/ - lv_demo_widgets(); + /*Create a Squareline Demo*/ + ui_init(); LVGL Setup. Option 2 with LVGL demos already running Gather the necessary files described below from the LVGL Linux Port example found here. Makefile lv_conf.h lv_drv_conf.h main.c mouse_cursor_icon.c Patch the lv_drv_conf.h # define EVDEV_NAME "/dev/input/event10" /*You can use the "evtest" Linux tool to get the list of devices and test them*/ +# define EVDEV_NAME "/dev/input/event<Number>" NOTE: This changes according to the output of # evtest. Patch the main.c - disp_drv.hor_res = 800; - disp_drv.ver_res = 480; + disp_drv.hor_res = 1080; + disp_drv.ver_res = 1920; … - /*Create a Demo*/ - lv_demo_widgets(); + /*Create a Squareline Demo*/ + ui_init(); Run the demo Build the demo with the following command and copy the ./demo output to the i.MX 93 EVK RootFS. # source /opt/path/to/your/toolchain # make clean # make The demo can be ran with the following commands. # systemctl stop weston # For LF $ sudo service gdm3 stop # For Ubuntu # ./demo   Conclusion SquareLine demos can run in prebuilt and basic builds of i.MX processors through FB, which can enable a quick set-up for GUI testing before moving to use a windowing stack without sacrificing any features. Appendix Document: How to run LGVL on iMX using framebuffer Official page for pricing information
View full article
  JEIDA-24 is adopted in most use-cases, and also the default format in Linux BSP(6.x)  Actually, JEIDA-18 is also supported in Linux BSP by not mentioned explicitly.   JEIDA-18 can be supported in two configuration: 1. Keep JEIDA-24 setting to display controllers, skip 4th data-lane in hardware connection: according JEIDA-24 output waveform, it has 4 data-lane enabled on LVDS bus: since the data-bits on TxOUT3 are the LSBs of the pixels, to change from JEIDA-24(RGB888, 4 data-lane) to JEIDA-18(RGB666, 3 data-lane), it can be achieved by skipping the TxOUT3 output(4th data-lane) in hardware connection, to make the JEIDA-18 format as the picture below(JEIDA-18 LCD panels only require 3 data-lanes)   2. Change the display controller settings to JEIDA-18: one reference by Variscite, one of the SoM vendor: https://variwiki.com/index.php?title=DART-MX8M-PLUS_Display&release=mx8mp-yocto-mickledore-6.1.36_2.1.0-v1.3 related setting quoted from the link above: Supported "data-mapping" values are "jeida-18", "jeida-24" and "vesa-24". Supported "fsl,data-mapping" values are "jeida", and "spwg". Supported "fsl,data-width" values are <18>, and <24>.    "data-mapping"= "jeida-18", "jeida-24" and "vesa-24" are handled in DRM driver, as the link below: https://github.com/nxp-imx/linux-imx/blob/d23d64eea5111e1607efcce1d601834fceec92cb/drivers/gpu/drm/drm_of.c#L451 if (!strcmp(mapping, "jeida-18")) return MEDIA_BUS_FMT_RGB666_1X7X3_SPWG; if (!strcmp(mapping, "jeida-24")) return MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA; if (!strcmp(mapping, "vesa-24")) return MEDIA_BUS_FMT_RGB888_1X7X4_SPWG;    Here the variable “MEDIA_BUS_FMT_RGB666_1X7X3_SPWG" is handled in ldb driver(MX8MP) as the link below: https://github.com/nxp-imx/linux-imx/blob/d23d64eea5111e1607efcce1d601834fceec92cb/drivers/gpu/drm/bridge/fsl-ldb.c#L144 switch (bridge_state->output_bus_cfg.format) { case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG: lvds_format_24bpp = false; lvds_format_jeida = true; break; case MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA: lvds_format_24bpp = true;  the bus_format would be "MEDIA_BUS_FMT_RGB666_1X18" in this configuration:  https://github.com/nxp-imx/linux-imx/blob/d23d64eea5111e1607efcce1d601834fceec92cb/drivers/gpu/drm/imx/imx8mp-ldb.c#L178 switch (ldb_ch->bus_format) { case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG: imx_crtc_state->bus_format = MEDIA_BUS_FMT_RGB666_1X18; break;    “MEDIA_BUS_FMT_RGB666_1X18” is not handled in LCDIF driver:  https://github.com/nxp-imx/linux-imx/blob/d23d64eea5111e1607efcce1d601834fceec92cb/drivers/gpu/imx/lcdifv3/lcdifv3-common.c#L310 switch (bus_format) { case MEDIA_BUS_FMT_RGB565_1X16: disp_para |= DISP_PARA_LINE_PATTERN(LP_RGB565); break; case MEDIA_BUS_FMT_RGB888_1X24: disp_para |= DISP_PARA_LINE_PATTERN(LP_RGB888_OR_YUV444); break; default: dev_err(lcdifv3->dev, "unknown bus format: %#x\n", bus_format); return;    hence there would be error message below in this configuration, which can be ignored: imx-lcdifv3 32e80000.lcd-controller: unknown bus format: 0x1009  
View full article
Hibernation mode (suspend to disk) will be useful for boot time optimization, especially under heavy application usage cases. This article is a quick guide for how to enable hibernation mode in Linux running on i.MX93. Some limitation and pitfalls will also be introduced.   Detail PDF attached.    
View full article
This document is about enable iMX93 PWM and PWM led HW:   iMX93 11x11 EVK SW:   lf-6.6.3-1.0.0 PWM: TPM3 CH0, CH2            TPM4 CH2 Note: The i.MX PWM and           PWM led are already            enabled in lf-6.6.3-1.0.0  
View full article
Information about the transition from the NXP Demo Experience to GoPoint for i.MX Application Processors.
View full article
Overview This document explains how to use Pulse Width Modulation (PWM) on the iMX93 EVK Board. Attached to this post is a patch to enable this functionality, which can be integrated into either Yocto or a standalone kernel compilation.   This procedure was tested on iMX93 EVK A0 silicon version with BSP 6.1.22 version, this feature should work on A1 silicon version too but is not tested yet.   Kernel Configuration: To enable PWM support, modify the imx_v8_defconfig  file by adding the following line: CONFIG_PWM=y CONFIG_PWM_ADP5585=y CONFIG_PWM_CROS_EC=m CONFIG_PWM_FSL_FTM=m CONFIG_PWM_IMX27=y CONFIG_PWM_RPCHIP=y CONFIG_PWM_SL28CPLD=m + CONFIG_PWM_IMX_TPM=y​ # Add this line   Device Tree Modifications: You will need to add the following nodes to the device tree to configure the TPM (Timer/Pulse Width Modulation) controller:   + &tpm4 { + pinctrl-names = "default"; + pinctrl-0 = <&pinctrl_tpm4>; + status = "okay"; + }; ... + pinctrl_tpm4: tpm4grp { + fsl,pins = < + MX93_PAD_GPIO_IO05__TPM4_CH0 0x19e //EXP_GPIO_IO05 J1001 29 + >; + };​   Compiling and Flashing: After making the above changes, compile the kernel and device tree. Once the compilation is complete, flash the new image and device tree to the iMX93 EVK Board.  PWM Configuration on the Board After flashing, you can configure the PWM settings on the board. Open a terminal and execute the following commands: $ cd /sys/class/pwm/pwmchip1/ $ echo 0 >> export $ echo echo 2000000 >> pwm0/period # Set period to 2,000,000 ns (2 ms) $ echo echo 1000000 >> pwm0/duty_cycle # Set duty cycle to 1,000,000 ns (1 ms) $ echo 1 >> pwm0/enable   Validation To validate the PWM output signal, check pin 29 of connector J1001 on the iMX93 EVK Board.   Conclusion Following these steps should enable PWM functionality on your iMX93 EVK Board. If you encounter any issues, please refer to the documentation or reach out for assistance. Best Regards! Chavira
View full article
Since U-Boot can read/write/update nodes inside the device tree blob before booting the kernel, the idea is to have a generic display node in the device tree which U-Boot will populate with the proper values. You can see in our source tree that all our device trees contain: fb_hdmi alias to setup HDMI configuration fb_lcd alias to setup LCD displays fb_lvds and t_lvds to setup LVDS1 display fb_lvds2 and t_lvds2 to setup LVDS2 display (when available) So U-Boot is now is charged to setup those nodes which will configure your display(s) easily. First of all it requires the U-Boot, Once you have a recent U-Boot, you can have a look at the supported display for your board by issuing: => fbpanel clock-frequency hactive vactive hback-porch hfront-porch vback-porch vfront-porch hsync-len vsync-len hdmi: 1280x720M@60:m24x1,50:74161969,1280,720,220,110,20,5,40,5 74161969 1280 720 220 110 20 5 40 5 hdmi: 1920x1080M@60:m24x1,50:148500148,1920,1080,148,88,36,4,44,5 148500148 1920 1080 148 88 36 4 44 5 ... Since the list is actually pretty long and not always easy to read, you can also filter by type of display (hdmi, lcd or lvds) => fbpanel lcd clock-frequency hactive vactive hback-porch hfront-porch vback-porch vfront-porch hsync-len vsync-len lcd: fusion7:m18x2,10:33264586,800,480,96,24,31,11,136,3 33264586 800 480 96 24 31 11 136 3 lcd: CLAA-WVGA:m18x2,48:27000027,800,480,40,60,10,10,20,10 27000027 800 480 40 60 10 10 20 10 ... => fbpanel lvds clock-frequency hactive vactive hback-porch hfront-porch vback-porch vfront-porch hsync-len vsync-len lvds: hannstar7:18x2,38:71108582,1280,800,80,48,15,2,32,6 71108582 1280 800 80 48 15 2 32 6 ... The above command just lists the available displays, when you want to set one, you need will to set the following variables: fb_hdmi controls HDMI display selection fb_lcd controls LCD display selection fb_lvds controls LVDS display selection fb_lvds2 controls LVDS2 display selection Also, when a display isn't used, you need to set it to off. Here is an example on how to setup the HDMI to display at 1080P and LVDS display to be the Hannstar 10' => setenv fb_lvds hannstar => setenv fb_hdmi 1920x1080M@60 => setenv fb_lcd off => saveenv Saving Environment to SPI Flash... SF: Detected SST25VF016B with page size 256 Bytes, erase size 4 KiB, total 2 MiB Erasing SPI flash...Writing to SPI flash...done => reset Once rebooted, you can have a look at the cmd_hdmi, cmd_lcd and cmd_lvds that U-Boot will have set => print cmd_hdmi cmd_hdmi=fdt set fb_hdmi status okay;fdt set fb_hdmi mode_str 1920x1080M@60; => print cmd_lvds cmd_lvds=fdt set fb_lvds status okay;fdt set fb_lvds interface_pix_fmt RGB666;fdt set ldb/lvds-channel@0 fsl,data-width ;fdt set ldb/lvds-channel@0 fsl,data-mapping spwg;fdt set t_lvds clock-frequency ;fdt set t_lvds hactive ;fdt set t_lvds vactive ;fdt set t_lvds hback-porch ;fdt set t_lvds hfront-porch ;fdt set t_lvds vback-porch ;fdt set t_lvds vfront-porch ;fdt set t_lvds hsync-len ;fdt set t_lvds vsync-len ; => print cmd_lcd cmd_lcd=fdt set fb_lcd status disabled Do not try to set those cmd_* variables yourself, they will be overwritten by U-Boot at bootup anyway. That's it, you should now be able to list, select and setup the displays the way you want. For another type of display, It depends on the type of display: LVDS: yes, since all the timings are inside the device tree node you can change them. Here is an example for our latest 7"1280x800 display, although only the latest U-Boot binary lists it, you can have it running by entering: => setenv fb_lvds tm070jdhg30:24:68152388,1280,800,5,63,2,39,1,1 => saveenv Note that it goes like this: setenv fb_xxx mode_str:connection-type:clk-frequency,hactive,vactive,hback-porch,hfront-porch,vback-porch,vfront-porch,hsync-len,vsync-len The connection-type is very important since it allows to specify: The data mapping: default is SPWG, need to add "j" to switch to JEIDA The split mode: for dual LVDS channels operations (for 1080P display for instance) need to add "s" The data width: can be 18 or 24 For instance, here is a fb_lvds setup for a dual channel JEIDA LVDS display with 24-bit witdth: => setenv fb_lvds 1080P60:js24:148500148,1920,1080,148,88,36,4,44,5 LCD: yes for U-Boot display, no for the kernel You can set the fb_lcd like it is done for LVDS above, however the timings will only be used to setup U-Boot, only the mode_str will be passed on to the kernel. This means that the kernel needs to know about the LCD beforehand. Here is an example for the ASIT500MA6F5D display: => setenv fb_lcd ASIT500MA6F5D:m24:32341861,800,480,88,40,32,13,48,3 => saveenv HDMI: yes (well more or less) Same as the LCD setting, only the mode_str is passed on to the kernel. The difference is that it can work out of the box on the kernel side if you ask for a standard resolution and standard refresh rate. For instance, setting fb_hdmi to 1920x1080M@30 will work automatically since the kernel is smart enough to recognize a known resolution (1080P) with a standard refresh rate (30fps).    
View full article
This is an example for user to transfer files between i.MX8MP Linux platform and other devices via Bluetooth. Environment : Hardware : i.MX8MP LPDDR4 EVK Board, Android Phone Software : L6.6.23-2.0.0   Step1 : Build Yocto image and burnt to the SD card or EMMC repo init -u https://github.com/nxp-imx/imx-manifest.git -b imx-linux-scarthgap -m imx-6.6.23-2.0.0.xml repo sync DISTRO=fsl-imx-xwayland MACHINE=imx8mp-lpddr4-evk source imx-setup-release.sh -b build-xwayland Add the following code to "conf/local.conf"          IMAGE_INSTALL:append = " glibc-gconv-utf-16" bitbake imx-image-full uuu -b emmc_all imx-image-full-imx8mp-lpddr4-evk.rootfs-20240919015845.wic Step2 : Test steps Boot board with "imx8mp-evk-usdhc1-m2.dtb" file. load Wi-Fi Firmware           root@imx8mp-lpddr4-evk:~# modprobe moal mod_para=nxp/wifi_mod_para.conf Load BT firmware and enable BT          root@imx8mp-lpddr4-evk:~# modprobe btnxpuart          root@imx8mp-lpddr4-evk:~# hciconfig                    root@imx8mp-lpddr4-evk:~# hciconfig hci0 up connect  the BT of Android Phone          root@imx8mp-lpddr4-evk:~# bluetoothctl          [bluetooth]# default-agent          [bluetooth]# agent on          [bluetooth]# discoverable on          [bluetooth]# scan on          [bluetooth]# scan off                    [bluetooth]# pair 90:F0:52:92:A6:6C          we need to type Yes on board and click 配对 on phone.                           [bluetooth]# connect 90:F0:52:92:A6:6C                 [Meizu16m]# quit          Transfer file          1). Android Phone-> i.MX8MP EVK Board          root@imx8mp-lpddr4-evk:~# /usr/libexec/bluetooth/obexd -a -n -r /root/ & obexctl                   Then select a file on your phone ad choose transfer by Bluetooth.                   2).i.MX8MP EVK Board -> Android Phone          [obex]# connect 90:F0:52:92:A6:6C                   [90:F0:52:92:A6:6C]# send /home/root/test.txt          Note :  1. Do not suggestion use IOS phone. 2. If your i.MX8MP board can not scan your BT device, Suggest change the device BT name and run on "scan on" command again.  
View full article