i.MX处理器知识库

取消
显示结果 
显示  仅  | 搜索替代 
您的意思是: 

i.MX Processors Knowledge Base

讨论

排序依据:
The Linux L4.9.11_1.0.0 RFP(GA) for i.MX6 release files are now available on www.nxp.com    Files available: # Name Description 1 L4.9.11_1.0.0-ga_images_MX6QPDLSOLOX.tar.gz i.MX 6QuadPlus, i.MX 6Quad, i.MX 6DualPlus, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo, i.MX 6Solox Linux Binary Demo Files 2 L4.9.11_1.0.0-ga_images_MX6SLEVK.tar.gz i.MX 6Sololite EVK Linux Binary Demo Files 3 L4.9.11_1.0.0-ga_images_MX6UL7D.tar.gz i.MX 6UltraLite EVK, 7Dual SABRESD, 6ULL EVK Linux Binary Demo Files 4 L4.9.11_1.0.0-ga_images_MX6SLLEVK.tar.gz i.MX 6SLL EVK Linux Binary Demo Files 5 L4.9.11_1.0.0-ga_images_MX7ULPEVK.tar.gz i.MX 7ULP EVK Linux Binary Demo Files  6 L4.9.11_1.0.0-ga_mfg-tools.tar.gz i.MX Manufacturing Toolkit for Linux L4.9.11_1.0.0 BSP 7 L4.9.11_1.0.0-ga_gpu-tools.tar.gz L4.9.11_1.0.0 i.MX VivanteVTK file 8 bcmdhd-1.141.100.6.tar.gz The Broadcom firmware package for i.MX Linux L4.9.11_1.0.0 BSP. 9 imx-aacpcodec-4.2.1.tar.gz Linux AAC Plus Codec for L4.9.11_1.0.0 10 fsl-yocto-L4.9.11_1.0.0.tar.gz L4.9.11_1.0.0 for Linux BSP Documentation. Includes Release Notes, User Guide.   Target boards: i.MX 6QuadPlus SABRE-SD Board and Platform i.MX 6QuadPlus SABRE-AI Board i.MX 6Quad SABRE-SD Board and Platform i.MX 6DualLite SABRE-SD Board i.MX 6Quad SABRE-AI Board i.MX 6DualLite SABRE-AI Board i.MX 6SoloLite EVK Board i.MX 6SoloX SABRE-SD Board i.MX 6SoloX SABRE-AI Board i.MX 7Dual SABRE-SD Board i.MX 6UltraLite EVK Board i.MX 6ULL EVK Board i.MX 6SLL EVK Board i.MX 7ULP EVK Board (Beta Quality)   What’s New/Features: Please consult the Release Notes.   Known issues For known issues and more details please consult the Release Notes.   More information on changes, see: README: https://source.codeaurora.org/external/imx/fsl-arm-yocto-bsp/tree/README?h=imx-morty ChangeLog: https://source.codeaurora.org/external/imx/fsl-arm-yocto-bsp/tree/ChangeLog?h=imx-morty
查看全文
Guide for Accessing GPIO From UserSpace Summary for Simple GPIO Example - quandry https://community.freescale.com/message/598834#598834
查看全文
Requirements: Host machine with Ubuntu 14.04 UDOO Quad/Dual Board uSD card with at least 8 GB Download documentation and install latest Official Udoobuntu OS (at the moment of writing: UDOObuntu 2.1.2), https://www.udoo.org/downloads/   Overview: This document describes how to install and test Keras (Open source neural network library) and Theano (numerical computation library for python ) for deep learning library usage on i.MX6QD UDOO board.  Installation: $ sudo apt-get update && sudo apt-get upgrade update your date system: e.g. $ sudo date -s “07/08/2017 12:00” First satisfy the run-time and build time dependencies: $ sudo apt-get install python-software-properties software-properties-common make unzip zlib1g-dev git pkg-config autoconf automake libtool curl  python-pip python-numpy libblas-dev liblapack-dev python-dev libatlas-base-dev gfortran libhdf5-serial-dev libhdf5-dev python-setuptools libyaml-dev libpython2.7-dev $ sudo easy_install scipy The last step is installing scipy through pip, and can take several hours. Theano First, we have a few more dependencies to get: $sudo pip install scikit-learn $sudo pip install pillow $sudo pip install h5py With these dependencies met, we can install a stable Theano release from the git source: $ git clone https://github.com/Theano/Theano $ cd Theano Numpy 1.9 cause conflicts with armv7, so we need to change the setup.py configuration: $ sudo nano setup.py Remove line    #       install_requires=['numpy>=1.9.1', 'scipy>=0.14', 'six>=1.9.0'], And add setup_requires=["numpy"], install_requires=["numpy"], Then install it: $ sudo python setup.py install Keras The installation can occur with the command: (this could take a lot of time!!!) $ cd .. $ git clone https://github.com/fchollet/keras.git $ cd keras $ sudo python setup.py install $ LC_ALL=C $sudo pip install --upgrade keras After Keras is installed, you will want to edit the Keras configuration file ~/.keras/keras.json to use Theano instead of the default TensorFlow backend. If it isn't there, you can create it. This requires changing two lines. The first change is: "image_dim_ordering": "tf"  --> "image_dim_ordering": "th" and the second: "backend": "tensorflow" --> "backend": "theano" (The final file should look like the example below) sudo nano ~/.keras/keras.json {     "image_dim_ordering": "th",     "epsilon": 1e-07,     "floatx": "float32",     "image_data_format": "channels_last",     "backend": "theano" } You can also define the environment variable KERAS_BACKEND and this will override what is defined in your config file : $ KERAS_BACKEND=theano python -c "from keras import backend" Testing Quick test: udooer@udoo:~$ python Python 2.7.6 (default, Oct 26 2016, 20:46:32) [GCC 4.8.4] on linux2 Type "help", "copyright", "credits" or "license" for more information. >>> import keras Using Theano backend. >>>  Test 2: Be aware this test take some time (~1hr on udoo dual): $ curl -sSL -k https://github.com/fchollet/keras/raw/master/examples/mnist_mlp.py | python Output: For demonstration, deep-learning-models repository provided by pyimagesearch and from fchollet git, and also have three Keras models (VGG16, VGG19, and ResNet50) online — these networks are pre-trained on the ImageNet dataset, meaning that they can recognize 1,000 common object classes out-of-the-box. $ cd keras $ git clone https://github.com/fchollet/deep-learning-models $ Cd deep-learning-models $ ls -l Notice how we have four Python files. The resnet50.py , vgg16.py , and vgg19.py  files correspond to their respective network architecture definitions. The imagenet_utils  file, as the name suggests, contains a couple helper functions that allow us to prepare images for classification as well as obtain the final class label predictions from the network Classify ImageNet classes with ResNet50 ResNet50 model, with weights pre-trained on ImageNet. This model is available for both the Theano and TensorFlow backend, and can be built both with "channels_first" data format (channels, height, width) or "channels_last" data format (height, width, channels). The default input size for this model is 224x224. We are now ready to write some Python code to classify image contents utilizing  convolutional Neural Networks (CNNs) pre-trained on the ImageNet dataset. For udoo Quad/Dual use ResNet50 due to avoid space conflict. Also we are going to use ImageNet (http://image-net.org/) that is an image database organized according to the WordNet hierarchy, in which each node of the hierarchy is depicted by hundreds and thousands of images. from keras.applications.resnet50 import ResNet50 from keras.preprocessing import image from keras.applications.resnet50 import preprocess_input, decode_predictions import numpy as np   model = ResNet50(weights='imagenet')   #for this sample I download the image from: http://i.imgur.com/wpxMwsR.jpg  img_path = 'elephant.jpg' img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x)   preds = model.predict(x) # decode the results into a list of tuples (class, description, probability) # (one such list for each sample in the batch) print('Predicted:', decode_predictions(preds, top=3)[0]) Save the file an run it. Results for elephant image: Top prediction was 0.8890 for African Elephant Testing with this image: http://i.imgur.com/4FIOwAN.jpg Results: Top prediction was: 0.7799 for golden_retriever. Now your Udoo is ready to use Keras and Theano as Deep Learning libraries, next time we are going to show some usage example for image classification models with OpenCV. References: GitHub - fchollet/keras: Deep Learning library for Python. Runs on TensorFlow, Theano, or CNTK.  GitHub - Theano/Theano: Theano is a Python library that allows you to define, optimize, and evaluate mathematical expres…  GitHub - fchollet/deep-learning-models: Keras code and weights files for popular deep learning models.  Installing Keras for deep learning - PyImageSearch 
查看全文
  Some our customers want to use the mfgtool to download the images to QSPI and boot up. When download the demo images on our website (Linux 4.1.15) to the QSPI-NOR on IMX7D SABRE-SDB. The error occurred as follows: Is it able to program the QSPI-NOR on i.MX7D SABRE-SDB by using MFG-Tool? Answer is yes. In the above error message we can see that the system can not find and detect the qspi, so it can not excute the following code,<CMD state="body="$ flash_erase /dev/mtd0 0 20">Erasing Boot partition</CMD>Updater" type="push" when use the mfgtool to download the images to the QSPI-NOR . The board i.MX7D SABRE-SDB and default BSP are boot up from EPDC.  Here customer want to boot up from QSPI, When using QSPI, you need to de-populate R388-R391, R396-R399 and populate R392-R395, R299, R300 in your hardware. QSPI signals are muxed with EPDC_D[7:0]. You can see the schematic, details you can see as follow. After hardware modify, you can use the mfgtool2-yocto-mx-sabresd-qspi-nor-mx25l51245g.vbs to download. And then boot up from qspi, boot mode you can refer to the schematic boot up setting. Both software and mfgtool you can download here http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/i.mx-applications-processors/i.mx-software-and-tools:IMXSW_HOME. Demo images can documents you can also get.    
查看全文
The Linux L4.1.15_2.1.0 for i.MX 6SLL Release is now available on www.nxp.com.   Files available: # Name Description 1 fsl-yocto-L4.1.15_2.1.0-ga.tar.gz Linux BSP Documentation for L4.1.15_2.1.0. Includes Release Notes, User Guide. 2 L4.1.15_2.1.0-ga_images_MX6SLL.tar.gz i.MX 6SLL EVK Linux Binary Demo Files 3 L4.1.15_2.1.0-ga_mfg-tools.tar.gz i.MX Manufacturing Toolkit for Linux L4.1.15_2.1.0 BSP 4 imx-aacpcodec-4.2.0.tar.gz Linux AAC Plus Codec for L4.1.15_2.1.0   Target boards: i.MX 6SLL EVK Board   Features: See detail features in Release Notes   Known Issues: For known issues and more details please consult the Release Notes.   Information of release, see: README: http://git.freescale.com/git/cgit.cgi/imx/fsl-arm-yocto-bsp.git/tree/README?h=imx-4.1-krogoth ChangeLog: http://git.freescale.com/git/cgit.cgi/imx/fsl-arm-yocto-bsp.git/tree/ChangeLog?h=imx-4.1-krogoth
查看全文
Revisions Revisions Description Details V1.0 Initial version   V1.2 Make a little update 1. Modify the path of the toolchain 2. Remove the command: make menuconfig 3. Modify the path of folder "out" in some commands   Hardware Requirement PC Host: Ubuntu for compiling, Windows for downloading and debugging Target: i.MX6ULL 14x14 EVK with LCD or HDMI TF card USB cables for console and download Power adapter Overview Ubuntu uses the same packaging management system (deb and apt) and with each development cycle pulls in the latest packages from Debian and then adapts them to Ubuntu specifics and adds more features and patches where necessary. They also push changes back to Debian and often developers are Ubuntu and Debian developers. Both of them have a nice UI and can install softwares easier than Yocto. The purpose of this doc is to install the Debian 8 Jessie Rootfs on NXP i.MX6ULL EVK Board. The doc contains several steps as following:    1. Download and compile the u-boot, kernel and dtb.    2. Get and modify the linaro rootfs.    3. Download all things to the SD card via MfgTool.    4. Run the Debian 8 Jessie in the board. Download and compile the u-boot, kernel and dtb.    a. Download the toolchain cd ~/ wget -c https://releases.linaro.org/components/toolchain/binaries/6.3-2017.02/arm-linux-gnueabihf/gcc-linaro-6.3.1-2017.02-i686_arm-linux-gnueabihf.tar.xz mkdir toolchain tar xvf gcc-linaro-6.3.1-2017.02-i686_arm-linux-gnueabihf.tar.xz -C toolchain/ --strip-components 1 export ARCH=arm export CROSS_COMPILE=../toolchain/bin/arm-linux-gnueabihf- mkdir out    b. Download and make the u-boot cd ~/ wget -c http://git.freescale.com/git/cgit.cgi/imx/uboot-imx.git/snapshot/uboot-imx-imx_v2016.03_4.1.15_2.0.0_ga.tar.bz2 mkdir uboot-imx tar jxvf uboot-imx-imx_v2016.03_4.1.15_2.0.0_ga.tar.bz2 -C uboot-imx/ --strip-components 1 cd uboot-imx make mx6ull_14x14_evk_defconfig make    c. Download and make the kernel and dtb cd ~/ wget -c http://git.freescale.com/git/cgit.cgi/imx/linux-imx.git/snapshot/linux-imx-imx_4.1.15_2.0.0_ga.tar.bz2 mkdir linux-imx tar jxvf linux-imx-imx_4.1.15_2.0.0_ga.tar.bz2 -C linux-imx/ --strip-components 1 cd linux-imx vi arch/arm/configs/imx_v7_defconfig Add a line “CONFIG_FHANDLE=y” in the file to prevent the error when boot into rootfs. ****************************************************************************** Note: If you want to use the HDMI port instead of LCD to output the screen, you should modify the file /arch/arm/boot/dts/imx6ull-14x14-evk.dts to add a child node in &i2c2 : sii902x: sii902x@39 {         compatible = "SiI,sii902x";         pinctrl-names = "default";         interrupt-parent = <&gpio2>;         interrupts = <13 IRQ_TYPE_EDGE_FALLING>;         mode_str ="1280x720M@60";         bits-per-pixel = <16>;         reg = <0x39>;         status = "okay"; }; ****************************************************************************** make imx_v7_defconfig make -j4 zImage dtbs    d. Copy the u-boot, kernel and dtb to a folder cd ~/ sudo cp uboot-imx/u-boot.imx  out/ sudo cp linux-imx/arch/arm/boot/zImage  out/ sudo cp linux-imx/arch/arm/boot/dts/imx6ull-14x14-evk.dtb  out/ Get and modify the linaro rootfs. cd ~/ wget -c https://releases.linaro.org/debian/images/alip-armhf/16.04/linaro-jessie-alip-20160428-22.tar.gz mkdir rootfs tar xvf linaro-jessie-alip-20160428-22.tar.gz -C rootfs/ --strip-components 1 cd rootfs tar jcvf linaro-jessie-alip-20160428-22.tar.bz2 ./* sudo mv linaro-jessie-alip-20160428-22.tar.bz2  ../out Now the uboot, kernel, dtb and rootfs are ready in folder ~/out/!   Download all things to the SD card via MfgTool. Download the MfgTool in: http://www.nxp.com/products/automotive-products/microcontrollers-and-processors/arm-mcus-and-mpus/i.mx-application-processors/i.mx-6-processors/sabre-board-for-smart-devices-based-on-the-i.mx-6quad-applications-processors:RD-IMX6Q-SABRE?tab=Design_Tools_Tab Select the “IMX6_L4.1.15_2.0.0_MFG-TOOL” and download. Extract “L4.1.15_2.0.0-ga_mfg-tools.tar.gz” to Windows, and then extract again the “mfgtools-with-rootfs.tar.gz” to <your path>/mfgtools/. You should rename the files in the folder ~/out/ and copy to the path <your path>/mfgtools/Profiles/Linux/OS Firmware/files/ to replace the original files: u-boot.imx -> u-boot-imx6ull14x14evk_sd.imx zImage -> zImage imx6ull-14x14-evk.dtb -> zImage-imx6ull-14x14-evk.dtb linaro-jessie-alip-20160428-22.tar.bz2 -> rootfs_nogpu.tar.bz2 Switch the SW602 in i.MX6ULL EVK board to D1: off, D2: on, insert the TF card in slot SD2 and power on the board. Connect the board with PC by two micro-USB to USB cables(one is for downloading and another is for watching log) Finally, open the script “mfgtool2-yocto-mx-evk-sdcard-sd2.vbs” in the <your path>/mfgtools/. When the “HID-compliant device” shows then click “Start”.   If the processing is done, all things have been download to the board and you can go to the next step. Run the Debian 8 Jessie in the board. The following table shows the DIP switch settings for booting from the TF slot. Switch D1 D2 D3 D4 SW601 OFF OFF ON OFF SW602 ON OFF - -   Then power on the board and the logs will show in the serial console. Debian 8 will automatic login to root. ****************************************************************************** Note: If you want to use the HDMI port instead of LCD to output the screen, you should press any key when the log: Hit any key to stop autoboot shows and change the bootargs like following example: setenv bootargs console=ttymxc0,115200 init=/init video=mxcfb0:dev=hdmi,1280x720M@60,if=RGB24,bpp=32 video=mxcfb1:off video=mxcfb2:off video=mxcfb3:off vmalloc=256M androidboot.console=ttymxc0 consoleblank=0 androidboot.hardware=freescale cma=384M saveenv ****************************************************************************** When inputting “startx &” in serial console, the alip GUI will appear in the screen.   You can also use command ”apt-get” to install softwares(E.g. Firefox as following). ****************************************************************************** Note: If you have issues with “sudo” on user UID, need to execute the following commands: root@linaro-alip:~# chown root:root /usr/bin/sudo root@linaro-alip:~# chmod 4755 /usr/bin/sudo root@linaro-alip:~# chown root:root /usr/lib/sudo/sudoers.so root@linaro-alip:~# chown root:root /etc/sudoers root@linaro-alip:~# chown root:root /etc/sudoers.d/ root@linaro-alip:~# chown root:root /etc/sudoers.d/README   Note: If you have issues with “su” from user to root, need to execute the following commands: root@linaro-alip:~# chown root:root /bin/su root@linaro-alip:~# chmod 4755 /bin/su   Note: If you want to disable the warning window “Failed to apply network settings” after executing command “startx &”, you should deactive the Bluetooth: root@linaro-alip:~# sudo systemctl stop bluetooth.service root@linaro-alip:~# sudo systemctl disable bluetooth.service ******************************************************************************
查看全文
Issue: kernel panic when repeating plug/unplug USB device(e.g. USB flash disk) in Linux 4.1.15 The issue is in kernel BLOCK DEVICE, this is not a hardware related issue(happens to all devices running L4.1.15 or L4.4.x), please refer to following link on kernel.org for more details and fixes: blockdev kernel regression (bugzilla 173031) - Patchwork 
查看全文
The Linux L4.1.15_2.0.3 Patch for i.MX 6ULL@900MHz Release is now available on www.nxp.com. BSP Updates and Releases -> Linux -> Linux 4.1.15_2.0.3 Patch.   Files available: # Name Description 1 L4.1.15_2.0.3_6ULL_patch_images.tar.gz i.MX 6ULL-EVK@900MHz Linux Binary Demo Files   Information of release, see: README: http://git.freescale.com/git/cgit.cgi/imx/fsl-arm-yocto-bsp.git/tree/README?h=imx-4.1-krogoth ChangeLog: http://git.freescale.com/git/cgit.cgi/imx/fsl-arm-yocto-bsp.git/tree/ChangeLog?h=imx-4.1-krogoth
查看全文
Overview As more and more communication required between online and offline, the QR code is widely used in the mobile payment, mobile small apps, industry things identification and etc. The i.MX6UL/ULL has the IP of CSI and PXP for camera connection and image CSC/FLIP/ROTATION acceleration. A LCDIF IP is supporting the display, but no 3D IP support. This means this low power and low end AP is very suitable for the industry HMI segment, which does not require a cool 3D graphic display, but a simple and straightforward GUI for interaction. QR code scanner is one of the use cases in the industry segment, which more and more customer are focusing on. The i.MX6UL CPU freq of i.MX6UL is about 500Mhz, and it does not have GPU IP, so a lightweight GUI and window system is required. Here we recommend the QT with wayland backend (without X11), which would make the window system small and faster than traditional X11 UI. Why chose QT is because of it has open source version, rich components, platform independent, good performance for embedded system and strong development staffs like QtCreator for creating application. How to enable the QT development environment, check this: Enable QT developement for i.MX6UL (v2)  Here I made a QR code scanner demo based on QT5.6 + QZXing (QR/Bar code scan engine) running on the i.MX6UL EVK board with a UVC camera (at least 640x480 resolution is required) and 480x272px LCD. Source code is open here (License Apache2.0): https://github.com/muddog/QRScanner  Implementation To do camera preview and capture, you must think on the gstreamer first, which is easy use and has the acceleration pads which implemented by NXP for i.MX6UL. Yes, it's very easy for you to enable the preview in console like: $ gst-launch-1.0 v4l2src device=/dev/video1 ! video/x-raw,format=YUY2,width=640,height=320 ! imxvideoconvert_pxp ! video/x-raw,format=RGB16 ! waylandsink It works under the i.MX6UL EVK, with PXP IP to do color space convert from YUY2 -> RGB16 acceleration, also the potential scaling of the image. The CPU loading of this is about 20-30%, but if you use the component of "videoconvert" to replace the "imxvideoconvert_pxp", we do CSC and scale by CPU, then the loading would increase to 50-60%. The "/dev/video1" is the device node for UVC camera, it may different in your environment. So our target is clear, create such pipeline (with PXP acceleration) in the QT application, and use a appsink to get preview images, do simple "sink" to one QWidget by drawing this image on the widget surface for preview (say every 50ms for 20fps). Then in other thread, we fetch the preview buffer in a fixed frequency (like every 0.5s), then feed it into the ZXing engine to decode the strings inside this image. Here are the class created inside the source code: ScannerQWidgetSink It act as a gstreamer sink for preview rendering. Init the pipeline, create a timer with timeout every 50ms. In the timer handler, we use appsink to copy the camera buffer from gstreamer, and tell the ViewfinderWidget to do update (re-draw event). ViewfinderWidget This class inherit from the QWidget, which draw the preview buffer as a QImage onto it's own surface by using QPainter. The QImage is created at the very begining with the image buffer created by the ScannerQWidgetSink. Because QImage itself does not maintain the image buffer, so the buffer must be alive during it's usage. So we keep this buffer during the ScannerQWidgetSink life cycle, copy the appsink buffer from pipeline to it for preview. MainWindow Create main window, which does not have title bar and border. Start any animation for the red line scan bar. Create instance of DecoderThread and ScannerQWidgetSink. Setup and start them. DecoderThread A infinite loop, to wait for a available buffer released by the ScannerQWidgetSink every 0.5s. Copy the buffer data to it's own buffer (imgData) to avoid any change to the buffer by sink when doing decoding. Then feed this copy of buffer into ZXing engine to get decoder result. Then show on the QLabel. Screenshot under wayland (weston) desktop: Customize Camera instance Now I use the UVC camera which pluged in the USB host, which device node is /dev/video1. If you want to use CSI or other device, please change the construction parameters for ScannerQWidgetSink(): sink = new ScannerQWidgetSink(ui->widget, QString("v4l2src device=/dev/video1")); Image resolution captured and review Change the static member value of ScannerQWidgetSink class: uint ScannerQWidgetSink::CAPTURE_HEIGHT = 480; uint ScannerQWidgetSink::CAPTURE_WIDTH = 640; Preview fps and decoding frequency Find the "framerate=20/1" strings in the ScannerQWidgetSink::GstPipelineInit(), change to your fps. You also have to change the renderTimer start timeout value in the ::StartRender(). The decoding frequency is determined by renderCnt, which determine after how many preview frames showed to feed the decoder. Main window size It's fixed size of main window, you have to change the mainwindow.ui. It's easy to do in the QtCreate Designer. FAQ Why not use CSI camera in demo? Honestly, I do not have CSI camera module, it's also DNP when you buying the board on NXP.com. So a widely used UVC camera is preferred, it's also easy for you to scan QR code on your phone, your display panel etc. Why not use QCamera to do preview and capture? The QCamera class in the Qtmultimedia component uses the camerabin2 gstreamer plugin, which create a very long pipeline for different usage of viewfinder, image capture and video encoder. Camerabin2 would eat too much CPU and memory resource, take picture and recording are very very slow. The preview of 30fps would eat about 70-80% CPU loading even I hacked it using imxvideoconvert_pxp instread of software videoconvert. Finally I give up to implement the QRScanner based on QCamera. How to make sure only one instance of QT app is running? We can use QSharedMemory to create a share memory with a unique KEY. When second instance of app is started, it would check if the share memory with this KEY is created or not. If the shm is there, it means there's already one instance running, it has to exit(). But as the QT mentioned, the QSharedMemory can not be destroyed correctly when app crashed, this means we have to handle each terminate signal, and do delete by ourselves: static QSharedMemory *gShm = NULL; static void terminate(int signum) {    if (gShm) {       delete gShm;       gShm = NULL;    }    qDebug() << "Terminate with signal:" << signum;    exit(128 + signum); } int main(int argc, char *argv[]) {    QApplication a(argc, argv);    // Handle any further termination signals to ensure the    // QSharedMemory block is deleted even if the process crashes    signal(SIGHUP, terminate ); // 1    signal(SIGINT, terminate ); // 2    signal(SIGQUIT, terminate ); // 3    signal(SIGILL, terminate ); // 4    signal(SIGABRT, terminate ); // 6    signal(SIGFPE, terminate ); // 8    signal(SIGBUS, terminate ); // 10    signal(SIGSEGV, terminate ); // 11    signal(SIGSYS, terminate ); // 12    signal(SIGPIPE, terminate ); // 13    signal(SIGALRM, terminate ); // 14    signal(SIGTERM, terminate ); // 15    signal(SIGXCPU, terminate ); // 24    signal(SIGXFSZ, terminate ); // 25    gShm = new QSharedMemory("QRScannerNXP");    if (!gShm->create(4, QSharedMemory::ReadWrite)) {       delete gShm;       qDebug() << "Only allow one instance of QRScanner";       exit(0);    } .....
查看全文
The OpenSSL recipe halts saying it can't find find.pl . How to resolve this problem?   From the blog, linked below : create file find.pl in /etc/perl.   Missing find.pl compiling OE - Kemp's blog    "find.pl" content :   warn "Legacy library @{[(caller(0))[6]]} will be removed from the Perl core distribution in the next major release. Please install it from the CPAN distribution Perl4::CoreLibs. It is being used  at @{[(caller)[1]]}, line @{[(caller)[2]]}.\n";   # This library is deprecated and unmaintained. It is included for # compatibility with Perl 4 scripts which may use it, but it will be # removed in a future version of Perl. Please use the File::Find module # instead.   # Usage: #              require "find.pl"; # #              &find('/foo','/bar'); # #              sub wanted { ... } #                            where wanted does whatever you want. $dir contains the #                            current directory name, and $_ the current filename within #                            that directory. $name contains "$dir/$_". You are cd'ed #                            to $dir when the function is called. The function may #                            set $prune to prune the tree. # # For example, # # find / -name .nfs\* -mtime +7 -exec rm -f {} \; -o -fstype nfs -prune # # corresponds to this # #              sub wanted { #               /^\.nfs.*$/ && #               (($dev,$ino,$mode,$nlink,$uid,$gid) = lstat($_)) && #               int(-M _) > 7 && #               unlink($_) #               || #               ($nlink || (($dev,$ino,$mode,$nlink,$uid,$gid) = lstat($_))) && #               $dev < 0 && #               ($prune = 1); #              } # # Set the variable $dont_use_nlink if you're using AFS, since AFS cheats.   use File::Find ();   *name                            = *File::Find::name; *prune                            = *File::Find::prune; *dir                            = *File::Find::dir; *topdir                            = *File::Find::topdir; *topdev                            = *File::Find::topdev; *topino                            = *File::Find::topino; *topmode              = *File::Find::topmode; *topnlink              = *File::Find::topnlink;   sub find {   &File::Find::find(\&wanted, @_); }   1;
查看全文
The purpose of the document is to help customer setup development  environment of android BSP, The document includes the following contents: 1.Setup environment for compiling android BSP source code 2. Setup tftp and NFS environment for android development 3. Common Steps of Porting android  to customized borad ( L3.0.35 kernel) Note: (1) ubuntu version is suitable for 12.04/14.04/15.04 (2) android BSP version is 4.2.2 / 4.3 / 4.4.2  If cusotmer is using android5.1.1 / android 6.0 or above, The way of porting kernel should be focused on adjusting device tree. (3)Each andoid BSP has its own MFG tools version. User should pay attention to this, don't use wrong version of MFG Tools. NXP TIC team Weidong Sun
查看全文
MIPI can support video streaming over 1, 2, 3 and 4 lanes. On i.MX6 Sabre boards, the OV5640 camera supports 1 or 2 lanes and the NXP Linux Kernel uses 2 lanes as default. In order to use only one lane, follow the steps below: 1 - Change the board Device Tree on Linux Kernel. On file <linux kernel folder>/arch/arm/boot/dts/imx6qdl-sabresd.dtsi, find the entry "&mipi_csi" and change lanes from 2 to 1. 2 - Configure OV5640 to use only one lane instead of two. On file <linux kernel folder>/drivers/media/platform/mxc/capture/ov5640_mipi.c, change the register 0x300e value from 0x45 to 0x05. This register setup is located at struct ov5640_init_setting_30fps_VGA. 3 - Build the kernel and device tree files. 4 - Test the camera. Unit test can be used to test the video capture: /unit_tests/mxc_v4l2_overlay.out -di /dev/video1 -ow 1024 -oh 768 -m 1 5 - Checking if it's really using one lane. MIPI_CSI_PHY_STATE resgister (address 0x021D_C014) provides the status of all data and clock lanes. During video streaming using 2 lanes, the register value constantly changes its value between 0x0000_0300 and 0x0000_0330. When using only one lane, this register value constantly changes its value between 0x0000_0300 and 0x0000_0310. To read the register value during the stream, run the video test with &: /unit_tests/mxc_v4l2_overlay.out -di /dev/video1 -ow 1024 -oh 768 -m 1 & Now, run the memtool: /unit_tests/memtool -32 0x021dc014 1 i.MX6DL running mxc_v4l2_overlay.out with only one lane:
查看全文
1. Description     These patches are used to support MPU 8080 LCD on L3.14.52_1.1.0_GA BSP.     They are based on ELCDIF hardware module, iMX6UL and iMX7D is the reference platform.   2. File List -- 0001-Add-ST7789S-MPU-LCD-support-for-iMX6UL-board.patch    Patch to support MPU display for iMX6UL, ST7789S 240*320 panel is the example.   -- 0002-Add-ST7735R-MPU-LCD-support-for-iMX7D-board.patch    Patch to support MPU display for iMX7D, ST7735R 128*128 panel is the example.   -- readme.txt    this file, please refer to it before use the patches   3. Requirement - iMX6UL EVK board or iMX7D SabreSD board. - L3.14.52_1.1.0_GA kernel.   4. How to use -- Copy the patch files to kernel folder.     $ cd ~/L3.14.52_GA1.1.0/build-imx7dsabresd-X11/tmp/work/imx7dsabresd-poky-linux-gnueabi/linux-imx/3.14.52-r0/git     $ git apply ./0001-Add-ST7789S-MPU-LCD-support-for-iMX6UL-board.patch     $ git apply ./0002-Add-ST7735R-MPU-LCD-support-for-iMX7D-board.patch   -- Build the new kernel image:     $ cd ~/L3.14.52_GA1.1.0/build-imx7dsabresd-X11/tmp/work/imx7dsabresd-poky-linux-gnueabi/linux-imx/3.14.52-r0/git     $ export CROSS_COMPILE=~/L3.14.52_GA1.1.0/build-imx7dsabresd-X11/tmp/sysroots/x86_64-linux/usr/bin/arm-poky-linux-gnueabi/arm-poky-linux-gnueabi-     $ export ARCH=arm     $ make imx_v7_defconfig     $ make zImage     $ make dtbs   5. How to add a new MPU panel     1) in dts file, such as imx6ul-14x14-evk-i80lcd.dts, update the panel name "lcd_panel",        update the PINs in "pinctrl_lcdif_dat" and "pinctrl_lcdif_ctrl" for the new panel,        the reset and rs PINs can be from GPIO pin, lcd_reset_gpio and lcd_rs_gpio. &lcdif { pinctrl-names = "default"; pinctrl-0 = <&pinctrl_lcdif_dat        &pinctrl_lcdif_ctrl>; display = <&display0>; status = "okay"; display0: display {   mpu-mode;   lcd_reset_gpio = <&gpio3 14 0>;   lcd_panel = "ST7789S-QVGA"; }; };       2) Reference to "mxsfb_st7789s_qvga.c", add a new panel driver code.       3) Add the new panel support in Makefile and Kconfig under "drivers/video/mxc/"       4) Add the new panel support in file "mxsfb.c" and "mxsfb.h"       5) Add the new panel support in default kernel config file "imx_v7_defconfig"   Note: mpu_lcd_fb_test.tar.gz is the test application, for 8080 display, it is not sync display, so software need call ioctl to refresh the LCD.     2016-08-02: Add the uboot reference patch for iMX7D. File: L3.14.52_Uboot_mpu_display.patch  
查看全文
[Brief description] (1)Contents The ducoment introduced how to expand Gigabit Ethernet based on i.MX6 PCI Express, and attached schematics in DSN & pdf format. (2)Binary file for EEROM I have the binary file used to debug intel82574 circuit in this schematic, If customer wants to use it to debug board based on i.MX6+Intel82574, she can submit a case for me to get the file by our Salesforece system. Best Regards, TIC Weidong Sun Email: weidong.sun@nxp.com
查看全文
Quick guide on how to get started with Linux on i.MX 6UL EVK board using MfgTool from L3.14.52 release: Download MfgTool from here (Version is IMX6_L3.14.52_MFG_TOOL (REV L3.14.52_1.1.0) under “Programmers (Flash, etc.)”): http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/i.mx-applications-processors/i.mx-6-processors/i.mx6qp/i.mx-6ultralite-processor-low-power-secure-arm-cortex-a7-core:i.MX6UL?fpsp=1&tab=Design_Tools_Tab Unpack the archive and unpack mfgtools-with-rootfs.tar.gz edit cfg.ini and change following entries: mmc needs to be set to 1 6uluboot needs to be set to evk 6uldtb needs to be set to 14x14-evk Connect USB cable, USB debug cable to your PC.Open terminal to serial port (115200, 8N1). Insert uSD card to the slot on i.MX 6UL CPU module Set boot switches on SW602 [2:1] to on:off Power on the board Start MfgTool2.exe. HID device should be detected. Press "Start" button. Downloading should start. Executed steps are visible in the debug terminal. When you see "Done" printed, downloading has succeeded. Set boot switches on SW602 [2:1] to off:on, SW601[4:1] TO off:on:off:on Reset i.MX 6UL EVK (or power off then on), and boot to Linux. In case of any error, inspect serial output on debug terminal to see what has gone wrong. This document was generated from the following discussion: Getting started with i.MX6UL EVK and MfgTool L3.14.52
查看全文
In some customers’ design they use the different DRAM from the one used on our reference board. So customers need to customize the DRAM to make it work well on their design. About the i.MX6x hardware design customers can refer to IMX6DQ6SDLHDG.pdf and the section 5 DRAM interface requirements for migration on AN4397. After finishing the hardware design there are two tools important for the DRAM boot up and debug: DRAM Register Programming aid And DRAM Stress Test 1\DRAM Register Programming aid Our expert team create the script to make it easier to work on DDR initialization. You can see all the scripts on different chips and the link is: i.MX Design&amp;Tool Lists The script include 3 sections, when you open it you can see the details. Run basic DDR initialization and test memory and open a debugger memory window pointing to the DDR memory map starting address. Try writing a few words and verify if they can be read correctly. If not, re-check the DDR initialization sequence and if the DDR has been correctly soldered onto the board. It is also recommended to re-check the schematic to ensure the DDR memory has been connected to the SoC correctly. In some cases, a DRAM calibration routine may need to be executed. About the details use and introduction on this script you can refer to Freescale i.MX6 DRAM Port Application Guide-DDR3 After configure the DRAM, you need to use the DRAM Stress Test to perform calibrations the performance and then regulate some parameters. 2\DRAM Stress Test DDR_Stress_Tester is a software application for fine tuning DDR parameters and verifying DDR performance on i.MX6 boards. It performs write leveling, DQS gating, read/write delay calibration on the target board to match the layout of the board and archive the best DDR performance. In addition, the stress test can help the user to verify the DDR performance on their boards. The DDR stress test tool serves two purposes. First, it can perform calibrations for DDR3 to match the MMDC PHY delay settings with PCB for optimal DRAM performance. The process is fully automatic, and therefore the customers can get there DDR3 working in much shorter time. In addition, the tool can run a memory stress test to verify the DDR3 functionality as well as the reliability. The stress test can help verifying the hardware connections, MMDC registers parameters, and DDR3 mode registers setting. The most important purpose of the test is that it allows the customers to verify that the DDR3 operations are stable on their board. The newest version  of DRAM Stress Test tool you can see in our community: i.MX6/7 DDR Stress Test Tool V2.51 And the old version you can see in the follow link: i.MX6 DDR Stress Test Tool V1.0.3 About how to use this tool you can read the use guide. Besides , you also can refer to the Freescale i.MX6 DRAM Port Application Guide-DDR3 By the way, if customers use the different DRAM from our reference design when the use the mfgtool to download the images, they need to build manufacturing images for mfgtool. Take the Linux 3.14.52 BSP as an example: $ bitbake fsl-image-mfgtool-initramfs Hope this can help you.
查看全文
Hardware connection: there are two board-to-board connectors on E-INK daughter card IMXEBOOKDC4, while there is only one on i.MX7D Sabre board, as the picture below. This might be a bit confusing to connect the two: Checked with internal, the original design was trying to wire both eLCDIF and EPDC bus out to one daughter card, add the flexibility to have different configurations on one display daughter card(LCD/EPD). On i.MX7D Sabre board, only one connector is available for EPDC bus. Here is how we connect i.MX7D Sabre and IMXEBOOKDC4: Software setup: here we use pre-build L3.14.38_6UL7D_Beta Linux as our boot-image, steps to setup/boot/test EPDC: 1. download and decompress BSP pre-build image package "L3.14.38_beta_images_MX6UL7D.tar.gz", you should be able to find the SD image in it -- "fsl-image-gui-x11-imx7dsabresd.sdcard" 2. program the SD image on your SD card(>800 MBytes) with command(I'm running this in Ubuntu): "dd if=fsl-image-gui-x11-imx7dsabresd.sdcard of=/dev/sdb;sync" 3. insert SD card to the slot(J6) on i.MX7D Sabre board, connect debug-UART and power-on the board 4. modify the u-boot environment variables as below:      a.) setenv fdt_file imx7d-sdb-epdc.dtb           (originally this is "fdt_file=imx7d-sdb.dtb")      b.) setenv mmcargs 'setenv bootargs console=${console},${baudrate} root=${mmcroot} epdc video=mxcepdcfb:E060SCM,bpp=16'           (originally this is "mmcargs=setenv bootargs console=${console},${baudrate} root=${mmcroot}") 5. boot into Linux kernel, run unit-test: "/unit_tests/mxc_epdc_fb_test.out", should be able to have test patterns running on EPD.
查看全文
The vbs file is a script file in mfgtool. In fsl android lollipop consolidate and later MFGTOOL version, You just need add a new vbs item for new board and have not need to change the ucl2.xml. The below is the example struct. Set wshShell = CreateObject("WScript.shell") wshShell.run "mfgtool2.exe -c ""linux"" -l ""SDCard-Android"" -s ""board=sabresd"" -s ""folder=sabresd"" -s ""soc=6dl"" -s ""mmc=2"" -s ""data_type=-f2fs""" Set wshShell = Nothing Explain for each option: -l: storage type      There three type for android: Nand-Android\eMMC-Android\SDCard-Android -s: extend variable      board: It is used to download uboot and dts in init system.      folder: there are three type: sabresd sabreauto evk                the android image is located in: files/android/%folder%/      soc: Used to define android image name. types: 6q, 6dl, 6sx, 6sl.      mmc: define the storage idex.      data_type: if the type of data partition is f2fs, need define data_type=-f2fs      ldo: if the board is 1.2G, need to define it to -ldo      plus: if the board is 6qp, need too define it to p
查看全文
  IMX6 S/DL for consumer has both PXP and IPU. Automotive and Industrial versions doesn't have PXP. As IMX6 also has IPU, the Linux framebuffer driver uses IPU and not PXP. Note : “pxp_v4l2_test.out” from unit_tests was made for processors (i.MX6 SL), that have only PXP and its framebuffer driver applies PXP to accelerate image processing. “pxp_v4l2_test.out” should not be used with i.MX6 S/DL. To test PXP device with i.MX6 S/DL users have to try “pxp_test.out”.
查看全文
I've done some research in Android boot optimization in the past months and have some getting. This page is for recording and sharing purpose only. It's target to provide some hints and directions for Android optimization. It's NOT a Freescale official document or patch release. The code/doc inside is only for reference. Background:      1. I've used SabreSD + Android KK 4.4.2 GA 1.0 as a reference platform.      2. I'm not doing some popular optimization way such as "hibernation", "suspend". I'm trying to "optimize" the boot process by re-arranging the boot process and make GUI related process run earlier and fine tune some boot code for running faster.      3. It's target to the Android IVI product. So, some features that will never be used in a IVI environment will be disabled or removed. Minor of them. I've come out with a patch package (latest is milestone 4 which is "_m4" in the version for short) and  a training document. I didn't find any confidential information from the patch or doc, so I'm open the sharing here. Updated on 2016/01/08 for new version (milestone m5): --------------------------------------------------------------------------------------- Change log against previous (milestone 4) version:      1. BSP base changed to Android KK 4.4.3 GA 2.0 which has a Linux kernel 3.10.53      2. Linux kernel and uboot optimization added. Kernel boot time (POR -> Android init entry) is less than 1.5s.      3. Some bug fixes.      4. Document updated accordingly. Total boot time tested on SabreSDP is about 8s.
查看全文