i.MX处理器知识库

取消
显示结果 
显示  仅  | 搜索替代 
您的意思是: 

i.MX Processors Knowledge Base

讨论

排序依据:
The purpose of this article is to show how to reduce the boot time on i.MX 8QXP using U-Boot Falcon Mode. The general technique is presented in the AN14093. This article was tested on LF-6.6.23-2.0.0 BSP. How to do it 1. Follow the steps in the i.MX Yocto Project User's Guide and prepare your Yocto building environment. We will further assume that the BSP is in the ~/imx-yocto-bsp directory and the build directory is ~/imx-yocto-bsp/build. 2. Unpack the attached archive in ~/imx-yocto-bsp/sources. This should create the ~/imx-yocto-bsp/sources/meta-imx-fastboot directory.  3. Add the meta-imx-fastboot layer to your build using the following command: bitbake-layers add-layer ~/imx-yocto-bsp/sources/meta-imx-fastboot 4. If you've previously built an image in the same tree, clean the u-boot-imx and imx-boot packages using the following command: bitbake -c clean u-boot-imx imx-boot 5. Build the new image. Out of the box, this package is configured for core-image-minimal. We will show you below how to adapt it for other images: bitbake core-image-minimal 6. Write the resulted image on eMMC/SD using your preferred method and boot the board. 7. By default, the board will boot normally. To enable fast boot, stop the board in U-Boot, and run the following command: u-boot => run prepare_fdt 8. Reboot the board. From this point on, the board should boot in fast mode. Far less messages will be printed by the kernel or systemd during boot. You may further optimize the boot time by removing unnecessary features from the kernel and/or removing unnecessary services started by systemd. Please refer to AN14093. 9. If you ever want to re-enter U-Boot, please keep the 'c' key pressed in the serial console during board power-on. It's easiest if you press and keep the 'c' key pressed before powering on/pressing the reset button. How it works The layer we've added contains patches for U-Boot, ATF and imx-mkimage. In addition, it modifies the core-image-minimal recipe. In U-Boot, the necessary options for Falcon Mode are added in a new configuration file, named imx8qxp_mek_falcon_defconfig, as well as an implementation of the spl_start_uboot() function. In ATF, the device tree load address is added in the correct parameter. In mkimage, two new targets are created: kernel-atf-container.img (to be deployed in the boot partition) and uImage (to be deployed in the rootfs). The change in the core-image-minimal recipe ensures that the new files are copied in the resulting image. If you want to build a different image, you need to copy the content of core-image-minimal.bbappend in a new file, named according to the image you want to build. For example, if you want to build imx-image-full, you could use the following command: cp ~/imx-yocto-bsp/sources/meta-imx-fastboot/recipes-fsl/images/core-image-minimal.bbappend ~/imx-yocto-bsp/sources/meta-imx-fastboot/recipes-fsl/images/imx-image-full.bbappend       *** DISCLAIMER *** Any support, information, and technology (“Materials”) provided by NXP are provided AS IS, without any warranty express or implied, and NXP disclaims all direct and indirect liability and damages in connection with the Material to the maximum extent permitted by the applicable law. NXP accepts no liability for any assistance with applications or product design. Materials may only be used in connection with NXP products. Any feedback provided to NXP regarding the Materials may be used by NXP without restriction.
查看全文
This knowledge base add imx8ulp swupdate support based on AN13872. Uboot patch: add_swupdate_support_for_imx8ulp_in_uboot.patch swupdate-scripts patch: 0001-add-imx8ulp-support-in-swupdate-scripts.patch Note You must generate new key referring  5.4.3.3 Generating a key before build. Commands 1. base image build command   ./assemble_base_image.sh -b imx8ulp -e emmc -d doublecopy -m   2. update image build command   ./swu_update_image_build.sh -e -s ./priv.pem -b imx8ulp -g   3. flash command:   uuu -b emmc_all .\imx-boot-imx8ulp-lpddr4-evk-sd.bin-flash_singleboot_m33 .\swu_doublecopy_rescue_imx8ulp_emmc_20240914.sdcard       Useful links: https://sbabic.github.io/swupdate/building-with-yocto.html#automatic-sha256-in-sw-description https://sbabic.github.io/swupdate/sw-description.html?highlight=hwrevision   
查看全文
This article describes how to use the Preempt-RT Linux kernel in the i.MX Linux BSP 6.6.23_2.0.0. This is particularly useful for platforms such as i.MX 95, for which there is not yet a Real-Time Edge Software release.    How to do it    1. Follow the steps in the i.MX Yocto Project User's Guide and build your preferred image, for example core-image-minimal. Will further assume that the BSP is in the ~/imx-yocto-bsp directory and the build directory is ~/imx-yocto-bsp/build. 2. Unpack the attached archive in ~/imx-yocto-bsp/sources. This should create the ~/imx-yocto-bsp/sources/meta-otherkernels directory. This archive will work out of the box for i.MX 95 and i.MX 93, and may require some modifications for other platforms, as described below. 3. Add the meta-otherkernels to your build using the following command: bitbake-layers add-layer ~/imx-yocto-bsp/sources/meta-otherkernels 4. Add the OVERRIDES .= ":preempt-rt" to ~/imx-yocto-bsp/build/conf/local.conf file using the following command: echo 'OVERRIDES .= ":preempt-rt"' >> ~/imx-yocto-bsp/build/conf/local.conf This enables the Preempt-RT kernel for your build. You can always go back to your regular kernel by removing this line from ~/imx-yocto-bsp/build/conf/local.conf. 5. Build again your image. After booting this image, you can check the kernel version using: uname -a      How it works    The meta-otherkernels layer contains a .bbappend  for the linux-imx kernel recipe which replaces the sources URL with the Real-Time Edge kernel when the "preempt-rt" override is active. In addition, due to the fact that the current real-time kernel does not support all the board configurations, the layer config file (meta-otherkernels/conf/layer.conf) removes from the build the device tree files that are not supported (when "preempt-rt" override is active).   If you use this layer for other SoCs (other than i.MX 93/i.MX 95), you may need to edit the meta-otherkernels/conf/layer.conf and add the unsupported device trees. If an  unsupported device tree is left, Yocto will give an error during build.        *** DISCLAIMER *** Any support, information, and technology (“Materials”) provided by NXP are provided AS IS, without any warranty express or implied, and NXP disclaims all direct and indirect liability and damages in connection with the Material to the maximum extent permitted by the applicable law. NXP accepts no liability for any assistance with applications or product design. Materials may only be used in connection with NXP products. Any feedback provided to NXP regarding the Materials may be used by NXP without restriction.
查看全文
  This guide assumes that the developer has knowledge of the V4L2 API and has worked or is familiar with sensor drivers and their operation within the Linux kernel. This guide does not focus on the details of the sensor driver development that you want to port. It is assumed that you already have an existing driver for your sensor, before making the port. The version of the ISP's was 6.6.36 Linux BSP. If a different version is used, it is the developer's responsibility to review the API documentation for the corresponding version, since there may be changes that affect what is indicated in this guide. To port the camera sensor, the following steps must be taken as described in the following sections: Define sensor attributes and create instances. ISS Driver and ISP Media Server. Sensor Calibration Files. VVCAM Driver Creation. Device Tree Modifications. Define Sensor Attributes and Create Instances The following three steps are already implemented in CamDevice and are included for reference only. Step 1: Define the sensor attributes in the IsiSensor_s data structure. Step 2: Define the IsiSensorInstanceConfig_t configuration structure that will be used to create a new sensor instance. Step 3: Call the IsiCreateSensorIss() function to create a new sensor instance. ISS Driver and ISP Media Server Step 0 - Use a driver template as base code: Drivers can be found in $ISP_SOURCES_TOP/units/isi/drv/. For example, the ISP sources, come with the OV4656 and OS08a20 drivers. $ISP_SOURCES_TOP indicates the path of your working directory, where the respective sources are located. Step 1 - Add your <SENSOR> ISS Driver: Create the driver entry for your sensor in the path $ISP_SOURCES_TOP/units/isi/drv/<SENSOR>/source/<SENSOR>.c. Change all occurrences of the respective sensor name within the code, for instance, OV4656 -> <SENSOR>, respecting capital letters where applicable. Step 2 - Check the information on the IsiCamDrvConfig_s data structure: Data members defined in this data structure include the sensor ID (CameraDriverID) and the function pointer to the IsiSensor data structure. By using the address of the IsiCamDrvConfig_s structure, the driver can then access the sensor API attached to the function pointer. The following is an example of the structure: /***************************************************************************** * Each sensor driver needs to declare this struct for ISI load *****************************************************************************/ IsiCamDrvConfig_t IsiCamDrvConfig = {     .CameraDriverID = 0x0000,     .pIsiHalQuerySensor = <SENSOR>_IsiHalQuerySensorIss,     .pfIsiGetSensorIss = <SENSOR>_IsiGetSensorIss, };   Important Note: Modify the CameraDriverID according to the chip ID of your sensor. Apply this change to any Chip ID occurrence within the code. Step 3 - Check sensor macro definitions: In case there is any macro definition in the ISS Driver code, which involves specific properties of the sensor, you should modify it according to your requirements. For example: #define <SENSOR>_MIN_GAIN_STEP         (1.0f/16.0f)   Step 4 - Modify ISP Media Server build tools: Changes required in this step include: Add a CMakeLists.txt file in $ISP_SOURCES_TOP/units/isi/drv/<SENSOR>/ that builds your sensor module. Modify the CMakeLists.txt located at $ISP_SOURCES_TOP/units/isi/drv/CMakeLists.txt to include and reference your sensor directory. Modify the $ISP_SOURCES_TOP/appshell/ and $ISP_SOURCES_TOP/mediacontrol/ build tools, since by default they refer to the construction of a particular sensor, for example, the OV4656, so it is necessary to change the name of the corresponding sensor. Modify the $ISP_SOURCES_TOP/build-all-isp.sh script to reference the sensor modules and generate the corresponding binaries when building the ISP media server instance.   Step 5 - ISP Media Server run script: You need to add the operation modes defined for your sensor in the script. Each operating mode is associated with an order (mode 0, mode 1 ... mode N), a name used to execute the command in the terminal (e.g <sensor>_custom_mode_1), a resolution, and a specific calibration file for the sensor. The script is located at $ISP_SOURCES_TOP/imx/run.sh .   Step 6 - Sensor<X> config: At $ISP_SOURCES_TOP/units/isi/drv/ you can find the files to configure each sensor entry to the ISP, called Sensor0_Entry.cfg and Sensor1_Entry.cfg. There, the associated calibration files are indicated for each sensor operating mode, including the calibration files in XML format and the Dewarp Unit configuration files in JSON format. In addition, the .drv file generated for your sensor is referenced, creating the association between the respective /dev/video<X> node and the sensor driver module outputted from the ISP Media Server. In case you are using only one ISP channel, just modify Sensor0_Entry.cfg. In case you require both instances of the ISP, you will need to modify both files. Sensor Calibration Files It is a requirement for using the ISP, to have a calibration file in XML format, specific to the sensor you are using and according to the resolution and working mode. To obtain the calibration files in XML format, there are 3 options: Use the NXP ISP tuning tool for this you will need to ask for access or sign a NDA document. Pay NXP professional services to do the tune. Pay a third-party vendor to do the tune   VVCAM Driver Creation The changes indicated below are based on the assumption that there is a functional sensor driver in its base form, and that it is compatible with the V4L2 API. From now on we focus on applying the changes suggested in the NXP documentation, specifically to establish the communication of the VVCAM Driver (kernel side) and the ISI Layer. Step 0 - Create the sensor driver entry: Developers must add the driver code to the file located at $ISP_SOURCES_TOP/vvcam/v4l2/sensor/<sensor>/<sensor>_xxxx.c, along with a Makefile for the sensor driver module. In the same way, as indicated in the ISS Driver section, you can refer to one of the sample drivers that are included as part of the ISP sources, to review details about the implementation of the driver and the structure of the required Makefile.   Step 1 - Add the VVCAM mode info data structure array: This array stores all the supported modes information for your sensor. The ISI layer can get all the modes with the VVSENSORIOC_QUERY command. The following is an example of the structure, please fill in the information using the attributes of your sensor and the modes it supports. #include "vvsensor.h" . . .   static struct vvcam_mode_info_s <sensor>_mode_info[] = {         {         .index = 0,         .width = ... ,         .height = ... ,         .hdr_mode = ... ,         .bit_width = ... ,         .data_compress.enable = ... ,         .bayer_pattern = ... ,         .ae_info = {                        .                        .                        .                        },         .mipi_info = {                        .mipi_lane = ... ,                        },         },         {         .index = 1,         .         .         .         }, }; Step 2 - Define sensor client to i2c : Define the client_to_sensor macro (in case you don't have any already) and check the segments of the driver code that require this macro. #define client_to_<sensor>(client)\         container_of(i2c_get_clientdata(client), struct <sensor>, subdev)   Step 3 - Define the V4L2-subdev IOCTL function: Define and implement the <sensor>_priv_ioctl, which is used to receive the commands and parameters passed down by the user space through ioctl() and control the sensor. long <sensor>_priv_ioctl(struct v4l2_subdev *subdev, unsigned int cmd, void *arg) {         struct i2c_client *client = v4l2_get_subdevdata(subdev);         struct <sensor> *sensor = client_to_<sensor>(client);         struct vvcam_sccb_data_s reg;         uint32_t value = 0;         long ret = 0;           if(!sensor){                return -EINVAL;         }           switch (cmd) {         case VVSENSORIOC_G_CLK: {                ret = custom_implementation();                break;         }         case VIDIOC_QUERYCAP: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_QUERY: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_G_CHIP_ID: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_G_RESERVE_ID: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_G_SENSOR_MODE:{                ret = custom_implementation();                break;         }         case VVSENSORIOC_S_SENSOR_MODE: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_S_STREAM: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_WRITE_REG: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_READ_REG: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_S_EXP: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_S_POWER:         case VVSENSORIOC_S_CLK:         case VVSENSORIOC_RESET:         case VVSENSORIOC_S_FPS:         case VVSENSORIOC_G_FPS:         case VVSENSORIOC_S_LONG_GAIN:         case VVSENSORIOC_S_GAIN:         case VVSENSORIOC_S_VSGAIN:         case VVSENSORIOC_S_LONG_EXP:         case VVSENSORIOC_S_VSEXP:          case VVSENSORIOC_S_WB:         case VVSENSORIOC_S_BLC:         case VVSENSORIOC_G_EXPAND_CURVE:                break;         default:                break;         }           return ret; }   As you can see in the example, some cases are implemented but others are not. Developers are free to implement the features they consider necessary, as long as a minimum base of operation of the driver is guaranteed (query commands, read and write registers, among others). It is the developer's responsibility to implement each custom function, for each case or scenario that may arise when interacting with the sensor. In addition to what was shown previously, a link must be created to make the ioctl connection with the driver in question. Link your priv_ioctl function on the v4l2_subdev_core_ops struct, as in the example below: static const struct v4l2_subdev_core_ops <sensor>_core_ops = {         .s_power       = v4l2_s_power,         .subscribe_event = v4l2_ctrl_subdev_subscribe_event,         .unsubscribe_event = v4l2_event_subdev_unsubscribe,      // IOCTL link         .ioctl = <sensor>_priv_ioctl, };   Step 4 - Verify your sensor's private data structure: After performing the modifications suggested, it would be a good practice to double-check your sensor's private data structure properties, in case there is one missing, and also check that the properties are initialized correctly on the driver's probe.   Step 5 - Modify VVCAM V4L2 sensor Makefile : At $ISP_SOURCES_TOP/vvcam/v4l2/sensor/Makefile, include your sensor object as follows: ... obj-m += <sensor>/ ... Important Note: There is a very common issue that appears when working with camera sensor drivers in i.MX8MP platforms. The kernel log message shows something similar to the following: mxc-mipi-csi2.<X>: is_entity_link_setup, No remote pad found! The link setup callback is required by the Media Controller when performing the linking process of the media entities involved in the capture process of the camera. Normally, this callback is triggered by the imx8-media-dev driver included as part of the Kernel sources. To make sure that the problem is not related to your sensor driver, verify the link setup callback is already created in the code, and if is not, you can add the following template: /* Function needed by i.MX8MP */ static int <sensor>_camera_link_setup(struct media_entity *entity,                                    const struct media_pad *local,                                    const struct media_pad *remote, u32 flags) {     /* Return always zero */         return 0; }   /* Add the link setup callback to the media entity operations struct */ static const struct media_entity_operations <sensor>_camera_subdev_media_ops = {         .link_setup = <sensor>_camera_link_setup, };     /* Verify the initialization process of the media entity ops in the sensor driver's probe function*/ static int <sensor>_probe(struct i2c_client *client, ...) {         /* Initialize subdev */         sd = &<sensor>->subdev;         sd->dev = &client->dev;         <sensor>->subdev.internal_ops = ...         <sensor>->subdev.flags |= ...         <sensor->subdev.entity.function = ...     /* Entity ops initialization */         <sensor->subdev.entity.ops = &<sensor>_camera_subdev_media_ops; } In most cases, adding the link setup function will solve the media controller issue, or at least it discards problems on the driver side. Device Tree Modifications On the Device Tree side, it is necessary to enable the ISP channels that will be used. Likewise, it is necessary to disable the ISI channels, which are normally the ones that connect to the MIPI_CSI2 ports to extract raw data from the sensor (in case the ISP is not used). A MIPI_CSI2 port can be mapped to either an ISI channel or an ISP channel, but not both simultaneously. In this guide, we focus on using the ISP, so any other custom configuration that you want to implement may vary from what is shown. In the code below, ISP channel 0 is enabled, and the connection is made to the port where the sensor is connected (mipi_csi_0). &mipi_csi_0 {         status = "okay";         port@0 {         // Example endpoint to <sensor>_ep                mipi0_sensor_ep: endpoint@1 {                        remote-endpoint = <&<sensor>_ep>;                };         }; };   &cameradev {         status = "okay"; };   &isi_0 {         status = "disabled"; };   &isi_1 {         status = "disabled"; };   &isp_0 {         status = "okay"; };   &isp_1 {         status = "disabled"; };   &dewarp {         status = "okay"; }; What is shown above does not represent a complete device tree file, is only a general skeleton of the points you should pay attention to when working with ISP channels. For simplicity, we omitted all the attributes that are normally defined when working with camera sensor drivers and their respective configurations in the i2c port of the hardware.   Note: Due to hardware restrictions when using ISP channels, it is recommended to use the isp_0 channel, when working with only one sensor. In case you need to use two sensors, you can enable both channels, taking into account the limitations regarding the output resolutions and the clock frequency when both channels are working simultaneously. What is not recommended is to use the isp_1 channel when working with a single sensor.   References ISP Independent Sensor Interface (ISI) API reference, I.MX8M Plus Camera Sensor Porting User guide: https://www.nxp.com/webapp/Download?colCode=IMX8MPCSPUG Sensor Calibration tool: https://www.nxp.com/webapp/Download?colCode=AN13565 i.MX8M Plus reference manual: https://www.nxp.com/webapp/Download?colCode=IMX8MPRM  
查看全文
The Gui-guilder doesn't provide remote debug function in IDE and we still need use Yocto to build project or copy binary to board rootfs. This knowledge base will provide a solution about how to use VSCode to remote debug LVGL project on i.MX93 EVK board.    Yocto toolchain: L6.6.x GUI GUILDER: v1.8.0   Need to open GUI GUILDER project in VSCode.   1.Scripts in VScode   1.1 build.sh Modify build.sh in <LVGL project>/ports/linux     #!/bin/sh toolchain=$1 if [ -z "$toolchain" ];then toolchain=/opt/fsl-imx-xwayland/6.1-mickledore/sysroots/x86_64-pokysdk-linux/usr/share/cmake/armv8a-poky-linux-toolchain.cmake if [ ! -r $toolchain ];then toolchain=/opt/fsl-imx-xwayland/6.1-langdale/sysroots/x86_64-pokysdk-linux/usr/share/cmake/armv8a-poky-linux-toolchain.cmake fi fi toolchain_path=$(echo $toolchain |sed -E 's,^(.*)/sysroots/.*,\1,') toolchain_arch=armv8a-poky-linux if [ ! -r $toolchain -o ! -r "$toolchain_path/environment-setup-$toolchain_arch" ];then echo "ERROR: Yocto Toolchain not installed?" exit 1 fi if [ -n "$BASH_SOURCE" ]; then ROOTDIR="`readlink -f $BASH_SOURCE | xargs dirname`" elif [ -n "$ZSH_NAME" ]; then ROOTDIR="`readlink -f $0 | xargs dirname`" else ROOTDIR="`readlink -f $PWD | xargs dirname`" fi BUILDDIR=$ROOTDIR/../build rm -fr $BUILDDIR mkdir $BUILDDIR . "$toolchain_path/environment-setup-$toolchain_arch" echo "start build..." cd $ROOTDIR/linux/lv_drivers/wayland/ cmake . make cd $BUILDDIR toolchain_path=/opt/fsl-imx-wayland/6.6-scarthgap/sysroots/x86_64-pokysdk-linux/usr/share/cmake/armv8a-poky-linux-toolchain.cmake cmake -G 'Ninja' .. -DCMAKE_TOOLCHAIN_FILE=$toolchain_path -Wno-dev -DLV_CONF_BUILD_DISABLE_EXAMPLES=1 -DLV_CONF_BUILD_DISABLE_DEMOS=1 -DCMAKE_CXX_FLAGS="-ggd3 -O0" -DCMAKE_BUILD_TYPE=Debug ninja if [ -e gui_guider ];then echo "Binary locates at $(readlink -f gui_guider)" ls -lh gui_guider fi # Copy binary to board scp $BUILDDIR/gui_guider root@192.168.31.243:/opt     1.2 tasks.json     { "version": "2.0.0", "tasks": [ { "label": "Build", "type": "shell", "command": "./build.sh /opt/fsl-imx-wayland/6.6-scarthgap", "options": { "cwd": "${workspaceFolder}/ports/linux" }, "problemMatcher": [ "$gcc" ], } ] }       1.3 launch.json   miDebuggerServerAddress is board ip address.     { "version": "0.2.0", "configurations": [ { "name": "(gdb) Launch", "preLaunchTask": "Build", "type": "cppdbg", "request": "launch", "program": "${workspaceFolder}/build/gui_guider", "args": [], "stopAtEntry": false, "cwd": "${workspaceFolder}/", "environment": [], "externalConsole": false, "MIMode": "gdb", "logging": { "engineLogging": true, "trace": true, "traceResponse": true }, "debugStdLib":true, "miDebuggerPath":"/usr/bin/gdb-multiarch", //DO NOT USE GDB IN SDK!!!! "miDebuggerServerAddress": "192.168.31.243:12345", "setupCommands": [ { "description": "Enable pretty-printing for gdb", "text": "-enable-pretty-printing", "ignoreFailures": true, "text": "set remotetimeout 100", } ] }] }       2. Launch gdbserver on board     export SHELL=/opt/gui_guider gdbserver 192.168.31.243:12345 /opt/gui_guider       3. Debug in VSCode   Click (gdb)launch, the source code will be compiled. Then you will see the breakpoint in program. Enjoy your debug~    
查看全文
Introduction Time Synchronization stands for the alignment of time within distributed nodes, pretty critical for real-time applications, control and measurement systems as voice and video networks; all of them being embedded applications. It needs the synchronization of frequency, phase and time between all the nodes and offers action coordination, high precision triggers and event reference or timestamping. [1] A Time Synchronization resource it's the ethernet standard for time PTP or IEEE 1588 standard, its study begin with the physical representation of time information: PPS; Pulse Per Second. An squared wave timed by the capable MACs, in i.MX families we have two MACs of which. Background Customers are interested in this signal, we have an i.MX 8M Plus kernel 5 resource but there is a new processor family using the next major kernel version; 6. [2] We will go through demonstrating PPS on i.MX 93 EVK in both MACs; FEC and EQOS. HW setup i.MX 93 EVK boot over eMMC. Connect power and debug receptacles. Hands-on for FEC or eth0 MAC uSDHC2 pin group conflicts with the pps output pin and you are ought to remove the uSDHC2 nodes and assign the event0 out pin to the FEC pin group as shown below. --- imx93-11x11-evk.dts 2024-08-23 18:19:56.344798901 +0200 +++ imx93-11x11-evk-pps.dts 2024-09-02 21:31:46.569477421 +0200 @@ -100,18 +100,6 @@ regulator-max-microvolt = <1800000>; }; - reg_usdhc2_vmmc: regulator-usdhc2 { - compatible = "regulator-fixed"; - pinctrl-names = "default"; - pinctrl-0 = <&pinctrl_reg_usdhc2_vmmc>; - regulator-name = "VSD_3V3"; - regulator-min-microvolt = <3300000>; - regulator-max-microvolt = <3300000>; - gpio = <&gpio3 7 GPIO_ACTIVE_HIGH>; - off-on-delay-us = <12000>; - enable-active-high; - }; - reg_vdd_12v: regulator-vdd-12v { compatible = "regulator-fixed"; regulator-name = "reg_vdd_12v"; @@ -770,21 +766,6 @@ status = "okay"; }; -&usdhc2 { - pinctrl-names = "default", "state_100mhz", "state_200mhz", "sleep"; - pinctrl-0 = <&pinctrl_usdhc2>, <&pinctrl_usdhc2_gpio>; - pinctrl-1 = <&pinctrl_usdhc2_100mhz>, <&pinctrl_usdhc2_gpio>; - pinctrl-2 = <&pinctrl_usdhc2_200mhz>, <&pinctrl_usdhc2_gpio>; - pinctrl-3 = <&pinctrl_usdhc2_sleep>, <&pinctrl_usdhc2_gpio_sleep>; - cd-gpios = <&gpio3 00 GPIO_ACTIVE_LOW>; - fsl,cd-gpio-wakeup-disable; - vmmc-supply = <&reg_usdhc2_vmmc>; - bus-width = <4>; - status = "okay"; - no-sdio; - no-mmc; -}; - &usdhc3 { pinctrl-names = "default", "state_100mhz", "state_200mhz", "sleep"; pinctrl-0 = <&pinctrl_usdhc3>, <&pinctrl_usdhc3_wlan>; @@ -860,14 +842,15 @@ MX93_PAD_ENET2_RD1__ENET1_RGMII_RD1 0x57e MX93_PAD_ENET2_RD2__ENET1_RGMII_RD2 0x57e MX93_PAD_ENET2_RD3__ENET1_RGMII_RD3 0x57e MX93_PAD_ENET2_RXC__ENET1_RGMII_RXC 0x58e MX93_PAD_ENET2_RX_CTL__ENET1_RGMII_RX_CTL 0x57e MX93_PAD_ENET2_TD0__ENET1_RGMII_TD0 0x57e MX93_PAD_ENET2_TD1__ENET1_RGMII_TD1 0x57e MX93_PAD_ENET2_TD2__ENET1_RGMII_TD2 0x57e MX93_PAD_ENET2_TD3__ENET1_RGMII_TD3 0x57e MX93_PAD_ENET2_TXC__ENET1_RGMII_TXC 0x58e MX93_PAD_ENET2_TX_CTL__ENET1_RGMII_TX_CTL 0x57e + MX93_PAD_SD2_DATA0__ENET1_1588_EVENT0_OUT 0x31e >; }; @@ -887,6 +870,7 @@ MX93_PAD_ENET2_TD3__GPIO4_IO16 0x51e MX93_PAD_ENET2_TXC__GPIO4_IO21 0x51e MX93_PAD_ENET2_TX_CTL__GPIO4_IO20 0x51e + MX93_PAD_SD2_DATA0__GPIO3_IO03 0x31e >; }; @@ -998,75 +982,6 @@ >; }; - pinctrl_reg_usdhc2_vmmc: regusdhc2vmmcgrp { - fsl,pins = < - MX93_PAD_SD2_RESET_B__GPIO3_IO07 0x31e - >; - }; - - pinctrl_usdhc2_gpio: usdhc2gpiogrp { - fsl,pins = < - MX93_PAD_SD2_CD_B__GPIO3_IO00 0x31e - >; - }; - - pinctrl_usdhc2_gpio_sleep: usdhc2gpiogrpsleep { - fsl,pins = < - MX93_PAD_SD2_CD_B__GPIO3_IO00 0x51e - >; - }; - - /* need to config the SION for data and cmd pad, refer to ERR052021 */ - pinctrl_usdhc2: usdhc2grp { - fsl,pins = < - MX93_PAD_SD2_CLK__USDHC2_CLK 0x1582 - MX93_PAD_SD2_CMD__USDHC2_CMD 0x40001382 - MX93_PAD_SD2_DATA0__USDHC2_DATA0 0x40001382 - MX93_PAD_SD2_DATA1__USDHC2_DATA1 0x40001382 - MX93_PAD_SD2_DATA2__USDHC2_DATA2 0x40001382 - MX93_PAD_SD2_DATA3__USDHC2_DATA3 0x40001382 - MX93_PAD_SD2_VSELECT__USDHC2_VSELECT 0x51e - >; - }; - - /* need to config the SION for data and cmd pad, refer to ERR052021 */ - pinctrl_usdhc2_100mhz: usdhc2-100mhzgrp { - fsl,pins = < - MX93_PAD_SD2_CLK__USDHC2_CLK 0x158e - MX93_PAD_SD2_CMD__USDHC2_CMD 0x4000138e - MX93_PAD_SD2_DATA0__USDHC2_DATA0 0x4000138e - MX93_PAD_SD2_DATA1__USDHC2_DATA1 0x4000138e - MX93_PAD_SD2_DATA2__USDHC2_DATA2 0x4000138e - MX93_PAD_SD2_DATA3__USDHC2_DATA3 0x4000138e - MX93_PAD_SD2_VSELECT__USDHC2_VSELECT 0x51e - >; - }; - - /* need to config the SION for data and cmd pad, refer to ERR052021 */ - pinctrl_usdhc2_200mhz: usdhc2-200mhzgrp { - fsl,pins = < - MX93_PAD_SD2_CLK__USDHC2_CLK 0x15fe - MX93_PAD_SD2_CMD__USDHC2_CMD 0x400013fe - MX93_PAD_SD2_DATA0__USDHC2_DATA0 0x400013fe - MX93_PAD_SD2_DATA1__USDHC2_DATA1 0x400013fe - MX93_PAD_SD2_DATA2__USDHC2_DATA2 0x400013fe - MX93_PAD_SD2_DATA3__USDHC2_DATA3 0x400013fe - MX93_PAD_SD2_VSELECT__USDHC2_VSELECT 0x51e - >; - }; - - pinctrl_usdhc2_sleep: usdhc2grpsleep { - fsl,pins = < - MX93_PAD_SD2_CLK__GPIO3_IO01 0x51e - MX93_PAD_SD2_CMD__GPIO3_IO02 0x51e - MX93_PAD_SD2_DATA0__GPIO3_IO03 0x51e - MX93_PAD_SD2_DATA1__GPIO3_IO04 0x51e - MX93_PAD_SD2_DATA2__GPIO3_IO05 0x51e - MX93_PAD_SD2_DATA3__GPIO3_IO06 0x51e - MX93_PAD_SD2_VSELECT__GPIO3_IO19 0x51e - >; - }; - /* need to config the SION for data and cmd pad, refer to ERR052021 */ pinctrl_usdhc3: usdhc3grp { fsl,pins = < The driver also needs the following rework. --- a/drivers/net/ethernet/freescale/fec_ptp.c +++ b/drivers/net/ethernet/freescale/fec_ptp.c @@ -184,7 +184,8 @@ static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable) val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET); val &= ~(1 << FEC_T_TDRE_OFFSET); val &= ~(FEC_T_TMODE_MASK); - val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET); + // val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET); + val |= (FEC_TMODE_TOGGLE << FEC_T_TMODE_OFFSET); writel(val, fep->hwp + FEC_TCSR(fep->pps_channel)); /* Write the second compare event timestamp and calculate After booting the board, run these commands: $ ptp4l -A -4 -H -m -i eth0 & $ echo 1 > /sys/class/ptp/ptp0/pps_enable These will get the SD2_DATA0 or TP1009 running a square wave at 0.5 Hz through setting the ptp0 port with: -A    Select the delay mechanism automatically. Start with E2E and switch to P2P when a peer delay request is received. -4    Select the UDP IPv4 network transport. This is the default transport. -H    Select the hardware time stamping. -m    Print messages to the standard output. Run the next command to set the pps (1 Hz signal): $ echo "0 $(date +%s) 100000000 1 0" > /sys/class/ptp/ptp0/period The last because the current driver needs the actual date and a future start; in this case the signal will start within 100 ms, in order to work. You can try with different start times until the optimal value is found. [3]   Hands-on for EQOS or eth1 MAC This is reduced to the proper devicetree changes, and it does not have driver rework nor pps_enable control file. It uses SD2_CLK or TP1008, so DTS need this adjustment: --- imx93-11x11-evk.dts 2024-08-23 18:19:56.344798901 +0200 +++ imx93-11x11-evk-pps.dts 2024-09-02 21:31:46.569477421 +0200 @@ -100,18 +100,6 @@ regulator-max-microvolt = <1800000>; }; - reg_usdhc2_vmmc: regulator-usdhc2 { - compatible = "regulator-fixed"; - pinctrl-names = "default"; - pinctrl-0 = <&pinctrl_reg_usdhc2_vmmc>; - regulator-name = "VSD_3V3"; - regulator-min-microvolt = <3300000>; - regulator-max-microvolt = <3300000>; - gpio = <&gpio3 7 GPIO_ACTIVE_HIGH>; - off-on-delay-us = <12000>; - enable-active-high; - }; - reg_vdd_12v: regulator-vdd-12v { compatible = "regulator-fixed"; regulator-name = "reg_vdd_12v"; @@ -770,21 +766,6 @@ status = "okay"; }; -&usdhc2 { - pinctrl-names = "default", "state_100mhz", "state_200mhz", "sleep"; - pinctrl-0 = <&pinctrl_usdhc2>, <&pinctrl_usdhc2_gpio>; - pinctrl-1 = <&pinctrl_usdhc2_100mhz>, <&pinctrl_usdhc2_gpio>; - pinctrl-2 = <&pinctrl_usdhc2_200mhz>, <&pinctrl_usdhc2_gpio>; - pinctrl-3 = <&pinctrl_usdhc2_sleep>, <&pinctrl_usdhc2_gpio_sleep>; - cd-gpios = <&gpio3 00 GPIO_ACTIVE_LOW>; - fsl,cd-gpio-wakeup-disable; - vmmc-supply = <&reg_usdhc2_vmmc>; - bus-width = <4>; - status = "okay"; - no-sdio; - no-mmc; -}; - &usdhc3 { pinctrl-names = "default", "state_100mhz", "state_200mhz", "sleep"; pinctrl-0 = <&pinctrl_usdhc3>, <&pinctrl_usdhc3_wlan>; @@ -822,14 +802,15 @@ MX93_PAD_ENET1_RD1__ENET_QOS_RGMII_RD1 0x57e MX93_PAD_ENET1_RD2__ENET_QOS_RGMII_RD2 0x57e MX93_PAD_ENET1_RD3__ENET_QOS_RGMII_RD3 0x57e MX93_PAD_ENET1_RXC__CCM_ENET_QOS_CLOCK_GENERATE_RX_CLK 0x58e MX93_PAD_ENET1_RX_CTL__ENET_QOS_RGMII_RX_CTL 0x57e MX93_PAD_ENET1_TD0__ENET_QOS_RGMII_TD0 0x57e MX93_PAD_ENET1_TD1__ENET_QOS_RGMII_TD1 0x57e MX93_PAD_ENET1_TD2__ENET_QOS_RGMII_TD2 0x57e MX93_PAD_ENET1_TD3__ENET_QOS_RGMII_TD3 0x57e MX93_PAD_ENET1_TXC__CCM_ENET_QOS_CLOCK_GENERATE_TX_CLK 0x58e MX93_PAD_ENET1_TX_CTL__ENET_QOS_RGMII_TX_CTL 0x57e + MX93_PAD_SD2_CLK__ENET_QOS_1588_EVENT0_OUT 0x31e >; }; @@ -849,6 +830,7 @@ MX93_PAD_ENET1_TD3__GPIO4_IO02 0x31e MX93_PAD_ENET1_TXC__GPIO4_IO07 0x31e MX93_PAD_ENET1_TX_CTL__GPIO4_IO06 0x31e + MX93_PAD_SD2_CLK__GPIO3_IO01 0x31e >; }; @@ -998,75 +982,6 @@ >; }; - pinctrl_reg_usdhc2_vmmc: regusdhc2vmmcgrp { - fsl,pins = < - MX93_PAD_SD2_RESET_B__GPIO3_IO07 0x31e - >; - }; - - pinctrl_usdhc2_gpio: usdhc2gpiogrp { - fsl,pins = < - MX93_PAD_SD2_CD_B__GPIO3_IO00 0x31e - >; - }; - - pinctrl_usdhc2_gpio_sleep: usdhc2gpiogrpsleep { - fsl,pins = < - MX93_PAD_SD2_CD_B__GPIO3_IO00 0x51e - >; - }; - - /* need to config the SION for data and cmd pad, refer to ERR052021 */ - pinctrl_usdhc2: usdhc2grp { - fsl,pins = < - MX93_PAD_SD2_CLK__USDHC2_CLK 0x1582 - MX93_PAD_SD2_CMD__USDHC2_CMD 0x40001382 - MX93_PAD_SD2_DATA0__USDHC2_DATA0 0x40001382 - MX93_PAD_SD2_DATA1__USDHC2_DATA1 0x40001382 - MX93_PAD_SD2_DATA2__USDHC2_DATA2 0x40001382 - MX93_PAD_SD2_DATA3__USDHC2_DATA3 0x40001382 - MX93_PAD_SD2_VSELECT__USDHC2_VSELECT 0x51e - >; - }; - - /* need to config the SION for data and cmd pad, refer to ERR052021 */ - pinctrl_usdhc2_100mhz: usdhc2-100mhzgrp { - fsl,pins = < - MX93_PAD_SD2_CLK__USDHC2_CLK 0x158e - MX93_PAD_SD2_CMD__USDHC2_CMD 0x4000138e - MX93_PAD_SD2_DATA0__USDHC2_DATA0 0x4000138e - MX93_PAD_SD2_DATA1__USDHC2_DATA1 0x4000138e - MX93_PAD_SD2_DATA2__USDHC2_DATA2 0x4000138e - MX93_PAD_SD2_DATA3__USDHC2_DATA3 0x4000138e - MX93_PAD_SD2_VSELECT__USDHC2_VSELECT 0x51e - >; - }; - - /* need to config the SION for data and cmd pad, refer to ERR052021 */ - pinctrl_usdhc2_200mhz: usdhc2-200mhzgrp { - fsl,pins = < - MX93_PAD_SD2_CLK__USDHC2_CLK 0x15fe - MX93_PAD_SD2_CMD__USDHC2_CMD 0x400013fe - MX93_PAD_SD2_DATA0__USDHC2_DATA0 0x400013fe - MX93_PAD_SD2_DATA1__USDHC2_DATA1 0x400013fe - MX93_PAD_SD2_DATA2__USDHC2_DATA2 0x400013fe - MX93_PAD_SD2_DATA3__USDHC2_DATA3 0x400013fe - MX93_PAD_SD2_VSELECT__USDHC2_VSELECT 0x51e - >; - }; - - pinctrl_usdhc2_sleep: usdhc2grpsleep { - fsl,pins = < - MX93_PAD_SD2_CLK__GPIO3_IO01 0x51e - MX93_PAD_SD2_CMD__GPIO3_IO02 0x51e - MX93_PAD_SD2_DATA0__GPIO3_IO03 0x51e - MX93_PAD_SD2_DATA1__GPIO3_IO04 0x51e - MX93_PAD_SD2_DATA2__GPIO3_IO05 0x51e - MX93_PAD_SD2_DATA3__GPIO3_IO06 0x51e - MX93_PAD_SD2_VSELECT__GPIO3_IO19 0x51e - >; - }; - /* need to config the SION for data and cmd pad, refer to ERR052021 */ pinctrl_usdhc3: usdhc3grp { fsl,pins = < After boot, issue these commands: $ ptp4l -A -4 -H -m -i eth1 & $ echo "0 $(date +%s) 1000000000 1 0" > /sys/class/ptp/ptp1/period You will have an squared wave of 1 Hz running within 1 s with the same settings as the FEC setup.   Conclusion Both PPS can run in the same image changes and DTS changes, proven in imx-linux-nanbield branch, with the manifest imx-6.6.3-1.0.0.xml. And it's the start of testing IEEE 1588 and syncing capabilities of this i.MX 9 series processors. Sources [1] http://events17.linuxfoundation.org/sites/events/files/slides/elc_insop_2015.pdf [2] https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX8-serials-IEEE1588-1pps-test-procedure/ta-p/1490634 [3] https://github.com/nxp-imx/linux-imx/blob/b586a521770e508d1d440ccb085c7696b9d6d387/Documentation/ABI/testing/sysfs-ptp#L2
查看全文
P3T1755 Demo   In this space I want to show you the things that you can create usign our products.   In  this demo I demostrate a use case creating a GUI for a Temperature Sensor.   We can create modern GUIs and more with LVGL combined with our powerful processors.               CPU USAGE As we can see  the CPU usage for this demo is around 2%   Pictures         This demo is based on the previous publused articles.   References: https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/Adding-support-to-P3T1755-on-Linux/ta-p/1855874 https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/How-to-run-LGVL-on-iMX-using-framebuffer/ta-p/1853768  
查看全文
  Some customers want to expose their i3c device on the /dev, In order to develop their i3c APP or operation the i3c device like I2C. But in our default BSP code, we do not support this feature for I3C device, This article will introduce how to make the i3c device expose to the user space. Board : i.MX 93 EVK BSP Version : lf-6.1.55-2.2.0 I3C device : LSM6DSOXTR Step 1 : Rework the i.MX93 EVK Board, Install the R1010.      Step 2 : Apply the add_i3c_device_to_dev.patch file to the linux kernel code              Command : git apply add_i3c_device_to_dev.patch Step 3 : Re-compile the kernel Image file.              Command : make imx_v8_defconfig                                  make Step 4 : Boot your board with "imx93-11x11-evk-i3c.dtb" file and see if you can see the I3C device on the /dev directory. Result : We can see the i3c device is appeared in /dev directory, The i2c-8 is an i2c device mounted to the i3c bus. The i3c is backward compatible with i2c device. It will simulate the I2C signal loading i2c device.                 PS : You can also use the i2ctool detect i2c-8 device. As shown in the following picture:   Note : If you need the patch file, Please contact me any time for free.
查看全文
Ftrace is powerful tracing utility embedded in Linux kernel. It provides a very good method for kernel developer to get insights of the kernel behavior. While official kernel doc for ftrace is somehow long and complex, this document provides a quicker and simpler way to get start with ftrace.
查看全文
This guide is a continuation from our latest Debian 12 Installation Guide for iMX8MM, iMX8MP, iMX8MN and iMX93. Here we will describe the process to install the multimedia and hardware acceleration packages, specifically GPU, VPU and Gstreamer on i.MX8M Mini, i.MX8M Plus and i.MX8M Nano. The guide is based on the one provided by our colleague Build Ubuntu For i.MX8 Series Platform - NXP Community, which requires to previously build an image using Yocto Project with the following distro and image name. Distro name - fsl-imx-wayland Image name – imx-image-multimedia For more information please check our BSP documentation i.MX Yocto Project User’s Guide.   Hardware Requirements Linux Host Computer (Ubuntu 20.04 or later) USB Card reader or Micro SD to SD adapter SD Card Evaluation Kit Board for the i.MX8M Nano, i.MX8M Mini, i.MX8M Plus   Software Requirements Linux Ubuntu (20.04 tested) or Debian for Host Computer BSP version 6.1.55 built with Yocto Project   After built the image we can start the installation by following the steps below:   GPU Installation The GPU Installation consists of copy the files from packages imx-gpu-g2d, imx-gpu-viv, libdrm to the Debian system. As our latest installation guide, we will continue naming “mountpoint” to the directory where Debian system is mounted on our host machine. Regarding the path provided on each step, we put labels <build-path> and <machine> that you will need to change based on your environment. These are the paths that Yocto Project uses to save the packages. However, this could change on your environment and you can find the work directory from each package using the following command: bitbake -e <package-name> | grep ^WORKDIR= This command will show you the absolute path of the package work directory. 1. Install GPU Packages $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/imx-gpu-g2d/6.4.11.p2.2-r0/image/* mountpoint $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/imx-gpu-viv/1_6.4.11.p2.2-aarch64-r0/image/* mountpoint $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/libdrm/2.4.115.imx-r0/image/* mountpoint   2. Install Linux IMX Headers and IMX Parser $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/linux-imx-headers/6.1-r0/image/* mountpoint $ sudo cp -Pra <build-path>/tmp/work/armv8a-poky-linux/imx-parser/4.8.2-r0/image/* mountpoint   3. Use chroot $ sudo LANG=C.UTF-8 chroot mountpoint/ qemu-aarch64-static /bin/bash   4. Install Dependencies $ apt install libudev-dev libinput-dev libxkbcommon-dev libpam0g-dev libx11-xcb-dev libxcb-xfixes0-dev libxcb-composite0-dev libxcursor-dev libxcb-shape0-dev libdbus-1-dev libdbus-glib-1-dev libsystemd-dev libpixman-1-dev libcairo2-dev libffi-dev libxml2-dev kbd libexpat1-dev autoconf automake libtool meson cmake ssh net-tools network-manager iputils-ping rsyslog bash-completion htop resolvconf dialog vim udhcpc udhcpd git v4l-utils alsa-utils git gcc less autoconf autopoint libtool bison flex gtk-doc-tools libglib2.0-dev libpango1.0-dev libatk1.0-dev kmod pciutils libjpeg-dev   5. Create a folder for Multimedia Installation. Here we will clone all the multimedia repositories.  $ mkdir multimedia_packages $ cd multimedia_packages   6. Build Wayland $ git clone https://gitlab.freedesktop.org/wayland/wayland.git $ cd wayland $ git checkout 1.22.0 $ meson setup build --prefix=/usr -Ddocumentation=false -Ddtd_validation=true $ cd build $ ninja install   7. Build Wayland Protocols IMX $ git clone https://github.com/nxp-imx/wayland-protocols-imx.git $ cd wayland-protocols-imx $ git checkout wayland-protocols-imx-1.32 $ meson setup build --prefix=/usr -Dtests=false $ cd build $ ninja install   8. Build Weston $ git clone https://github.com/nxp-imx/weston-imx.git $ cd weston-imx $ git checkout weston-imx-11.0.3 $ meson setup build --prefix=/usr -Dpipewire=false -Dsimple-clients=all -Ddemo-clients=true -Ddeprecated-color-management-colord=false -Drenderer-gl=true -Dbackend-headless=false -Dimage-jpeg=true -Drenderer-g2d=true -Dbackend-drm=true -Dlauncher-libseat=false -Dcolor-management-lcms=false -Dbackend-rdp=false -Dremoting=false -Dscreenshare=true -Dshell-desktop=true -Dshell-fullscreen=true -Dshell-ivi=true -Dshell-kiosk=true -Dsystemd=true -Dlauncher-logind=true -Dbackend-drm-screencast-vaapi=false -Dbackend-wayland=false -Dimage-webp=false -Dbackend-x11=false -Dxwayland=false $ cd build $ ninja install   VPU Installation To install VPU and Gstreamer please follow the steps below: 1. Install firmware-imx $ sudo cp -Pra <build-path>/tmp/work/all-poky-linux/firmware-imx/1_8.22-r0/image/lib/* mountpoint/lib/   2. Install VPU Driver $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/imx-vpu-hantro/1.31.0-r0/image/* mountpoint $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/imx-vpuwrap/git-r0/image/* mountpoint   3. Use chroot $ sudo LANG=C.UTF-8 chroot mountpoint/ qemu-aarch64-static /bin/bash   4. Install dependencies for Gstreamer Plugins $ apt install libgirepository1.0-dev gettext liborc-0.4-dev libasound2-dev libogg-dev libtheora-dev libvorbis-dev libbz2-dev libflac-dev libgdk-pixbuf-2.0-dev libmp3lame-dev libmpg123-dev libpulse-dev libspeex-dev libtag1-dev libbluetooth-dev libusb-1.0-0-dev libcurl4-openssl-dev libssl-dev librsvg2-dev libsbc-dev libsndfile1-dev   5. Change directory to multimedia packages. $ cd multimedia-packages   6. Build gstreamer $ git clone https://github.com/nxp-imx/gstreamer -b lf-6.1.55-2.2.0 $ cd gstreamer $ meson setup build --prefix=/usr -Dintrospection=enabled -Ddoc=disabled -Dexamples=disabled -Ddbghelp=disabled -Dnls=enabled -Dbash-completion=disabled -Dcheck=enabled -Dcoretracers=disabled -Dgst_debug=true -Dlibdw=disabled -Dtests=enabled -Dtools=enabled -Dtracer_hooks=true -Dlibunwind=disabled -Dc_args=-I/usr/include/imx $ cd build $ ninja install   7. Build gst-plugins-base $ git clone https://github.com/nxp-imx/gst-plugins-base -b lf-6.1.55-2.2.0 $ cd gst-plugins-base $ meson setup build --prefix=/usr -Dalsa=enabled -Dcdparanoia=disabled -Dgl-graphene=disabled -Dgl-jpeg=disabled -Dopus=disabled -Dogg=enabled -Dorc=enabled -Dpango=enabled -Dgl-png=enabled -Dqt5=disabled -Dtheora=enabled -Dtremor=disabled -Dvorbis=enabled -Dlibvisual=disabled -Dx11=disabled -Dxvideo=disabled -Dxshm=disabled -Dc_args=-I/usr/include/imx $ cd build $ ninja install   8. Build gst-plugins-good $ git clone https://github.com/nxp-imx/gst-plugins-good -b lf-6.1.55-2.2.0 $ cd gst-plugins-good $ meson setup build --prefix=/usr -Dexamples=disabled -Dnls=enabled -Ddoc=disabled -Daalib=disabled -Ddirectsound=disabled -Ddv=disabled -Dlibcaca=disabled -Doss=enabled -Doss4=disabled -Dosxaudio=disabled -Dosxvideo=disabled -Dshout2=disabled -Dtwolame=disabled -Dwaveform=disabled -Dasm=disabled -Dbz2=enabled -Dcairo=enabled -Ddv1394=disabled -Dflac=enabled -Dgdk-pixbuf=enabled -Dgtk3=disabled -Dv4l2-gudev=enabled -Djack=disabled -Djpeg=enabled -Dlame=enabled -Dpng=enabled -Dv4l2-libv4l2=disabled -Dmpg123=enabled -Dorc=enabled -Dpulse=enabled -Dqt5=disabled -Drpicamsrc=disabled -Dsoup=enabled -Dspeex=enabled -Dtaglib=enabled -Dv4l2=enabled -Dv4l2-probe=true -Dvpx=disabled -Dwavpack=disabled -Dximagesrc=disabled -Dximagesrc-xshm=disabled -Dximagesrc-xfixes=disabled -Dximagesrc-xdamage=disabled -Dc_args=-I/usr/include/imx $ cd build $ ninja install   9. Build gst-plugins-bad $ git clone https://github.com/nxp-imx/gst-plugins-bad -b lf-6.1.55-2.2.0 $ cd gst-plugins-bad $ meson setup build --prefix=/usr -Dintrospection=enabled -Dexamples=disabled -Dnls=enabled -Dgpl=disabled -Ddoc=disabled -Daes=enabled -Dcodecalpha=enabled -Ddecklink=enabled -Ddvb=enabled -Dfbdev=enabled -Dipcpipeline=enabled -Dshm=enabled -Dtranscode=enabled -Dandroidmedia=disabled -Dapplemedia=disabled -Dasio=disabled -Dbs2b=disabled -Dchromaprint=disabled -Dd3dvideosink=disabled -Dd3d11=disabled -Ddirectsound=disabled -Ddts=disabled -Dfdkaac=disabled -Dflite=disabled -Dgme=disabled -Dgs=disabled -Dgsm=disabled -Diqa=disabled -Dkate=disabled -Dladspa=disabled -Dldac=disabled -Dlv2=disabled -Dmagicleap=disabled -Dmediafoundation=disabled -Dmicrodns=disabled -Dmpeg2enc=disabled -Dmplex=disabled -Dmusepack=disabled -Dnvcodec=disabled -Dopenexr=disabled -Dopenni2=disabled -Dopenaptx=disabled -Dopensles=disabled -Donnx=disabled -Dqroverlay=disabled -Dsoundtouch=disabled -Dspandsp=disabled -Dsvthevcenc=disabled -Dteletext=disabled -Dwasapi=disabled -Dwasapi2=disabled -Dwildmidi=disabled -Dwinks=disabled -Dwinscreencap=disabled -Dwpe=disabled -Dzxing=disabled -Daom=disabled -Dassrender=disabled -Davtp=disabled -Dbluez=enabled -Dbz2=enabled -Dclosedcaption=enabled -Dcurl=enabled -Ddash=enabled -Ddc1394=disabled -Ddirectfb=disabled -Ddtls=disabled -Dfaac=disabled -Dfaad=disabled -Dfluidsynth=disabled -Dgl=enabled -Dhls=enabled -Dkms=enabled -Dcolormanagement=disabled -Dlibde265=disabled -Dcurl-ssh2=disabled -Dmodplug=disabled -Dmsdk=disabled -Dneon=disabled -Dopenal=disabled -Dopencv=disabled -Dopenh264=disabled -Dopenjpeg=disabled -Dopenmpt=disabled -Dhls-crypto=openssl -Dopus=disabled -Dorc=enabled -Dresindvd=disabled -Drsvg=enabled -Drtmp=disabled -Dsbc=enabled -Dsctp=disabled -Dsmoothstreaming=enabled -Dsndfile=enabled -Dsrt=disabled -Dsrtp=disabled -Dtinyalsa=disabled -Dtinycompress=enabled -Dttml=enabled -Duvch264=enabled -Dv4l2codecs=disabled -Dva=disabled -Dvoaacenc=disabled -Dvoamrwbenc=disabled -Dvulkan=disabled -Dwayland=enabled -Dwebp=enabled -Dwebrtc=disabled -Dwebrtcdsp=disabled -Dx11=disabled -Dx265=disabled -Dzbar=disabled -Dc_args=-I/usr/include/imx $ cd build $ ninja install   10. Build imx-gst1.0-plugin $ git clone https://github.com/nxp-imx/imx-gst1.0-plugin -b lf-6.1.55-2.2.0 $ cd imx-gst1.0-plugin $ meson setup build --prefix=/usr -Dplatform=MX8 -Dc_args=-I/usr/include/imx $ cd build $ ninja install   11. Exit chroot $ exit   Verify Installation For verification process, boot your target from the SD Card. (Review your specific target documentation) 1. Verify Weston For this verification you will need to be root user. # export XDG_RUNTIME_DIR=/run/user/0 # weston   2. Verify VPU and Gstreamer Use the following Gstreamer pipeline for Hardware Accelerated VPU Encode. # gst-launch-1.0 videotestsrc ! video/x-raw, format=I420, width=640, height=480 ! vpuenc_h264 ! filesink location=test.mp4   Then you can reproduce the file with this command: # gplay-1.0 test.mp4   Finally, you have installed and verified the GPU, VPU and Multimedia packages. Now, you can start testing audio and video applications.
查看全文
The following steps allow to make use of device tree overlay files, a definition of device tree overlay provided by kernel.org is the next:  "A Devicetree’s overlay purpose is to modify the kernel’s live tree, and have the modification affecting the state of the kernel in a way that is reflecting the changes. Since the kernel mainly deals with devices, any new device node that result in an active device should have it created while if the device node is either disabled or removed all together, the affected device should be deregistered." Knowing that, in this post will be used as an example the baseboard "i.MX 93 EVK" and will be added with device tree overlay an LVDS panel, adding an automatic detection from u-boot, and will be used a host with linux version Ubuntu 20.04.2. Note: It only works for linux kernel version 6.6.3-nanbield onward. Linux device-tree overlay from linux-imx   This section explains all about device tree overlay compilation and building, to create a .dtso file, the equivalent of .dts for overlays, adding some difference between them, using as base the linux-imx repository. It can be downloaded from the following repository:   git clone https://github.com/nxp-imx/linux-imx.git -b <branch version>   Branch version used by this post "lf-6.6.3-1.0.0". Device tree source overlay (.dtso)    It can be similar to a device tree source (.dts) but it had little difference between them, there are some difference in the next list: There's another type of files to be included, if is used pinmux it's necessary adding it with "#include "imx93-pinfunc.h"" and libraries from dt-bindings, it depends on the type of device tree to implement "#include <dt-bindings/<library>>" At initialization it needs to add: "/dts-v1/;"  "/plugin/;" Addition of "fragment" nodes, it allow override parts of a device tree,  it can be a specific node or create a new node. following structure it's the structure of a fragment:   { /* ignored properties by the overlay */ fragment@0 { /* first child node */ target=<phandle>; /* phandle target of the overlay */ or target-path="/path"; /* target path of the overlay */ __overlay__ { property-a; /* add property-a to the target */ node-a { /* add to an existing, or create a node-a */ ... }; }; } fragment@1 { /* second child node */ ... }; /* more fragments follow */ }   kernel.org Overlays can't delete a property or a node when it's applied, so can't be used "/delete-node/" nor "/delete-prop/", but it can be added to the node "status = "disabled";" to disable it.  Using as an example the file imx93-11x11-evk-boe-wxga-lvds-panel.dts located in the previous repository file direction <linux-imx path>/arch/arm64/boot/dts/freescale/ using it as a base tree:   // SPDX-License-Identifier: (GPL-2.0+ OR MIT) /* * Copyright 2022 NXP */ #include "imx93-11x11-evk.dts" / { lvds_backlight: lvds_backlight { compatible = "pwm-backlight"; pwms = <&adp5585pwm 0 100000 0>; enable-gpios = <&adp5585gpio 8 GPIO_ACTIVE_HIGH>; power-supply = <&reg_vdd_12v>; status = "okay"; brightness-levels = < 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100>; default-brightness-level = <80>; }; ... }; ... &adv7535 { status = "disabled"; }; ...   imx93-11x11-evk-boe-wxga-lvds-panel.dts Using the previous points and making use of fragments, if we want adapt the node lvds_backlight as fragment, it will be  added in the section of overlay, and adding it to a target-path "/":   #include <dt-bindings/interrupt-controller/irq.h> #include "imx93-pinfunc.h" #include <dt-bindings/gpio/gpio.h> /dts-v1/; /plugin/; / { fragment@0 { target-path = "/"; __overlay__ { lvds_backlight: lvds_backlight { compatible = "pwm-backlight"; pwms = <&adp5585pwm 0 100000 0>; enable-gpios = <&adp5585gpio 8 GPIO_ACTIVE_HIGH>; power-supply = <&reg_vdd_12v>; status = "okay"; brightness-levels = < 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100>; default-brightness-level = <80>; }; }; }; ... };   imx93-11x11-evk-test-lvds-panel.dtso In the case of adding a property to an existing node, it will look in the following way using as example the node adv7535.   ... / { ... fragment@2 { target = <&adv7535>; __overlay__ { status = "disabled"; }; }; ... };   imx93-11x11-evk-boe-wxga-lvds-panel.dts At the end of this post, will be attach the complete file used for LVDS panel named as imx93-11x11-evk-test-lvds-panel.dtso Build device tree blob for overlay (dtbo)   To compile the previous .dtso it's necessary to include it to linux-imx repository, linux device tree overlay was included in BSP from version 6.6.3-nanbield onward in Makefile, so it's only necessary adding it as files to be compiled as .dtso, at the end of the post will be a patch file named as linux-imx-makefile.patch to add LVDS-panel to Makefile from branch lf-6.6.3-1.0.0 Add previously file imx93-11x11-evk-test-lvds-panel.dtso to path <linux-imx path>/arch/arm64/boot/dts/freescale/ Add imx93-11x11-evk-test-lvds-panel.dtso as file to be compiled in Makefile, it is located in the next path <linux-imx path>/arch/arm64/boot/dts/freescale/Makefile, it can be added with the next sentence format: <overlay without extension>-dtbs := <file to be overlayed>.dtb <overlay>.dtbo Example of how to add LVDS panel to makefile  imx93-11x11-evk-test-lvds-panel-dtbs := imx93-11x11-evk.dtb imx93-11x11-evk-test-lvds-panel.dtbo Makefile From main path, make the configuration to be compiled with the following bash command: $ cd <linux-imx path>/ $ make -j$(nproc --all) ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- imx_v8_defconfig​ Compile overlay to use $ make -j $(nproc --all) ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- freescale/<overlay>.dtbo​ as example for LVDS panel $ make -j $(nproc --all) ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- freescale/imx93-11x11-evk-test-lvds-panel.dtbo It will compile the device tree blob overlay to use. Copy .dtbo generated in memory used by i.MX 93, it can be sending it from scp. scp ./​<overlay>.dtbo​ root@<ip>:/run/media/<memory section used> u-boot   This section explain the procedure to load a device tree overlay, it will be from u-boot explaining commands used and using the LVDS panel as an example. Before applying overlay   Before applying, it's necessary had a device tree loaded so looking around in the process of booting in a i.MX 93 from u-boot, this process is defined by the enviroment variable "bsp_bootcmd" that calls the variable mmcboot, and looking what does these variables, it can be look in the following sentence:    bsp_bootcmd=echo Running BSP bootcmd ...; mmc dev ${mmcdev}; if mmc rescan; then if run loadbootscript; then run bootscript; else if test ${sec_boot} = yes; then if run loadcntr; then run mmcboot; else run netboot; fi; else if run loadimage; then run mmcboot; else run netboot; fi; fi; fi; fi; mmcboot=echo Booting from mmc ...; run mmcargs; if test ${sec_boot} = yes; then if run auth_os; then run boot_os; else echo ERR: failed to authenticate; fi; else if test ${boot_fit} = yes || test ${boot_fit} = try; then bootm ${loadaddr}; else if run loadfdt; then run boot_os; else echo WARN: Cannot load the DT; fi; fi;fi;   but reducing it in a normal situation, ignoring if else case and echoes, it can be simplify to:   mmc dev ${mmcdev}; run loadimage; run mmcargs; run loadfdt; run boot_os;   the device tree is load is in the section "run loadfdt" with fatload in his definition:   loadfdt=fatload mmc ${mmcdev}:${mmcpart} ${fdt_addr_r} ${fdtfile}   So, it's necessary to applying device tree overlay after "run loadfdt". How to apply an overlay   To load correctly an overlay it's necessary to following some steps: Load flattened device tree (fdt). (executed by loadfdt) Configure fdt address.  In some cases it's necessary to expand fdt memory size Load overlay Apply overlay The full sentence to apply it, it's the following u-boot command:   u-boot=> setexpr fdtovaddr ${fdt_addr} + 0xF0000; setexpr fdt_buffer 16384; fdt addr ${fdt_addr} && fdt resize ${fdt_buffer}; fatload mmc ${mmcdev}:${mmcpart} ${fdtovaddr} <overlay>.dtbo && fdt apply ${fdtovaddr};   First of all, setexpr it's just to create a new variable, in this case these variable is an integer. Spliting the previously command we can found the steps to applying it. "fdt addr ${fdt_addr};" used to configure fdt address, and point to the space of memory previously charged. "fdt resize ${fdt_buffer};" expand fdt memory size, is used as a value 16384 just to get the enough space to charge dtbo, this number was related with 2 14 "fatload mmc ${mmcdev}:${mmcpart} ${fdtovaddr} <overlay>.dtbo" Load device tree overlay using fdovaddr, that is fdt_addr adding an offset of memory space.  "fdt apply ${fdtovaddr};" apply device tree overlay Remembering about load overlay needs to be executed after loadfdt, it's possible to save the previous command to a variable and executing it after loadfdt with setexpr, in this case using as example lvds test.   u-boot=> setenv loadoverlay "setexpr fdtovaddr ${fdt_addr} + 0xF0000; setexpr fdt_buffer 16384; fdt addr $\{fdt_addr\} && fdt resize $\{fdt_buffer\}; fatload mmc $\{mmcdev\}:$\{mmcpart\} $\{fdtovaddr\} imx93-11x11-evk-test-lvds-panel.dtbo && fdt apply $\{fdtovaddr\};"   and modifying mmcboot with loadoverlay after loadfdt   u-boot=> setenv mmcboot "run mmcargs; run loadfdt; run loadoverlay; run boot_os;"   to save the environment variables created, it can be saved from u-boot wit the following command.   u-boot=> saveenv   At the end, boot imx93   u-boot=> boot   The LVDS panel should be working using the original dtb (imx93-11x11-evk.dtb) applied the overlay. Automatize u-boot LVDS Panel   This section explain how can be automatize the u-boot load overlay using an LVDS panel, it can vary depending the device to used for, the method used is detecting it in u-boot initialization and if found any device it will generate an environment variable. All the steps was using as a base uboot-imx repository, it can be downloaded from the following repository, at the end of this post will be a patch with the changes.   git clone https://github.com/nxp-imx/uboot-imx.git -b <branch version>   Branch version used "lf-6.6.3-1.0.0". Base   Knowing more about LVDS Panel used by imx93 it's really hard know more information about registers, so in this example will be limited to detect that is connected the address to a corresponding bus from touch controller.  To know i2c address and bus used by LVDS panel it was used searching it from the original device tree in the next section:   &lpi2c1 { exc80h60: touch@2a { compatible = "eeti,exc80h60"; reg = <0x2a>; pinctrl-names = "default"; pinctrl-0 = <&pinctrl_ctp_int>; /* * Need to do hardware rework here: * remove R131, short R181 */ interrupt-parent = <&gpio2>; interrupts = <21 IRQ_TYPE_LEVEL_LOW>; reset-gpios = <&pcal6524 17 GPIO_ACTIVE_HIGH>; status = "okay"; }; };   imx93-11x11-evk-boe-wxga-lvds-panel.dts Previous node is related with touch controller from LVDS using lpi2c1, the first channel of i2c corresponding to i2c bus 0, and the register used express the address used to be detected by device tree, in this case was the address 0x2A. u-boot generating a trigger   About how it can be detected touch controller from u-boot, this procedure use a function named as "board_late_init", it can be found by his definition from u-boot readme:   Board initialization settings: ------------------------------ During Initialization u-boot calls a number of board specific functions to allow the preparation of board specific prerequisites, e.g. pin setup before drivers are initialized. To enable these callbacks the following configuration macros have to be defined. Currently this is architecture specific, so please check arch/your_architecture/lib/board.c typically in board_init_f() and board_init_r(). - CONFIG_BOARD_EARLY_INIT_F: Call board_early_init_f() - CONFIG_BOARD_EARLY_INIT_R: Call board_early_init_r() - CONFIG_BOARD_LATE_INIT: Call board_late_init()   u-boot README In the case of i.MX 93 this function can be found in the next path <u-boot path>/board/freescale/imx93_evk/imx93_evk.c. Using the library included, "uclass.h", it will create a function that, if detect in the bus 0 (LVDS i2c bus) the address 0x2A (i2c LVDS address), it will create an environment variable with the overlay used, it can be set with the function env_set(<String with the name of the variable>, <String with the content of the variable>), the following function can detect and create the environment variable mentioned, creating it with the name "device-tree-overlay" with the content "lvds-panel".   #define LVDS_TOUCH_I2C_BUS 0 #define LVDS_TOUCH_I2C_ADDR 0x2A static void detect_display_connected(void) { struct udevice *bus = NULL; struct udevice *i2c_dev = NULL; int ret; ret = uclass_get_device_by_seq(UCLASS_I2C, LVDS_TOUCH_I2C_BUS, &bus); if (ret) { printf("%s: Can't find bus\n", __func__); } else { ret = dm_i2c_probe(bus, LVDS_TOUCH_I2C_ADDR, 0, &i2c_dev); if (ret) { printf("%s: Can't find device id=0x%x\n", __func__, LVDS_TOUCH_I2C_ADDR); } else { env_set("device-tree-overlay", "lvds-panel"); } } }   imx93_evk.c At the end, add this function to the previously mention, named as board_late_init, in the section CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG, like the following snipped from code:   int board_late_init(void) { #ifdef CONFIG_ENV_IS_IN_MMC board_late_mmc_env_init(); #endif env_set("sec_boot", "no"); #ifdef CONFIG_AHAB_BOOT env_set("sec_boot", "yes"); #endif #ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG env_set("board_name", "11X11_EVK"); env_set("board_rev", "iMX93"); detect_display_connected(); #endif return 0; }   imx93_evk.c Now, when it's starting u-boot after flashing, it will generate the environment variable as trigger if something it's connected with that i2c address, else it doesn't do anything. u-boot applying device tree overlay through event   As was explained in the section "How to apply device tree overlay", applying the device tree overlay automatically after configure the trigger it's easy, just adding an if/else case for this example, it can be more ways to applying it, even it's possible adding more of one device tree overlay, but in this example will load one.  Using u-boot command "test -e <environment variable>" it will detect if exist this environment variable, adding it to an if/else sentence it can create the event and applying the overlay if was detected or not, for this solution will be added this if/else as input if exists loadoverlay variable with the following structure:   u-boot=> if test -e ${device-tree-overlay}; then <case exists device-tree-overlay variable> else <case doesn't exists device-tree-overlay variable>; fi;   adding it to loadoverlay, it will be written like the following command:   u-boot=> setenv loadoverlay "if test -e ${device-tree-overlay}; then setexpr fdtovaddr ${fdt_addr} + 0xF0000; setexpr fdt_buffer 16384; fdt addr ${fdt_addr} && fdt resize $\{fdt_buffer\}; fatload mmc ${mmcdev}:${mmcpart} $\{fdtovaddr\} imx93-11x11-evk-test-lvds-panel.dtbo; fdt apply $\{fdtovaddr\} ; else echo no overlay; fi;"   A no recommended method it's that it can be saved the environment, and changing mmcboot variable with the following command:   u-boot=> setenv mmcboot "run mmcargs; run loadfdt; run loadoverlay; run boot_os;"; saveenv;   The problem about just saving it, it still necessary compile u-boot to load auto-detection of LVDS panel and flashing, another way to add the event trigger, it's adding it to u-boot as initial environment variable, it can be added in the header file of imx93, it is located in the next path <u-boot path>/include/configs/imx93_evk.h, line number 60, it can be added with the same string but it's recommended follow the same structure, like the following definition:   /* Initial environment variables */ #define CFG_EXTRA_ENV_SETTINGS \ ... "loadoverlay=echo loading overlays from mmc ...; " \ "if test -e ${device-tree-overlay}; then " \ "setexpr fdtovaddr ${fdt_addr} + 0xF0000; " \ "setexpr fdt_buffer 16384; " \ "fdt addr ${fdt_addr} && fdt resize ${fdt_buffer}; " \ "fatload mmc ${mmcdev}:${mmcpart} ${fdtovaddr} imx93-11x11-evk-test-lvds-panel.dtbo && fdt apply ${fdtovaddr}; " \ "else " \ "echo no overlay; " \ "fi;\0" \ ...   imx93_evk.h it also it's necessary to change mmcboot environment variable adding loadoverlay after executing loadfdt.    /* Initial environment variables */ #define CFG_EXTRA_ENV_SETTINGS \ .. "mmcboot=echo Booting from mmc ...; " \ "run mmcargs; " \ "if test ${sec_boot} = yes; then " \ "if run auth_os; then " \ "run run boot_os; " \ "else " \ "echo ERR: failed to authenticate; " \ "fi; " \ "else " \ "if test ${boot_fit} = yes || test ${boot_fit} = try; then " \ "bootm ${loadaddr}; " \ "else " \ "if run loadfdt; then " \ "run loadoverlay; " \ "run boot_os; " \ "else " \ "echo WARN: Cannot load the DT; " \ "fi; " \ "fi;" \ "fi;\0" \ ...   imx93_evk.h To build u-boot, copy the following commands in main path from u-boot   $ cd <u-boot path> $ make -j $(nproc --all) clean PLAT=imx93 CROSS_COMPILE=aarch64-linux-gnu- $ make -j $(nproc --all) ARCH=arm CROSS_COMPILE=aarch64-linux-gnu- imx93_11x11_evk_defconfig $ make -j $(nproc --all) PLAT=imx93 CROSS_COMPILE=aarch64-linux-gnu-   generating the files u-boot.bin and u-boot-spl.bin located in <uboot-imx path>/ and <uboot-imx path>/spl Build imx-boot image using imx-mkimage   To build the binary necessary to flash to iMX 93 EVK it's necessary build a file named as flash.bin, it can building using the next repository using the branch used for this example:    $ git clone https://github.com/nxp-imx/imx-mkimage.git -b lf-6.6.3_1.0.0   to build imx-boot image it's necessary adding some files to the path <imx-mkimage path>/iMX93, including 2 generated by u-boot, u-boot.bin and u-boot-spl.bin, move these files to iMX93 directory.   $ cp <uboot-imx path>/u-boot.bin <uboot-imx path>/spl/u-boot-spl.bin <imx-mkimage path>/iMX93/   follow the steps from imx linux users guide section 4.5.13 and imx linux release notes section 1.2 to build flash.bin, as an example of compile, there's the steps to compile for imx93. Get mx93a1-ahab-container.img $ wget https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/firmware-sentinel-0.11.bin $ chmod +x firmware-sentinel-0.11.bin $ ./firmware-sentinel-0.11.bin $ cp firmware-sentinel-0.11/mx93a1-ahab-container.img <imx-mkimage path>/iMX93/​ Get lpddr4_imem_1d_v202201.bin, lpddr4_dmem_2d_v202201.bin, lpddr4_imem_1d_v202201.bin and lpddr4_imem_2d_v202201.bin $ wget https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/firmware-imx-8.23.bin $ chmod +x firmware-imx-8.23.bin $ ./firmware-imx-8.23.bin $ cp firmware-imx-8.23/firmware/ddr/synopsys/lpddr4_dmem_1d_v202201.bin firmware-imx-8.23/firmware/ddr/synopsys/lpddr4_dmem_2d_v202201.bin firmware-imx-8.23/firmware/ddr/synopsys/lpddr4_imem_1d_v202201.bin firmware-imx-8.23/firmware/ddr/synopsys/lpddr4_imem_2d_v202201.bin <imx-mkimage path>/iMX93/​ Get bl31.bin $ git clone https://github.com/nxp-imx/imx-atf.git -b lf-6.6.3-1.0.0 $ cd imx-atf $ make -j $(nproc --all) PLAT=imx93 CROSS_COMPILE=aarch64-linux-gnu- $ cp <imx-atf path>/build/imx93/release/bl31.bin <imx-mkimage path>/iMX93​ Compile flash.bin from imx-mkimage $ cd <imx-mkimage path>/ $ make SOC=iMX9 REV=A1 flash_singleboot​ it will generate the binary flash.bin located in the path <imx-mkimage path>/iMX93/flash.bin. Flashing u-boot   Flashing just u-boot image using flash.bin, will be used uuu.exe, it can be downloaded from the his repositroy, try using the most recent version taged as "Latest"    https://github.com/nxp-imx/mfgtools/releases   make sure is using i.MX 93 EVK in boot mode download and connect it to your host from download USB port, using uuu.exe run the next code:   .\uuu.exe -b emmc .\flash.bin   or it can be flashed the full image with flash.bin binary.   .\uuu.exe -b emmc_all .\flash.bin ..\uuu\imx-image-full-imx93evk.wic   after that, starting be will using the created u-boot environment. Result   Inside u-boot, when it's connected the LVDS panel, it will create the variable named "device-tree-overlay" and will be charged automatically LVDS panel overlay, enabling it, if not it will working normally using DSI as output. Note: Ensure to have imx93-11x11-evk-test-lvds-panel.dtbo in memory. Reference   Device tree overlay: https://docs.kernel.org/devicetree/overlay-notes.html  
查看全文
On this tutorial we will review the implementation of Flutter on the i.MX8MP using the Linux Desktop Image. Please find more information about Flutter using the following link: Flutter: Option to create GUIs for Embedded System... - NXP Community Requirements: Evaluation Kit for the i.MX 8M Plus Applications Processor. (i.MX 8M Plus Evaluation Kit | NXP Semiconductors) NXP Desktop Image for i.MX 8M Plus (GitHub - nxp-imx/meta-nxp-desktop at lf-6.1.1-1.0.0-langdale) Note: This tutorial is based on the NXP Desktop Image with Yocto version 6.1.1 – Langdale. Steps: 1. First, run commands to update packages. $ sudo apt update $ sudo apt upgrade 2. Install Flutter for Linux using the following command. $ sudo snap install flutter --classic 3. Run the command to verify the correct installation. $ flutter doctor With this command you will find information about the installation. The important part for our purpose is the parameter "Linux toolchain - develop for Linux desktop". 4. Run the command “flutter create .” to create a flutter project, this framework will create different folders and files used to develop the application.  $ cd Documents $ mkdir flutter_hello $ cd flutter_hello $ flutter create .​ 5. Finally, you can run the “hello world” application using: $ flutter run Verify the program behavior incrementing the number displayed on the window.  
查看全文
  Test environment   i.MX8MP EVK LVDS0 LVDS-HDMI  bridge(it6263) Uboot2022, Uboot2023 Background   Some customers need show logo using LVDS panel. Current BSP doesn't support LVDS driver in Uboot. This patch provides i.MX8MPlus LVDS driver support in Uboot. If you want to connect it to LVDS panel , you need port your lvds panel driver like  simple-panel.c   Update [2022.9.19] Verify on L5.15.32_2.0.0  0001-L5.15.32-Add-i.MX8MP-LVDS-driver-in-uboot 'probe device is failed, ret -2, probe video device failed, ret -19' is caused by below code. It has been merged in attachment. // /* Only handle devices that have a valid ofnode */ // if (dev_has_ofnode(dev) && !(dev->driver->flags & DM_FLAG_IGNORE_DEFAULT_CLKS)) { // /* // * Process 'assigned-{clocks/clock-parents/clock-rates}' // * properties // */ // ret = clk_set_defaults(dev, CLK_DEFAULTS_PRE); // if (ret) // goto fail; // }   [2023.3.14] Verify on L5.15.71 0001-L5.15.71-Add-i.MX8MP-LVDS-support-in-uboot   [2023.9.12] For some panel with low DE, you need uncomment CTRL_INV_DE line and set this bit to 1. #include <linux/string.h> @@ -110,9 +111,8 @@ static void lcdifv3_set_mode(struct lcdifv3_priv *priv, writel(CTRL_INV_HS, (ulong)(priv->reg_base + LCDIFV3_CTRL_SET)); /* SEC MIPI DSI specific */ - writel(CTRL_INV_PXCK, (ulong)(priv->reg_base + LCDIFV3_CTRL_CLR)); - writel(CTRL_INV_DE, (ulong)(priv->reg_base + LCDIFV3_CTRL_CLR)); - + //writel(CTRL_INV_PXCK, (ulong)(priv->reg_base + LCDIFV3_CTRL_CLR)); + //writel(CTRL_INV_DE, (ulong)(priv->reg_base + LCDIFV3_CTRL_CLR)); }       [2024.5.15] If you are uing simple-panel.c, need use below patch to set display timing from panel to lcdif controller. diff --git a/drivers/video/simple_panel.c b/drivers/video/simple_panel.c index f9281d5e83..692c96dcaa 100644 --- a/drivers/video/simple_panel.c +++ b/drivers/video/simple_panel.c @@ -18,12 +18,27 @@ struct simple_panel_priv { struct gpio_desc enable; }; +/* define your panel timing here and + * copy it in simple_panel_get_display_timing */ +static const struct display_timing boe_ev121wxm_n10_1850_timing = { + .pixelclock.typ = 71143000, + .hactive.typ = 1280, + .hfront_porch.typ = 32, + .hback_porch.typ = 80, + .hsync_len.typ = 48, + .vactive.typ = 800, + .vfront_porch.typ = 6, + .vback_porch.typ = 14, + .vsync_len.typ = 3, +}; + @@ -100,10 +121,18 @@ static int simple_panel_probe(struct udevice *dev) return 0; } +static int simple_panel_get_display_timing(struct udevice *dev, + struct display_timing *timings) +{ + memcpy(timings, &boe_ev121wxm_n10_1850_timing, sizeof(*timings)); + + return 0; +} static const struct panel_ops simple_panel_ops = { .enable_backlight = simple_panel_enable_backlight, .set_backlight = simple_panel_set_backlight, + .get_display_timing = simple_panel_get_display_timing, }; static const struct udevice_id simple_panel_ids[] = { @@ -115,6 +144,7 @@ static const struct udevice_id simple_panel_ids[] = { { .compatible = "lg,lb070wv8" }, { .compatible = "sharp,lq123p1jx31" }, { .compatible = "boe,nv101wxmn51" }, + { .compatible = "boe,ev121wxm-n10-1850" }, { } };   [2024.7.23] Update patch for L6.6.23(Uboot2023)
查看全文
This document is about to build an image by Yocto , and it will disable a function that normal user can’t use command line of “ su ”.
查看全文
Hello, on this post I will explain how to record separated audio channels using an 8MIC-RPI-MX8 Board. As background about how to setup the board to record and play audio using i.MX boards, I suggest you take a look on the next post: How to configure, record and play audio using an 8MIC-RPI-MX8 Board. Requirements: I.MX 8M Mini EVK. Linux Binary Demo Files - i.MX 8MMini EVK. 8MIC-RPI-MX8 Board. Serial console emulator (Tera Term, Putty, etc.). Headphones/speakers. Waveform Audio Format WAV, known for WAVE (Waveform Audio File Format), is a subset of Microsoft’s Resource Interchange File Format (RIFF) specification for storing digital audio files. This format does not apply compression to the information and stores the audio with different sampling rates and bitrates. WAV files are larger in size compared to other formats such as MP3 which uses compression to reduce the file size while maintaining a good audio quality but, there is always some lose on quality since audio information is too random to be compressed with conventional methods, the main advantage of this format is provide an audio file without losses that is also widely used on studio. This files starts with a file header with data chunks. A WAV file consists of two sub-chunks: fmt chunk: data format. data chunk: sample data. So, is structured by a metadata that is called WAV file header and the actual audio information. The header of a WAV (RIFF) file is 44 bytes long and has the following format: How to separate the channels? To separate each audio channel from the recording we need to use the next command that will record raw data of each channel. arecord -D plughw:<audio device> -c<number of chanels> -f <format> -r <sample rate> -d <duration of the recording> --separate-channels <output file name>.wav arecord -D plughw:2,0 -c8 -f s16_le -r 48000 -d 10 --separate-channels sample.wav This command will output raw data of recorded channels as is showed below. This raw data cannot be used as a “normal” .wav file because the header information is missing. It is possible to confirm it if import raw data to a DAW and play recorded samples: So, to use this information we need to create the header for each file using WAVE library on python. Here the script that I used: import wave import os name = input("Enter the name of the audio file: ") os.system("arecord -D plughw:2,0 -c8 -f s16_le -r 48000 -d 10 --separate-channels " + name + ".wav") for i in range (0,8): with open(name + ".wav." + str(i), "rb") as in_file: data = in_file.read() with wave.open(name + "_channel_" + str(i) +".wav", "wb") as out_file: out_file.setnchannels(1) out_file.setsampwidth(2) out_file.setframerate(48000) out_file.writeframesraw(data) os.system("mkdir output_files") os.system("mv " + name + "_channel_" + "* " + "output_files") os.system("rm " + name + ".wav.*") If we run the script, will generate a directory with the eight audio channels in .wav format. Now, we will be able to play each channel individually using an audio player. References IBM, Microsoft Corporation. (1991). Multimedia Programming Interface and Data Specifications 1.0. Microsoft Corporation. (1994). New Multimedia Data Types and Data Techniques. Standford University. (2024, January 30). Retrieved from WAVE PCM sound file format: http://hummer.stanford.edu/sig/doc/classes/SoundHeader/WaveFormat/
查看全文
The user interface has limited the use of the tool GUI Guider. Getting an interaction only through a mouse or touchscreen can be enough for some use cases. However, sometimes the use case requires to go beyond its limitations. This video/appnote explores the possibility of integrating voice by creating a bridge between a speech recognition technology, such as VIT, and the interface creator GUI Guider. It uses a universal way to link all the voice recognition commands and a wakeword to any interaction created by GUI Guider. The following video shows the steps necessary to create that connection by creating the voice recognition using VIT voice commands and wakewords, create an interface of GUI Guider using a template, how to connect between them using the board i.MX 93 evk and testing it. For more information consult the following links AppNote HTML: https://docs.nxp.com/bundle/AN14270/page/topics/abstract.html?_gl=1*1glzg9k*_ga*NDczMzk4MDYuMTcxNjkyMDI0OA..*_ga_WM5LE0KMSH*MTcxNjkyMDI0OC4xLjEuMTcxNjkyMDcyMy4wLjAuMA AppNote PDF: https://www.nxp.com/docs/en/application-note/AN14270.pdf Associated File: AN14270SW  
查看全文
-- DTS for gpio wakeup   // SPDX-License-Identifier: (GPL-2.0+ OR MIT) /*  * Copyright 2022 NXP  */   #include "imx93-11x11-evk.dts"   / {         gpio-keys {                 compatible = "gpio-keys";                 pinctrl-names = "default";                 pinctrl-0 = <&pinctrl_gpio_keys>;                   power {                   label = "GPIO Key Power";                   linux,code = <KEY_POWER>;                   gpios = <&gpio2 7 GPIO_ACTIVE_LOW>;                   wakeup-source;                   debounce-interval = <20>;                   interrupt-parent = <&gpio2>;                   interrupts = <7 IRQ_TYPE_LEVEL_LOW>;                 };         }; };   &iomuxc {         pinctrl_gpio_keys: gpio_keys_grp {                 fsl,pins = <                         MX93_PAD_GPIO_IO07__GPIO2_IO07  0x31e                 >;         }; }; -- testing the switch GPIO  First check if your gpio dts configuration to make it act as a switch works or not After executing the command - 'evtest /dev/input/event1' Trigger an interrupt by connecting GPIO2 7 to GND, as soon as you do that, you will receive Event logs such as below:- This shows that your dts configuration for GPIO works.     -- Verify the interrupt         -- Go to sleep and then connect the GPIO to GND to trigger a wakeup, in the logs we see that kernel exits the suspend mode    
查看全文
P3T1755DP is a ±0.5°C accurate temperature-to-digital converter with a -40 °C to +125 °C range. It uses an on-chip band gap temperature sensor and an A-to-D conversion technique with overtemperature detection. The temperature register always stores a 12-bit two's complement data, giving a temperature resolution of 0.0625 °C P3T1755DP which can be configured for different operation conditions: continuous conversion, one-shot mode, or shutdown mode.   The device has very good features but, unfortunately, is not supported by Linux yet!   The P31755 works very similarly to LM75, pct2075, and other compatibles.   We can add support to P3T1755 in the LM75.c program due to the process to communicate with the device is the same as LM75 and equivalents.   https://github.com/nxp-imx/linux-imx/blob/lf-6.1.55-2.2.0/drivers/hwmon/lm75.c route: drivers/hwmon/lm75.c   The modifications that we have to do are the next:    1. We have to add the configurations to the kernel on the imx_v8_defconfig file CONFIG_SENSORS_ARM_SCMI=y CONFIG_SENSORS_ARM_SCPI=y CONFIG_SENSORS_FP9931=y +CONFIG_SENSORS_LM75=m +CONFIG_HWMON=y +CONFIG_I2C=y +CONFIG_REGMAP_I2C=y CONFIG_SENSORS_LM90=m CONFIG_SENSORS_PWM_FAN=m CONFIG_SENSORS_SL28CPLD=m    2. Add the part on the list of parts compatible with the driver LM75.c enum lm75_type { /* keep sorted in alphabetical order */ max6626, max31725, mcp980x, + p3t1755, pct2075, stds75, stlm75,   3. Add the configuration in the structure lm75_params device_params[]. .default_resolution = 9, .default_sample_time = MSEC_PER_SEC / 18, }, + [p3t1755] = { + .default_resolution = 12, + .default_sample_time = MSEC_PER_SEC / 10, + }, [pct2075] = { .default_resolution = 11, .default_sample_time = MSEC_PER_SEC / 10,   Notes: You can change the configuration of the device using .set_mask and .clear_mask, see more details on LM75.c lines 57 to 78   4. Add the ID to the list in the structure i2c_device_id lm75_ids and of_device_id __maybe_unused lm75_of_match    { "max31725", max31725, }, { "max31726", max31725, }, { "mcp980x", mcp980x, }, + { "p3t1755", p3t1755, }, { "pct2075", pct2075, }, { "stds75", stds75, }, { "stlm75", stlm75, },   + { + .compatible = "nxp,p3t1755", + .data = (void *)p3t1755 + },   5. In addition to all modifications, I modify the device tree of my iMX8MP-EVK to connect the Sensor in I2C3 of the board.  https://github.com/nxp-imx/linux-imx/blob/lf-6.1.55-2.2.0/arch/arm64/boot/dts/freescale/imx8mp-evk.dts   }; }; + + p3t1755: p3t1755@48 { + compatible = "nxp,p3t1755"; + reg = <0x48>; + }; + };   Connections: We will use the expansion connector of the iMX8MP-EVK and J9 of the P3T1755DP-ARD board.   P3T1755DP-ARD board   iMX8MP-EVK   P3T1755DP-ARD ----> iMX8MP-EVK J9              ---------->            J21 +3v3 (Pin 9) ---> +3v3 (Pin 1) GND(Pin 7) ---> GND (PIN 9) SCL (Pin 4) ---> SCL (Pin 5) SDA (Pin 3) ---> SDA (Pin 3)     Reading the Sensor We can read the sensor using the next commands:   Read Temperature: $ cat /sys/class/hwmon/hwmon1/temp1_input Reading maximum temperature: $ cat /sys/class/hwmon/hwmon1/temp1_max Reading hysteresis: $ cat /sys/class/hwmon/hwmon1/temp1_max_hyst   https://www.nxp.com/design/design-center/development-boards-and-designs/analog-toolbox/arduino-shields-solutions/p3t1755dp-arduino-shield-evaluation-board:P3T1755DP-ARD    
查看全文
What is LGVL? LVGL is a graphics library to run on devices with limited resources. LVGL is fully open-source and has no external dependencies, works with any modern MCU or MPU, and can be used with any (RT)OS or bare metal setup. https://lvgl.io/   What is Framebuffer? The Linux framebuffer (fbdev) is a Linux subsystem used to show graphics on a display, typically manipulated on the system console   How to write on the frame buffer? The device is listed on de device list typically "fb0" on iMX.   1. Stop the window manager (Weston in our BSP) $ systemctl stop weston   2. Write random data on the frame buffer with the next command: $ cat /dev/urandom > /dev/fb0   You should see colored pixels on the screen   3. Restart the window manager. $ systemctl start weston     Cross-compiling the application   1. On the host computer we will clone the LGVL repo: $ git clone https://github.com/lvgl/lv_port_linux_frame_buffer.git -b release/v8.2 $ cd lv_port_linux_frame_buffer $ git submodule update --init --recursive 2. Configure the screen resolution, rotation, and the touch input.       2.1 The resolution is configured in lines 33 and 34 of the main.c disp_drv.hor_res = 1080; disp_drv.ver_res = 1920;           2.2 Rotation configured is on lines 32 and 57 of main.c. disp_drv.sw_rotate = 3; lv_disp_set_rotation(NULL, LV_DISP_ROT_270);     2.3 The touch input is configured on line 450 of lv_drv_conf.h # define EVDEV_NAME "/dev/input/event2"   Note: In my case is on /dev/input/event2 to check the inputs use the command "evtest"   3. Compile the application using the command "make"   Note: To compile the application on your host computer you have to set the environment.   4. Share the file called "demo" with your board and execute it on the board with the command $ ./demo   Note: You have to stop the weston service to run the application.     Notes: Tested on iMX8MN EVK with BSP 6.1.36 Works on Multimedia and Full image.
查看全文
Sometime need standalone compile device tree. Only Linux headers and device tree directory are needed.         
查看全文