i.MX处理器知识库

取消
显示结果 
显示  仅  | 搜索替代 
您的意思是: 

i.MX Processors Knowledge Base

讨论

排序依据:
Hello, here Jorge. On this post I will explain how to configure, record and play audio using an i.MX 8MIC-RPI-MX8 Board. Requirements: I.MX 8M Mini EVK Linux Binary Demo Files - i.MX 8MMini EVK (L5.15.52_2.1.0) i.MX 8MIC-RPI-MX8 Board Serial console emulator (Tera Term, Putty, etc.) Headphones/speakers The 8MIC-RPI-MX8 accessory board is designed for voice enabled application prototyping and development on the i.MX 8M family. The board plugs directly into the 40-pin expansion connector on the i.MX 8M Mini and Nano EVK’s. Some features about this board are: 8 PDM Microphones 8 monochrome LEDs 4 multi-color LEDs 2 status LEDs 4 pushbuttons Microphone Mute Switch Microphone geometry switch Connecting the i.MX 8MIC-RPI-MX8 Board. The i.MX 8MIC-RPI-MX8 Board has a 40-pin expansion connector that you can plug it directly to the EVK board. Ensure that pin 1 of the 8MIC-RPI-MX8 is aligned with pin 1 on the EVK J1001 as is showed on the next figure:  Selecting the device tree on the board. Once the pre-compiled image is flashed on the board (Flashing Linux BSP using UUU) and you connected the 8MIC-RPI-MX8 it is necessary to select the correct device tree to handle 8MIC board. On U-boot check the available .dtb files on the BSP using the next command: u-boot=> fatls mmc 2:1 And you will get the corresponding list of .dbt files:  On this case we are working with an I.MX 8M Mini EVK and the corresponding .dtb file is: imx8mm-evk-8mic-revE.dtb To select it you need to set the environment variable and save it with: u-boot=> setenv fdtfile imx8mm-evk-8mic-revE.dtb u-boot=> saveenv Doble check it using: u-boot=> printenv fdtfile   Now it is time to boot Linux using the next command: u-boot=> boot Recording audio with the i.MX 8MIC-RPI-MX8 Board. The Advanced Linux Sound Architecture (ALSA) provides audio and MIDI functionality to the Linux operating system. ALSA has the following significant features: Efficient support for all types of audio interfaces, from consumer sound cards to professional multichannel audio interfaces. Fully modularized sound drivers. SMP and thread-safe design. User space library (alsa-lib) to simplify application programming and provide higher level functionality. Support for the older Open Sound System (OSS) API, providing binary compatibility for most OSS programs. Once we are on Linux, we can check our audio codecs detected on the board using: arecord -l   Now, to record audio we need to use the ALSA arecord command to start recording with IMX8 boards, there are different options that you can check on the next link. On this case we are going to use the next: arecord -D hw:imxaudiomicfil -c8 -f s16_le -r48000 -d10 sample.wav -D: selects the device. -c: selects the number of channels on the recording. -f: selects the format. -r: selects the sample rate. -d: determinate the duration recording time in seconds. sample.wav: Is the name of the resulting audio file. Running the last command, we started to record audio. It is time to make some noise and record it!   Playing audio from IMX8 boards. Now it is time to connect our headphones or speakers to the jack.   Also, as on arecord command you can check the devices where you can play audio from the board using the next command: aplay -l And you will get all the codecs to play audio:   To play our recordings we need to use the ALSA aplay command, it is important to select the correct audio codec to hear the audio from the jack on the board: aplay -Dplughw:3,0 sample.wav -D: selects the device. sample.wav: Is the name of audio file to play   Hope this will helpful for people who wants to record audio using PDM microphones and playing audio from IMX8 boards. Best regards.
查看全文
Symptoms   Bridge mode on EQoS module will not work since Linux Kernel 5.10_2.2.0. Platforms impacted: i.MX8MP/i.MX8DXL/i.MX93   Diagnosis   When eqos module(eth1) is added to the bridge using brctl, it will first set eth1 to promiscuous mode and then set the VLAN for this bridge with a filter VID value of 1. Before adding Intel's patch, there is no problem. c89f44ff10fd net: stmmac: Add support for VLAN promiscuous mode However, when Intel's patch sets up the filter, if it finds that the promiscuous mode is turned on, it will turn off the VLAN Tag function. And it adds a judgment on whether promiscuous mode has been turned on in the function of configuring VID. Returns an error if promiscuous mode is found. Because the patch has turned off the VLAN tag function when promiscuous mode is enabled, which conflicts with continuing to configure the VID. Workaround   This patch is okay for aarch64 platform to solve this issue. diff --git a/drivers/net/ethernet/stmicro/stmmac/dwmac4_core.c b/drivers/net/ethernet/stmicro/stmmac/dwmac4_core.c index c25bfecb4a2d..2dc548b54b1c 100644 --- a/drivers/net/ethernet/stmicro/stmmac/dwmac4_core.c +++ b/drivers/net/ethernet/stmicro/stmmac/dwmac4_core.c @@ -481,12 +481,6 @@ static int dwmac4_add_hw_vlan_rx_fltr(struct net_device *dev, if (vid > 4095) return -EINVAL; - if (hw->promisc) { - netdev_err(dev, - "Adding VLAN in promisc mode not supported\n"); - return -EPERM; - } - /* Single Rx VLAN Filter */ if (hw->num_vlan == 1) { /* For single VLAN filter, VID 0 means VLAN promiscuous */ @@ -536,12 +530,6 @@ static int dwmac4_del_hw_vlan_rx_fltr(struct net_device *dev, { int i, ret = 0; - if (hw->promisc) { - netdev_err(dev, - "Deleting VLAN in promisc mode not supported\n"); - return -EPERM; - } - /* Single Rx VLAN Filter */ if (hw->num_vlan == 1) { if ((hw->vlan_filter[0] & GMAC_VLAN_TAG_VID) == vid) {  
查看全文
This article describes how to integrate NXP WiFi & BT module into i.MX platform, some debug tips, how to test, etc. Although it takes i.MX8MM as example, it is also suitable for all i.MX8 serials platform.
查看全文
   
查看全文
This hands on is based on the evkmimxrt1170_pxp_lab_cm7.zip which is from https://community.nxp.com/t5/i-MX-RT1170-CAS-Training/PXP-Multiple-Files/ta-p/1178709 this hands on give an example to understand pxp basic concept like letterbox background color, rotation, ps buffer coordination definition, output buffer coordination definition more clear   No Roation This test is based on no rotation, so define as below #define LAB1_BIT_BLIT_NO_ROTATION This demo output is that the rabbit picture shows on the upper left corner of lcd, and the offset width and height is 100   #ifdef LAB1_BIT_BLIT_NO_ROTATION     PXP_ps_bitblit(                    // input                    (void*)bmp_rabbit,                    PIXEL_BYTES,                    BMP_RABBIT_WIDTH,                    BMP_RABBIT_HEIGHT,                      // output                    s_BufferLcd[curLcdBufferIdx],                    DEMO_PANEL_WIDTH,                    DEMO_PANEL_HEIGHT,                    100,  // output offset x                    100,  // output offset y                    kPXP_No_Rotate); #endif       in this lab sample code, the background is set to black, PXP_SetProcessSurfaceBackGroundColor(APP_PXP, 0U);   The output is     If we want to set the background to lighter blue, this is what I want to get     then I modify the code to PXP_SetProcessSurfaceBackGroundColor(APP_PXP, 0xFFF0U);   But we get the same output like, without any difference         Check the code, find that the original code   void PXP_ps_sub_region_bitblit(…) { …..     outputBufferConfig.width = sub_region_width;     outputBufferConfig.height = sub_region_height;   …… }   This means that the output buffer width and height are the same as the picture width and height, so whatever background color you set, you couldn’t find anything difference, then change the output buffer width and height is the same as lcd width and height     void PXP_ps_sub_region_bitblit(…) { …..       outputBufferConfig.width = output_width;       outputBufferConfig.height= output_height;   …… }   Then the output change to     We can find the color on the top of display is still black and this isn’t what I need, still tracing the code   void PXP_ps_sub_region_bitblit(…) { …..  // Output buffer  outputBufferConfig.buffer0Addr   =  (uint32_t)output_buffer + output_offset_y * output_width * pic_bytes_per_pixel + output_offset_x * pic_bytes_per_pixel …… }   output_buffer is defined as lcd buffer start address, here the output buffer start address isn’t defined as lcd buffer start address(output_buffer), this is offset of lcd buffer start address, so change it like   void PXP_ps_sub_region_bitblit(…) { …..  // Output buffer  outputBufferConfig.buffer0Addr = (uint32_t)output_buffer …… }   Then the output is like       The output picture move to the upper left corner without offset, but this demo defines the offset is 100   void PXP_ps_sub_region_bitblit(…) { …..  // PS buffer PXP_SetProcessSurfacePosition(APP_PXP,0,0,BMP_RABBIT_WIDTH - 1U, BMP_RABBIT_HEIGHT - 1U); ….. }   In the original code, the PS buffer offset is 0, because the ps buffer start address is the same as the output buffer start address, and output buffer start address is offset + lcd output buffer start address, so set the PS output offset is 0, but I change the output buffer start address is the same as lcd buffer start address, so change the code   void PXP_ps_sub_region_bitblit(…) { …..             uint32_t psUlcX         = output_offset_x;             uint32_t psUlcY         = output_offset_y;             uint32_t psLrcX, psLrcY;             psLrcX = psUlcX   +  sub_region_width  - 1U;             psLrcY = psUlcY + sub_region_height- 1U;         // PS buffer         PXP_SetProcessSurfacePosition(APP_PXP,psUlcX,psUlcY,psLrcX,psLrcY); ….. }   The output is   \   Now this is what we need     Roation Set Macro to #define LAB2_BIT_90_DEGREE_ROTATION   The output is     When rotation is 90 degree and width is wider than the output height, the display part will be cut, so change the code from Before void PXP_ps_sub_region_bitblit(…) { …..       outputBufferConfig.width = output_width;       outputBufferConfig.height= output_height; ….. }   To   void PXP_ps_sub_region_bitblit(…) { …..  if  (rotate == kPXP_Rotate90)  {     outputBufferConfig.width          = output_height;        /*Joan*/     outputBufferConfig.height         = output_width;         /*Joan*/  } else {         outputBufferConfig.width          = output_width;         /*Joan*/         outputBufferConfig.height         = output_height;        /*Joan*/ }….. }   Because this demo only shows no rotation and 90 degree rotation, if customer needs 270 degree, 180 degree, can add by themselves
查看全文
This doc will show: i.MX8DXL EVK board without connect  hardware LCD display, using FreeRDP to share screen to remote PC which is in same network,  PC take this shared screen could  run any command on i.MX8DXL EVK board.   HW: i.MX8DXL EVK board,  PC  SW: i.MX8DXL Linux 5.15.32 BSP release, and code change in this doc   1> i.MX8DXL Linux kernel side, just use imx8dxl-evk-lcdif.dts, but did not connect any LCD display,  so Linux kernel could create related drm device, and weston could be start. But on 8DXL EVK board, ENET1_RGMII_TXD3 and ADMA_LCDIF_D03 pin conflict,  so need code change as 5.15.32-imx8dxl-evk-lcdif.dts.diff.   2> yocto/bld/conf/local.conf, add below line, as freerdp depend on ffmpeg. LICENSE_FLAGS_ACCEPTED+="commercial"   3> For i.MX8DXL,  weston use software pixman render, to use NEON optimization,  pixman need switch to  latest 0.42.0,  enter folder (yocto/bld/tmp/work/armv8a-poky-linux/pixman/1_0.40.0-r0/pixman-0.40.0),  git clone (https://github.com/freedesktop/pixman.git) and checkout to latest 0.42.0:  Also chaneg related build flag at bb file as pixman_0.40.0.bb.diff.     4> Default  freerdp need switch to 2.8.0, enter folder (yocto/bld/tmp/work/armv8a-poky-linux/freerdp/1_2.4.1-r0/git),  git clone (https://github.com/FreeRDP/FreeRDP.git), check out to 2.8.0; And to use neon accelerate freerdp related function, such as color space conversion, image codec encoding ,  need apply patch  freerdp-codechange-neon.diff. And related bb file compile flag change as freerdp_2.4.1.bb.diff     5> bitbake -c compile ffmpeg bitbake -c install ffmpeg   bitbake -c compile pixman  bitbake -c install pixman    bitbake -c compile  freerdp bitbake -c install  freerdp   Copy  generated new libs to default released i.MX8DXL rootfs, make sure ffmeg , pixman, freerdp related libs are  from your build, for example: libfreerdp-client2.so.2 -> libfreerdp-client2.so.2.8.0 libfreerdp2.so.2 -> libfreerdp2.so.2.8.0 libwinpr-tools2.so.2 -> libwinpr-tools2.so.2.8.0 libwinpr2.so.2 -> libwinpr2.so.2.8.0   6> i.MX8DXL Linux rootfs:  file /etc/xdg/weston/weston.ini,  change start-on-startup to true: [screen-share] command=/usr/bin/weston --backend=rdp-backend.so --shell=fullscreen-shell.so --no-clients-resize --rdp-tls-cert=/etc/freerdp/keys/serve start-on-startup=true   7> i.MX8DXL Linux OS, run below cmd: winpr-makecert -path $PWD copy generated files to /etc/freerdp/keys/server.crt and /etc/freerdp/keys/server.key   8> reboot i.MX8DXL EVK board,  make sure  EVK board and PC in the same network; check i.MX8DXL Linux OS , there are two process name as "weston", one process is weston rdp backend to share screen to PC.   9> PC side, get wfreerdp.exe from  https://github.com/FreeRDP/FreeRDP/wiki/Prebuilds PC side run cmd as: wfreerdp.exe /v:ipaddress_of_8DXLEVK     Reference: 1>https://www.nxp.com/design/software/embedded-software/i-mx-software/embedded-linux-for-i-mx-applications-processors:IMXLINUX#design-resources 2>https://github.com/FreeRDP 3>https://github.com/freedesktop/pixman 4>https://github.com/DLTcollab/sse2neon  
查看全文
On behalf of Gopise Yuan. This is a patch to fix USB plug/unplug event detection failure issue on ChipIdea IP under corner case.
查看全文
On i.MX8MP EVK, image is downloaded into eMMC/SD via OTG1, if customer wants to enable USB OTG2 on i.MX8MP for uuu tool. Pls find modification as attached.
查看全文
The Config Tools for i.MX is a set of configuration tools that provide an efficient method for evaluation and configuration of pins routing and DDR memory settings when designing with NXP's application processors based on Arm® Cortex®-A cores, including i.MX MPUs. The following tools are currently available: DDR Tool DDR Configuration and Validation tool allows you to create a configuration for the DDR component and to validate the DDR configuration using various validation scenarios Features: Support for iMX8M, iMX8MM, iMX8MN, iMX8MP and LX2160A DDR configuration UI using the tokenized RPA tool PHY initialization using dynamic library Import the output of the RPA tool will bypass UI configuration Support for multiple PHY firmware version including fw2020.06 Diagnostic fw2020.06 DDR PHY support for DDR3, DDR4, and LPDDR4 Cell color code Basic/Advanced user mode DDR controller Registers View support Auto-detect of available COM ports USB target connection Basic validation tests support (Write-Read-Compare, Walking Ones, Walking Zeros) DQ ODT and driver strength test vTSA (Virtual Timing Signal Analysis) support - RX data eye, TX data eye Stress tests support Export vTSA results in JPEG format Static Code generation in Uboot style Command line posibility PBL Tool PBL tool helps you create and modify pre-boot initialization data used for configuring LX2 devices. Features: Support for LX2160A Configure reset configuration word (RCW), which is 1024 bits of information Optional configure pre-boot initialization (PBI) command sequence Allow user to have full access to configuration by using Skip error checking and Display all fields Option to directly modify the configuration from RCW registers Import different formats of input Generate different types of output, including a binary file SerDes Tool The SerDes tool allows you to configure the SerDes block and provides you with a GUI application to validate the configuration Features: Support for LX2160A UI for SerDes blocks configuration Per lane tests Bist, Power Transmitter/Receiver, Reset Transmitter/Receiver tests Jitter scope, Pattern Independent Jitter scope, Start/Stop Tx Patter generation tests Read a configuration from the target   Trusted Execution Environment Configuration tool The Trusted Execution Environment (TEE) tool facilitates the protection and isolation of the sensitive parts of the code. Features: Graphical display of memory layout and resulting access to memory regions Configuration of access policies for memory areas, bus masters, and peripherals Configuration of pin and interrupt masking and security, as well as general features related to the ARMv8 core security Configuration of MPU Validation of settings Generation of configuration files (C code or ROM preset data) Pins Tool The Pins Tool is used for pin routing configuration, validation and code generation, including pin functional/electrical properties, power rails, run-time configurations. Features: Desktop application Muxing and pin configuration with consistency checking Multicore support Localized for English and Simplified Chinese Mostly Connected: On-Demand device data download Integrates with any compiler and IDE Supports English and Chinese (simplified) languages, based on locale settings. Please refer to user manual for details. ANSI-C initialization code Graphical processor package view Multiple configuration blocks/functions Easy-to-use device configuration Selection of Pins and Peripherals Package with IP blocks Routed pins with electrical characteristics Registers with configured and reset values Power Groups with assigned voltage levels Source code for C/C++ applications Documented and easy to understand source code CSV Report and Device Tree File Downloads & links To download the installer for all platforms, please login to our download site via:  https://www.nxp.com/design/designs/config-tools-for-i-mx-applications-processors:CONFIG-TOOLS-IMX Please refer to Documentation  for installation and quick start guides. For further information about DDR config and validation, please go to this blog post. Whats new in v12.1 Pins tool Deinit function now sets also the routing and direction to it's default state. It also tries to route the original peripheral signal to it's default pin.  
查看全文
  Products Product Category NXP Part Number URL MPU i.MX6 Family https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-6-processors:IMX6X_SERIES   Tools NXP Development Board URL i.MX6 family developement board https://www.nxp.com/design/development-boards:EVDEBRDSSYS#/collection=softwaretools&start=0&max=25&query=typeTax%3E%3Et633::archived%3E%3E0::Sub_Asset_Type%3E%3ETSP::deviceTax%3E%3Ec731_c380_c127_c126&sorting=Buy%2FSpecifications.desc&language=en&siblings=false  
查看全文
  Purpose Under some situations, need to modify the binary image. Under some situations, no development environment. Under some situations, even no Linux. Only have windows. Board bring up need simple settings, such as simple/tiny rootfs.  Key Features Create small sdcard mirror image All operations are on binary files no need development environment(offline) Set the u-boot environment on binary image Windows OS support Snapshot:   Please download  create_sdcard_mirror_ext.zip.001.zip create_sdcard_mirror_ext.zip.002.zip create_sdcard_mirror_ext.zip.003.zip create_sdcard_mirror_ext.zip.004.zip create_sdcard_mirror_ext.zip.005.zip create_sdcard_mirror_ext.zip.006.zip extract each one to have below files  create_sdcard_mirror_ext.zip.001 create_sdcard_mirror_ext.zip.002 create_sdcard_mirror_ext.zip.003 create_sdcard_mirror_ext.zip.004 create_sdcard_mirror_ext.zip.005 create_sdcard_mirror_ext.zip.006 Put together and extract them.  
查看全文
  Background PCIe interface of Android 12 prebuilt and Built image on iMX8MM mini is not coming up. The Android BSP doesn't enable the pcie driver. Solution 1. imx8mm_gki.fragment CONFIG_PHY_FSL_IMX_PCIE=m CONFIG_PCI_IMX6=m 2. device/nxp/imx8m/evk_8mm/SharedBoardConfig.mk $(KERNEL_OUT)/drivers/pci/controller/dwc/pci-imx6.ko \ Result evk_8mm:/ # dmesg | grep pci [ 0.561609] ehci-pci: EHCI PCI platform driver [ 6.515345] imx6q-pcie 33800000.pcie: supply epdev_on not found, using dummy regulator [ 6.524925] imx6q-pcie 33800000.pcie: EXT REF_CLK is used!. [ 6.560211] imx6q-pcie 33800000.pcie: PCIe PLL locked after 20 us. [ 6.567328] imx6q-pcie 33800000.pcie: host bridge /soc@0/pcie@33800000 ranges: [ 6.584463] imx6q-pcie 33800000.pcie: IO 0x001ff80000..0x001ff8ffff -> 0x0000000000 [ 6.593833] imx6q-pcie 33800000.pcie: MEM 0x0018000000..0x001fefffff -> 0x0018000000 [ 6.603140] imx6q-pcie 33800000.pcie: invalid resource [ 6.708123] imx6q-pcie 33800000.pcie: Link up [ 6.713393] imx6q-pcie 33800000.pcie: Link up [ 6.718586] imx6q-pcie 33800000.pcie: Link up, Gen1 [ 6.832372] imx6q-pcie 33800000.pcie: PCI host bridge to bus 0000:00 [ 6.840023] pci_bus 0000:00: root bus resource [bus 00-ff] [ 6.846535] pci_bus 0000:00: root bus resource [io 0x0000-0xffff] [ 6.853805] pci_bus 0000:00: root bus resource [mem 0x18000000-0x1fefffff] [ 6.861601] pci 0000:00:00.0: [16c3:abcd] type 01 class 0x060400 [ 6.868529] pci 0000:00:00.0: reg 0x10: [mem 0x00000000-0x000fffff] [ 6.876439] pci 0000:00:00.0: reg 0x38: [mem 0x00000000-0x0000ffff pref] [ 6.884101] pci 0000:00:00.0: supports D1 [ 6.888954] pci 0000:00:00.0: PME# supported from D0 D1 D3hot D3cold [ 6.899174] pci 0000:01:00.0: [1b4b:2b42] type 00 class 0x020000 [ 6.906127] pci 0000:01:00.0: reg 0x10: [mem 0x00000000-0x000fffff 64bit pref] [ 6.914221] pci 0000:01:00.0: reg 0x18: [mem 0x00000000-0x000fffff 64bit pref] [ 6.922740] pci 0000:01:00.0: supports D1 D2 [ 6.927854] pci 0000:01:00.0: PME# supported from D0 D1 D3hot D3cold [ 6.935200] pci 0000:01:00.0: 2.000 Gb/s available PCIe bandwidth, limited by 2.5 GT/s PCIe x1 link at 0000:00:00.0 (capable of 4.000 Gb/s with 5.0 GT/s PCIe x1 link) [ 6.962608] pci 0000:00:00.0: BAR 0: assigned [mem 0x18000000-0x180fffff] [ 6.970251] pci 0000:00:00.0: BAR 15: assigned [mem 0x18100000-0x182fffff pref] [ 6.978426] pci 0000:00:00.0: BAR 6: assigned [mem 0x18300000-0x1830ffff pref] [ 6.986479] pci 0000:01:00.0: BAR 0: assigned [mem 0x18100000-0x181fffff 64bit pref] [ 7.001517] pci 0000:01:00.0: BAR 2: assigned [mem 0x18200000-0x182fffff 64bit pref] [ 7.010203] pci 0000:00:00.0: PCI bridge to [bus 01-ff] [ 7.016271] pci 0000:00:00.0: bridge window [mem 0x18100000-0x182fffff pref] [ 7.025830] pcieport 0000:00:00.0: PME: Signaling with IRQ 238 [ 7.033786] pcieport 0000:00:00.0: AER: enabled with IRQ 238  
查看全文
Before I have presentation named “i.MX6 SDCARD Secondary Boot Demo”  in following link. i.MX Development Miscellanea(i.MX 开发杂记) - NXP Community   Now I have the “i.MX8MM SDCARD Secondary Boot Demo”.   The big difference is i.MX8MM using spl. And in the “i.MX6 SDCARD Secondary Boot Demo” I manually edit the secondary image table and manually combine the images. Now, I have written done a script “imx_sd_secondary_boot_creator.sh” to do above.
查看全文
i.MX8 VPU hardware decoder support below video codec: H.265 HEVC Main Profile 4Kp60 Level 5.1 H.264 AVC Constrained Baseline, Main and High profile H.264 MVC WMV9 / VC-1 Simple, Main and Advanced Profile MPEG 1 and 2 Main Profile at High Level AVS Jizhun Profile (JP) MJPEG4.2 ASP, H.263, Sorenson Spark Divx 3.11, with Global Motion Compensation (GMC) ON2/Google VP6/VP8 RealVideo 8/9/10 JPEG and MJPEG A/B Baseline   i.MX8 VPU Linux driver is implemented based on V4L2 standard. Chromium beside software video decoding, it also support hardware video decoder(VideoDecodeAccelerator),  there are some kind of VideoDecodeAccelerator, one of them is V4L2VDA. Please note V4L2VDA is using V4l2 api, so it is possible that change V4L2VDA to enable Chromium hardware video playback on i.MX8.   This doc share patch to add chromium video decode accelerate by using i.MX8QM/i.MX8QXP VPU. It will support chromium H.264, H.265, VP8 hardware video decode. H.264 and H.265 need use mp4 container. VP8 use webm container.   HW: i.MX8QM/i.MX8QXP MEK board, 1080P HDMI display, mouse, keyboard SW: i.MX8 5.10.72_2.2.2 yocto bsp release(which included chromium 91.0), and patch in this doc   Patch description: imx8-5.10.72-vpudrv-update.diff, update i.MX8  5.10.72_2.2.2 kernel vpu driver to https://source.codeaurora.org/external/imx/linux-imx/commit/drivers/mxc/vpu_malone?h=lf-5.15.y&id=fa7c67e2c9ed4fb8392fa258f931d6996339a17a chromium-ozone-wayland_91.0.4472.114.bb.diff, change meta-browser/meta-chromium/recipes-browser/chromium/chromium-ozone-wayland_91.0.4472.114.bb for adding some compile flags, etc. 5.10.72-merge.patch, this patch change chromium source code to add video decode accelerate by using i.MX8 VPU.   Build steps: 1>Download i.MX8 5.10.72_2.2.2 yocto release from nxp.com 2>apply chromium-ozone-wayland_91.0.4472.114.bb.diff to change meta-browser/meta-chromium/recipes-browser/chromium/chromium-ozone-wayland_91.0.4472.114.bb 3>put 5.10.72-merge.patch to folder path_of_yocto-5.10.72-2.2.2/sources/meta-browser/meta-chromium/recipes-browser/chromium/files/ 3>apply imx8-5.10.72-vpudrv-update.diff to i.MX8 5.10.72_2.2.2 kernel 4>under the yocto image build folder, add "CORE_IMAGE_EXTRA_INSTALL += "chromium-ozone-wayland" to file path_of_yocto-5.10.72-2.2.2/folder-of-bld/conf/local.conf 5>run bitbake to build rootfs image   Test steps: After system boot up, put some video clip under /home/root/video then run below cmd (do not run chromium without any parameter, as that will start chromium with some other setting, you can check /usr/lib/chromium/chromium-wrapper) "/usr/lib/chromium/chromium-bin   --no-sandbox --ozone-platform=wayland --enable-features=VaapiVideoDecoder  --enable-accelerated-video-decode   --enable-clear-hevc-for-testing --ignore-gpu-blacklist --window-size=1920,1180  /home/root/video" then use mouse to click video clip and will start playback.   Reference: https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-processors:IMX8-SERIES https://www.nxp.com/design/software/embedded-software/i-mx-software/embedded-linux-for-i-mx-applications-processors:IMXLINUX https://www.chromium.org/audio-video/#:~:text=codec%20and%20container%20support https://github.com/igel-oss/meta-browser-hwdecode/blob/master/recipes-chromium/chromium/files/0001-Add-support-for-V4L2VDA-on-Linux.patch      
查看全文
On behalf of Gopise Yuan. A collection of several GST debugging tips and known-how. When you need to play onto a DRM layer/plane directly without going through compositor, kmssink should be a good choice: // kmssink, with scale and adjust alpha property (opaque) and zpos (this requires kmssink>=1.16): gst-launch-1.0 filesrc location=/media/AVC-AAC-720P-3M_Alan.mov ! decodebin ! imxvideoconvert_g2d ! kmssink plane-id=37 render-rectangle="<100,100,720,480>" can-scale=false plane-properties=s,alpha=65535,zpos=2 When using playbin, you can still customize the pipeline besides the sink plugin, e.g. add a converter plugin: // Playbin with additional customization on converter before sink: gst-launch-1.0 playbin uri=file:///mnt/MP4_H264_AAC_1920x1080.mp4 video-sink="imxvideoconvert_g2d ! video/x-raw,format=BGRA,width=1920,height=1080 ! kmssink plane-id=44" GST can generate a pipeline graph for analyzing the pipeline in a intuitive manner: // Generate pipeline graph: 1. Export GST_DEBUG_DUMP_DOT_DIR=<dump-folder>, GST_DEBUG=4 2. Run pipeline with gst-launch or others. 3. Copy all dump files (.dot) from <dump-folder>. Note: one dump file will be created for each state transaction. Normally, what we need will be PAUSE_READY or READY_PAUSE, after which pipeline has been setup. 4. Convert the .dot file to PDF with Graphviz: dot -Tpdf 0.00.03.685443250-gst-launch.PAUSED_READY.dot > pipeline_PAUSED_READY.pdf  
查看全文
This is a simple known-how for how to enable KASAN on L4.14.98 with i.MX8/8X and also a collection of related patches for fixing issues reported by KASAN.   Enable KASAN: It's very simple, just enable "CONFIG_KASAN" in kernel configuration. Besides this, adjusting the kernel's loading address is also required, due to KASAN (which will alloc more memory as a "tracker" for each allocation). For e.g., on imx8qxp MEK, we need to change the kernel loadaddr in uboot:     0x80280000 --> 0xE0280000 through uboot env: setenv loadaddr 0xE0280000 After this, it supposed to be working.   KASAN related patches on L4.14.98: KASAN will do detection/sanitizing for any memory allocation/access. In case of L4.14.98 on i.MX8/8X, there're several "BUG" reported by KASAN in default BSP. The attached patches are a collection for these issues.    Note: not all "BUG" reported by KASAN are really bug. Most of them are just some programming rule related problems and may not really cause memory access violation.
查看全文
  Anyone who want to use this solution should get reference design and firmware from Lontium. Hardware Here is the block diagram of LT9611UXC Demo Board. As the MIPI port of our EVK can provide 5V, 3V3 and 1V8.We can remove useless DC-DC chips from reference design. Below is the LT9611UXC Demo Board. Software Download the firmware into LT9611UXC. In Linux side, we need to drive the MIPI to output signals with standard timings of 1080P. Panel type diff --git a/arch/arm64/boot/dts/freescale/imx8mp-evk.dts b/arch/arm64/boot/dts/freescale/imx8mp-evk.dts index 1732b5c72380..c6a829be541f 100644 --- a/arch/arm64/boot/dts/freescale/imx8mp-evk.dts +++ b/arch/arm64/boot/dts/freescale/imx8mp-evk.dts @@ -696,13 +716,17 @@ &ldb_phy { &mipi_dsi { status = "okay"; + panel@0{ + compatible = "nxp,lt9611uxc"; + reg = <0>; + status = "okay"; }; }; &snvs_pwrkey { diff --git a/drivers/gpu/drm/panel/panel-simple.c b/drivers/gpu/drm/panel/panel-simple.c index 4f78bbf63f33..90d99f12515b 100644 --- a/drivers/gpu/drm/panel/panel-simple.c +++ b/drivers/gpu/drm/panel/panel-simple.c @@ -4997,6 +4997,34 @@ struct panel_desc_dsi { unsigned int lanes; }; +static const struct drm_display_mode lt9611_panel_mode = { + .clock = 148500, + .hdisplay = 1920, + .hsync_start = 1920 + 88, + .hsync_end = 1920 + 88 + 44, + .htotal = 1920 + 88 + 44 + 148, + .vdisplay = 1080, + .vsync_start = 1080 + 4, + .vsync_end = 1080 + 4 + 5, + .vtotal = 1080 + 4 + 5 + 36, +}; + +static const struct panel_desc_dsi lt9611_panel = { + .desc = { + .modes = &lt9611_panel_mode, + .num_modes = 1, + .bpc = 8, + .size = { + .width = 62, + .height = 110, + }, + .connector_type = DRM_MODE_CONNECTOR_DSI, + }, + .flags = MIPI_DSI_MODE_VIDEO_HSE | MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_NO_EOT_PACKET | MIPI_DSI_MODE_VIDEO_SYNC_PULSE, + .format = MIPI_DSI_FMT_RGB888, + .lanes = 4, +}; + static const struct drm_display_mode auo_b080uan01_mode = { .clock = 154500, .hdisplay = 1200, @@ -5201,6 +5229,9 @@ static const struct panel_desc_dsi osd101t2045_53ts = { static const struct of_device_id dsi_of_match[] = { { + .compatible = "nxp,lt9611uxc", + .data = &lt9611_panel, + },{ .compatible = "auo,b080uan01", .data = &auo_b080uan01 }, {
查看全文
Some customer need to test ENET IEEE1588 1pps ouput signal. This article describe all i.MX8 serials test procedure, including normal ENET port and EQOS port(i.MX8MP & i.MX8DXL support EQOS).
查看全文
On behalf of Gopise Yuan. A simple sharing for enabling some kernel options for using “lockdep”. It will be useful for detecting some deadlock (spinlock/mutex/…) issue. Validated on L4.14.x, and, found a lock violation…
查看全文
some industry customer to use i.MX8MM will use RMII to link the 100Mhz ethernet phy and wish to use our i.mx8mm output 50Mhz reference clock to external phy to save a crystal, this doc and patch explain how to support it. SW: Linux BSP 5.10.17. HW: i.MX8MM LPDDR/DDR EVK board. 中文版本为一个完整的如何支持一个100Mhz以太网PHY  
查看全文