i.MX Processors Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

i.MX Processors Knowledge Base

Discussions

Sort by:
i.MX6Q Automotive board has one ADV7180 analog video decoder with 2 video inputs. By default, only input 1 is used (connector J42).     To connect 2 analog video sources and switch the display between them, the following changes are needed:   1 - Create a new IOCTL on V4L2_capture and ADV7180 device drivers to receive the information from user space application on what input will be selected. 2 - In this new IOCTL, use the "Fast Switch Script" for ADV7180 described at Analog Devices site: ADV7180 Fast Switch Script | EngineerZone  3 - Create a user space application to call the IOCTL mentioned on step 1.   See attached:   1 - 0001-ADV7180-Adding-input-switch-IOCTL.patch.zip - Patch to be applied on NXP kernel 4.1.15_1.0.0_ga 2 - example2.c.zip - Source code example of user space application. It changes the video input in each 2 seconds. (See it working on attached video) 3 - example2.zip - User space application executable file  4 - Makefile.zip - Makefile of user space application to be used as example 5 - adv7180_switch.mp4 - Video showing the application   In the application, VIDIOC_S_CHIP_INPUT IOCTL is called to change the input:   int input = 0; if (ioctl(fd_capture_v4l, VIDIOC_S_CHIP_INPUT, &input) < 0) { printf("VIDIOC_S_CHIP_INPUT failed\n"); return TFAIL; }‍‍‍‍‍‍‍‍‍‍‍‍   This IOCTL calls the ADV7180 Fast Switch Script, added on ADV7180 driver (see attached patch).
View full article
Minicom       It's a simple terminal program, easy to configure and use. Can be downloaded and installed from your Linux package distribution (Synaptic, apt-get, yum) or through this link.       Minicom is a terminal emulation that can access a remote serial console enabling the configuration of Bootloader or the flash file system of the board.   Configuring       Run Minicom calling it from Terminal:     $ minicom       Reach the cofiguration by typing CTRL-A Z Press key Z after releasing CTRL and A. Configure Minicom to work with i.MX, follow the procedure below.   Set the Serial Port       At the screen configuration, type O, choosing Configure Minicom In menu, choose Serial Port Setup Below, the configuration option:       +-----------------------------------------------------------------------+ | A - Serial Device  : /dev/ttyS0                            | | B - Lockfile Location  : /var/lock                          | | C - Callin Program  :                                          | | D - Callout Program  :                                        | | E - Bps/Par/Bits  : 115200 8N1                          | | F - Hardware Flow Control : No                          | | G - Software Flow Control : No                            | |                                                                        | | Change which setting?                                      | +-----------------------------------------------------------------------+       Type the letter of option to enable the modification. Remember to choose the right Serial Device. Screen       Another useful program to use with serial ports is screen. It is a screen manager with VT100/ANSI terminal emulation usually available in Linux distributions. To open serial device /dev/ttyS0, for example, using 115200 baudrate, simply use:     $ screen /dev/ttyS0 115200       To kill the screen manager, use Ctrl + a, k. For a list of useful parameters and commands, try:     $ man screen
View full article
Before reading: only a personal works and sharing, not any form of "release". I didn't find any confidential information from the packages. So, I'm publishing it here. This is only for testing purpose. Do NOT use it for building a product. Use it at your own risk!! Yocto is flexible and powerful, and also, big and slow (when building). Sometimes we only need to build uboot or kernel or some piece of testing code. It's really a waste of time to build-up the whole Yocto environment which may cost over 50GB disk space and over 3 hours of building. I've made some scripts and sum them up to form a toolset for building uboot, kernel and some testing code out of Yocto environment. It's only a simple container and expect to use with uboot and kernel source code from formal Freescale release and a SDK built from Yocto project. GitHub source repo:       https://github.com/gopise/gopbuild What’s made off (a full package, not only the container): 1.    Some scripts and configurations files. 2.    SDK built from Yocto. 3.    Uboot/kernel from specific version. 4.    A hello-world to demonstrate how to build app in this environment. 5.    A slimmed rootfs binary from specific BSP pre-built as base. Will customize base on the source under “rootfs” folder. Only a placeholder in the container-only version. How to use it: Several common used board configurations have been included in the script: 6qsabresd/6qsabreai/6qpsabreai. You can add more into the “gopbuild” script easily. The “sabresd” has been set as default.      If you want to build all for sabresd (First of all, de-compress the package): cd <de-compressed-folder> source envsetup [It will prompt for selecting board configuration to be built. Choose one by input corresponding number or click <ENTER> for default board.] gmk ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍      If you want to build specific module for default board, such as uboot: gmk uboot ‍‍‍‍‍‍‍‍‍      Build kernel for sabreai board instead of default device: gmk kernel sabreai ‍‍‍‍‍‍‍‍‍      Clean everything? gmk all clean ‍‍‍‍‍‍‍‍‍ After a successfully full build, you will get everything under “output” folder, including a log folder contains full build log:      “u-boot.imx/zImage/rootfs.tar.bz2/*.dtb”, can be used with MFG or uuu.      “fsl-image.sdcard”, can be burn into SD card directly. "Ready-for-building" Package: The "gopbuild" itself is a "container-only" package which doesn't contain any source or SDK. I've also made some packages based on latest BSP release for i.MX6/i.MX7/i.MX8. These packages are "ready-for-build" package which you can de-compress and build it directly. -------------------------------------------------------------------------------------------------- URL:https://pan.baidu.com/s/1Xlh1OBGsTRXez_NQw-Rjxg Password: gdc9 -------------------------------------------------------------------------------------------------- Note: 1. To build for i.MX8 (8QM/8MQ/8QXP), you need L4.14.* or above. 2. To build for i.MX8, please download the SCFW from i.MX software page       i.MX Software and Development Tools | NXP      After download, decompress corresponding package for specific chip and put it under "/platform/scfw/". Take i.MX8QXP for example:             /platform/scfw/scfw_export_mx8qx/ All material (uboot/kernel/test code and SDK) are from official Yocto release. Thanks!
View full article
 This article uses i.MX Linux® User's Guide, Rev. L4.1.15_2.1.0-ga, 05/2017 as an example (it may be found as attachment), please refer to section 4.5.12 (How to build U-Boot and Kernel in standalone environment).   First, generate a development SDK, which includes the tools, toolchain, and small rootfs to compile against to put on the host machine.     • Generate an SDK from the Yocto Project build environment with the following command. To set up the Yocto Project build environment, follow the steps in the i.MX Yocto Project User's Guide (IMXLXYOCTOUG). In the following command, set <Target-Machine> to the machine you are building for.   <Target-Machine> may be one of the following :   • imx6qpsabreauto • imx6qpsabresd • imx6ulevk • imx6ull14x14evk • imx6ull9x9evk • imx6dlsabreauto • imx6dlsabresd • imx6qsabreauto • imx6qsabresd • imx6slevk • imx6sllevk • imx6solosabreauto • imx6solosabresd • imx6sxsabresd • imx6sxsabreauto • imx7dsabresd  The «populate_sdk» generates an script file that sets up environment without Yocto Project. This SDK should be updated for each release to pick up the latest headers, toolchain, and tools from the current release.   $ DISTRO=fsl-imx-fb MACHINE=<Target-Machine> source fsl-setup-release.sh -b build-fb   $ DISTRO=fsl-imx-fb MACHINE=<Target-Machine> bitbake core-image-minimal -c populate_sdk   or   $ bitbake meta-toolchain       • From the build directory, the bitbake was run in, copy the sh file in tmp/deploy/sdk to the host machine to build on and execute the script to install the SDK. The default location is in /opt but can be placed anywhere on the host machine.     Note. Each time you wish to use the SDK in a new shell session, you need to source the environment setup script e.g.    $ . /opt/fsl-imx-fb/4.1.15-2.0.0/environment-setup-cortexa9hf-neon-poky-linux-gnueabi   or    $ source /opt/fsl-imx-fb/4.1.15-2.0.0/environment-setup-cortexa9hf-neon-poky-linux-gnueabi   From  Yocto Project Mega-Manual  Note By default, this toolchain does not build static binaries. If you want to use the toolchain to build these types of libraries, you need to be sure your image has the appropriate static development libraries. Use the  IMAGE_INSTALL  variable inside your  local.conf  file to install the appropriate library packages. Following is an example using  glibc  static development libraries:      IMAGE_INSTALL_append = " glibc-staticdev"   On the host machine, these are the steps to build U-Boot and Kernel:  • On the host machine, set the environment with the following command before building.   $ export CROSS_COMPILE=/opt/fsl-imx-fb/4.1.15/environment-setup-cortexa9hf-vfp-neon-pokylinux-gnueabi   $ export ARCH=arm • To build U-Boot, find the configuration for the target boot. In the following example, i.MX 6ULL is the target.     Download source by cloning with   $ git clone http://git.freescale.com/git/cgit.cgi/imx/uboot-imx.git -b imx_v2016.03_4.1.15_2.0.0_ga   $ cd uboot-imx $ make clean $ make mx6ull_14x14_evk_defconfig $ make u-boot.imx   • To build the kernel, execute the following commands:   Download source by cloning with   $ git clone http://git.freescale.com/git/cgit.cgi/imx/linux-imx.git -b imx_4.1.15_2.0.0_ga   $ cd linux-imx $ make defconfig $ make   • To build an application (Hello World) as test.c:   $ source /opt/fsl-imx-fb/4.1.15-2.0.0/environment-setup-cortexa9hf-neon-poky-linux-gnueabi $ cd ~/test/ $ arm-poky-linux-gnueabi-gcc --sysroot=/opt/fsl-imx-fb/4.1.15-2.0.0/sysroots/cortexa9hf-neon-poky-linux-gnueabi -mfloat-abi=hard test.c To check if the the compiled code (a.out) is ARM executable   $ file ./a.out   ./a.out: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), dynamically linked, interpreter /lib/ld-linux-armhf.so.3, for GNU/Linux 2.6.32, BuildID[sha1]=0e5c22dcf021748ead2c0bd51a4553cb7d38f6f2, not stripped   Copy file a.out to target Linux filesystem and before run it check again :   root@imx6ul7d:/unit_tests/1# file a.out   a.out: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), dynamically linked, interpreter /lib/ld-linux-armhf.so.3, for GNU/Linux 2.6.32, BuildID[sha1]=0e5c22dcf021748ead2c0bd51a4553cb7d38f6f2, not stripped   To define what Linux libs are needed to run our application :   root@imx6ul7d:/unit_tests/1# ldd a.out     linux-vdso.so.1 (0x7ee93000)   libc.so.6 => /lib/libc.so.6 (0x76e64000)   /lib/ld-linux-armhf.so.3 (0x76f9d000)   If some libs are not located in the filesystem you can observe the following message :   -sh: root@imx6ul7d:/unit_tests/1#./a.out: No such file or directory   Finally - run a.out:   root@imx6ul7d:/unit_tests/1# ./a.out Hello World root@imx6ul7d:/unit_tests/1#
View full article
Using a RAW NAND is more difficult compared to eMMC, but for lower capacity it is still cheaper. Even with the ONFI (Open NAND Flash Interface) you can face initialization issue you can find by measure performance. I will take example of a non-well supported flash, I have installed on my evaluation board (SABRE AI). I wanted to do a simple performance test, to check roughly the MB/s I can expected with this NAND. One of a simplest test is to use the dd command: root@imx6qdlsolo:~# time dd if=/dev/mtd4 of=/dev/null 851968+0 records in 851968+0 records out 436207616 bytes (436 MB, 416 MiB) copied, 131.8884 s, 3.3 MB/s ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ As my RAW was supposed to work in EDO Mode 5, I could expect more than 20MB/s. To check what was wrong, read you kernel startup log: Booting Linux on physical CPU 0x0 Linux version 4.1.15-2.0.0+gb63f3f5 (bamboo@yb6) (gcc version 5.3.0 (GCC) ) #1 SMP PREEMPT Fri Sep 16 15:02:15 CDT 2016 CPU: ARMv7 Processor [412fc09a] revision 10 (ARMv7), cr=10c53c7d CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache Machine model: Freescale i.MX6 DualLite/Solo SABRE Automotive Board [...] Amd/Fujitsu Extended Query Table at 0x0040 Amd/Fujitsu Extended Query version 1.3. number of CFI chips: 1 nand: device found, Manufacturer ID: 0xc2, Chip ID: 0xdc nand: Macronix MX30LF4G18AC nand: 512 MiB, SLC, erase size: 128 KiB, page size: 2048, OOB size: 64 gpmi-nand 112000.gpmi-nand: mode:5 ,failed in set feature. Bad block table found at page 262080, version 0x01 Bad block table found at page 262016, version 0x01 nand_read_bbt: bad block at 0x00000a7e0000 nand_read_bbt: bad block at 0x00000dc80000 4 cmdlinepart partitions found on MTD device gpmi-nand Creating 4 MTD partitions on "gpmi-nand":‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ On line 13 you can read "mode:5, failed in set feature", meaning you are not in mode 5... so you have the "relaxed" timing you have at boot. After debuging your code (I have just remove the NAND back reading security check), you can redo the test: root@imx6qdlsolo:~# time dd if=/dev/mtd4 of=/dev/null 851968+0 records in 851968+0 records out 436207616 bytes (436 MB, 416 MiB) copied, 32.9721 s, 13.2 MB/s‍‍‍‍‍‍‍‍‍‍‍‍ So you multiplied the performances by 4! Anyway, you have a better tool to measure your NAND performance, it is mtd_speedtest, but you have to rebuild your kernel. In Yocto, reconfigure your kernel (on your PC of couse!): bitbake virtual/kernel -c menuconfig‍‍‍ Choose in the menu "Device Drivers" -> "Memory Technology Device (MTD) support" -> "MTD tests support", even it it not recommended! bitbake virtual/kernel -f -c compile bitbake virtual/kernel -f -c build bitbake virtual/kernel -f -c deploy‍‍‍‍‍‍‍‍‍ Then reflash you board (kernel + rootfs as tests are .ko files): Then you can do more accurate performance test: insmod /lib/modules/4.1.29-fslc+g59b38c3/kernel/drivers/mtd/tests/mtd_speedtest.ko dev=2 ================================================= mtd_speedtest: MTD device: 2 mtd_speedtest: MTD device size 16777216, eraseblock size 131072, page size 2048, count of eraseblocks 128, pages per eraseblock 64, OOB size 64 mtd_test: scanning for bad eraseblocks mtd_test: scanned 128 eraseblocks, 0 are bad mtd_speedtest: testing eraseblock write speed mtd_speedtest: eraseblock write speed is 4537 KiB/s mtd_speedtest: testing eraseblock read speed mtd_speedtest: eraseblock read speed is 16384 KiB/s mtd_speedtest: testing page write speed mtd_speedtest: page write speed is 4250 KiB/s mtd_speedtest: testing page read speed mtd_speedtest: page read speed is 15784 KiB/s mtd_speedtest: testing 2 page write speed mtd_speedtest: 2 page write speed is 4426 KiB/s mtd_speedtest: testing 2 page read speed mtd_speedtest: 2 page read speed is 16047 KiB/s mtd_speedtest: Testing erase speed mtd_speedtest: erase speed is 244537 KiB/s mtd_speedtest: Testing 2x multi-block erase speed mtd_speedtest: 2x multi-block erase speed is 252061 KiB/s mtd_speedtest: Testing 4x multi-block erase speed mtd_speedtest: 4x multi-block erase speed is 256000 KiB/s mtd_speedtest: Testing 8x multi-block erase speed mtd_speedtest: 8x multi-block erase speed is 260063 KiB/s mtd_speedtest: Testing 16x multi-block erase speed mtd_speedtest: 16x multi-block erase speed is 260063 KiB/s mtd_speedtest: Testing 32x multi-block erase speed mtd_speedtest: 32x multi-block erase speed is 256000 KiB/s mtd_speedtest: Testing 64x multi-block erase speed mtd_speedtest: 64x multi-block erase speed is 260063 KiB/s mtd_speedtest: finished =================================================‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ You can now achieve almost 16MB/s, better than the dd test. Of course you cannot achieve more than 20MB/s, but you are not that far, and the NAND driver need optimizations. To redo the test: rmmod /lib/modules/4.1.29-fslc+g59b38c3/kernel/drivers/mtd/tests/mtd_speedtest.ko insmod /lib/modules/4.1.29-fslc+g59b38c3/kernel/drivers/mtd/tests/mtd_speedtest.ko dev=2 To check your NAND is in EDO mode 5, you can check your clock tree: /unit_tests/dump-clocks.sh clock          parent   flags    en_cnt pre_cnt      rate [...] gpmi_bch_apb   ---      00000005   0       0       198000000 gpmi_bch       ---      00000005   0       0       198000000 gpmi_io        ---      00000005   0       0        99000000 gpmi_apb       ---      00000005   0       0       198000000‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ The IO are clocked now at 99MHz, thus you can read at 49.5MHz (20ns in EDO mode 5 definition).
View full article
DirectFB DirectFB is a thin library that provides hardware graphics acceleration, input device handling and abstraction, integrated windowing system with support for translucent windows and multiple display layers, not only on top of the Linux Framebuffer Device. It is a complete hardware abstraction layer with software fallbacks for every graphics operation that is not supported by the underlying hardware. DirectFB adds graphical power to embedded systems and sets a new standard for graphics under Linux. [Source: directfb.org] DirectFB Quick Test Select DirectFB in Package List on LTIB1011: [x] DirectFB Select also DirectFB examples: [x] DirectFB examples Build your Linux. Flash your SD card. Launch your Linux image on your board, and then launch a DirectFB example: $ df_dok DirectFB benchmark is launched. Benchmark result on an i.MX 53 EVK:
View full article
This document shows the necessary steps to configure the Eclipse IDE for development of Yocto applications. Requirements 1) Linux machine. Ubuntu 12.4 or higher is recommended. 2) Yocto Freescale BSP Release or Freescale Community BSP. For this example we'll use the Freescale BSP Release L3.14.28 but you may use the FSL Community BSP. - Freescale Community BSP FSL Community BSP - Freescale BSP Release  Documentation L3.14.28 (login required) https://www.freescale.com/webapp/Download?colCode=L3.14.28_1.0.0_LINUX_DOCS&location=null&fpsp=1&WT_TYPE=Supporting%20In… 3) Poky Meta Toolchain (Poky 1.7 / L3.14.28 for our example but you should use the toolchain that corresponds to the BSP that will be used) For information on how to extract and install the meta toolchain please follow the steps on the next document. Task #7 - Create the toolchain 4) Eclipse Luna. We’ll use the Luna SR2 (4.4.2) version of the Eclipse IDE. You may find it on the following website: http://www.eclipse.org/downloads/packages/release/luna/sr2 Look for the “Eclipse IDE for C/C++ Developers”, which contains the Eclipse Platform, the Java Development Tools (JDT), and the Plug-in Development Environment. Once you have downloaded the tarball extract it. The following command unpacks and installs the downloaded Eclipse IDE tarball into a clean directory using the default name eclipse:      $ cd ~      $ tar -xzvf ~/Downloads/eclipse-cpp-luna-SR2-linux-gtk-x86_64.tar.gz Configuring the Eclipse IDE Once with Eclipse Luna installed you may run the Eclipse IDE with the following command: $ cd eclipse $ ./eclipse Select a new workspace. Chose "Install New Software" from the "Help" pull-down menu. Select the "Luna - http://download.eclipse.org/releases/luna" Find and expand the Linux Tools option and select: Linux Tools LTTng Tracer Control Linux Tools LTTng Userspace Analysis LTTng Kernel Analysis If some of these options are not listed it means that they are already installed. (To change this you may uncheck the Hide items that are already installed box) Find and expand the Mobile and Device Development and select the following:   C/C++ Remote Launch (Requires RSE Remote System Explorer)   Remote System Explorer End-user Runtime   Remote System Explorer User Actions   Target Management Terminal (Core SDK)   TCF Remote System Explorer add-in   TCF Target Explorer If some of these options are not listed it means that they are already installed. (To change this you may uncheck the Hide items that are already installed box) Expand Programming Languages and select:   C/C++ Autotools Support   C/C++ Development Tools Chose Next and accept the necessary EULA Clck on the Finish button. The selected packages will be downloaded and installed. You will be asked to restart Eclipse IDE to finish the installation. Adding the Yocto Plug-in to the Eclipse IDE Next step is to install the Eclipse Yocto Plug-in into the Eclipse IDE. We'll show how to install the pre-built plug in. Start the Eclipse IDE In Eclipse, select "Install new Software" from the "Help" menu Click the "Add..." button to add a repository and enter: Name: Any name, we will use Yocto Fio Location: http://downloads.yoctoproject.org/releases/eclipse-plugin/1.8/luna Click "Ok" and then chose this new repository on the "Work with" drop-down menu and select the following plug-ins from the list:   Yocto Project ADT Plug-in   Yocto Project Bitbake Commander Plug-in   Yocto Project Documentation plug-in Install these plug-ins and click "OK" when prompted about installing software that contains unsigned content. You may be asked to restart the Eclipse IDE. Configuring the Eclipse Yocto Plug-in With all the necessary packages installed we'll now configure the Eclipse Yocto Plug-in. In this steps we will configure the Cross Compiler options and the Target options. These will then be used as default for your projects from within your working workspace. Select "Preferences" from the "Window" menu. Click on Yocto Project ADT from the left options and then under Cross Compiler Options select the Standalone pre-built toolchain radio button. We need to point to the Toolchain Root location of our installed toolchain. This is covered on the following community document: Task #7 - Create the toolchain In this case we'll be using poky 1.7 tollchain which has the following default location: /opt/poky/1.7 As fo the Sysroot Location this would correspond to your build directory sysroot folder, which is located on the following path: <YOCTO_BSP_DIR>/<BUILD_DIR>/tmp/sysroots/<MACHINE> In our case our Tartget architecture would be the Cortex-A9, which correspond to the i.MX6 and which is also the only option installed on the chosen directory. For Target Options we would be using the actual HW in order to test our application so keep the External HW option selected. Creating a Hello World Project We are now ready to create our project. Just to test our configuration we'll create a Hello World project.We can do so by selecting File->New->C Project or C++ Project We must then select a Project name and in project type we can chose either an Empty project or as in our case a Hello World Project, all this under the Yocto Project ADT Autotools Project folder. We will have the GNU Autotools Tolchain selected. The next screen will show some of the Basic Properties for our project, including the GNU license. Fill these as required. You may clock on Finish at this point. We should see that the HelloWorld project was created. We should right-click on the project folder and then chose Reconfigure Project in order to fill the necessary libraries. After this is completed we can build our project either by choosing the hammer icon or in the Build Project option inside the Project menu. We can look for correct competition or any errors or warning on the Console tab. Further Application Development After this basic setup you may work on more complex examples like a GPU and a Gstreamer Application examples on the following nicely written document: Yocto Application Development Using Eclipse IDE
View full article
One of the new feature of  the i.MX8 family is to support CAN FD. Fortunately the MEK board has a TJA1043 supporting CAN FD. The following document show you how to do simple CAN (FD) test under Linux. First of all let configure the CAN0 to be at 500kps in CAN, and 4Mbps in CAN FD: ip link set can0 up type can bitrate 500000 sample-point 0.75 dbitrate 4000000 dsample-point 0.8 fd on ‍‍‍‍‍‍‍ Let's do the same for CAN1: ip link set can1 up type can bitrate 500000 sample-point 0.75 dbitrate 4000000 dsample-point 0.8 fd on‍‍‍‍ Now you can do a bridge between CAN0 and CAN1 on the board. The easiest way is to put simple wires (pin 2 to pin 2 a,d pin 7 to pin 7), normally you have to twist your wires, but as it is on your desk, you can get rid of it): You can check the configurations of your FlexCAN: root@imx8qxpmek:~# ip -details link show can0 3: can0: <NOARP,UP,LOWER_UP,ECHO> mtu 72 qdisc pfifo_fast state UNKNOWN mode DEFAULT group default qlen 10 link/can promiscuity 0 can <FD> state ERROR-WARNING (berr-counter tx 0 rx 0) restart-ms 0 bitrate 500000 sample-point 0.750 tq 25 prop-seg 29 phase-seg1 30 phase-seg2 20 sjw 1 flexcan: tseg1 2..64 tseg2 1..32 sjw 1..32 brp 1..1024 brp-inc 1 dbitrate 4000000 dsample-point 0.800 dtq 25 dprop-seg 3 dphase-seg1 4 dphase-seg2 2 dsjw 1 flexcan: dtseg1 1..39 dtseg2 1..8 dsjw 1..8 dbrp 1..1024 dbrp-inc 1 clock 40000000numtxqueues 1 numrxqueues 1 gso_max_size 65536 gso_max_segs 65535 root@imx8qxpmek:~# ip -details link show can1 4: can1: <NOARP,UP,LOWER_UP,ECHO> mtu 72 qdisc pfifo_fast state UNKNOWN mode DEFAULT group default qlen 10 link/can promiscuity 0 can <FD> state ERROR-ACTIVE (berr-counter tx 0 rx 0) restart-ms 0 bitrate 500000 sample-point 0.750 tq 25 prop-seg 29 phase-seg1 30 phase-seg2 20 sjw 1 flexcan: tseg1 2..64 tseg2 1..32 sjw 1..32 brp 1..1024 brp-inc 1 dbitrate 4000000 dsample-point 0.800 dtq 25 dprop-seg 3 dphase-seg1 4 dphase-seg2 2 dsjw 1 flexcan: dtseg1 1..39 dtseg2 1..8 dsjw 1..8 dbrp 1..1024 dbrp-inc 1 clock 40000000numtxqueues 1 numrxqueues 1 gso_max_size 65536 gso_max_segs 65535 root@imx8qxpmek:~#‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Now a simple test can be to send random CAN FD messages, for that use "cangen" to send random CAN FD messages (read "cangen" documentation: https://manpages.debian.org/stretch-backports/can-utils/cangen.1.en.html 😞 root@imx8qxpmek:~# cangen can0 -v -b -g 20 can1 3E6 [00] can1 735 [20] F9 ED 40 53 AC CF 48 34 F9 ED 40 53 AC CF 48 34 F9 ED 40 53 can1 513 [20] 92 D2 E7 32 48 E6 EA 39 92 D2 E7 32 48 E6 EA 39 92 D2 E7 32 can1 03B [12] 6D 34 2F 11 52 8A 52 50 6D 34 2F 11 can1 47D [24] 72 08 88 0D E0 04 F7 09 72 08 88 0D E0 04 F7 09 72 08 88 0D E0 04 F7 09 can1 245 [00] can1 6F6 [48] B9 82 A1 49 4E ED BA 06 B9 82 A1 49 4E ED BA 06 B9 82 A1 49 4E ED BA 06 B9 82 A1 49 4E ED BA 06 B9 82 A1 49 4E ED BA 06 B9 82 A1 49 4E ED BA 06 can1 1F4 [16] 03 5B 7C 00 DA E5 FA 03 03 5B 7C 00 DA E5 FA 03 can1 38A [48] 71 CE A3 1A C0 8A 4F 20 71 CE A3 1A C0 8A 4F 20 71 CE A3 1A C0 8A 4F 20 71 CE A3 1A C0 8A 4F 20 71 CE A3 1A C0 8A 4F 20 71 CE A3 1A C0 8A 4F 20 can1 4C9 [20] 6C 5A 98 54 DD D1 CB 09 6C 5A 98 54 DD D1 CB 09 6C 5A 98 54 can1 536 [48] 25 B8 B6 43 71 CD 54 71 25 B8 B6 43 71 CD 54 71 25 B8 B6 43 71 CD 54 71 25 B8 B6 43 71 CD 54 71 25 B8 B6 43 71 CD 54 71 25 B8 B6 43 71 CD 54 71 can1 308 [02] C3 57 can1 33E [05] 65 8C 7B 21 83 can1 3F5 [05] EA E0 07 63 EB can1 633 [03] 39 10 18 can1 25D [32] 01 4E 65 41 E8 4D 94 6F 01 4E 65 41 E8 4D 94 6F 01 4E 65 41 E8 4D 94 6F 01 4E 65 41 E8 4D 94 6F can1 2FB [03] A8 D8 E3 can1 0DE [04] A1 11 3F 32 can1 012 [06] 85 23 B2 07 1A 03 can1 658 [08] A0 8A 2D 67 97 79 A1 64 can1 37D [05] 1A 57 E8 4F 72 can1 70A [04] 5E 6A B8 0F can1 3A8 [07] 65 C5 48 76 05 B6 11 can1 5D4 [07] ED 03 A6 07 CF D8 DC can1 7DA [05] 94 18 50 09 B8 can1 7A9 [05] CC 5E 02 74 BC can1 3FC [01] D6 can1 599 [06] EB 23 02 61 16 D9 can1 47C [06] 88 20 F2 62 86 3B can1 30A [06] C4 98 57 61 B2 4E can1 57E [16] B8 04 86 5B 52 EB DF 45 B8 04 86 5B 52 EB DF 45 can1 191 [05] 22 C4 BC 26 6B can1 53B [06] 23 AA AA 00 E4 F4 can1 6EB [64] A0 64 BE 5E E7 FA 20 1D A0 64 BE 5E E7 FA 20 1D A0 64 BE 5E E7 FA 20 1D A0 64 BE 5E E7 FA 20 1D A0 64 BE 5E E7 FA 20 1D A0 64 BE 5E E7 FA 20 1D A0 64 BE 5E E7 FA 20 1D A0 64 BE 5E E7 FA 20 1D‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ You can check with a scope your CAN FD frame (here CAN High): And you can see the first part of the frame sent @500kps and the second part @4Mbps. If you unplug one wire, the messages will no longer be sent as no acknowlege will occurs. You can also send message without flexible datarate. In our case, we'll send long frame at 500kps (no more 4Mbps transfer for end of the frame): imx8qxpmek:~# cangen can0 -v -f -g 20 can0 6FE##0.6B.C6.BA.1A.82.2D.29.7E.6B.C6.BA.1A.82.2D.29.7E.6B.C6.BA.1A.82.2D.29.7E.6B.C6.BA.1A.82.2D.29.7E.6B.C6.BA.1A.82.2D.29.7E.6B.C6.BA.1A.82.2D.29.7E.6B.C6.BA.1A.82.2D.29.7E.6B.C6.BA.1A.82.2D.29.7E can0 3E2##0.D4.9E.3D can0 1DE##0.D0.D8.33.50.7E.39 can0 7CE##0.FA.68.25.74.86.E7.E1.4A.FA.68.25.74.86.E7.E1.4A.FA.68.25.74 can0 7C3##0.58.E6.F2.1E.BD.7D.F8.7F can0 32A##0.0D.06.98.0D.08.81.5C.4E.0D.06.98.0D.08.81.5C.4E.0D.06.98.0D.08.81.5C.4E.0D.06.98.0D.08.81.5C.4E.0D.06.98.0D.08.81.5C.4E.0D.06.98.0D.08.81.5C.4E can0 48B##0.76.48.B4.34.59.81.B9.47.76.48.B4.34.59.81.B9.47.76.48.B4.34.59.81.B9.47.76.48.B4.34.59.81.B9.47.76.48.B4.34.59.81.B9.47.76.48.B4.34.59.81.B9.47.76.48.B4.34.59.81.B9.47.76.48.B4.34.59.81.B9.47 can0 3FC##0.6E.70.F7.36.FB.82.B9.00.6E.70.F7.36.FB.82.B9.00.6E.70.F7.36.FB.82.B9.00.6E.70.F7.36.FB.82.B9.00.6E.70.F7.36.FB.82.B9.00.6E.70.F7.36.FB.82.B9.00.6E.70.F7.36.FB.82.B9.00.6E.70.F7.36.FB.82.B9.00 can0 4BE##0.7D.B0.E2.7E.A0.F0.DF.24.7D.B0.E2.7E can0 60C##0.0E can0 257##0.69.11.0C.4B.25.CA.16.65.69.11.0C.4B.25.CA.16.65.69.11.0C.4B.25.CA.16.65.69.11.0C.4B.25.CA.16.65.69.11.0C.4B.25.CA.16.65.69.11.0C.4B.25.CA.16.65 can0 0BA##0.AB.B1.F8 can0 0FC##0.3A.7E.FB.34 can0 452##0.2F.4D.04.26.DE.80.EA can0 2C7##0.37.02.A4.4D.C3 can0 0B4##0.BE.39.AD.3B.73 can0 17E##0.13.66.44.6A.8A.8F.CE.7A.13.66.44.6A.8A.8F.CE.7A.13.66.44.6A‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ You can also force the CAN to only send CAN 2.0b frames (not FD, you'll have 8-byte data max frames): imx8qxpmek:~# cangen can0 -v -g 20 can0 7FF#8F.04.3F.31.EB can0 135#92.7C.46.5C.95.4E.6C.48 can0 0F8#E3.E4.7E.4D.92.2A.1D.69 can0 68F#C6.B7.BA.35.78.06 can0 4EC#D8.D9.86.19.40.BE.64.05 can0 09F#EE.E1.70.7D.13.C9.18.53 can0 7CE#BB.CD.FE.50.3E.B6.A4.4A can0 3C7#04 can0 1F6#B2.E4.4B.42 can0 080#C1.81.65.41 can0 14C#0B.B4.7E.5D can0 15A#53 can0 1CF#86.D4.ED.11.6E.BA.20.14 can0 257#82.83.39.67 can0 2C1#64.20.DF.0D.89.0E.14.55 can0 45E#50.72.44.76.55.4E.96.0F can0 6FC#80.81 can0 046#F6 can0 1E5#6D can0 0D2# can0 7EB#0F.3D.29.78.42.72.60.61 can0 480#68 can0 1CE#CB.05.12.74.2D.0E.F2.14 can0 634#82.5C.88.24.31.75.AF.03 can0 71D#AE.4C can0 144#F5.A8.17.70 can0 2A5#69.BE can0 222#18.C6.AA.4A.0D.5A.EC.48 can0 5FA#4F.CC.4C.2A.7B.BA.31 can0 3B9#BD.B1.2F.3C.87.D5.D1 can0 583#B4.E3.C3.4E.B8.D3.22.43‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍
View full article
This patch implements (or exposes) routines to poll the imx uarts. The KGDB drivers need these methods to be implemented or the ttymxc driver is not sufficient. The synthetic CONFIG_CONSOLE_POLL value activates these routines (or CONFIG_SERIAL_MXC_CONSOLE for the polled write). There is still no poll routines in -855-ge067785, which is the September 2010 Linux release from Freescale. Also not in Linux 2.6.36 drivers/serial/imx.c either. $ git diff drivers/serial/mxc_uart.c diff --git a/drivers/serial/mxc_uart.c b/drivers/serial/mxc_uart.c index ae6d2e1..728b607 100644 --- a/drivers/serial/mxc_uart.c +++ b/drivers/serial/mxc_uart.c @@ -1551,6 +1551,28 @@ mxcuart_pm(struct uart_port *port, unsigned int state, unsigned int oldstate)                             clk_enable(umxc->clk);    }  +#ifdef CONFIG_CONSOLE_POLL +/* + * Read a character from the UART. + */ +static inline int mxcuart_console_read_char(struct uart_port *port) +{ +       volatile unsigned int status; +    int ch; + +       do { +               status = readl(port->membase + MXC_UARTUSR2); +       } while ((status & MXC_UARTUSR2_RDR) == 0); +       ch = readl(port->membase + MXC_UARTURXD); +/* Ignore parity errors, etc. */ +/*  status = ch | UART_CREAD_BIT; */ +    ch &= 0xff; + +    return ch; +} +static void mxcuart_console_write_char(struct uart_port *port, char ch); +#endif +    /*!     * This structure contains the pointers to the control functions that are     * invoked by the core serial driver to access the UART hardware. The @@ -1575,14 +1597,18 @@ static struct uart_ops mxc_ops = {                 .config_port = mxcuart_config_port,                 .verify_port = mxcuart_verify_port,                 .send_xchar = mxcuart_send_xchar, +#ifdef CONFIG_CONSOLE_POLL +              .poll_put_char = mxcuart_console_write_char, +              .poll_get_char = mxcuart_console_read_char, +#endif };  -#ifdef CONFIG_SERIAL_MXC_CONSOLE +#if defined(CONFIG_SERIAL_MXC_CONSOLE) || defined (CONFIG_CONSOLE_POLL)     /*     * Write out a character once the UART is ready     */ -static inline void mxcuart_console_write_char(struct uart_port *port, char ch) +static void mxcuart_console_write_char(struct uart_port *port, char ch)    {            volatile unsigned int status;  @@ -1592,6 +1618,10 @@ static inline void mxcuart_console_write_char(struct uart_port *port, char ch)                writel(ch, port->membase + MXC_UARTUTXD);     }  +#endif + +#ifdef CONFIG_SERIAL_MXC_CONSOLE +    /*!     * This function is called to write the console messages through the UART port.     *
View full article
INTRODUCTION REQUIREMENTS KERNEL DRIVER DEVICE NODE NFC LIBRARY TESTING NFC READER REFERENCES 1. INTRODUCTION This document is a step by step guide of the AN11697 PN7120 Linux Software Stack Integration Guidelines application note that can be downloaded from http://www.nxp.com/documents/application_note/AN11697.pdf . It explains how to add the PN7120 driver and NFC libraries to a Linux OS running in the i.MX6Q. 2. REQUIREMENTS The board used in this document is the Udoo Board thanks to the easy pin access. More information about this board can be found at Ultimate Single Board Mini PC for Android and Linux - UDOO A modified FSL L3.14.28 BSP. The modifications can be found in these 2 documents Basic Device Tree for the Udoo Board and  U-Boot Migration Example . If you have followed the previous documents, you already have a working yocto image and toolchain (meta-toolchain), if not you must follow this awesome training first Yocto Training - HOME . The OM5577/PN7120S demonstration kit. You can find more details of this board at http://www.nxp.com/documents/user_manual/UM10878.pdf 3. KERNEL DRIVER According to the AN11697.pdf we must follow the below steps: From the Linux source directory: $ cd drivers/misc $ git clone https://github.com/NXPNFCLinux/nxp-pn5xx.git Add the below line in the Makefile of the current directory obj-y += nxp-pn5xx/ Include the driver config in the drivers/misc/Kconfig file source "drivers/misc/nxp-pn5xx/Kconfig" Export the environment variables $ source source /opt/poky/1.7/environment-setup-cortexa9hf-vfp-neon-poky-linux-gnueabi $ export ARCH=arm $ export CROSS_COMPILE=$TARGET_PREFIX $ make imx_v7_defconfig Using menuconfig include the driver as module (<M>).  Compile the modules and install the .ko files into the target rootfs. $ make  modules You can send the .ko files with scp $ make  INSTALL_MOD_PATH=~/Desktop/modules modules_install $ cd ~/Desktop/modules $ sudo scp -r lib/modules/3.14.28+g91cf351/kernel root@<board_ip>:/lib/modules/3.14.28+g91cf351/ 4. DEVICE NODE The PN7120 interfaces with an MCU or MPU via I2C interface, therefore the device must be described into a i2c node. The signals used in the PN7120 are shown below: As you can see besides power, ground and I2C lines, an IRQ and Reset pins are needed. These pins must be configured as GPIO and one must generate an interrupt to the iMX6Q. The chosen connection is shown below: To achieve the above configuration, the device tree must be changed. The changes consist on adding a device node in the corresponding I2C bus, describing the PN7120. &i2c1 {         clock-frequency = <100000>;         pinctrl-names = "default";         pinctrl-0 = <&pinctrl_i2c1>;         status = "okay";         pn547: pn547@28 {                 compatible = "nxp,pn547";                 reg = <0x28>;                 clock-frequency = <400000>;                 interrupt-parent = <&gpio6>;                 interrupt-gpios = <&gpio6 2 0>;                 enable-gpios = <&gpio5 22 0>;         }; }; The pinctrl_i2c1 phandle contains the I2C pins configuration. Make sure that the PADs connected to the PN7120 are not used in other device node. &iomuxc {         imx6q-udoo {                       ...                 pinctrl_i2c1: i2c1grp {                         fsl,pins = <                         MX6QDL_PAD_GPIO_5__I2C3_SCL             0x4001b8b1                         MX6QDL_PAD_GPIO_6__I2C3_SDA             0x4001b8b1                         >;                 };         }; }; After this you can generate the dtb file and send it with scp make dtbs sudo scp arch/arm/boot/dts/imx6q-udoo.dtb root@<board_ip>:/run/media/mmcblk0p1/imx6q-udoo.dtb NOTE: Attached you can find the complete dts and dtsi files used in this document. 5. NFC LIBRARY     To work with the PN7120 in Linux the libnfc-nci stack is needed. You can find more details in http://www.nxp.com/documents/application_note/AN11697.pdf​ . This sections explains how to cross-compile the libray and install the required files in the target (The below steps must be performed in the host). Get the library $  git clone https://github.com/NXPNFCLinux/linux_libnfc-nci.git Generate the configuration script $ ./bootstrap Mount the target rootfs to /mnt in the host. $ sudo mount /dev/sdX2 /mnt Generate the Makefile $ ./configure --host=arm-none-linux --prefix=/opt/poky/1.7/sysroots/x86_64-pokysdk-linux/usr --sysconfdir=/mnt/etc Build and install the source code $ make $ make install After a succesful bulding the libraries and a application demo are built in .libs directory. Copy the libaries to /usr/lib directory of the target and nfcDemoApp to /usr/sbin $ cd linux_libnfc-nci/.libs $ sudo cp * /mnt/usr/lib/ 6. TESTING NFC READER     To test the application you have to follow the below steps on the target: Install the .ko file $ insmod /lib/modules/3.14.28+g91cf351/kernel/drivers/misc/nxp-pn5xx/pn5xx_i2c.ko Run the nfcDemoApp $  nfcDemoApp poll You should get a console output like the shown below when placing a NFC tag next to the NFC reader. 7. REFERENCES     Integrating NFC Controller library with KSDK http://www.nxp.com/documents/application_note/AN11697.pdf http://www.nxp.com/documents/user_manual/UM10878.pdf
View full article
Introduction The "smart" package management system is available in  Yocto Project for managing  packages on a target machine. A host is configured as a server for the packages and on the target the "package-management" feature is enabled for working with the packages. The steps for setup and usage are described below. Resources The Yocto Project package management system will work with many hosts and targets. The following were used for creating this document: Host: Ubuntu 14.04 64-bit Target: MCIMX6Q-SDP Freescale Yocto Project Release Documentation: Linux 3.14.38_6ul BSP & Multimedia Codecs Documentation (fsl-yocto-L3.14.38_6ul-ga.tar.gz) Host You have successfully installed a Freescale Yocto Project release. (Refer to Freescale Yocto Project Release Documentation). There are two steps for adding package management and then building: 1. Modify conf/local.conf EXTRA_IMAGE_FEATURES = "debug-tweaks package-management" ‍ 2. Build the image: bitbake core-image-minimal ‍ The core-image-minimal recipe provides an image enabling the target board to boot and support a serial console. 3. Create SDCARD: $ cd <build>/tmp/deploy/images/imx6qsabresd $ sudo dd if=core-image-minimal-imx6qsabresd.sdcard of=/dev/sdb bs=4M && sync ‍‍ Note - verify location of SDCARD on your host, /dev/sdb in this example. Examine 'cat /proc/partitions' 4. Setup web server and add link to rpm packages A web server, lighttpd, is installed. $ sudo apt-get install lighttpd ‍ Provide user write capability in /var/www $ sudo chmod 777 /var/www ‍ Create a soft link in the default web server directory to the rpm directory from the build. Note: Please update $HOME/<build> to your actual location: $ ln -s $HOME/<build>/tmp/deploy/rpm /var/www/imx6qsd ‍‍‍ Target Insert the SDCARD created from step 3 above, connect power and console cable  and power on the MCIMX6Q-SDP. Login using the "root" id, no password required. The /usr/bin/smart application is now used to setup the channels and perform package commands. For all smart options: smart --help ‍ 1. Add channels To add the packages from the host to your target, the smart  channel --add is used: Please enter the IP adress of your server, replacing SERVERIP below: smart channel --add all type=rpm-md name=all baseurl= http://SERVERIP/imx6qsd/all smart channel --add cortexa9hf_vfp_neon type=rpm-md name=cortexa9hf_vfp_neon baseurl= http://SERVERIP/imx6qsd/cortexa9hf_vfp_neon smart channel --add imx6qsabresd type=rpm-md name=imx6qsabresd baseurl= http://SERVERIP/imx6qsd/imx6qsabresd ‍‍‍‍‍‍‍‍‍ Check  the added channels: root@imx6qsabresd:~# smart channel --list all imx6qsabresd rpmsys cortexa9hf_vfp_neon ‍‍‍‍‍ 2. Update  local package cache Once the chanels have been added, the local package cache is updated. Note  SERVERIP below will be the host IP address in your network. root@imx6qsabresd:~# smart update Loading cache... Updating cache...               ######################################## [100%] Fetching information for 'all'...                                           -> http://SERVERIP/imx6qsd/all/repodata/repomd.xml                          repomd.xml                      ######################################## [ 16%]                                                                             Fetching information for 'imx6qsabresd'... -> http://SERVERIP/imx6qsd/imx6qsabresd/repodata/repomd.xml                 repomd.xml                      ######################################## [ 41%]                                                                             Fetching information for 'cortexa9hf_vfp_neon'... -> http://SERVERIP/imx6qsd/cortexa9hf_vfp_neon/repodata/repomd.xml          repomd.xml                      ######################################## [ 66%] Updating cache...               ######################################## [100%] Channels have no new packages. 3. Searching for packages Let us look at all packages containing the string client root@imx6qsabresd:~# smart search client* Loading cache... Updating cache...               ######################################## [100%] libice-dbg - ICE: Inter-Client Exchange library - Debugging files libice-dev - ICE: Inter-Client Exchange library - Development files libice-doc - ICE: Inter-Client Exchange library - Documentation files libice-staticdev - ICE: Inter-Client Exchange library - Development files (Static Libraries) libice6 - ICE: Inter-Client Exchange library libsm-dbg - SM: Session Management library - Debugging files libsm-dev - SM: Session Management library - Development files libsm-doc - SM: Session Management library - Documentation files libsm-staticdev - SM: Session Management library - Development files (Static Libraries) libsm6 - SM: Session Management library libx11-6 - Xlib: C Language X Interface library libx11-dbg - Xlib: C Language X Interface library - Debugging files libx11-dev - Xlib: C Language X Interface library - Development files libx11-doc - Xlib: C Language X Interface library - Documentation files libx11-locale - Xlib: C Language X Interface library libx11-staticdev - Xlib: C Language X Interface library - Development files (Static Libraries) libx11-xcb1 - Xlib: C Language X Interface library libxau-dbg - Xau: X Authority Database library - Debugging files libxau-dev - Xau: X Authority Database library - Development files libxau-doc - Xau: X Authority Database library - Documentation files libxau-staticdev - Xau: X Authority Database library - Development files (Static Libraries) libxau6 - Xau: X Authority Database library python-netclient - Python Internet Protocol clients xtrans-dbg - XTrans: X Transport library - Debugging files xtrans-dev - XTrans: X Transport library - Development files xtrans-doc - XTrans: X Transport library - Documentation files ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Adding openssh client to core-image minimal The core-image-minimal does not provide openssh client applications like ssh or scp. Let's add them on the host then update the target cache of packages and then install. Host Run bitbake to exercise all the tasks for packagegroup-core-ssh-openssh $ bitbake packagegroup-core-ssh-openssh ‍ After building a package individually, always update the package-index $ bitbake package-index ‍ Target Run smart to update the local cache which will pickup the new packages from the bake above. root@imx6qsabresd:~# smart update Loading cache... Updating cache...               ######################################## [100%] Fetching information for 'all'...                                              -> http://SERVERIP/imx6qsd/all/repodata/repomd.xml                           repomd.xml                      ######################################## [ 16%] -> http://SERVERIP/imx6qsd/all/repodata/primary.xml.gz                       primary.xml.gz                  ######################################## [ 25%] -> http://SERVERIP/imx6qsd/all/repodata/filelists.xml.gz                     filelists.xml.gz                ######################################## [ 33%]                                                                                Fetching information for 'imx6qsabresd'... -> http://SERVERIP/imx6qsd/imx6qsabresd/repodata/repomd.xml                  repomd.xml                      ######################################## [ 50%] -> http://SERVERIP/imx6qsd/imx6qsabresd/repodata/primary.xml.gz              -> http://SERVERIP/imx6qsd/imx6qsabresd/repodata/filelists.xml.gz            filelists.xml.gz                ######################################## [ 58%] primary.xml.gz                  ######################################## [ 66%]                                                                                Fetching information for 'cortexa9hf_vfp_neon'... -> http://SERVERIP/imx6qsd/cortexa9hf_vfp_neon/repodata/repomd.xml           repomd.xml                      ######################################## [ 83%] -> http://SERVERIP/imx6qsd/cortexa9hf_vfp_neon/repodata/primary.xml.gz       primary.xml.gz                  ######################################## [ 91%] -> http://SERVERIP/imx6qsd/cortexa9hf_vfp_neon/repodata/filelists.xml.gz     filelists.xml.gz                ######################################## [100%] Updating cache...               ######################################## [100%] Channels have 15 new packages. Saving cache... ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Examine information about local cache: root@imx6qsabresd:~# smart stats Loading cache... Updating cache...               ######################################## [100%] Installed Packages: 80 Total Packages: 3586 Total Provides: 6580 Total Requires: 1611 Total Upgrades: 3565 Total Conflicts: 25 ‍‍‍‍‍‍‍‍‍‍‍ See what ssh packages are now available: root@imx6qsabresd:~# smart search *ssh* Loading cache... Updating cache...               ######################################## [100%] openssh - Secure rlogin/rsh/rcp/telnet replacement openssh-dbg - Secure rlogin/rsh/rcp/telnet replacement - Debugging files openssh-dev - Secure rlogin/rsh/rcp/telnet replacement - Development files openssh-doc - Secure rlogin/rsh/rcp/telnet replacement - Documentation files openssh-keygen - Secure rlogin/rsh/rcp/telnet replacement openssh-misc - Secure rlogin/rsh/rcp/telnet replacement openssh-ptest - Secure rlogin/rsh/rcp/telnet replacement - Package test files openssh-scp - Secure rlogin/rsh/rcp/telnet replacement openssh-sftp - Secure rlogin/rsh/rcp/telnet replacement openssh-sftp-server - Secure rlogin/rsh/rcp/telnet replacement openssh-ssh - Secure rlogin/rsh/rcp/telnet replacement openssh-sshd - Secure rlogin/rsh/rcp/telnet replacement packagegroup-core-ssh-openssh - OpenSSH SSH client/server packagegroup-core-ssh-openssh-dbg - OpenSSH SSH client/server - Debugging files packagegroup-core-ssh-openssh-dev - OpenSSH SSH client/server - Development files ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Install openssh root@imx6qsabresd:~# smart install openssh Loading cache... Updating cache...               ######################################## [100%] Computing transaction... Installing packages (9):   openssh-6.7p1-r0@cortexa9hf_vfp_neon                                            openssh-keygen-6.7p1-r0@cortexa9hf_vfp_neon                                     openssh-scp-6.7p1-r0@cortexa9hf_vfp_neon                                        openssh-ssh-6.7p1-r0@cortexa9hf_vfp_neon                                        openssh-sshd-6.7p1-r0@cortexa9hf_vfp_neon                                       shadow-4.2.1-r0@cortexa9hf_vfp_neon                                             shadow-base-4.2.1-r0@cortexa9hf_vfp_neon                                        shadow-securetty-4.2.1-r3@imx6qsabresd                                          util-linux-sulogin-2.25.2-r1@cortexa9hf_vfp_neon                              1.4MB of package files are needed. 3.2MB will be used. Confirm changes? (Y/n): y Fetching packages...                                                           -> http://SERVERIP/imx6qsd/.../openssh-6.7p1-r0.cortexa9hf_vfp_neon.rpm      -> http://SERVERIP/imx6qsd/.../shadow-securetty-4.2.1-r3.imx6qsabresd.rpm    shadow-securetty-4.2.1-r3.imx.. ######################################## [ 11%] -> http://SERVERIP/imx6qsd/.../openssh-scp-6.7p1-r0.cortexa9hf_vfp_neon.rpm openssh-scp-6.7p1-r0.cortexa9.. ######################################## [ 22%] openssh-6.7p1-r0.cortexa9hf_v.. ######################################## [ 33%] -> http://SERVERIP/imx6qsd/.../openssh-sshd-6.7p1-r0.cortexa9hf_vfp_neon.rpm openssh-sshd-6.7p1-r0.cortexa.. ######################################## [ 44%] -> http://SERVERIP/imx6qsd/.../shadow-4.2.1-r0.cortexa9hf_vfp_neon.rpm       -> http://SERVERIP/imx6qsd/.../openssh-ssh-6.7p1-r0.cortexa9hf_vfp_neon.rpm openssh-ssh-6.7p1-r0.cortexa9.. ######################################## [ 55%] -> http://SERVERIP/imx6qsd/.../shadow-base-4.2.1-r0.cortexa9hf_vfp_neon.rpm shadow-base-4.2.1-r0.cortexa9.. ######################################## [ 66%] shadow-4.2.1-r0.cortexa9hf_vf.. ######################################## [ 77%] -> http://SERVERIP/.../util-linux-sulogin-2.25.2-r1.cortexa9hf_vfp_neon.rpm util-linux-sulogin-2.25.2-r1... ######################################## [ 88%] -> http://SERVERIP/.../openssh-keygen-6.7p1-r0.cortexa9hf_vfp_neon.rpm       openssh-keygen-6.7p1-r0.corte.. ######################################## [100%]                                                                                Committing transaction... Preparing...                    ######################################## [  0%]    1:Installing openssh-ssh     ######################################## [ 11%] Output from openssh-ssh-6.7p1-r0@cortexa9hf_vfp_neon:                          update-alternatives: Linking /usr/bin/ssh to /usr/bin/ssh.openssh                 2:Installing openssh-scp     ######################################## [ 22%] Output from openssh-scp-6.7p1-r0@cortexa9hf_vfp_neon:                          update-alternatives: Linking /usr/bin/scp to /usr/bin/scp.openssh                 3:Installing shadow-secure.. ######################################## [ 33%]    4:Installing shadow-base     ######################################## [ 44%] Output from shadow-base-4.2.1-r0@cortexa9hf_vfp_neon:                          update-alternatives: Linking /usr/bin/newgrp to /usr/bin/newgrp.shadow         update-alternatives: Linking /usr/bin/groups to /usr/bin/groups.shadow update-alternatives: Linking /bin/login to /bin/login.shadow update-alternatives: Linking /bin/su to /bin/su.shadow    5:Installing util-linux-su.. ######################################## [ 55%] Output from util-linux-sulogin-2.25.2-r1@cortexa9hf_vfp_neon:                  update-alternatives: Linking /sbin/sulogin to /sbin/sulogin.util-linux            6:Installing openssh-keygen  ######################################## [ 66%]    7:Installing shadow          ######################################## [ 77%] Output from shadow-4.2.1-r0@cortexa9hf_vfp_neon:                               update-alternatives: Linking /usr/bin/passwd to /usr/bin/passwd.shadow         update-alternatives: Linking /usr/bin/chfn to /usr/bin/chfn.shadow update-alternatives: Linking /usr/bin/chsh to /usr/bin/chsh.shadow update-alternatives: Linking /usr/sbin/chpasswd to /usr/sbin/chpasswd.shadow update-alternatives: Linking /sbin/vipw to /sbin/vipw.shadow update-alternatives: Linking /sbin/vigr to /sbin/vigr.shadow Output from openssh-sshd-6.7p1-r0@cortexa9hf_vfp_neon:                         Removing any system startup links for sshd ...                                Running useradd commands... NOTE: Performing useradd with [ --system --no-create-home --home-dir /var/run/sshd --shell /bin/false --user-group sshd] and 10 times of retry    8:Installing openssh-sshd    ######################################## [ 88%] Adding system startup for /etc/init.d/sshd.                                   Starting OpenBSD Secure Shell server: sshd   generating ssh RSA key...   generating ssh ECDSA key...   generating ssh DSA key...   generating ssh ED25519 key... done.    9:Installing openssh         ######################################## [100%] ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Check for the scp command: root@imx6qsabresd:~# which scp /usr/bin/scp ‍‍ Summary To add a new package on the server host, run bitbake <recipe> then bitbake package-index to update the rpm tracking information. On the target board, run smart update and then smart install <package>. Use smart search <regular expression string> to hunt for a package to install.
View full article
Check new updated version for with Morty here Step 1 : Get iMX Yocto AVS setup environment Review the steps under Chapter 3 of the i.MX_Yocto_Project_User'sGuide.pdf on the L4.X LINUX_DOCS to prepare your host machine. Including at least the following essential Yocto packages $ sudo apt-get install gawk wget git-core diffstat unzip texinfo \   gcc-multilib build-essential chrpath socat libsdl1.2-dev u-boot-tools Install the i.MX NXP AVS repo Create/Move to a directory where you want to install the AVS yocto build enviroment. Let's call this as <yocto_dir> $ cd <yocto_dir> $ repo init -u https://source.codeaurora.org/external/imxsupport/meta-avs-demos -b master -m imx7d-pico-avs-sdk_4.1.15-1.0.0.xml Download the AVS BSP build environment: $ repo sync Step 2: Setup yocto for Alexa_SDK image with AVS-SETUP-DEMO script: Run the avs-setup-demo script as follows to setup your environment for the imx7d-pico board: $ MACHINE=imx7d-pico DISTRO=fsl-imx-x11 source avs-setup-demo.sh -b <build_sdk> Where <build_sdk> is the name you will give to your build folder. After acepting the EULA the script will prompt if you want to enable: Sound Card selection The following Sound Cards are supported on the build: SGTL (In-board Audio Codec for PicoPi) 2-Mic Conexant The script will prompt if you are going to use the Conexant Card. If not then SGTL will be assumed as your selection Are you going to use Conexant Sound Card [Y/N]? Install Alexa SDK Next option is to select if you want to pre-install the AVS SDK software on the image. Do you want to build/include the AVS_SDK package on this image(Y/N)? If you select YES, then your image will contain the AVS SDK ready to use (after authentication). Note this AVS_SDK will not have WakeWord detection support, but it can be added on runtime. If your selection was NO, then you can always manually fetch and build the AVS_SDK on runtime. All the packages dependencies will be already there, so only fetching the AVS_SDK source code and building it is required. Finish avs-image configuration At the end you will see a text according with the configuration you select for your image build. Next is an example for a Preinstalled AVS_SDK with Conxant Sound Card support and WiFi/BT not enabled. ==========================================================   AVS configuration is now ready at conf/local.conf             - Sound Card = Conexant                                     - AVS_SDK pre-installed                                       You are ready to bitbake your AVS demo image now:               bitbake avs-image                                        ========================================================== Step 3: Build the AVS image Go to your <build_sdk> directory and start the build of the avs-image There are 2 options Regular Build: $ cd <yocto_dir>/<build_sdk> $ bitbake avs-image With QT5 support included: $ cd <yocto_dir>/<build_sdk> $ bitbake avs-image-qt5 The image with QT5 is useful if you want to add some GUI for example to render DisplayCards. Step 4 : Deploying the built images to SD/MMC card to boot on target board. After a build has succesfully completed, the created image resides at <build_sdk>/tmp/deploy/images/imx7d-pico/ In this directory, you will find the imx7d-pico-avs.sdcard image or imx7d-pico-avs-qt5.sdcard, depending on the build you chose on Step3. To Flash the .sdcard image into the eMMC device of your PicoPi board follow the next steps: Download the bootbomb flasher Follow the instruction on Section 4. Board Reflashing of the Quick Start Guide for AVS kit to setup your board on flashing mode. Copy the built SDCARD file $ sudo dd if=imx7d-pico-avs.sdcard of=/dev/sd bs=1M && sync $ sync Properly eject the pico-imx7d board: $ sudo eject /dev/sd NXP Documentation Refer to the Quick Start Quide for AVS SDK to fully setup your PicoPi board with Synaptics 2Mic and PicoPi i.mx7D For a more comprehensive understanding of Yocto, its features and setup; more image build and deployment options and customization, please take a look at the i.MX_Yocto_Project_User's_Guide.pdf document from the Linux documents bundle mentioned at the beginning of this document. For a more detailed description of the Linux BSP, u-boot use and configuration, please take a look at the i.MX_Linux_User's_Guide.pdf document from the Linux documents bundle mentioned at the beginning of this document.
View full article
OpenCV is a computer vision library originally developed by Intel. It is free for commercial and research use under the open source BSD license. The library is cross-platform. It focuses mainly on real-time image processing; as such, if it finds Intel's Integrated Performance Primitives on the system, it will use these commercial optimized routines to accelerate itself. Application OpenCV's application areas include: * 2D and 3D feature toolkits * Egomotion estimation * Face Recognition * Gesture Recognition * Human-Computer Interface (HCI) * Mobile robotics * Motion Understanding * Object Identification * Segmentation and Recognition * Stereopsis Stereo vision: depth perception from 2 cameras * Structure from motion (SFM) * Motion Tracking To support some of the above areas, OpenCV includes a statistical machine learning library that contains: * Boosting * Decision Trees * Expectation Maximization * k-nearest neighbor algorithm * Naive Bayes classifier * Artificial neural networks * Random forest * Support Vector Machine Installing OpenCV on i.MX 51 EVK Board running Ubuntu Linux Assuming that you already have the Ubuntu Linux running on your board, you can use this wiki page to guide you to get your USB camera running on your system in order to use real time image processing features of this library. In a brand new installation of Ubuntu some libraries is not installed by default, so you need to install them by your own hands (use synaptic to do that), here is the list of these libraries: libgtk2.0-dev libjpeg62-dev zlib1g-dev libpng12-dev libtiff4-dev libjasper-dev libgst-dev libgstreamer0.10-dev If you already have some of those libraries installed, make sure that is the DEV version. After installing those libraries you can download the stable OpenCV version here. Install it following the procedure below: 1 - untar the opencv package tar -xvzf opencv-1.1pre1.tar.gz  2 - change to OpenCV folder cd opencv-1.1.0  3 - configure the installation enabling gstreamer and letting to compile demo apps later ./configure --with-gstreamer --disable-apps You will get the following results: General configuration ================================================       Compiler:                         g++       CXXFLAGS:       DEF_CXXFLAGS:             -Wall -fno-rtti -pipe -O3 -fomit-frame-pointer       PY_CXXFLAGS:               -Wall -pipe -O3 -fomit-frame-pointer       OCT_CXXFLAGS:             -fno-strict-aliasing -Wall -Wno-uninitialized -pipe -O3 -fomit-frame-pointer        Install path:                      /usr/local  HighGUI configuration ================================================       Windowing system --------------       Use Carbon / Mac OS X:        no       Use gtk+ 2.x:                        yes       Use gthread:                         yes       Image I/O ---------------------       Use ImageIO / Mac OS X:       no       Use libjpeg:                            yes       Use zlib:                                yes       Use libpng:                             yes       Use libtiff:                               yes       Use libjasper:                          yes       Use libIlmImf:                          no             Video I/O ---------------------       Use QuickTime / Mac OS X:     no       Use xine:                                no       Use gstreamer:                        yes       Use ffmpeg:                             no       Use dc1394 & raw1394:     no       Use v4l:                                   yes       Use v4l2:                                 yes       Use unicap:                             no     Wrappers for other languages =========================================       SWIG Python                          no       Octave                                    no       Additional build settings ============================================       Build demo apps                      no Now run make ... 4 - Build OpenCV ./make 5 - Install OpenCV ./sudo make install if all steps above were executed properly, now you can compile the sample applications: 1 - change to samples/c directory cd samples/c 2 - change the build_all script mode to +x chmod +x build_all.sh 3 - run the script ./build_all.sh Now you can test. The results below were taken from the Laplacian filter sample processing in real-time images grabbed from an USB camera: Laplacian filter with USB Camera capture device Also, you can see how is it performance on a 3 windowed application performing color conversion and canny edge detection at the same time: http://www.youtube.com/watch?v=w9yQgdABT7c EOF !
View full article
Using a USB Touchscreen on Ubuntu   This example uses a XENARC 706TSA monitor http://www.xenarc.com/product/706tsa.html To use a USB touchscreen on i.MX51 EVK, disable all touchscreen drivers on menuconfig and build the kernel: Device Drivers  --->        Input device support  --->        [ ]   Touchscreens  ---> Download xserver-xorg-input-evtouch (0.8.8-ubuntu3 version) from http://launchpadlibrarian.net/24760784/xserver-xorg-input-evtouch_0.8.8-0ubuntu3_armel.deb. X crash is found if using latest 0.8.8-ubuntu6.1 version. For the details. See https://bugs.launchpad.net/ubuntu/+source/xf86-inputevtouch/+bug/511491 On MX51 EVK board, run “sudo dpkg –i xserver-xorg-input-evtouch_0.8.8-0ubuntu3_armel.deb” to install debian package. Add fdi file by "sudo vi ./usr/share/hal/fdi/policy/20thirdparty/50-eGalax.fdi": <?xml version="1.0" encoding="UTF-8"?> <deviceinfo version="0.2">    <device>       <match key="info.product" contains="eGalax">          <match key="info.capabilities" contains="input">             <merge key="input.x11_driver" type="string">evtouch</merge>             <merge key="input.x11_options.minx" type="string">130</merge>             <merge key="input.x11_options.miny" type="string">197</merge>             <merge key="input.x11_options.maxx" type="string">3945</merge>             <merge key="input.x11_options.maxy" type="string">3894</merge>             <merge key="input.x11_options.Rotate" type="string">CCW</merge>             <merge key="input.x11_options.Swapy" type="string">true</merge>             <merge key="input.x11_options.taptimer" type="string">30</merge>             <merge key="input.x11_options.longtouchtimer" type="string">750</merge>             <merge key="input.x11_options.longtouched_action" type="string">click</merge>             <merge key="input.x11_options.longtouched_button" type="string">3</merge>             <merge key="input.x11_options.oneandhalftap_button" type="string">2</merge>             <merge key="input.x11_options.movelimit" type="string">10</merge>             <merge key="input.x11_options.touched_drag" type="string">1</merge>             <merge key="input.x11_options.maybetapped_action" type="string">click</merge>             <merge key="input.x11_options.maybetapped_button" type="string">1</merge>          </match>       </match>    </device> </deviceinfo> Save above configuration. Calibrating Calibration in made by clicking on System -> Administration -> Calibrate Touchscreen Follow the on screen instructions and reboot the system. Calibrating using Xinput Calibrator Xinput_calibrator is another option to calibrate touchscreen. It can be downloaded at: http://www.freedesktop.org/wiki/Software/xinput_calibrator On i.MX5x Ubuntu, unpack the source code: tar -xzvf xinput_calibrator-0.7.5.tar.gz Install xorg-dev, it's required to build xinput_calibrator sudo apt-get install xorg-dev Configure, build and install xinput_calibrator ./configure ./make ./make install Execute xinput_calibrator. A four-point calibration screen will be shown. Follow the instructions on screen and after complete xinput_calibrator will return the calibration parameters. Replace the given calibration parameters on file /usr/share/hal/fdi/policy/20thirdparty/50-eGalax.fdi and reboot the system.
View full article
This example uses the touchscreen that comes with i.MX51 EVK's parallel LCD Download xserver-xorg-input-evtouch (xserver-xorg-input-evtouch_0.8.8-3build1_armel.deb) from https://launchpad.net/ubuntu/lucid/armel/xserver-xorg-input-evtouch/0.8.8-3build1 On i.MX51 EVK board, run “sudo dpkg –i xserver-xorg-input-evtouch_0.8.8-3build1_armel.deb” to install debian package. Remove evdev config file: sudo rm /usr/lib/X11/xorg.conf.d/05-evdev.conf Change the content of 10-evtouch.conf to: sudo vi /usr/lib/X11/xorg.conf.d/10-evtouch.conf Section "InputClass"            Identifier "touchscreen catchall"            MatchIsTouchscreen "on"            Driver "evtouch"            Option "SwapY" "1"            Option "MinX" "32"            Option "MinY" "46"            Option "MaxX" "1001"            Option "MaxY" "967" EndSection   The MinX, MinY, MaxX and MaxY values can be changed to match the exact configuration of your touchscreen Save above configuration and reboot the system.
View full article
BlueZ5 provides support for the core Bluetooth layers and protocols. It is flexible, efficient and uses a modular implementation. BlueZ5 has implemented the Bluetooth low level host stack for Bluetooth core specification 4.0 and 3.0+HS which includes GAP, L2CAP, RFCOMM, and SDP. Besides the host stack, BlueZ5 has also supported the following profiles itself or via a third party software. Profiles provided by BlueZ: A2DP 1.3 AVRCP 1.5 DI 1.3 HDP 1.0 HID 1.0 PAN 1.0 SPP 1.1 GATT (LE) profiles: PXP 1.0 HTP 1.0 HoG 1.0 TIP 1.0 CSCP 1.0 OBEX based profiles (by obexd): FTP 1.1 OPP 1.1 PBAP 1.1 MAP 1.0 Provided by the oFono project: HFP 1.6 (AG & HF)Supported Profiles BlueZ5 has been supported in the latest Freescale Linux BSP release, so it would be pretty easy to generate the binaries for Bluetooth core stack and its profiles. In order to support A2DP sink on a SabreSD board, the following software should be downloaded and installed onto the target rootfs too. sbc decoder version 1.3 (http://www.kernel.org/pub/linux/bluetooth/sbc-1.3.tar.gz) PulseAudio 5.0 (http://www.freedesktop.org/software/pulseaudio/releases/pulseaudio-5.0.tar.xz) PulseAudio package has some dependencies with bluetooth and sbc packages, and pulseaudio will detect if the two packages have been built and then decide which pulse plugin modules to be generated. So the building order will be 1) bluez5_utils or bluez_utils   2) sbc   3) pulseaudio. After compile and install the above software onto the target rootfs, you should be able to see the following executable under the directory /usr/bin From BlueZ5: bluetoothctl, hciconfig, hciattach (Needed by operating a UART bluetooth module) From PulseAudio: pulseaudio, pactl, paplay If the building dependency has been setup correctly, the following pulse plugin modules should be located under the directory /usr/lib/pulse-5.0/modules module-bluetooth-discover.so      module-bluetooth-policy.so        module-bluez5-device.so   module-bluez5-discover.so Edit the file /etc/dbus-1/system.d/pulseaudio-system.conf, and add the following lines in red: <policy user="pulse">     <allow own="org.pulseaudio.Server"/>    <allow send_destination="org.bluez"/>     <allow send_interface="org.freedesktop.DBus.ObjectManager"/> </policy> Edit the file /etc/dbus-1/system.d/bluetooth.conf, and add the following lines: <policy user="pulse">      <allow send_destination="org.bluez"/>      <allow send_interface="org.freedesktop.DBus.ObjectManager"/> </policy> Adding the following settings at the bottom of the pulseaudio system configuration file which locates in /etc/pulse/system.pa ### Automatically load driver modules for Bluetooth hardware .ifexists module-bluetooth-policy.so load-module module-bluetooth-policy .endif .ifexists module-bluetooth-discover.so load-module module-bluetooth-discover .endif load-module module-switch-on-connect load-module module-alsa-sink device_id=0 tsched=true tsched_buffer_size=1048576 tsched_buffer_watermark=262144 On the system that can automatically detect the alsa cards, the above line #13 should be removed.  Also make sure "auth-anonymous=1" is added to the following line, which can resolve the issue: "Denied access to client with invalid authorization data". load-module module-native-protocol-unix auth-anonymous=1 Selecting a audio re-sampling algorithm and configuring the audio output by adding the following settings to the file daemon.conf locating in /etc/pulse resample-method = trivial enable-remixing = no enable-lfe-remixing = no default-sample-format = s16le default-sample-rate = 48000 alternate-sample-rate = 24000 default-sample-channels = 2 Pulseaudio can be started as a daemon or as a system-wide instance. To run PulseAudio in system-wide mode, the program will automatically drop privileges from "root" and change to the "pulse" user and group. In this case, before launching the program, the "pulse" user and group needs to be created on the target system.  In the example below, "/var/run/pulse" is the home directory for "pulse" user. adduser -h /var/run/pulse pulse addgroup pulse-access adduser pulse pulse-access Because PulseAudio needs to access the sound devices, add the user "pulse" to the "audio" group too. adduser pulse audio Starting bluetoothd and pulseaudio: /usr/libexec/bluetooth/bluetoothd -d & pulseaudio --system --realtime & To verify if the pulseaudio has been set up correctly, you can play a local wave file by using the following command. If you can hear the sound, the system should have been configured correctly. paplay -vvv audio8k16S.wav After setting up the pulseaudio, launch bluetoothctl to pair and connect to a mobile phone. After connecting to a mobile phone, you should be able to see the following information in bluetoothctl console: [bluetooth]# show Controller 12:60:41:7F:03:00         Name: BlueZ 5.21         Alias: BlueZ 5.21         Class: 0x1c0000         Powered: yes         Discoverable: no         Pairable: yes         UUID: PnP Information           (00001200-0000-1000-8000-00805f9b34fb)         UUID: Generic Access Profile    (00001800-0000-1000-8000-00805f9b34fb)         UUID: Generic Attribute Profile (00001801-0000-1000-8000-00805f9b34fb)         UUID: A/V Remote Control        (0000110e-0000-1000-8000-00805f9b34fb)         UUID: A/V Remote Control Target (0000110c-0000-1000-8000-00805f9b34fb)         UUID: Message Notification Se.. (00001133-0000-1000-8000-00805f9b34fb)         UUID: Message Access Server     (00001132-0000-1000-8000-00805f9b34fb)         UUID: Phonebook Access Server   (0000112f-0000-1000-8000-00805f9b34fb)         UUID: IrMC Sync                 (00001104-0000-1000-8000-00805f9b34fb)         UUID: OBEX File Transfer        (00001106-0000-1000-8000-00805f9b34fb)         UUID: OBEX Object Push          (00001105-0000-1000-8000-00805f9b34fb)         UUID: Vendor specific           (00005005-0000-1000-8000-0002ee000001)         UUID: Audio Source              (0000110a-0000-1000-8000-00805f9b34fb)         UUID: Audio Sink                (0000110b-0000-1000-8000-00805f9b34fb)         Modalias: usb:v1D6Bp0246d0515         Discovering: no If you can see the audio sink UUID, you are ready to enjoy the bluetooth music now.
View full article
NXP i.MX 8 series of application processors support running ArmV8a 64-bit and ArmV7a 32-bit user space programs.  A Hello World program that prints the size of a long int is cross-compiled as 32-bit and as 64-bit from an Ubuntu host and then each is copied to MCIMX8MQ-EVK and run. Resources: Ubuntu 18.04 LTS Host i.MX 8M Evaluation Kit|NXP  MCIMX8MQ-EVK Linux Binary Demo Files - i.MX 8MQuad EVK L4.9.88_2.0.0_GA release Source Code: Create a file with contents below using your favorite editor, example name hello-sizeInt.c. #include <stdio.h> int main (int argc, char **argv) { printf ("Hello World, size of long int: %zd\n", sizeof (long int)); return 0; }‍‍‍‍‍‍‍ Ubuntu host packages: $ sudo apt-get install -y gcc-arm-linux-gnueabihf $ sudo apt-get install -y gcc-aarch64-linux-gnu‍‍‍‍ Line 1 installs the ArmV7a cross-compile tools: arm-linux-gnueabihf-gcc is used to cross compile on Ubuntu host Line 2 install the ArmV8a cross-compile tools: aarch64-linux-gnu-gcc is used to cross compile on Ubuntu host Create Linux User Space Applications Build each application and use the static option to gcc to include run time libraries. Build ArmV7a 32-bit application: $ arm-linux-gnueabihf-gcc -static hello-sizeInt.c -o hello-armv7a‍-static‍‍ Build ArmV8a 64-bit application: $ aarch64-linux-gnu-gcc -static  hello-sizeInt.c -o hello-armv8a‍-static‍‍ Copy Hello applications from Ubuntu host and run on MCIMX8MQ-EVK Using a SDCARD written with images from L4.9.88_2.0.0 Linux release (see resources for image link), power on EVK with Ethernet connected to network and Serial Console port which was connected to a windows 10 PC. Launched a terminal client (TeraTerm) to access console port. Login credentials: root and no password needed. Since Ethernet was connected a DHCP IP address was acquired, 192.168.1.241 on the EVK.  On the Ubuntu host, secure copy the hello applications to EVK: $ scp hello-armv7a-static root@192.168.1.241:~/ hello-armv7a-static                           100%  389KB   4.0MB/s   00:00    $ scp hello-armv8a-static root@192.168.1.241:~/ hello-armv8a-static                           100%  605KB   4.7MB/s   00:00 ‍‍‍‍‍‍‍‍‍‍ Run: root@imx8mqevk:~# ./hello-armv8a-static Hello World, sizeof long int: 8 root@imx8mqevk:~# ./hello-armv7a-static Hello World, sizeof long int: 4‍‍‍‍‍‍‍‍
View full article
目录 1 创建 i.MX8QXP Linux 5.4.24 板级开发包编译环境 ..... 3 1.1 下载板级开发包 ....................................................... 3 1.2 创建yocto编译环境: ................................................. 4 1.3 独立编译 ................................................................. 9 2 Device Tree .............................................................. 16 2.1 恩智浦的device Tree结构 ..................................... 16 2.2 device Tree的由来(no updates) ............................ 19 2.3 device Tree的基础与语法(no updates) ................. 22 2.4 device Tree的代码分析(no updates) ..................... 44 3 恩智浦i.MX8XBSP 包文件目录结构 .......................... 77 4 恩智浦i.MX8XBSP的编译(no updates) ..................... 79 4.1 需要编译哪些文件 ................................................. 79 4.2 如何编译这些文件 ................................................. 80 4.3 如何链接为目标文件及链接顺序 ............................ 81 4.4 kernel Kconfig ....................................................... 83 5 恩智浦BSP的内核初始化过程(no updates) .............. 83 5.1 初始化的汇编代码 ................................................. 85 5.2 初始化的C代码 ...................................................... 89 5.3 init_machine........................................................ 102 6 恩智浦BSP的内核定制 ........................................... 105 6.1 DDR修改 ............................................................. 106 6.2 IO管脚配置与Pinctrl驱动 ..................................... 107 6.3 新板bringup......................................................... 123 6.4 更改调试串口 ...................................................... 132 6.5 uSDHC设备定制(eMMC flash,SDcard, SDIOcard)137 6.6 LVDS LCD 驱动定制 ........................................... 147 6.7 LVDS LDB SerDas驱动支持 ............................... 150 6.8 MiPi DSI SerDas驱动支持 .................................. 156 6.9 V4L2框架汽车级高清摄像头/桥驱动:数字/模拟 . 160 6.10 GPIO_Key 驱动定制 .......................................... 177 6.11 GPIO_LED 驱动定制 ......................................... 181 6.12 Fuse nvram驱动 .................................................. 184 6.13 SPI与SPI Slave驱动 ........................................... 185 6.14 USB 3.0 TypeC 改成 USB 3.0 TypeA(未验证) .... 193 6.15 汽车级以太网驱动定制 ........................................ 193 6.16 i.MX8DX MEK支持 .............................................. 212 6.17 i.MX8DXP MEK支持 ........................................... 212 6.18 NAND Flash支持与烧录 ...................................... 213
View full article
i.MX8X 板级开发包镜像结构 ...................................... 3 2 创建 i.MX8QXP Linux 5.4.24 板级开发包编译环境 ..... 3 2.1 下载板级开发包 ....................................................... 3 2.2 创建yocto编译环境: ................................................. 5 2.3 独立编译 ............................................................... 10 3 i.MX8X SC firmware ................................................. 16 3.1 SC firmware 目录结构 ........................................... 16 3.2 SC firmware 启动流程 ........................................... 18 3.3 SC firmware定制 ................................................... 18 4 i.MX8X ATF .............................................................. 30 5 FSL Uboot 定制 ........................................................ 32 5.1 FDT支持 ............................................................... 33 5.2 DM(driver model)支持 ........................................... 38 5.3 Uboot目录 结构 ..................................................... 52 5.4 Uboot编译 ............................................................. 54 5.5 Uboot初始化流程 .................................................. 55 5.6 uboot 定制 ............................................................ 66 5.7 uboot debug信息 ................................................... 82
View full article
[中文翻译版] 见附件   原文链接: https://community.nxp.com/docs/DOC-344462 
View full article