i.MX Processors Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

i.MX Processors Knowledge Base

Discussions

Sort by:
This article describes how to integrate NXP WiFi & BT module into i.MX platform, some debug tips, how to test, etc. Although it takes i.MX8MM as example, it is also suitable for all i.MX8 serials platform.
View full article
This hands on is based on the evkmimxrt1170_pxp_lab_cm7.zip which is from https://community.nxp.com/t5/i-MX-RT1170-CAS-Training/PXP-Multiple-Files/ta-p/1178709 this hands on give an example to understand pxp basic concept like letterbox background color, rotation, ps buffer coordination definition, output buffer coordination definition more clear   No Roation This test is based on no rotation, so define as below #define LAB1_BIT_BLIT_NO_ROTATION This demo output is that the rabbit picture shows on the upper left corner of lcd, and the offset width and height is 100   #ifdef LAB1_BIT_BLIT_NO_ROTATION     PXP_ps_bitblit(                    // input                    (void*)bmp_rabbit,                    PIXEL_BYTES,                    BMP_RABBIT_WIDTH,                    BMP_RABBIT_HEIGHT,                      // output                    s_BufferLcd[curLcdBufferIdx],                    DEMO_PANEL_WIDTH,                    DEMO_PANEL_HEIGHT,                    100,  // output offset x                    100,  // output offset y                    kPXP_No_Rotate); #endif       in this lab sample code, the background is set to black, PXP_SetProcessSurfaceBackGroundColor(APP_PXP, 0U);   The output is     If we want to set the background to lighter blue, this is what I want to get     then I modify the code to PXP_SetProcessSurfaceBackGroundColor(APP_PXP, 0xFFF0U);   But we get the same output like, without any difference         Check the code, find that the original code   void PXP_ps_sub_region_bitblit(…) { …..     outputBufferConfig.width = sub_region_width;     outputBufferConfig.height = sub_region_height;   …… }   This means that the output buffer width and height are the same as the picture width and height, so whatever background color you set, you couldn’t find anything difference, then change the output buffer width and height is the same as lcd width and height     void PXP_ps_sub_region_bitblit(…) { …..       outputBufferConfig.width = output_width;       outputBufferConfig.height= output_height;   …… }   Then the output change to     We can find the color on the top of display is still black and this isn’t what I need, still tracing the code   void PXP_ps_sub_region_bitblit(…) { …..  // Output buffer  outputBufferConfig.buffer0Addr   =  (uint32_t)output_buffer + output_offset_y * output_width * pic_bytes_per_pixel + output_offset_x * pic_bytes_per_pixel …… }   output_buffer is defined as lcd buffer start address, here the output buffer start address isn’t defined as lcd buffer start address(output_buffer), this is offset of lcd buffer start address, so change it like   void PXP_ps_sub_region_bitblit(…) { …..  // Output buffer  outputBufferConfig.buffer0Addr = (uint32_t)output_buffer …… }   Then the output is like       The output picture move to the upper left corner without offset, but this demo defines the offset is 100   void PXP_ps_sub_region_bitblit(…) { …..  // PS buffer PXP_SetProcessSurfacePosition(APP_PXP,0,0,BMP_RABBIT_WIDTH - 1U, BMP_RABBIT_HEIGHT - 1U); ….. }   In the original code, the PS buffer offset is 0, because the ps buffer start address is the same as the output buffer start address, and output buffer start address is offset + lcd output buffer start address, so set the PS output offset is 0, but I change the output buffer start address is the same as lcd buffer start address, so change the code   void PXP_ps_sub_region_bitblit(…) { …..             uint32_t psUlcX         = output_offset_x;             uint32_t psUlcY         = output_offset_y;             uint32_t psLrcX, psLrcY;             psLrcX = psUlcX   +  sub_region_width  - 1U;             psLrcY = psUlcY + sub_region_height- 1U;         // PS buffer         PXP_SetProcessSurfacePosition(APP_PXP,psUlcX,psUlcY,psLrcX,psLrcY); ….. }   The output is   \   Now this is what we need     Roation Set Macro to #define LAB2_BIT_90_DEGREE_ROTATION   The output is     When rotation is 90 degree and width is wider than the output height, the display part will be cut, so change the code from Before void PXP_ps_sub_region_bitblit(…) { …..       outputBufferConfig.width = output_width;       outputBufferConfig.height= output_height; ….. }   To   void PXP_ps_sub_region_bitblit(…) { …..  if  (rotate == kPXP_Rotate90)  {     outputBufferConfig.width          = output_height;        /*Joan*/     outputBufferConfig.height         = output_width;         /*Joan*/  } else {         outputBufferConfig.width          = output_width;         /*Joan*/         outputBufferConfig.height         = output_height;        /*Joan*/ }….. }   Because this demo only shows no rotation and 90 degree rotation, if customer needs 270 degree, 180 degree, can add by themselves
View full article
current bsp fixed the lvds pixel clock up to 74.25Mhz for single channel and 148.5Mhz for dual channel, if customer wants to know why and how to change it, maybe can refer to the enclosed file, hope helpful for you
View full article
This doc will show: i.MX8DXL EVK board without connect  hardware LCD display, using FreeRDP to share screen to remote PC which is in same network,  PC take this shared screen could  run any command on i.MX8DXL EVK board.   HW: i.MX8DXL EVK board,  PC  SW: i.MX8DXL Linux 5.15.32 BSP release, and code change in this doc   1> i.MX8DXL Linux kernel side, just use imx8dxl-evk-lcdif.dts, but did not connect any LCD display,  so Linux kernel could create related drm device, and weston could be start. But on 8DXL EVK board, ENET1_RGMII_TXD3 and ADMA_LCDIF_D03 pin conflict,  so need code change as 5.15.32-imx8dxl-evk-lcdif.dts.diff.   2> yocto/bld/conf/local.conf, add below line, as freerdp depend on ffmpeg. LICENSE_FLAGS_ACCEPTED+="commercial"   3> For i.MX8DXL,  weston use software pixman render, to use NEON optimization,  pixman need switch to  latest 0.42.0,  enter folder (yocto/bld/tmp/work/armv8a-poky-linux/pixman/1_0.40.0-r0/pixman-0.40.0),  git clone (https://github.com/freedesktop/pixman.git) and checkout to latest 0.42.0:  Also chaneg related build flag at bb file as pixman_0.40.0.bb.diff.     4> Default  freerdp need switch to 2.8.0, enter folder (yocto/bld/tmp/work/armv8a-poky-linux/freerdp/1_2.4.1-r0/git),  git clone (https://github.com/FreeRDP/FreeRDP.git), check out to 2.8.0; And to use neon accelerate freerdp related function, such as color space conversion, image codec encoding ,  need apply patch  freerdp-codechange-neon.diff. And related bb file compile flag change as freerdp_2.4.1.bb.diff     5> bitbake -c compile ffmpeg bitbake -c install ffmpeg   bitbake -c compile pixman  bitbake -c install pixman    bitbake -c compile  freerdp bitbake -c install  freerdp   Copy  generated new libs to default released i.MX8DXL rootfs, make sure ffmeg , pixman, freerdp related libs are  from your build, for example: libfreerdp-client2.so.2 -> libfreerdp-client2.so.2.8.0 libfreerdp2.so.2 -> libfreerdp2.so.2.8.0 libwinpr-tools2.so.2 -> libwinpr-tools2.so.2.8.0 libwinpr2.so.2 -> libwinpr2.so.2.8.0   6> i.MX8DXL Linux rootfs:  file /etc/xdg/weston/weston.ini,  change start-on-startup to true: [screen-share] command=/usr/bin/weston --backend=rdp-backend.so --shell=fullscreen-shell.so --no-clients-resize --rdp-tls-cert=/etc/freerdp/keys/serve start-on-startup=true   7> i.MX8DXL Linux OS, run below cmd: winpr-makecert -path $PWD copy generated files to /etc/freerdp/keys/server.crt and /etc/freerdp/keys/server.key   8> reboot i.MX8DXL EVK board,  make sure  EVK board and PC in the same network; check i.MX8DXL Linux OS , there are two process name as "weston", one process is weston rdp backend to share screen to PC.   9> PC side, get wfreerdp.exe from  https://github.com/FreeRDP/FreeRDP/wiki/Prebuilds PC side run cmd as: wfreerdp.exe /v:ipaddress_of_8DXLEVK     Reference: 1>https://www.nxp.com/design/software/embedded-software/i-mx-software/embedded-linux-for-i-mx-applications-processors:IMXLINUX#design-resources 2>https://github.com/FreeRDP 3>https://github.com/freedesktop/pixman 4>https://github.com/DLTcollab/sse2neon  
View full article
On behalf of Gopise Yuan. This is a patch to fix USB plug/unplug event detection failure issue on ChipIdea IP under corner case.
View full article
On i.MX8MP EVK, image is downloaded into eMMC/SD via OTG1, if customer wants to enable USB OTG2 on i.MX8MP for uuu tool. Pls find modification as attached.
View full article
The Config Tools for i.MX is a set of configuration tools that provide an efficient method for evaluation and configuration of pins routing and DDR memory settings when designing with NXP's application processors based on Arm® Cortex®-A cores, including i.MX MPUs. The following tools are currently available: DDR Tool DDR Configuration and Validation tool allows you to create a configuration for the DDR component and to validate the DDR configuration using various validation scenarios Features: Support for iMX8M, iMX8MM, iMX8MN, iMX8MP and LX2160A DDR configuration UI using the tokenized RPA tool PHY initialization using dynamic library Import the output of the RPA tool will bypass UI configuration Support for multiple PHY firmware version including fw2020.06 Diagnostic fw2020.06 DDR PHY support for DDR3, DDR4, and LPDDR4 Cell color code Basic/Advanced user mode DDR controller Registers View support Auto-detect of available COM ports USB target connection Basic validation tests support (Write-Read-Compare, Walking Ones, Walking Zeros) DQ ODT and driver strength test vTSA (Virtual Timing Signal Analysis) support - RX data eye, TX data eye Stress tests support Export vTSA results in JPEG format Static Code generation in Uboot style Command line posibility PBL Tool PBL tool helps you create and modify pre-boot initialization data used for configuring LX2 devices. Features: Support for LX2160A Configure reset configuration word (RCW), which is 1024 bits of information Optional configure pre-boot initialization (PBI) command sequence Allow user to have full access to configuration by using Skip error checking and Display all fields Option to directly modify the configuration from RCW registers Import different formats of input Generate different types of output, including a binary file SerDes Tool The SerDes tool allows you to configure the SerDes block and provides you with a GUI application to validate the configuration Features: Support for LX2160A UI for SerDes blocks configuration Per lane tests Bist, Power Transmitter/Receiver, Reset Transmitter/Receiver tests Jitter scope, Pattern Independent Jitter scope, Start/Stop Tx Patter generation tests Read a configuration from the target   Trusted Execution Environment Configuration tool The Trusted Execution Environment (TEE) tool facilitates the protection and isolation of the sensitive parts of the code. Features: Graphical display of memory layout and resulting access to memory regions Configuration of access policies for memory areas, bus masters, and peripherals Configuration of pin and interrupt masking and security, as well as general features related to the ARMv8 core security Configuration of MPU Validation of settings Generation of configuration files (C code or ROM preset data) Pins Tool The Pins Tool is used for pin routing configuration, validation and code generation, including pin functional/electrical properties, power rails, run-time configurations. Features: Desktop application Muxing and pin configuration with consistency checking Multicore support Localized for English and Simplified Chinese Mostly Connected: On-Demand device data download Integrates with any compiler and IDE Supports English and Chinese (simplified) languages, based on locale settings. Please refer to user manual for details. ANSI-C initialization code Graphical processor package view Multiple configuration blocks/functions Easy-to-use device configuration Selection of Pins and Peripherals Package with IP blocks Routed pins with electrical characteristics Registers with configured and reset values Power Groups with assigned voltage levels Source code for C/C++ applications Documented and easy to understand source code CSV Report and Device Tree File Downloads & links To download the installer for all platforms, please login to our download site via:  https://www.nxp.com/design/designs/config-tools-for-i-mx-applications-processors:CONFIG-TOOLS-IMX Please refer to Documentation  for installation and quick start guides. For further information about DDR config and validation, please go to this blog post. Whats new in v12.1 Pins tool Deinit function now sets also the routing and direction to it's default state. It also tries to route the original peripheral signal to it's default pin.  
View full article
  Products Product Category NXP Part Number URL MPU i.MX6 Family https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-6-processors:IMX6X_SERIES   Tools NXP Development Board URL i.MX6 family developement board https://www.nxp.com/design/development-boards:EVDEBRDSSYS#/collection=softwaretools&start=0&max=25&query=typeTax%3E%3Et633::archived%3E%3E0::Sub_Asset_Type%3E%3ETSP::deviceTax%3E%3Ec731_c380_c127_c126&sorting=Buy%2FSpecifications.desc&language=en&siblings=false  
View full article
  Purpose Under some situations, need to modify the binary image. Under some situations, no development environment. Under some situations, even no Linux. Only have windows. Board bring up need simple settings, such as simple/tiny rootfs.  Key Features Create small sdcard mirror image All operations are on binary files no need development environment(offline) Set the u-boot environment on binary image Windows OS support Snapshot:   Please download  create_sdcard_mirror_ext.zip.001.zip create_sdcard_mirror_ext.zip.002.zip create_sdcard_mirror_ext.zip.003.zip create_sdcard_mirror_ext.zip.004.zip create_sdcard_mirror_ext.zip.005.zip create_sdcard_mirror_ext.zip.006.zip extract each one to have below files  create_sdcard_mirror_ext.zip.001 create_sdcard_mirror_ext.zip.002 create_sdcard_mirror_ext.zip.003 create_sdcard_mirror_ext.zip.004 create_sdcard_mirror_ext.zip.005 create_sdcard_mirror_ext.zip.006 Put together and extract them.  
View full article
  Background PCIe interface of Android 12 prebuilt and Built image on iMX8MM mini is not coming up. The Android BSP doesn't enable the pcie driver. Solution 1. imx8mm_gki.fragment CONFIG_PHY_FSL_IMX_PCIE=m CONFIG_PCI_IMX6=m 2. device/nxp/imx8m/evk_8mm/SharedBoardConfig.mk $(KERNEL_OUT)/drivers/pci/controller/dwc/pci-imx6.ko \ Result evk_8mm:/ # dmesg | grep pci [ 0.561609] ehci-pci: EHCI PCI platform driver [ 6.515345] imx6q-pcie 33800000.pcie: supply epdev_on not found, using dummy regulator [ 6.524925] imx6q-pcie 33800000.pcie: EXT REF_CLK is used!. [ 6.560211] imx6q-pcie 33800000.pcie: PCIe PLL locked after 20 us. [ 6.567328] imx6q-pcie 33800000.pcie: host bridge /soc@0/pcie@33800000 ranges: [ 6.584463] imx6q-pcie 33800000.pcie: IO 0x001ff80000..0x001ff8ffff -> 0x0000000000 [ 6.593833] imx6q-pcie 33800000.pcie: MEM 0x0018000000..0x001fefffff -> 0x0018000000 [ 6.603140] imx6q-pcie 33800000.pcie: invalid resource [ 6.708123] imx6q-pcie 33800000.pcie: Link up [ 6.713393] imx6q-pcie 33800000.pcie: Link up [ 6.718586] imx6q-pcie 33800000.pcie: Link up, Gen1 [ 6.832372] imx6q-pcie 33800000.pcie: PCI host bridge to bus 0000:00 [ 6.840023] pci_bus 0000:00: root bus resource [bus 00-ff] [ 6.846535] pci_bus 0000:00: root bus resource [io 0x0000-0xffff] [ 6.853805] pci_bus 0000:00: root bus resource [mem 0x18000000-0x1fefffff] [ 6.861601] pci 0000:00:00.0: [16c3:abcd] type 01 class 0x060400 [ 6.868529] pci 0000:00:00.0: reg 0x10: [mem 0x00000000-0x000fffff] [ 6.876439] pci 0000:00:00.0: reg 0x38: [mem 0x00000000-0x0000ffff pref] [ 6.884101] pci 0000:00:00.0: supports D1 [ 6.888954] pci 0000:00:00.0: PME# supported from D0 D1 D3hot D3cold [ 6.899174] pci 0000:01:00.0: [1b4b:2b42] type 00 class 0x020000 [ 6.906127] pci 0000:01:00.0: reg 0x10: [mem 0x00000000-0x000fffff 64bit pref] [ 6.914221] pci 0000:01:00.0: reg 0x18: [mem 0x00000000-0x000fffff 64bit pref] [ 6.922740] pci 0000:01:00.0: supports D1 D2 [ 6.927854] pci 0000:01:00.0: PME# supported from D0 D1 D3hot D3cold [ 6.935200] pci 0000:01:00.0: 2.000 Gb/s available PCIe bandwidth, limited by 2.5 GT/s PCIe x1 link at 0000:00:00.0 (capable of 4.000 Gb/s with 5.0 GT/s PCIe x1 link) [ 6.962608] pci 0000:00:00.0: BAR 0: assigned [mem 0x18000000-0x180fffff] [ 6.970251] pci 0000:00:00.0: BAR 15: assigned [mem 0x18100000-0x182fffff pref] [ 6.978426] pci 0000:00:00.0: BAR 6: assigned [mem 0x18300000-0x1830ffff pref] [ 6.986479] pci 0000:01:00.0: BAR 0: assigned [mem 0x18100000-0x181fffff 64bit pref] [ 7.001517] pci 0000:01:00.0: BAR 2: assigned [mem 0x18200000-0x182fffff 64bit pref] [ 7.010203] pci 0000:00:00.0: PCI bridge to [bus 01-ff] [ 7.016271] pci 0000:00:00.0: bridge window [mem 0x18100000-0x182fffff pref] [ 7.025830] pcieport 0000:00:00.0: PME: Signaling with IRQ 238 [ 7.033786] pcieport 0000:00:00.0: AER: enabled with IRQ 238  
View full article
Before I have presentation named “i.MX6 SDCARD Secondary Boot Demo”  in following link. i.MX Development Miscellanea(i.MX 开发杂记) - NXP Community   Now I have the “i.MX8MM SDCARD Secondary Boot Demo”.   The big difference is i.MX8MM using spl. And in the “i.MX6 SDCARD Secondary Boot Demo” I manually edit the secondary image table and manually combine the images. Now, I have written done a script “imx_sd_secondary_boot_creator.sh” to do above.
View full article
i.MX8 VPU hardware decoder support below video codec: H.265 HEVC Main Profile 4Kp60 Level 5.1 H.264 AVC Constrained Baseline, Main and High profile H.264 MVC WMV9 / VC-1 Simple, Main and Advanced Profile MPEG 1 and 2 Main Profile at High Level AVS Jizhun Profile (JP) MJPEG4.2 ASP, H.263, Sorenson Spark Divx 3.11, with Global Motion Compensation (GMC) ON2/Google VP6/VP8 RealVideo 8/9/10 JPEG and MJPEG A/B Baseline   i.MX8 VPU Linux driver is implemented based on V4L2 standard. Chromium beside software video decoding, it also support hardware video decoder(VideoDecodeAccelerator),  there are some kind of VideoDecodeAccelerator, one of them is V4L2VDA. Please note V4L2VDA is using V4l2 api, so it is possible that change V4L2VDA to enable Chromium hardware video playback on i.MX8.   This doc share patch to add chromium video decode accelerate by using i.MX8QM/i.MX8QXP VPU. It will support chromium H.264, H.265, VP8 hardware video decode. H.264 and H.265 need use mp4 container. VP8 use webm container.   HW: i.MX8QM/i.MX8QXP MEK board, 1080P HDMI display, mouse, keyboard SW: i.MX8 5.10.72_2.2.2 yocto bsp release(which included chromium 91.0), and patch in this doc   Patch description: imx8-5.10.72-vpudrv-update.diff, update i.MX8  5.10.72_2.2.2 kernel vpu driver to https://source.codeaurora.org/external/imx/linux-imx/commit/drivers/mxc/vpu_malone?h=lf-5.15.y&id=fa7c67e2c9ed4fb8392fa258f931d6996339a17a chromium-ozone-wayland_91.0.4472.114.bb.diff, change meta-browser/meta-chromium/recipes-browser/chromium/chromium-ozone-wayland_91.0.4472.114.bb for adding some compile flags, etc. 5.10.72-merge.patch, this patch change chromium source code to add video decode accelerate by using i.MX8 VPU.   Build steps: 1>Download i.MX8 5.10.72_2.2.2 yocto release from nxp.com 2>apply chromium-ozone-wayland_91.0.4472.114.bb.diff to change meta-browser/meta-chromium/recipes-browser/chromium/chromium-ozone-wayland_91.0.4472.114.bb 3>put 5.10.72-merge.patch to folder path_of_yocto-5.10.72-2.2.2/sources/meta-browser/meta-chromium/recipes-browser/chromium/files/ 3>apply imx8-5.10.72-vpudrv-update.diff to i.MX8 5.10.72_2.2.2 kernel 4>under the yocto image build folder, add "CORE_IMAGE_EXTRA_INSTALL += "chromium-ozone-wayland" to file path_of_yocto-5.10.72-2.2.2/folder-of-bld/conf/local.conf 5>run bitbake to build rootfs image   Test steps: After system boot up, put some video clip under /home/root/video then run below cmd (do not run chromium without any parameter, as that will start chromium with some other setting, you can check /usr/lib/chromium/chromium-wrapper) "/usr/lib/chromium/chromium-bin   --no-sandbox --ozone-platform=wayland --enable-features=VaapiVideoDecoder  --enable-accelerated-video-decode   --enable-clear-hevc-for-testing --ignore-gpu-blacklist --window-size=1920,1180  /home/root/video" then use mouse to click video clip and will start playback.   Reference: https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-processors:IMX8-SERIES https://www.nxp.com/design/software/embedded-software/i-mx-software/embedded-linux-for-i-mx-applications-processors:IMXLINUX https://www.chromium.org/audio-video/#:~:text=codec%20and%20container%20support https://github.com/igel-oss/meta-browser-hwdecode/blob/master/recipes-chromium/chromium/files/0001-Add-support-for-V4L2VDA-on-Linux.patch      
View full article
On behalf of Gopise Yuan. A collection of several GST debugging tips and known-how. When you need to play onto a DRM layer/plane directly without going through compositor, kmssink should be a good choice: // kmssink, with scale and adjust alpha property (opaque) and zpos (this requires kmssink>=1.16): gst-launch-1.0 filesrc location=/media/AVC-AAC-720P-3M_Alan.mov ! decodebin ! imxvideoconvert_g2d ! kmssink plane-id=37 render-rectangle="<100,100,720,480>" can-scale=false plane-properties=s,alpha=65535,zpos=2 When using playbin, you can still customize the pipeline besides the sink plugin, e.g. add a converter plugin: // Playbin with additional customization on converter before sink: gst-launch-1.0 playbin uri=file:///mnt/MP4_H264_AAC_1920x1080.mp4 video-sink="imxvideoconvert_g2d ! video/x-raw,format=BGRA,width=1920,height=1080 ! kmssink plane-id=44" GST can generate a pipeline graph for analyzing the pipeline in a intuitive manner: // Generate pipeline graph: 1. Export GST_DEBUG_DUMP_DOT_DIR=<dump-folder>, GST_DEBUG=4 2. Run pipeline with gst-launch or others. 3. Copy all dump files (.dot) from <dump-folder>. Note: one dump file will be created for each state transaction. Normally, what we need will be PAUSE_READY or READY_PAUSE, after which pipeline has been setup. 4. Convert the .dot file to PDF with Graphviz: dot -Tpdf 0.00.03.685443250-gst-launch.PAUSED_READY.dot > pipeline_PAUSED_READY.pdf  
View full article
This is a simple known-how for how to enable KASAN on L4.14.98 with i.MX8/8X and also a collection of related patches for fixing issues reported by KASAN.   Enable KASAN: It's very simple, just enable "CONFIG_KASAN" in kernel configuration. Besides this, adjusting the kernel's loading address is also required, due to KASAN (which will alloc more memory as a "tracker" for each allocation). For e.g., on imx8qxp MEK, we need to change the kernel loadaddr in uboot:     0x80280000 --> 0xE0280000 through uboot env: setenv loadaddr 0xE0280000 After this, it supposed to be working.   KASAN related patches on L4.14.98: KASAN will do detection/sanitizing for any memory allocation/access. In case of L4.14.98 on i.MX8/8X, there're several "BUG" reported by KASAN in default BSP. The attached patches are a collection for these issues.    Note: not all "BUG" reported by KASAN are really bug. Most of them are just some programming rule related problems and may not really cause memory access violation.
View full article
  Anyone who want to use this solution should get reference design and firmware from Lontium. Hardware Here is the block diagram of LT9611UXC Demo Board. As the MIPI port of our EVK can provide 5V, 3V3 and 1V8.We can remove useless DC-DC chips from reference design. Below is the LT9611UXC Demo Board. Software Download the firmware into LT9611UXC. In Linux side, we need to drive the MIPI to output signals with standard timings of 1080P. Panel type diff --git a/arch/arm64/boot/dts/freescale/imx8mp-evk.dts b/arch/arm64/boot/dts/freescale/imx8mp-evk.dts index 1732b5c72380..c6a829be541f 100644 --- a/arch/arm64/boot/dts/freescale/imx8mp-evk.dts +++ b/arch/arm64/boot/dts/freescale/imx8mp-evk.dts @@ -696,13 +716,17 @@ &ldb_phy { &mipi_dsi { status = "okay"; + panel@0{ + compatible = "nxp,lt9611uxc"; + reg = <0>; + status = "okay"; }; }; &snvs_pwrkey { diff --git a/drivers/gpu/drm/panel/panel-simple.c b/drivers/gpu/drm/panel/panel-simple.c index 4f78bbf63f33..90d99f12515b 100644 --- a/drivers/gpu/drm/panel/panel-simple.c +++ b/drivers/gpu/drm/panel/panel-simple.c @@ -4997,6 +4997,34 @@ struct panel_desc_dsi { unsigned int lanes; }; +static const struct drm_display_mode lt9611_panel_mode = { + .clock = 148500, + .hdisplay = 1920, + .hsync_start = 1920 + 88, + .hsync_end = 1920 + 88 + 44, + .htotal = 1920 + 88 + 44 + 148, + .vdisplay = 1080, + .vsync_start = 1080 + 4, + .vsync_end = 1080 + 4 + 5, + .vtotal = 1080 + 4 + 5 + 36, +}; + +static const struct panel_desc_dsi lt9611_panel = { + .desc = { + .modes = &lt9611_panel_mode, + .num_modes = 1, + .bpc = 8, + .size = { + .width = 62, + .height = 110, + }, + .connector_type = DRM_MODE_CONNECTOR_DSI, + }, + .flags = MIPI_DSI_MODE_VIDEO_HSE | MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_NO_EOT_PACKET | MIPI_DSI_MODE_VIDEO_SYNC_PULSE, + .format = MIPI_DSI_FMT_RGB888, + .lanes = 4, +}; + static const struct drm_display_mode auo_b080uan01_mode = { .clock = 154500, .hdisplay = 1200, @@ -5201,6 +5229,9 @@ static const struct panel_desc_dsi osd101t2045_53ts = { static const struct of_device_id dsi_of_match[] = { { + .compatible = "nxp,lt9611uxc", + .data = &lt9611_panel, + },{ .compatible = "auo,b080uan01", .data = &auo_b080uan01 }, {
View full article
Some customer need to test ENET IEEE1588 1pps ouput signal. This article describe all i.MX8 serials test procedure, including normal ENET port and EQOS port(i.MX8MP & i.MX8DXL support EQOS).
View full article
On behalf of Gopise Yuan. A simple sharing for enabling some kernel options for using “lockdep”. It will be useful for detecting some deadlock (spinlock/mutex/…) issue. Validated on L4.14.x, and, found a lock violation…
View full article
some industry customer to use i.MX8MM will use RMII to link the 100Mhz ethernet phy and wish to use our i.mx8mm output 50Mhz reference clock to external phy to save a crystal, this doc and patch explain how to support it. SW: Linux BSP 5.10.17. HW: i.MX8MM LPDDR/DDR EVK board. 中文版本为一个完整的如何支持一个100Mhz以太网PHY  
View full article
1. Intro   This document contains instructions to run run the SAI low power audio demo on the i.MX 8M Plus EVK. Here, the  RPSMG to allows audio to be passed from the A53 cluster running Linux to the M7 core. The latter controls the on board WM8960 audio codec,  which is connected to a 3.5 mm audio jack that allow us to play music using headphones. I will show the necessary steps to make the demo work and will add some GStreamer examples to demonstrate the demo's capabilities.   TBD: update this with a nice diagram that depicts the A53 and M7 RPMSG channel. 2. Requirements   Hardware  MX 8M Plus EVK Headphones with 3.5 mm audio jack Type-C power supply for i.MX 8M Plus EVK Micro USB to USB adapter cable Software  A recent prebuilt Linux BSP image from NXP.com ( we tested this on 5.15.35 and 5.15.5 releases) Windows 10 or Ubuntu 20.04 Workstation MCUXpresso SDK for i.MX 8M Plus ( available from:  Welcome | MCUXpresso SDK Builder (nxp.com)) 3. Reference documentation for this example   MCUXpresso SDK   [1] Getting Started with MCUXpresso SDK for EVK-MIMX8MP     Available within the MCUXpresso SDK package:  \{INSTALL PATH}\SDK_X_X_X_EVK-MIMX8MP\docs    [2] SAI low power audio README file Contains instructions for the SAI Low Power Audio Demo.  Available within the MCUXpresso SDK package: \{INSTALL PATH}\SDK_X_X_X_EVK-MIMX8MP\boards\evkmimx8mp\demo_apps\sai_low_power_audio   4. Downloading a pre-built Linux BSP image for the i.MX 8M Plus   I will make use of the prebuilt Linux Image for the i.MX 8M Plus EVK for demonstrating the demo works.  At the moment of writing this time, I used the 5.15.32 release, although there are older releases like 5.10.5 that I tested and proved to work with no issues. This SAI Low Power Audio Demo shall work for other processors on the i.MX 8M family. Although specific instructions ( e.g. load address for M-core binary load) might require some adaptation. For M-core load address, please refer to the specific MCUXpresso SDK documentation for each processor. The prebuilt Linux image (5.15.32) for the i.MX 8M Plus EVK can be downloaded from here: https://www.nxp.com/webapp/Download?colCode=L5.15.32_2.0.0_MX8MP&appType=license You can download other releases from here: Embedded Linux for i.MX Applications Processors | NXP Semiconductors . Select a version and a board and select download. 5. Flashing the BSP image   If you are using an Ubuntu 20.04 workstation, I recommend you to flash the image using dd. For this, you can refer to the i.MX Linux User's Guide: Section - 4.3.2 Copying the full SD card image - https://www.nxp.com/docs/en/user-guide/IMX_LINUX_USERS_GUIDE.pdf sudo dd if=.wic of=/dev/sdx bs=1M && sync NOTE: when using dd, ALWAYS, double check the of device that you are about to writing. Messing up with another location or partition will harm your system   If you are following this document on a Windows machine: You can use the Universal Update Utility (UUU) to flash your image on either the board's eMMC or SD card. Document named UUU.pdf shall serve as your reference guide for further instructions and flashing examples. It is available along with UUU binary here: https://github.com/NXPmicro/mfgtools/releases Two examples are shown below for your convenience:                                     SD card flash                                                 uuu -b sd_all bootloader rootfs.sdcard.bz2                                     eMMC flash                                                 uuu -b emmc_all bootloader rootfs.sdcard.bz2        uuu uuu.auto NOTE: UUU is also compatible with Ubuntu NOTE: there are other engineers who like to use BalenaEtcher for flashing their BSP images. I have tested it and works on both Ubuntu and Windows 10 machines.   6. Preparing the BSP and booting up M7 core  using U-Boot   I am writing this upon the instructions contained on the README file for the low power audio example  [2]. Instructions ready to copy and paste will follow:   Instruct U-Boot to pass to the kernel the rpmsg device tree to enable communication between the A53 cluster and the M7 one: u-boot=>setenv fdtfile imx8mp-evk-rpmsg.dtb u-boot=>saveenv Load the M7 example: u-boot=>setenv mmcargs 'setenv bootargs ${jh_clk} console=${console} root=${mmcroot} snd_pcm.max_alloc_per_card=134217728' u-boot=>saveenv Now, we need to load the M4 with the demo. Refer to [1] for further information. If running the BSP on an SD card, make sure the example binary is listed on the boot partition as follows: fatls mmc 1:1 You shall see something similar to this:             imx8mp_m7_TCM_sai_low_power_audio.bin Open the serial terminal emulator for the M7. Out of the fourth ports listed when we plug the i.MX 8M Plus serial debug cable to the PC, the M7 is typically the last one listed.   All the serial ports available to the workstation when the i.MX 8M Plus serial cable is connected to it. NOTE: you may require to install addtitional COM drivers if you are running on Windows. I like doing the previous step so I can see the result of the next commands issued in U-boot to load the M7 image. fatload mmc 1:1 0x48000000 imx8mp_m7_TCM_sai_low_power_audio.bin; cp.b 0x48000000 0x7e0000 20000; bootaux 0x7e0000 Here is an screenshot that shows how the U-Boot's response should look: U-Boot response when loading the SAI low power audio example to the Cortex M7 That should have prompted the following message on the M7 terminal: M7-core is up!   Now, let’s move to user space! u-boot=> boot 7. Testing the example using a simple GStreamer pipeline   As soon as the O.S. finishes booting. We can see that M7 terminal prompts the following: M7 is now in STOP mode; waiting for some audio to beat the room! Confirm that the WM8960 is listed as audio card as follows: cat /proc/asound/cards             Listing avaialable audio cards. WM8960 should be present. Make note of the list. The wm8960 is listed a the third sound card. This is where I like to differ a bit from [2] and I suggest a quicker test in case of not having an audio file ready. We just simply use GStreamer to play an audiotest source. Please make sure to plug in your headphones onto the board’s 3.5 mm jack before.   The following GStreamer pipeline is using the WM8960 as an audiosink.  gst-launch-1.0 audiotestsrc ! alsasink device=hw:3   NOTE: please be cautious and not put the headphones directly in your head at the first attempt. The sound can be too loud to some people. This is what you should see on the M7 side: Stop the GStreamer pipeline issuing CTRL + C. M7 shall warn you about that: NOTE: you can use the aplay command to play audio as shown on [2]. However, I consider using a testsrc is much quicker and flexible for a quick test.  8. Additional information   Feel free to go ahead and tweak the GStreamer pipeline to change audio test source properties. audiotest src. This command will let you know the available options:            gst-inspect-1.0 audiotestsrc                         NOTE: you can navigate through the displayed list using the “d”key. Press “q’’ to quit. For example:     For example, I am reproducing sound using a different setup based on the list above: gst-launch-1.0 audiotestsrc freq=4000 volume=0.8 wave=8 ! alsasink device=hw:3 9.  Errata and future updates   TBD:     Add an example on how to define the default audio card and play the audio either using gst-play or building the pipeline using filesrc Comment on the limitations of the M7 core regarding sample rate and audio formats  
View full article