i.MXプロセッサ ナレッジベース

キャンセル
次の結果を表示 
表示  限定  | 次の代わりに検索 
もしかして: 

i.MX Processors Knowledge Base

ディスカッション

ソート順:
Usually, device tree source files are not a signal pure dts file. It could include dtsi, dts or C code heads .h files. Need C compiler finish the pre-compile to a pure dts file first. It is integrated inside the like Linux build system(Makefile, etc.). This document shows the original way to compile device tree. This document will show compile device tree under windows.    
記事全体を表示
What is a device tree? The device tree is a data structure that is passed to the Linux kernel to describe the physical devices in a system. Before device trees came into use, the bootloader (for example, U-Boot) had to tell the kernel what machine type it was booting. Moreover, it had to pass other information such as memory size and location, kernel command line, etc. Sometimes, the device tree is confused with the Linux Kernel configuration, but the device tree specifies what devices are available and how they are accessed, not whether the hardware is used. The device tree is a structure composed of nodes and properties: Nodes: The node name is a label used to identify the node. Properties: A node may contain multiple properties arranged with a name and a value. Phandle: Property in one node that contains a pointer to another node. Aliases: The aliases node is an index of other nodes. A device tree is defined in a human-readable device tree syntax text file such as .dts or .dtsi. The machine has one or several .dts files that correspond to different hardware configurations. With these .dts files we can compile them into a device tree binary (.dtb) blobs that can either be attached to the kernel binary (for legacy compatibility) or, as is more commonly done, passed to the kernel by a bootloader like U-Boot. What is Devshell? The Devshell is a terminal shell that runs in the same context as the BitBake task engine. It is possible to run Devshell directly or it may spawn automatically. The advantage of this tool is that is automatically included when you configure and build a platform project so, you can start using it by installing the packages and following the setup of i.MX Yocto Project User's Guide on section 3 “Host Setup”. Steps: Now, let’s see how to compile your device tree files of i.MX devices using Devshell. On host machine. Modify or make your device tree on the next path: - 64 bits. ~/imx-yocto-bsp/<build directory>/tmp/work-shared/<machine>/kernel-source/arch/arm64/boot/dts/freescale - 32 bits. ~/imx-yocto-bsp/<build directory>/tmp/work-shared/<machine>/kernel-source/arch/arm/boot/dts To compile, it is needed to prepare the environment as is mentioned on i.MX Yocto Project User's Guide on section 5.1 “Build Configurations”. $ cd ~/imx-yocto-bsp $ DISTRO=fsl-imx-xwayland MACHINE=<machine> source imx-setup-release.sh -b <build directory> $ bitbake -c devshell virtual/kernel (it will open a new window) On Devshell window. $ make dtbs (after finished, close the Devshell window) On host machine. $ bitbake -c compile -f virtual/kernel $ bitbake -c deploy -f virtual/kernel This process will compile all the device tree files linked to the machine declared on setup environment and your device tree files will be deployed on the next path: ~/imx-yocto-bsp/<build directory>/tmp/deploy/images/<machine> I hope this article will be helpful. Best regards. Jorge.
記事全体を表示
SoC: i.MX8MP LDP: Ubuntu22.04 and Ubuntu 20.04 Yocto: 6.1.22 mickledore   This doc includes two parts: 1)How to enable qt5 in LDP 2)How to enable qt5 in Yocto Linux 6.1.22     How to use qt5 in LDP(Linux Distribution Poc): The gcc and glibc is diffrent from Yocto Linux and Linux Distribution Poc. To cross compile the file between Linux and Ubuntu, we need to care about that.   To full enable the GPU usage of QT lib, please use "-gles" libs by apt-get command. Qt source code is not suggested, for it has not been tested. Building Qt5, for example: sudo apt-get update sudo apt-get -y install libqt5gui5-gles sudo apt-get -y install libqt5quick5-gles sudo apt-get -y install qtbase5-gles-dev   opengles test case glmark: sudo apt-get -y install glmark2-es2-wayland How to find the missing lib for apt-get: sudo apt-get install apt-file apt-file search xx   open wifi if needed NXP internal internet has limitation: sudo modprobe moal mod_para=nxp/wifi_mod_para.conf   and add "nameserver 8.8.8.8" in vi /etc/resolv.conf. You can also try:  echo "nameserver 8.8.8.8" | sudo tee /etc/resolv.conf > /dev/null   some times system time is not automatically update, and that cause apt-get update fail User and choose manually configure it by: sudo date -s "2023-08-31 14:00:00"   For Chinese support for ubuntu, please use: sudo apt-get install ttf-wqy-microhei ttf-wqy-zenhei xfonts-wqy   possible env path you need to export: XDG_RUNTIME_DIR="/run/user/1000" export QT_QPA_PLATFORM=wayland   User can choose root login by command like: user@imx8mpevk:~$ sudo passwd New password: Retype new password:   please use qmake to build qt project: 1)qmake -o Makefile HelloWorld.pro 2)make   some other qt libs: sudo apt-get install -y qtwayland5 sudo apt-get install -y qml-module-qtquick-controls sudo apt-get install -y qml-module-qtquick-controls2 sudo apt-get install -y qml-module-qtcharts sudo apt-get install -y libqt5multimedia5 sudo apt-get install -y libqt5serialport5 sudo apt-get install -y libqt5script5 sudo apt-get install -y qml-module-qt-labs-settings sudo apt-get install -y qml-module-qt-labs-platform sudo apt-get install -y qml-module-qtmultimedia sudo apt-get install -y libqt5webengine5 sudo apt-get install -y qml-module-qtwebengine sudo apt-get install -y qml-module-qtquick-dialogs     How to enable qt5 in Yocto 6.1.22: 1.download meta-qt5 git clone https://github.com/meta-qt5/meta-qt5.git git checkout origin/mickledore   copy Yocto version 5.10.72_2.2.0 sources\meta-imx\meta-sdk\dynamic-layers\qt5-layer to the same path of Yocto 6.1.22   2.apply two patches qt5-1.patch: modify the path from qt6 to qt5 qt5-2.patch: modify the qt5 related in meta-imx, including: 1)Yocto grammer update,from "_" to ":";  2)NXP grammer,from mx8 to mx8-nxp-sdk;  3)remove gstreamer1.0-plugins-good-qt, for qt5 has been natively added into gst-plugin-good-1.22(which is not in 1.18)   3.after input command like "DISTRO=fsl-imx-xwayland MACHINE=imx8mp-lpddr4-evk source imx-setup-release.sh -b build-xwayland", comment the "meta-nxp-demo-experience"   # i.MX Yocto Project Release layers BBLAYERS += "${BSPDIR}/sources/meta-imx/meta-bsp" BBLAYERS += "${BSPDIR}/sources/meta-imx/meta-sdk" BBLAYERS += "${BSPDIR}/sources/meta-imx/meta-ml" BBLAYERS += "${BSPDIR}/sources/meta-imx/meta-v2x" #BBLAYERS += "${BSPDIR}/sources/meta-nxp-demo-experience"      
記事全体を表示
Hello everyone! In this quick example its focused on how to customize uboot code to generate an uboot image with a silent console so its speed up the flash and boot time, this may provide helpful for customers who have a bigger images or just want to have a silent console. Note: this should not be enabled if the image is still being under test, since this will disable all communication with the debug terminal and there won't be boot messages. Requirements: I.MX 8M Nano DDR4 EVK i.MX 8M Nano EVK Prebuilt image (6.1.1-1.0.0) UUU tool First clone the code from the uboot repository: $ git clone https://github.com/nxp-imx/uboot-imx -b lf-6.1.1-1.0.0 $ cd uboot-imx After we get the code, then proceed to enable the silent console in the uboot defconfig: $ nano configs/imx8mn_ddr4_evk_defconfig CONFIG_SILENT_CONSOLE=y CONFIG_SILENT_U_BOOT_ONLY=y For this to actually work we need to create the silent environmental variable and give it a value different from "0": $ nano include/configs/imx8mn_evk.h "silent=1\0"      \ As specified in our Linux porting guide: Generate an SDK from the Yocto Project build environment with the following command. To set up the Yocto Project build environment, follow the steps in the i.MX Yocto Project User's Guide (IMXLXYOCTOUG). In the following command, set Target-Machine to the machine you are building for. See Section "Build configurations" in the i.MX Yocto Project User's Guide (IMXLXYOCTOUG) Set up the host terminal window toolchain environment: $ source/opt/fsl-imx-xwayland/6.1.1/environment-setup-aarch64-poky-linux $ export ARCH=arm64 Build uboot binary: $ make distclean $ make imx8mn_ddr4_evk_defconfig $ make Build ARM Trusted Firmware (ATF) $ cd .. $ git clone https://github.com/nxp-imx/imx-atf -b lf-6.1.1-1.0.0 $ cd imx-atf/ $ make PLAT=imx8mn bl31 In case you get the error aarch64-poky-linux-ld.bfd: unrecognized option '-Wl,-O1' $ unset LDFLAGS Download the DDR training & HDMI binaries $ cd .. $ mkdir firmware-imx $ cd firmware-imx $ wget https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/firmware-imx-8.19.bin $ chmod a+x firmware-imx-8.19.bin $ ./firmware-imx-8.19.bin Accept EULA and the firmware will be deployed. Download imx-mkimage and build the boot image $ cd .. $ git clone https://github.com/nxp-imx/imx-mkimage -b lf-6.1.1-1.0.0 $ cd imx-mkimage $ cp ../uboot-imx/spl/u-boot-spl.bin iMX8M/ $ cp ../uboot-imx/u-boot-nodtb.bin iMX8M/ $ cp ../uboot-imx/arch/arm/dts/imx8mn-ddr4-evk.dtb iMX8M/ $ cp ../imx-atf/build/imx8mn/release/bl31.bin iMX8M/ $ cp ../firmware-imx/firmware-imx-8.19/firmware/ddr/synopsys/ddr4_* iMX8M/ $ cp ../uboot-imx/tools/mkimage iMX8M/mkimage_uboot $ make SOC=iMX8MN flash_ddr4_evk After this we can download our uboot image to our board, we can either use the uboot image for boot or for flashing purpose only. We can compare the time it takes using UUU with a standard pre-built image uuu -V -b emmc_all imx-boot-imx8mn-ddr4-evk-sd.bin-flash_ddr4_evk imx-image-full-imx8mnevk.wic It takes 485.5 seconds using normal uboot with debug console enabled. uuu -V -b emmc_all flash.bin imx-image-full-imx8mnevk.wic It takes 477.5 seconds using silent uboot console. Even if the speed is not greatly improved (~8 seconds), in larger files it could help to speed up flashing, even if wants to have the console silent is a good option. Hope everyone finds this useful! For any question regarding this document, please create a community thread and tag me if needed. Saludos/Regards, Aldo.
記事全体を表示
Hello everyone, We have recently migrated our Source code from CAF (Codeaurora) to Github, so i.MX NXP old recipes/manifest that point to Codeaurora eventually will be modified so it points correctly to Github to avoid any issues while fetching using Yocto. Also, all repo init commands for old releases should be changed from: $ repo init -u https://source.codeaurora.org/external/imx/imx-manifest -b <branch name> [ -m <release manifest>] To: $ repo init -u https://github.com/nxp-imx/imx-manifest -b <branch name> [ -m <release manifest>] This will also apply to all source code that was stored in Codeaurora, the new repository for all i.MX NXP source code is: https://github.com/nxp-imx For any issues regarding this, please create a community thread and/or a support ticket. Regards, Aldo.
記事全体を表示
On behalf of Gopise Yuan. A collection of several GST debugging tips and known-how. When you need to play onto a DRM layer/plane directly without going through compositor, kmssink should be a good choice: // kmssink, with scale and adjust alpha property (opaque) and zpos (this requires kmssink>=1.16): gst-launch-1.0 filesrc location=/media/AVC-AAC-720P-3M_Alan.mov ! decodebin ! imxvideoconvert_g2d ! kmssink plane-id=37 render-rectangle="<100,100,720,480>" can-scale=false plane-properties=s,alpha=65535,zpos=2 When using playbin, you can still customize the pipeline besides the sink plugin, e.g. add a converter plugin: // Playbin with additional customization on converter before sink: gst-launch-1.0 playbin uri=file:///mnt/MP4_H264_AAC_1920x1080.mp4 video-sink="imxvideoconvert_g2d ! video/x-raw,format=BGRA,width=1920,height=1080 ! kmssink plane-id=44" GST can generate a pipeline graph for analyzing the pipeline in a intuitive manner: // Generate pipeline graph: 1. Export GST_DEBUG_DUMP_DOT_DIR=<dump-folder>, GST_DEBUG=4 2. Run pipeline with gst-launch or others. 3. Copy all dump files (.dot) from <dump-folder>. Note: one dump file will be created for each state transaction. Normally, what we need will be PAUSE_READY or READY_PAUSE, after which pipeline has been setup. 4. Convert the .dot file to PDF with Graphviz: dot -Tpdf 0.00.03.685443250-gst-launch.PAUSED_READY.dot > pipeline_PAUSED_READY.pdf  
記事全体を表示
  Anyone who want to use this solution should get reference design and firmware from Lontium. Hardware Here is the block diagram of LT9611UXC Demo Board. As the MIPI port of our EVK can provide 5V, 3V3 and 1V8.We can remove useless DC-DC chips from reference design. Below is the LT9611UXC Demo Board. Software Download the firmware into LT9611UXC. In Linux side, we need to drive the MIPI to output signals with standard timings of 1080P. Panel type diff --git a/arch/arm64/boot/dts/freescale/imx8mp-evk.dts b/arch/arm64/boot/dts/freescale/imx8mp-evk.dts index 1732b5c72380..c6a829be541f 100644 --- a/arch/arm64/boot/dts/freescale/imx8mp-evk.dts +++ b/arch/arm64/boot/dts/freescale/imx8mp-evk.dts @@ -696,13 +716,17 @@ &ldb_phy { &mipi_dsi { status = "okay"; + panel@0{ + compatible = "nxp,lt9611uxc"; + reg = <0>; + status = "okay"; }; }; &snvs_pwrkey { diff --git a/drivers/gpu/drm/panel/panel-simple.c b/drivers/gpu/drm/panel/panel-simple.c index 4f78bbf63f33..90d99f12515b 100644 --- a/drivers/gpu/drm/panel/panel-simple.c +++ b/drivers/gpu/drm/panel/panel-simple.c @@ -4997,6 +4997,34 @@ struct panel_desc_dsi { unsigned int lanes; }; +static const struct drm_display_mode lt9611_panel_mode = { + .clock = 148500, + .hdisplay = 1920, + .hsync_start = 1920 + 88, + .hsync_end = 1920 + 88 + 44, + .htotal = 1920 + 88 + 44 + 148, + .vdisplay = 1080, + .vsync_start = 1080 + 4, + .vsync_end = 1080 + 4 + 5, + .vtotal = 1080 + 4 + 5 + 36, +}; + +static const struct panel_desc_dsi lt9611_panel = { + .desc = { + .modes = &lt9611_panel_mode, + .num_modes = 1, + .bpc = 8, + .size = { + .width = 62, + .height = 110, + }, + .connector_type = DRM_MODE_CONNECTOR_DSI, + }, + .flags = MIPI_DSI_MODE_VIDEO_HSE | MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_NO_EOT_PACKET | MIPI_DSI_MODE_VIDEO_SYNC_PULSE, + .format = MIPI_DSI_FMT_RGB888, + .lanes = 4, +}; + static const struct drm_display_mode auo_b080uan01_mode = { .clock = 154500, .hdisplay = 1200, @@ -5201,6 +5229,9 @@ static const struct panel_desc_dsi osd101t2045_53ts = { static const struct of_device_id dsi_of_match[] = { { + .compatible = "nxp,lt9611uxc", + .data = &lt9611_panel, + },{ .compatible = "auo,b080uan01", .data = &auo_b080uan01 }, {
記事全体を表示
BSP: L5.15.5_1.0.0 Platform: i.MX8MPlus EVK Background   The function lpddr4_mr_read in BSP always return zero and this casue the customer can't use it to read MR registers in DRAM. This is a simple demo for reading MR registers. Patch Code   diff --git a/arch/arm/include/asm/arch-imx8m/ddr.h b/arch/arm/include/asm/arch-imx8m/ddr.h index 0f1e832c03..fd68996a23 100644 --- a/arch/arm/include/asm/arch-imx8m/ddr.h +++ b/arch/arm/include/asm/arch-imx8m/ddr.h @@ -721,6 +721,8 @@ int wait_ddrphy_training_complete(void); void ddrphy_init_set_dfi_clk(unsigned int drate); void ddrphy_init_read_msg_block(enum fw_type type); +unsigned int lpddr4_mr_read(unsigned int mr_rank, unsigned int mr_addr); + void update_umctl2_rank_space_setting(unsigned int pstat_num); void get_trained_CDD(unsigned int fsp); diff --git a/board/freescale/imx8mp_evk/spl.c b/board/freescale/imx8mp_evk/spl.c index 33bbbc09ac..85e40ffbbe 100644 --- a/board/freescale/imx8mp_evk/spl.c +++ b/board/freescale/imx8mp_evk/spl.c @@ -150,6 +150,40 @@ int board_fit_config_name_match(const char *name) return 0; } #endif +void lpddr4_get_info() +{ + int i = 0, attempts = 5; + + unsigned int ddr_info = 0; + unsigned int regs[] = { 5, 6, 7, 8 }; + + for(i = 0; i < ARRAY_SIZE(regs); i++){ + unsigned int data = 0; + data = lpddr4_mr_read(0xF,regs[i]); + ddr_info <<= 8; + ddr_info += (data & 0xFF); + switch (i) + { + case 0: + printf("DRAM INFO : Manufacturer ID = 0x%x",ddr_info); + if(ddr_info & 0Xff) + printf(", Micron\n"); + break; + case 1: + printf("DRAM INFO : Revision ID1 = 0x%x\n",ddr_info); + break; + case 2: + printf("DRAM INFO : Revision ID2 = 0x%x\n",ddr_info); + break; + case 3: + printf("DRAM INFO : I/O Width and Density = 0x%x\n",ddr_info); + break; + default: + break; + } + } + +} void board_init_f(ulong dummy) { @@ -187,6 +221,8 @@ void board_init_f(ulong dummy) /* DDR initialization */ spl_dram_init(); + + lpddr4_get_info(); board_init_r(NULL, 0); } diff --git a/drivers/ddr/imx/imx8m/ddrphy_utils.c b/drivers/ddr/imx/imx8m/ddrphy_utils.c index 326b92d784..f45eeaf552 100644 --- a/drivers/ddr/imx/imx8m/ddrphy_utils.c +++ b/drivers/ddr/imx/imx8m/ddrphy_utils.c @@ -194,8 +194,15 @@ unsigned int lpddr4_mr_read(unsigned int mr_rank, unsigned int mr_addr) tmp = reg32_read(DRC_PERF_MON_MRR0_DAT(0)); } while ((tmp & 0x8) == 0); tmp = reg32_read(DRC_PERF_MON_MRR1_DAT(0)); - tmp = tmp & 0xff; reg32_write(DRC_PERF_MON_MRR0_DAT(0), 0x4); + + while (tmp) { //try to find a significant byte in the word + if (tmp & 0xff) { + tmp &= 0xff; + break; + } + tmp >>= 8; + } return tmp; }     Test Result  
記事全体を表示
 This article instruct customer how to develop on i.MX8MP NPU and how to debug performance. 
記事全体を表示
     The following steps allow you to build a bootable image in two different ways and also how to enable and use SCFW debug monitor. There are four files needed to generate a bootable image: ├── bl31.bin ├── u-boot.bin   ├── mx8qm-ahab-container.img     └── scfw_tcm.bin There are some ways to get the four files, one way is with Yocto and other way is with stand alone build. Get the four files needed to generate a bootable image with Yocto.   To get the four files needed with Yocto, you have to build an i.MX 8QuadMax image, maybe some steps are not necessary. 1.-Host packages. sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib \ build-essential chrpath socat cpio python python3 python3-pip python3-pexpect \ xz-utils debianutils iputils-ping python3-git python3-jinja2 libegl1-mesa \ libsdl1.2-dev pylint3 xterm rsync curl 2.-Setting up the Repo utility. mkdir ~/bin (this step may not be needed if the bin folder already exists) curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo chmod a+x ~/bin/repo export PATH=~/bin:$PATH 3.-Yocto Project Setup. git config --global user.name "Your Name" git config --global user.email "Your Email" git config --list mkdir imx-yocto-bsp cd imx-yocto-bsp repo init -u https://source.codeaurora.org/external/imx/imx-manifest -b imx-linux-hardknott -m imx-5.10.72-2.2.0.xml repo sync 4.-Build configurations. DISTRO=fsl-imx-xwayland MACHINE=imx8qmmek source imx-setup-release.sh -b imx8qmmek 5.-Building an image. bitbake imx-image-full The four files needed to generate a bootable image are in: ~/imx-yocto-bsp/imx8qmmek/tmp/deploy/images/imx8qmmek/imx-boot-tools Note: With Yocto you can not enable the SCFW debug monitor. For more information see the i.MX Yocto Project User's Guide. Get the four files needed to generate a bootable image with stand alone build.   To build all required binaries from source you can use standard aarch64 Linux toolchain, on Ubuntu 20.04 LTS: sudo apt-get install gcc-aarch64-linux-gnu Get the bl31.bin file - Arm Trust Firmware.   Download source from: git clone -b lf-5.10.72-2.2.0 https://source.codeaurora.org/external/imx/imx-atf Build: cd imx-atf make clean PLAT=imx8qm CROSS_COMPILE=aarch64-linux-gnu- make PLAT=imx8qm CROSS_COMPILE=aarch64-linux-gnu- bl31 The compiled bl31.bin location: build/imx8qm/release/bl31.bin Get the u-boot.bin file - u-boot.   Download source from: git clone -b lf-5.10.72-2.2.0 https://source.codeaurora.org/external/imx/uboot-imx Build: cd uboot-imx make ARCH=arm CROSS_COMPILE=aarch64-linux-gnu- imx8qm_mek_defconfig make ARCH=arm CROSS_COMPILE=aarch64-linux-gnu- The compiled u-boot.bin location: ./u-boot.bin Get the mx8qmb0-ahab-container.img file - iMX Seco. wget https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/imx-seco-3.7.4.bin chmod +x imx-seco-3.7.4.bin ./imx-seco-3.7.4.bin --auto-accept The mx8qmb0-ahab-container.img file location: imx-seco-3.7.4/firmware/seco/mx8qmb0-ahab-container.img Get the scfw_tcm.bin file - SCFW.   Download and Install a GNU Toolchain.   Look at the packages/imx-scfw-porting-kit-1.7.4/doc/pdf/ , chapter Porting Guide, sub-chapter Tool Chain to check which GNU Toolchain version corresponds to the SCFW you are building. The imx-scfw-porting-kit-1.7.4 version uses the GNU Toolchain version gcc-arm-none-eabi-8-2018-q4-major . It is recommended to install toolchain in “opt” folder: cd /opt sudo wget https://developer.arm.com/-/media/Files/downloads/gnu-rm/8-2018q4/gcc-arm-none-eabi-8-2018-q4-major-linux.tar.bz2 sudo tar xjf gcc-arm-none-eabi-8-2018-q4-major-linux.tar.bz2 Download and Install a Arm GCC toolchain. It is recommended to install toolchain in “opt” folder: sudo wget https://releases.linaro.org/components/toolchain/binaries/7.3-2018.05/aarch64-linux-gnu/gcc-linaro-7.3.1-2018.05-x86_64_aarch64-linux-gnu.tar.xz sudo tar -Jxvf gcc-linaro-7.3.1-2018.05-x86_64_aarch64-linux-gnu.tar.xz After installing the toolchain, set up the environment variable relevant for building. export ARCH=arm CROSS_COMPILE=/opt/gcc-linaro-7.3.1-2018.05-x86_64_aarch64-linux-gnu/bin/aarch64-linux-gnu- export TOOLS=/opt Build the scfw_tcm.bin file. cd ~ wget https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/imx-scfw-porting-kit-1.7.4.bin chmod +x imx-scfw-porting-kit-1.7.4.bin ./imx-scfw-porting-kit-1.7.4.bin --auto-accept cd imx-scfw-porting-kit-1.7.4/src Extract the desired scfw porting kit: tar -xvf scfw_export_mx8qm_b0.tar.gz cd scfw_export_mx8qm_b0/ Build without debug monitor: make clean make qm B=mek R=B0 Build with debug monitor: make clean make qm B=mek D=1 M=1 R=B0 DDR_CON=imx8qm_dcd_1.6GHz The scfw_tcm.bin file location: build_mx8qm_b0/scfw_tcm.bin   Generate the bootable image.   Once you have the four files needed to generate a bootable image, use imx-mkimage tool. Download source from: git clone -b lf-5.10.72-2.2.0 https://source.codeaurora.org/external/imx/imx-mkimage Copy the four binaries to iMX8QM folder. You have to rename some files. If you got the four binaries with Yocto. cp ~/imx-yocto-bsp/imx8qmmek/tmp/deploy/images/imx8qmmek/imx-boot-tools/bl31-imx8qm.bin ~/imx-mkimage/iMX8QM/bl31.bin cp ~/imx-yocto-bsp/imx8qmmek/tmp/deploy/images/imx8qmmek/imx-boot-tools/u-boot-imx8qmmek.bin-sd ~/imx-mkimage/iMX8QM/u-boot.bin cp ~/imx-yocto-bsp/imx8qmmek/tmp/deploy/images/imx8qmmek/imx-boot-tools/mx8qmb0-ahab-container.img ~/imx-mkimage/iMX8QM cp ~/imx-yocto-bsp/imx8qmmek/tmp/deploy/images/imx8qmmek/imx-boot-tools/mx8qm-mek-scfw-tcm.bin ~/imx-mkimage/iMX8QM/scfw_tcm.bin If you got the four binaries with stand alone build. cp ~/imx-atf/build/imx8qm/release/bl31.bin ~/imx-mkimage/iMX8QM cp ~/uboot-imx/u-boot.bin ~/imx-mkimage/iMX8QM cp ~/imx-seco-3.7.4/firmware/seco/mx8qmb0-ahab-container.img ~/imx-mkimage/iMX8QM cp ~/imx-scfw-porting-kit-1.7.4/src/scfw_export_mx8qm_b0/build_mx8qm_b0/scfw_tcm.bin ~/imx-mkimage/iMX8QM Build the bootable image. cd ~/imx-mkimage make SOC=iMX8QM flash The compiled file is flash.bin and its location is: iMX8QM/flash.bin   Flash the bootable image.   To flash the bootable image follow the next steps: -Copy the flash.bin and uuu.exe in a folder. -Change SW2 on the base board to 000100 (from MSB to LSB, 1-ON and 0-OFF) to boot from the Serial Downloader. -Run the following command in Command Prompt: uuu.exe -b sd flash.bin -Power on the MEK CPU board.   SCFW debug monitor.        If the SCFW is compiled using the M=1 option (default is M=0) then it will include a debug monitor. This can be used to R/W memory or registers, R/W power state, and dump some resource manager state. Production SCFW should never have the monitor enabled (M=0, the default)!      The debug monitor allows command-line interaction via the SCU UART. Inclusion of the debug monitor affects SCFW timing and therefore should never be deployed in a product! Note the terminal needs to be in a mode that sends CR or LF for a new line (not CR+LF). The following commands are supported: Command                                   Description exit                                              exit the debug monitor quit                                              exit the debug monitor reset [mode]                                request reset with mode (default = board) reboot partition [type]                  request partition reboot with type (default = cold) md.b address [count]                  display count bytes at address md.w address [count]                 display count words at address md[.l] address [count]                 display count long-words at address mm.b address value                   modify byte at address mm.w address value                  modify word at address mm[.l] address value                  modify long-word at address ai.r ss sel addr                            read analog interface (AI) register ai.w ss sel addr data                  write analog interface (AI) register fuse.r word                                 read OTP fuse word fuse.w word value                      write value to OTP fuse word dump rm                                    dump all the resource manager (RM) info dump rm part [part]                    dump all partition info for part (default = all) dump rm rsrc [part]                    dump all resource info for part (default = all) dump rm mem [part]                  dump all memory info for part (default = all) dump rm pad [part]                    dump all pad info for part (default = all) power.r [resource]                     read/get power mode of resource (default = all) power.w resource mode            write/set power mode of resource to mode (off, stby, lp, on) info                                             display SCFW/SoC info like unique ID, etc. seco lifecycle change                send SECO lifecycle update command (change) to SECO seco info                                    display SECO info like Lifecycle, SNVS state, etc. seco debug                                dump SECO debug log seco events                               dump SECO event log seco commit                              commit SRK and/or SECO FW version update pmic.r id reg                               read pmic register pmic.w id reg val                        write pmic register pmic.l id                                      list pmic info (rail voltages, etc) Resource and subsystem (ss) arguments are specified by name. All numeric arguments are decimal unless prefixed with 0x (for hex) or 0 (for octal). Testing SCFW debug monitor to display count long-words at address on Linux side and on SCU side. -Change SW2 on the base board to 001100 (from MSB to LSB, 1-ON and 0-OFF) to boot from the SD card. -Power on the MEK CPU board. -Open Tera Term and you will see: Hello from SCU (Build 5263, Commit 9b3d006e, Aug 20 2021 12:20:10) ​ DDR frequency = 1596000000  ROM boot time = 262368 usec      Boot time = 24583 usec         Banner = 10 usec           Init = 9038 usec         Config = 3232 usec            DDR = 2677 usec        SConfig = 444 usec           Prep = 5039 usec ​ *** Debug Monitor *** ​ >$ -Run the following commands: power.r power.w db on power.w dblogic on power.w mu_1a on -Example reading on Linux side: md.l 0x5d1c0000 10 -You will see: >$ md.l 0x5d1c0000 10 5d1c0000: 00000000 00000000 00000000 00000000 5d1c0010: 00010201 23c34600 d63fdb21 00000000 5d1c0020: 00f00200 18000000 -Example reading on SCU side: md.l 0x41cac080 10 -You will see: >$ md.l 0x41cac080 10 41cac080: 00000000 00000000 00000000 00000000 41cac090: 0d070201 ff0001f1 ffff8000 ffff00fb 41cac0a0: 00f00000 18000000 For more information see the System Controller Firmware Porting Guide.
記事全体を表示
We will build a remote debug environmet of Qt Creator in this user guide.   Contents 1 Change local.conf file in Yocto 2 2 Build and deploy Yocto SDK 2 2.1 Build full image SDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Deploy SDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 Configure QT Kit 2 3.1 Setup device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3.2 Configure QT version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.3 Configure gcc and g++ manually . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.4 Configure gdb manually . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.5 Configure Kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.6 Very important thing!! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Test result
記事全体を表示
  1.overwrite the sources/meta-freescale/recipes-security/optee-imx with optee-imx.zip 2.add below code to conf/local.conf DISTRO_FEATURES_append += " systemd" DISTRO_FEATURES_BACKFILL_CONSIDERED += "sysvinit" VIRTUAL-RUNTIME_init_manager = "systemd" VIRTUAL-RUNTIME_initscripts = "systemd-compat-units" MACHINE_FEATURES_append += "optee" DISTRO_FEATURES_append += "optee" IMAGE_INSTALL_append += "optee-test optee-os optee-client optee-examples" 3.bitbake optee-examples or bitbake imx-image-xxx You can directly install optee-examples_3.11.0-r0_arm64.deb in your device.  
記事全体を表示
Materials: i.MX8M Plus EVK Rev. A USB cable type-C USB cable type-B AC Adapter EA1045CR Micro SD (Optional) 88W8997-based wireless modules Software: Yocto Project Mobaxterm Personal Edition v20.2 Build 4296 This test was done on an i.MX8M Plus EVK with Linux 5.10. Hardknott.   To achieve this, you need to identify your WI-FI module and look for the necessary drivers for that module, in my case I am using the 88W8997 module that comes with the i.MX8M Plus, but you can select any other WI-FI module you want.   In my case I build a basic image on Yocto, following the Yocto users guide, I bitbake just the core boot image that allows me to boot the i.MX8M plus. Deploy your image on an SD or eMMC. These instructions apply to SD and MMC cards although for brevity, and usually, only the SD card is listed. For a Linux image to be able to run, four separate pieces are needed: Linux OS kernel image (zImage/Image) Device tree file (*.dtb) Bootloader image Root file system (i.e., EXT4)   The Yocto Project build creates an SD card image that can be flashed directly. This is the simplest way to load everything needed onto the card with one command. A .wic image contains all four images properly configured for an SD card. The release contains a pre-built .wic image that is built specifically for the one board configuration. It runs the Wayland graphical backend. It does not run on other boards unless U-Boot, the device tree, and rootfs are changed. When more flexibility is desired, the individual components can be loaded separately, and those instructions are included here as well. An SD card can be loaded with the individual components one-by-one or the .wic image can be loaded and the individual parts can be overwritten with specific components. The rootfs on the default .wic image is limited to a bit less than 4 GB, but re-partitioning and re-loading the rootfs can increase that to the size of the card. The rootfs can also be changed to specify the graphical backend that is used. Carry out the following command to copy the SD card image to the SD/MMC card. Change sdx below to match the one used by the SD card. $ sudo dd if=<image name>.wic of=/dev/sdx bs=1M && sync The entire contents of the SD card are replaced. If the SD card is larger than 4 GB, the additional space is not accessible. As this build does not contain the driver integrated we need to add it manually on Linux user space. Follow these instructions to load the driver modules and bring up the 88W8987-based wireless module, more info can be found on the next link: https://www.nxp.com/products/wireless/wi-fi-plus-bluetooth/2-4-5-ghz-dual-band-2x2-wi-fi-5-802-11ac-plus-bluetooth-5-3-solution:88W8997?tab=Documentation_Tab   Use the nano editor included in the pre-built image to edit and verify the module parameters in the wifi_mod_para.conf configuration file.   Add the following lines to the configuration file: PCIE8997 = { cfg80211_wext=0xf wfd_name=p2p max_vir_bss=1 cal_data_cfg=none drv_mode=7 ps_mode=2 auto_ds=2 fw_name=nxp/pcieuart8997_combo_v4.bin } Load the modules in the kernel:   Verify the kernel debug messages in the command output   Verify that the module is now visible to the system:     Now that the module is ready to work, we need to enable it, in my case the Wi-Fi is named mlan0, it could vary on other Linux systems.   In the case you need to see which networks are available you can scan it and select the one you need.   Identify your network and add it to the  WPA supplicant file:     Associate the Wi-Fi with config:   Check if you have right SSID associated:   Use DHPC to get the IP   Ping any public site you know to check the network.   In the case you have a Temporary failure in name resolution you will need to change the default DNS that was assigned by DHCP:     Modify /etc/resolv.conf file and add the DNS of your preference, for my case I add the one that uses Google, as they have access to the most common web pages.   And with that should work.    
記事全体を表示
This is a quick article focused on how to add the support of the ssh on the i.MX devices using Yocto to add that packages.   Refer to the pdf attached.
記事全体を表示
This document describes the steps to create your own out-of-tree kernel module recipe for Yocto.
記事全体を表示
The i.MX 8QuadXPlus Multisensory Enablement Kit (MEK) is a NXP development platform based on Cortex A-35 + Cortex-M4 cores. Built with high-level integration to support graphics, video, image processing, audio, and voice functions, the i.MX 8X processor family is ideal for safety-certifiable and efficient performance requirements. This tutorial shows how to enable the Cortex-M4 using the MCUXpresso SDK package and loading the binary from the network. NOTE: It is also possible to load the Cortex-M4 image from the SCFW using the imx-mkimage utility. But now we are going to focus on MCUXpresso. Setting up the machine   Install cmake on the host machine: $ sudo apt-get install cmake Download the armgcc toolchain and export the location as ARMGCC_DIR: $ export ARMGCC_DIR=<your_path_to_arm_gcc>/gcc-arm-none-eabi-9-2020q2/ NOTE: The ARMGCC_DIR variable needs to be exported on the terminal used for compilation. To setup the TFTP server on the host machine: Configuring your Host PC for TFTPPermalink   The first step is to install all the prerequisite packages for TFTP: $ sudo apt-get install xinetd tftpd tftp Create a TFTP folder in your desired location with root owner and the “rwx” permission for all users: $ sudo mkdir /tftpboot $ sudo chmod –R 777 /tftpboot $ sudo chown –R root /tftpboot Create a configuration file for the TFTP with the following content. (The server_args parameter must match with the folder created above) $ cat /etc/xinetd.d/tftp service tftp { protocol = udp port = 69 socket_type = dgram wait = yes user = root server = /usr/sbin/in.tftpd server_args = -s /tftpboot disable = no } Restart the xinetd service: $ sudo /etc/init.d/xinetd restart You can place any file at the TFTP folder and load it through U-Boot, you can also create symbolic links from your building directory avoiding to copy and paste your zImage and dtb files every time. Configuring your Host PC for NFSPermalink   Install all the needed packages for NFS: $ sudo apt-get install nfs-kernel-server Create a folder for placing your rootfs: $ mkdir /tftpboot/rfs Add the following line in the end of your /etc/exports file: /tftpboot/rfs *(rw,no_root_squash,no_subtree_check) Restart the NFS service: $ sudo service nfs-kernel-server restart Place your rootfs or create a symbolic link for the NFS folder.    Downloading the SDK Download the MCUXpresso following these steps: Click on “Select Development Board”; Select MEK-MIMX8QX under “Select a Device, Board, or Kit” and click on “Build MCUXpresso SDK” on the right; Select “Host OS” as Linux and “Toolchain/IDE” as GCC ARM Embedded; Add “FreeRTOS” and all the wanted Middleware and hit “Request Build”; Wait for the SDK to build and download the package. Building the image All demos and code examples available on the SDK package are located in the directory <<SDK_dir>>/boards/mekmimx8qx/. This tutorial shows how to build and flash the hello_world demo but similar procedures can be applied for any example (demo, driver, multicore, etc) on the SDK. To build the demo, enter the armgcc folder under the demo directory and make sure that the ARMGCC_DIR variable is set correctly. $ cd ~/SDK_2.3.0_MEK-MIMX8QX/boards/mekmimx8qx/demo_apps/hello_world/armgcc $ export ARMGCC_DIR=<your_path_to_arm_gcc>/gcc-arm-none-eabi-9-2020q2/ Run the build_release.sh script to build the code. $ ./build_release.sh NOTE: If needed, give the script execution permission by running chmod +x build_release.sh. This generates the M4 binary (hello_world.bin) under the release folder. Copy this image to the /tftpboot/ directory on the host PC. NOTE: This procedure shows how to build the M4 image that runs on TCM. To run the image from DDR, use the build_ddr_release.sh script to build the binary under the ddr_release folder. Flashing the image Open two serial consoles, one for /dev/ttyUSB0 for Cortex-A35 to boot Linux, and one for /dev/ttyUSB1 for Cortex-M4 to boot the SDK image. On the A35 console, with a SD Card with U-Boot, stop the booting process and enter the following commands to load the M4 binary to TCM: => dhcp => setenv serverip <ip_from_host_pc> => tftp 0x88000000 hello_world.bin => dcache flush => bootaux 0x88000000 Then the M4 core will load the image to the /dev/ttyUSB1 console.    
記事全体を表示
Software environment: L5.4.47_2.2.0 Hardware i.MX8QXPC0 EVK board In the uuu script we can see the bootloader imx-boot-imx8qxpc0mek-sd.bin-flash is necessary. The default BSP build generate in the yocto project is with the spl, some customers are confused about the how to build the imx-boot-imx8qxpc0mek-sd.bin-flash. Here I give the manually compile way and generate it in yocto. In the yocto generate it is more convenient than the manually compile way. Hope this can do help for you.
記事全体を表示
platform: imx8qxp c0 mek OS: yocto 4.19.35_1.1.0 hardware connection: imx8qxp lvds0 => dummy panel ,  lvds1 => it6263 => display   On imx8qxp there are one DPU(display process unit) and one ISI(image subsystem interface), ISI supports input from dpu.   dpu block diagram: note that only dsi0 and lvds0 can be used for loopback. and this patch only test the lvds0, since lvds support dummy panel.   Please see the readme in the attchment for how to enale this feature.   Note: for ISI loopback,  it needs output of 2x GPIO (4x for HDMI-TX or combo PHY) to pixel_link_receiver_address: For iMX8QM: o LVDS: pixel_link_receiver_address[1:0] = do_gpio_dr[7:6]  o MIPI-DSI: pixel_link_receiver_address[1:0] = do_gpio_dr[7:6] o HDMI-TX: odd_pixel_link_receiver_address[1:0] = do_gpio_dr[7:6],even_pixel_link_receiver_address[1:0] = do_gpio_dr[5:4]   For iMX8QXP: o Combo MIPI-DSI / LVDS: pixel_link0_receiver_address[1:0] = do_gpio_dr[7:6], pixel_link1_receiver_address[1:0] = do_gpio_dr[5:4]   
記事全体を表示
Yoctoproject Framework Installing any Needed Package Using Yocto and i.MX Boards Testing Yocto for i.MX6 i.MX53 QSB - Quick Start Board i.MX6 Sabre Lite Board Build the image SDCard Image Yoctoproject Framework Yoctoproject is a framework for creating Linux distributions for embedded devices. Its layering mechanism makes it easy to add Linux to new target devices highly customized for a particular platform; it can include custom start-up scripts, software packages built with a high degree of optimization for a particular architecture, and different user interfaces from full Gnome desktop to a simple a serial console. Yocto has 2 basic layers: board support packages layer and core layer. In the BSP layer is where all the custom software and configuration tweaks for a particular platform are included, while the core layer provides the common software stack to provide from a simple command line interface to Sato desktop interface (Matchbox based and Gnome mobile software stack). A third layer could be added to provide additional user interfaces LXDE, XFCE, and more; YP is quite flexible&emdash;one of it major strengths. Installing any Needed Package Go to Yocto Project Quick Start and double check that you have all the necessary packages installed for your machine. For example, if building machine was an Ubuntu machine: $ sudo apt-get install gawk wget git-core diffstat unzip texinfo  build-essential chrpath libsdl1.2-dev xterm curl Using Yocto and i.MX Boards Please, go to project's README file in order to see the recommended instructions to download the source code. Testing Yocto for i.MX6 How to test Yocto for i.MX 6 i.MX53 QSB - Quick Start Board Edit conf/local.conf user config file and set imx53 Quick start board machine and enable parallel build features. MACHINE ?= "imx53qsb" BB_NUMBER_THREADS = "4" PARALLEL_MAKE = "-j 4" i.MX6 Sabre Lite Board Edit conf/local.conf user config file and set i.MX6 Sabrelite board machine and enable parallel build features MACHINE ?= "imx6qsabrelite" BB_NUMBER_THREADS = "4" PARALLEL_MAKE = "-j 4" if you've been facing problems to get yocto's images working on your i.MX Sabre Lite board, please take a look on this comment Re: The kernel sometins hang  in L3.0.35_4.0.0_130424 release Build the image some example of available image: image name description core-image-minimal A small image just capable of allowing a device to boot. core-image-base A console-only image that fully supports the target device hardware. core-image-sato Image with sato, a mobile environment and visual style for mobile devices.  The image supports X11 with a Sato theme, Pimlico applications and contains terminal, editor and file manager. fsl-image-test Builds contents core-image-base plus Freescale test applications and multimedia components. fsl-image-gui Builds contents of core-image-sato with Freescale test applications and multimedia with hardware accelerated X11 To build the image: $ bitbake <image_name> Build using Dash instead can bring some problems. You can check what your system uses typing: "ls -l /bin/sh". On Ubuntu you can change it using "dpkg-reconfigure bash". Some Ubuntu releases you must use "dpkg-reconfigure dash" and choose Bash Built images are located in cd tmp/deploy/images SDCard Image sudo dd if=core-image-minimal-imx6qsabrelite.sdcard of=/dev/sdb i.MX Yocto Project: Frequently Asked Questions
記事全体を表示
Yocto Project versions and names Preparing host environment For virtual machine (VirtualBox): Download the source code from NXP Code Aurora Yocto Project versions and names See here the list of all yocto version names: Releases - Yocto Project  The current stable release is Zeus Preparing host environment For virtual machine (VirtualBox): Please set memory size minimal to 1GB and disk size to 32GB. (24Feb2014 Ubuntu 12.04LTS)   First, make sure your host PC has the required packages to run Yocto The essential packages you need for a supported Ubuntu distribution are shown in the following command: $ sudo apt-get build-dep qemu $ sudo apt-get remove oss4-dev $ sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib \   build-essential chrpath socat cpio python python3 python3-pip python3-pexpect \   xz-utils debianutils iputils-ping python3-git python3-jinja2 libegl1-mesa libsdl1.2-dev \   xterm‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ For other Linux distribution or newer Yocto Project release see here the updated list. Download the source code from community Install the repo $ sudo apt-get install repo‍‍‍‍ Download the BSP source: $ mkdir fsl-community-bsp $ cd fsl-community-bsp $ repo init -u https://github.com/Freescale/fsl-community-bsp-platform -b zeus $ repo sync‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Download the source code from NXP Code Aurora See here the list of all BSP releases from NXP: imx-manifest - i.MX Release Manifest  Currently, the latest NXP release how to is here: README - imx-manifest - i.MX Release Manifest  To understand the difference between the 2 source code (community X NXP BSP) see here Go to https://community.nxp.com/docs/DOC-94849  Go to Task #2
記事全体を表示