i.MX Processors Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

i.MX Processors Knowledge Base

Discussions

Sort by:
In the IMX8MM SDK unfortunately we cannot find any example about of use a GPIO as an input with interrupt.  To use a GPIO as input with interrupt we need to keep in mind how the GPIO IRQs works in the ARM Cortex M4.   We can find in Table 7-2 (CM4 Interrupt Summary) of IMX8MMRM (IMX8MM Reference Manual) the GPIOs IRQs are divided by two parts:     Combined interrupt indication for GPIOn signal 0 throughout 15  Combined interrupt indication for GPIOn signal 16 throughout 31    This basically means, the pines of GPIOn from 0 to 15 are handled by Combined interrupt indication for GPIOn signal 0 throughout 15 and the pines from 16 to 31 are handled by Combined interrupt indication for GPIOn signal 16 throughout 31.    In SDK we can find these definitions in:  <SDK root>/devices/MIMX8MM6/MIMX8MM6_cm4.h (Remember this is for IM8MM SDK)    In this example I will use GPIO5_IO12 (ECSPI2_MISO) as Input with IRQ and GPIO5_IO11 (ECSPI_MOSI) as Output of IMX8MM-EVK. I will connect the Output to the Input and will see the behavior of the IRQ in Rising and Falling edge.    For this example I will connect ECSPI2_MOSI (GPIO5_IO11) to ECSPI_MISO (GPIO5_IO12):   See the below definitions:   #define IN_GPIO   GPIO5  This define the GPIO base of the IN pin  #define IN_GPIO_PIN  12u  This define the pin number (for in)  #define IN_IRQ  GPIO5_Combined_0_15_IRQn  This define the IRQ number (72 in this case)  #define GPIO_IRQ_HANDLER  GPIO5_Combined_0_15_IRQHandler  This is a "pointer" to function that will handle the interrupt  #define IN_NAME  "IN GPIO5_IO12"  This is only a name or description for the pin    See below definitions:    #define OUT_GPIO  GPIO5  This is the GPIO base of OUT pin  #define OUT_GPIO_PIN  11u  This define the pin number (for out)  #define OUT_NAME  "OUT GPIO5_IO11"  This is only a name or description for the pin      Now the below section is the IRQ handler (which was defined before)😞   The GPIO_ClearPinsInterruptFlags(IN_GPIO, 1u << IN_GPIO_PIN); refers to GPIOx_ISR register:      For this example, the IRQ Handler will print "IRQ detected ............" in each interrupt.    We will create two different GPIOs config, one for Output and other one for Input with IRQ Falling edge:    Then configure the GPIOs and IRQ:     EnableIRQ refers to enable the 72 IRQ.   GPIO_PortEnableInterrupts refers to GPIOx_IMR: Finally, the example put the out GPIO5_IO11 in High state and then in low state many. First the IRQ is configured as Falling edge, then as Rising edge.     I will attach the complete source file.    To compile it you can use ARMGCC toolchain directly, but I like to use VSCode with MCUXpresso integration.  Once, when you have your .bin file (in my case igpio_led_output.bin) you can load to board with UUU tool: In your Linux machine: sudo uuu -b fat_write igpio_led_output.bin mmc 2:1 gpio.bin In U-boot board: u-boot=> fastboot 0   Then, when the .bin file was loaded, you can load to the CORTEX M4 in U-boot whit: u-boot=> fatload mmc 2:1 ${loadaddr} gpio.bin 7076 bytes read in 14 ms (493.2 KiB/s) u-boot=> cp.b 0x80000000 0x7e0000 0x10000 u-boot=> bootaux 0x7e0000 ## No elf image ar address 0x007e0000 ## Starting auxiliary core stack = 0x20020000, pc = 0x1FFE02CD... u-boot=>   NOTE: You can load the binary to cortex m4 with Custom bootscripts for practicity.   Once the binary loaded in M4 core you should see in seria terminal this logs (Remember GPIO5_IO11 and GPIO5_IO12 must be connected to get the same logs):    And the logs when you disconnect the GPIO5_IO11 and GPIO5_IO12 in execution time:  🔴Disconnection (Red color) 🔵Reconnection (Blue color)   I hope this can helps.     Best regards!    Salas. 
View full article
We are pleased to announce that Config Tools for i.MX v15.0 are now available. Downloads & links To download the installer for all platforms, please login to our download site via:  https://www.nxp.com/design/designs/config-tools-for-i-mx-applications-processors:CONFIG-TOOLS-IMX Please refer to  Documentation  for installation and quick start guides. For further information about DDR config and validation, please go to this  blog post. Release Notes Full details on the release (features, known issues...)Version 15.0 • The product is based on Eclipse 2023-06 TEE – Setting a security level for a special three-state model is improved. Pins – Validation to ensure that elements can be configured by the selected core is added. – Rows are sorted in the Peripheral Signals routing dialog. – A connected pins column in External User Signals always shows the pin's full name. – The missing scroll bar in the External User Signals view is fixed. Clocks – Support for multicore code generation is added. – Global configuration elements now support a tree structure and can be categorized. – Fractional PLL now supports a custom range and negative numerator. – Scrolling in the clock diagram by pressing the mouse wheel (drag and drop) is supported. DCD – The issue with the code generation that stopped working after the drag and drop of a group is fixed.  
View full article
some customers doesn't have any issue on old bsp, but have bring up issue on new 6.1 bsp, this article is about this and how to fix this
View full article
In the era of digitization, concepts like smart homes and the Internet of Things (IoT) are continuously evolving. To realize these visions, a robust and efficient network infrastructure becomes crucial. OpenWRT, with its open-source nature, high customizability, and excellent stability, has become a key player in leading the future development of networks. NXP, as a global leader in semiconductor technology innovation, leverages its expertise in embedded systems and communication to introduce an intelligent network solution based on OpenWRT, empowering the flourishing smart home and IoT ecosystems. This article will explore the current status and ways to access NXP's chip support for the wireless router solution, enabling readers to build a solid foundation for the next generation of networks. 1. Unique Features of OpenWRT 1.1. Noble Value of Open Source Freedom OpenWRT stands out with its open-source nature, granting users unlimited freedom to access, modify, and share the source code, unlocking significant innovation potential. This openness not only drives continuous technological advancements but also allows users to take active control of the network direction, saving costs. 1.2. Stable and Reliable Network Foundation Built on a mature Linux kernel, OpenWRT undergoes extensive evolution and fine-tuning, ensuring outstanding system stability. This results in fewer network failures, longer device lifespans, and solid support for various network needs. OpenWRT becomes an ideal choice for building reliable home networks, alleviating concerns about network instability or crashes. 1.3. Powerful Software Package Management OpenWRT's proud software package management system provides users with great flexibility. Users can freely install, update, and uninstall various applications and services based on their needs, achieving a highly personalized network environment for a smarter networking experience. OpenWRT allows users to install various network services and applications such as VPNs and proxy servers to meet specific network requirements, providing greater freedom to create a network environment that suits individual or family needs. 1.4. Strong Community Support The vast OpenWRT community is the source of its powerful driving force. Users can exchange experiences, solve problems, and even participate in project development within the community. This collaborative spirit propels continuous innovation and progress in OpenWRT. 2. Applications of NXP wireless router Solution 2.1. Construction of Smart Home Ecosystem The seamless integration of NXP's wireless router solution with the NXP Matter solution provides an ideal platform for users to build smart home ecosystems. With its powerful customization capabilities, users can easily connect, manage, and control various smart devices, creating a highly intelligent home environment. The solution integrates NXP's Bluetooth and Wi-Fi chip drivers, such as IW612, 88W9098, 88W8997, allowing users to effortlessly build an OpenThread Border Router (OTBR) or Zigbee Bridge based on OpenWRT. 2.2. Customized Network Services The NXP wireless router solution supports the customized installation of various network services and applications. Users can create personalized network services, such as VPNs, proxy servers, home routers, or gateways, based on their individual needs, achieving a more flexible networking experience. 2.3. Transmission of High-Definition Video Streams The transmission of high-definition video streams in smart homes imposes higher demands on network performance. NXP's wireless router solution, with its excellent network performance, combined with NXP's industrial-grade IP Camera solution, ensures users can smoothly enjoy high-definition video streams, providing a superior home entertainment experience. 2.4. Construction of Smart Security Systems Security systems are an essential part of smart homes. NXP's wireless router solution, with its advanced network security features, builds a more reliable and intelligent security system for users, enhancing home security. 3. NXP's Support for OpenWRT Given the numerous advantages and wide-ranging application scenarios of wireless router, NXP early on adapted to support OpenWRT. Full support has been provided for the entire Layerscape series processors, and mainstream IMX processors are also supported. The specific supported IMX platforms and details are as follows: Processor and Board Support         ARMv8                                             ARMv7       I.MX93EVK                                •      I.MX6ULL       I.MX8MPlus       I.MX8MMini       I.MX8MNano       I.MX8MQuad OpenWrt Version  Based on OpenWrt v23.05 from mainline (tag: v23.05.0-rc1) Toolchain: ARMV8: gcc-11.3, binutils-2.37 ARMV7: gcc-12.3, binutils-2.40 U-Boot Boot Loader IMX LF release, tag: lf-5.15.71-2.2.1 v2022.04 Linux Kernel       OpenWrt kernel 5.15.114 based on IMX SDK release kernel v5.15.71_2.2.1 Firmware       firmware-imx-8.18       firmware-sentinel-0.5.1 Main Features       Squashfs rootfs support on SD card.       Supported CLI and web configuation. - U-Boot: lf-5.15.71-2.2.1. - Arm Trusted firmware (TF-A) integration. - Boot from SDHC       Linux Kernel Core - Linux kernel 5.15.114 - Cortex-A53 (AARCH64), little endian for imx8m platform - Cortex-A55 (AARCH64), little endian for imx93 platform - Cortex-A7, little endian for imx6ull platform - 64-bit effective kernel addressing [Cortex-A53/A55]       Linux Kernel Drivers - SDIO 3.0 / eMMC5.1 - USB 3.0/2.0 Dual-Role with PHY type C - 32-bit LPDDR4 - 2x Gigabit Ethernet with AVB, IEEE 1588, EEE   and 1x w/ TSN - PCIe Gen 3 + WIFI - CAN FD - Dual-ch. QuadSPI (XIP) or 1x OctalSPI(XIP) - RTC Licensing The majority of the software included in the OpenWrt release is licensed under a form of open source license (e.g. GPL, BSD). Some software is licensed under the NXP EULA license. 4. How to Start Deploying and Using wireless router? To experience the powerful features of the Layerscape series chips with wireless router, download the source code from the official OpenWRT repository: https://git.openwrt.org/openwrt/openwrt.git. The OpenWRT support code for Layerscape is already integrated into the official OpenWRT codebase. Taking IMX8MMini-EVK as an example, here are the deployment steps for wireless router on the IMX platform using Ubuntu 22.04: 4.1. Get the source code from GitHub: https://github.com/nxp-imx/imx_openwrt (Tag: imx_v23.05_v5.15.114) 4.2. Compile, Install, and Configure wireless router: $ ./scripts/feeds update -a; ./scripts/feeds install -a; cp config.default .config; make -j $ sudo dd if=/mnt/tftpboot/imx8/matter_20230908/openwrt-imx-imx8-imx8mmini-squashfs-sdcard.img of=/dev/sdX bs=1M && sync This way, an wireless router bootable disk for SD card has been generated. You can directly use an SD card to boot and experience wireless router. For more compilation assistance, please refer to the README file in the source code: target/linux/imx/README. 4.3. Configuration and Personalization Users can access the wireless router device through the web interface or SSH to begin configuring and personalizing the network environment. This includes setting network rules, installing software packages, and ensuring that the device operates according to individual needs. The following image shows the interface for installing and removing software. Isn't it simple and convenient! 4.4. What to Do If You Encounter Issues? Firstly, you can seek support in the vibrant OpenWRT community. You can not only get assistance but also share your development or usage experiences and even participate in project development. This open community provides users with more opportunities for learning and growth, collectively driving continuous progress in OpenWRT. You can also participate in the official NXP community at https://community.nxp.com/t5/i-MX-Processors/bd-p/imx-processors to ask questions and share technical insights. Professional engineers are available to help you troubleshoot and overcome challenges. NXP OpenWRT looks forward to your participation!   Disclaimer This wireless router release is an NXP's Systems Engineering Initiative and is not part of NXP's Linux base enablement strategy for its MPU platforms. NXP does not vouch for the quality of this release and any follow up releases including adding support to new platforms is at the sole discretion of the Systems Engineering team. For specific requirements or needs please reach out to NXP's systems engineering team on the following email address "andy.tang@nxp.com."
View full article
Symptoms   On i.MX8MP, when inputting a 80% duty, 0.4V-1.8V, 3KHz square wave, we observed that the system may hang. We also tested i.MX8MN and i.MX8MM and observed the same phenomenon. In i.MX8MN RM, there's a note in GPC chapter:     We believe that the issue described in this note exists not only in the iMX8MN, but also in the iMX8MP and iMX8MM. Meanwhile, there is not only a problem with power down in this issue, but also a problem with wait mode. Diagnosis   In debugging, we find that avoiding accessing LPCR_A53_AD register in imx_set_cluster_powerdown can fix the issue. So we think that due to frequently power up/down of cores, cores have chances failed to power up. When the IRQ behavior become more complex, because the IRQ is an async event, it will come in any time. if the wait mode is enabled, in some conner case, the GPC internal LPM mode state machine will run into problem, then lead to system failure. Solution   1. A workaround patch that bypass the wait mode setting during the cpuidle.. See the patch attached. 2. Will add the Note about "SCU power down should not be enabled in wait mode" to i.MX8MP and i.MX8MM RM. 3. Will try to identify this issue into errta document, ticket TKT0632147.
View full article
Hardware i.MX 93 EVK​ TFT LCD 480x272 RGB888 (NV3047E, parallel)​ Condition A55 off​ DDR self-refresh​ OCRAM for framebuffer, TCM for code/data​ LCDIF on with parallel interface​ M33 update panel content each second​ 255KB single frame buffer(RGB565) (fit in OCRAM: 0x20480000 ~ 0x204DFFFF)​ Code Bitbucket:ssh://git@bitbucket.sw.nxp.com/mpucnse/imx93-cm33-usecase.git​ Branch: imx93_sdk_2.14.1-lcd_on_ocram​ Demo code: imx93-cm33-usecase/boards/mcimx93evk/demo_apps/lcd_on_ocram​ DTS: imx93-cm33-usecase/boards/mcimx93evk/demo_apps/lcd_on_ocram/dts​ Working Flow   ​Test Flow In uboot console,​ setenv mmcargs $mmcargs clk-imx93.mcore_booted​ setenv fdtfile imx93-11x11-evk-lcd_panel.dtb​ fatload mmc 1:1 0x80000000 sdk20-app.bin;cp.b 0x80000000 0x201e0000 0x10000;bootaux 0x1ffe0000 0​ boot​ In kernel console,​ echo mem > /sys/power/state​ start the power test Power Consumption SoC power: 94.4mW​ VDD_SOC@0.8V​ CM33@100MHz​ CM33@100MHz​ A55 suspend​ DDR retention​ WAKEUPMIX off​ NICMIX and MEDIAMIX on​  ​  
View full article
  NXP的OpenWRT方案:连接未来的智能网络体验   在数字化时代,智能家居、物联网等概念正不断演进,而要实现这些愿景,一个强大而高效的网络基础设施变得至关重要。OpenWRT以其开源自由、高度可定制和卓越稳定性,成为引领未来网络发展的关键一环。NXP作为全球领先的半导体技术创新公司,以其在嵌入式系统和通信领域的卓越技术积累,推出的基于OpenWRT的智能网络解决方案,为蓬勃发展的智能家居、物联网赋能。本文将介绍NXP公司芯片对OpenWRT方案支持的现状及获取途径,为读者应用OpenWRT去构建全新的下一代网络构建坚实的基础。 1、OpenWRT的独特特性 1.1、开源自由的崇高价值 OpenWRT以其开放源代码的本质脱颖而出。用户享有无限的自由,可以自由获取、修改和分享源代码,释放出创新的巨大潜力。这种开放性既推动了技术的不断进步,也使用户能够更主动地掌控网络的方向,也节约了用户的成本。 1.2、稳定可靠的网络基石 建立在成熟的Linux内核之上,OpenWRT经过长时间的演化和精细调整,确保系统的出色稳定性。这意味着更少的网络故障、更长的设备使用寿命,为各类网络需求提供了坚实的支撑。这一特性使得OpenWRT成为构建可靠家庭网络的理想选择,用户不用担心网络不稳定或崩溃的问题。 1.3 强大的软件包管理 OpenWRT引以为傲的软件包管理系统给用户带来了极大的灵活性。用户可以根据需求自由安装、更新和卸载各类应用程序和服务,从而实现网络环境的高度个性化,实现更智能的网络体验。OpenWRT允许用户安装各种网络服务和应用程序,如VPN、代理服务器等,以满足特定的网络需求。这为用户提供了更大的自由度,使他们能够创建符合个人或家庭需求的网络环境。 1.4 强大的社区支持 OpenWRT庞大的社区是其强大动力的源泉。用户可以在社区中交流心得、解决问题,甚至参与到项目的开发中。这种协作精神推动了OpenWRT的不断创新和进步。   2、NXP OpenWRT方案的应用 2.1 智能家居生态系统的构建 NXP OpenWRT方案与NXP Matter方案无缝结合为用户提供了构建智能家居生态系统的理想平台。通过其强大的定制能力,用户可以轻松连接、管理和控制各类智能设备,打造一个高度智能化的家居环境。该方案完整集成了NXP的Bluetooth和WIFI的芯片驱动,如:IW612, 88W9098, 88W8997等。 用户只需勾选相应的驱动即可轻松构建一个基于OpenWRT的Matter的OpenThread Border Router (OTBR)或者Zigbee Bridge。   2.2 定制化的网络服务 NXP OpenWRT方案支持各类网络服务和应用程序的定制安装。用户可以根据个人需求,轻松创建个性化的网络服务,如VPN、代理服务器,家庭路由器或网关等,实现更灵活的网络体验。 2.3 高清晰度视频流的传输 智能家居中高清晰度视频流的传输对网络性能提出了更高的要求。NXP OpenWRT方案通过其卓越的网络性能,结合NXP的工业级IP Camera方案, 确保用户能够流畅地享受高清视频流,为家庭娱乐带来更为优质的体验。 2.4 智能安防系统的构建 安防系统是不可或缺的一部分。NXP OpenWRT方案通过其高级网络安全功能,为用户打造了更可靠、更智能的安防系统,提高家庭的安全性。 3、NXP对OpenWRT的支持现状 基于OpenWRT众多优点及广阔的应用场景,NXP也很早就对OpenWRT实现了适配。不但实现了全部Layerscape系列处理器对OpenWRT的支持,目前主流的IMX处理器也得到了支持。具体支持的IMX平台及细节如下所示: Processor and Board Support ARMv8                                             ARMv7       I.MX93EVK                                •      I.MX6ULL       I.MX8MPlus       I.MX8MMini       I.MX8MNano       I.MX8MQuad OpenWrt Version       Based on OpenWrt v23.05 from mainline (tag: v23.05.0-rc1) Toolchain: ARMV8: gcc-11.3, binutils-2.37 ARMV7: gcc-12.3, binutils-2.40 U-Boot Boot Loader       IMX LF release, tag: lf-5.15.71-2.2.1 v2022.04 Linux Kernel       OpenWrt kernel 5.15.114 based on IMX SDK release kernel v5.15.71_2.2.1 Firmware       firmware-imx-8.18       firmware-sentinel-0.5.1 Main Features       Squashfs rootfs support on SD card.       Supported CLI and web configuation.       U-Boot Boot Loader - U-Boot: lf-5.15.71-2.2.1. - Arm Trusted firmware (TF-A) integration. - Boot from SDHC       Linux Kernel Core - Linux kernel 5.15.114 - Cortex-A53 (AARCH64), little endian for imx8m platform - Cortex-A55 (AARCH64), little endian for imx93 platform - Cortex-A7, little endian for imx6ull platform - 64-bit effective kernel addressing [Cortex-A53/A55]       Linux Kernel Drivers - SDIO 3.0 / eMMC5.1 - USB 3.0/2.0 Dual-Role with PHY type C - 32-bit LPDDR4 - 2x Gigabit Ethernet with AVB, IEEE 1588, EEE   and 1x w/ TSN - PCIe Gen 3 + WIFI - CAN FD - Dual-ch. QuadSPI (XIP) or 1x OctalSPI(XIP) - RTC Licensing       The majority of the software included in the OpenWrt release is licensed under a form of open source license (e.g. GPL, BSD).       Some software is licensed under the NXP EULA license. 4、如何开始部署和使用OpenWRT? 如果想体验Layerscape系列芯片的OpenWRT强大功能,请从OpenWRT官方下载,即:https://git.openwrt.org/openwrt/openwrt.git。Layerscape的OpenWRT支持代码已经全部集成到了OpenWRT官方代码库。 此处以IMX8MMini-EVK为例说明OpenWRT在IMX平台的部署步骤,编译环境为Ubuntu22.04。 4.1 从github.com上获取源码 https://github.com/nxp-imx/imx_openwrt Tag: imx_v23.05_v5.15.114 4.2 编译,安装,配置OpenWRT $ ./scripts/feeds update -a; ./scripts/feeds install -a; cp config.default .config; make -j $ sudo dd if=/mnt/tftpboot/imx8/matter_20230908/openwrt-imx-imx8-imx8mmini-squashfs-sdcard.img of=/dev/sdX bs=1M && sync 这样就有生成了一个可以SD卡启动的OpenWRT了启动盘了。 可以直接用SD卡来启动体验OpenWRT. 更多的编译帮助请参考源代码中的README文件:target/linux/imx/README。 4.3 配置和个性化 用户可通过Web界面或SSH访问OpenWRT设备,开始配置和个性化网络环境。包括设置网络规则、安装软件包等,确保设备按照个人需求运行。下图为安装删除软件的界面。是不是很简单,很方便!       4.4 遇到问题怎么办? 首先可以到OpenWRT社区这个充满活力的地方获得支持。 当然也可以分享自己的开发或使用经验,甚至参与到项目的开发中。这个开放的社区为用户提供了更多学习和发展的机会,共同推动OpenWRT不断向前。 还可以参与到NXP官方社区https://community.nxp.com/t5/i-MX-Processors/bd-p/imx-processors 进行提问和技术分享。有专业的工程师为您排忧解难。NXP OpenWRT期待您的参与!   免责声明 此OpenWRT发布是NXP系统工程倡议的一部分,不属于NXP为其MPU平台的Linux基础支持策略。NXP不对本发布及其后续版本的质量负责,包括添加对新平台的支持,这完全由系统工程团队自行决定。对于具体需求或问题,请通过以下电子邮件地址联系NXP的系统工程团队:“andy.tang@nxp.com”.
View full article
This is a simple document for recording some known-how and tips for building up the Windows 10 IoT development environment for i.MX platform. It can only be used as a complement for official document in BSP package (Guide/Release Note/etc.). Applicable for: Windows 10 IoT, i.MX BSP v1.4.1 (date to Nov/2023) Please refer to the PDF attached.
View full article
Information about the transition from the NXP Demo Experience to GoPoint for i.MX Application Processors.
View full article
BSP: L6.1.36 Some customer need use adb under usb ffs. The adb in Yocto can greatly improves development efficiency. This is a demo for enabling adb on Yocto.   Yocto local.conf IMAGE_INSTALL:append = "android-tools android-tools-adbd" PREFERRED_PROVIDER_android-tools-conf = "android-tools-conf-configfs"   Test script for launching adbd modprobe g_ffs idVendor=0x1fc9 idProduct=0x0146 iSerialNumber="ZhimingLiu" mkdir -p /dev/usb-ffs/adb mount -t functionfs adb /dev/usb-ffs/adb -o uid=2000,gid=2000 adbd &   Test on Windows: PS C:\Users\Administrator\Desktop\platform-tools> .\adb.exe devices List of devices attached ZhimingLiu device PS C:\Users\Administrator\Desktop\platform-tools> .\adb.exe shell sh-5.2# uname -a Linux imx8mp-lpddr4-evk 6.1.36+g04b05c5527e9 #1 SMP PREEMPT Fri Nov 24 04:46:22 UTC 2023 aarch64 GNU/Linux sh-5.2# ls config ffs t.sh test2.sh sh-5.2# cd / sh-5.2# ls bin dev home lost+found mnt proc run srv tmp usr boot etc lib media opt root sbin sys unit_tests var sh-5.2#
View full article
Platform: Demo images, i.MX8MPlus EVK   Some customer need test ffs gadget function on i.MX8MPlus EVK. Here is demo for ffs test, please connect EVK and Ubuntu PC before test.   Test script: #!/bin/sh # Setup the device (configfs) modprobe libcomposite mkdir -p config mount none config -t configfs cd config/usb_gadget/ mkdir g1 cd g1 echo 0x1fc9 >idVendor echo 0x0146 >idProduct mkdir strings/0x409 echo 12345 >strings/0x409/serialnumber echo "Signal 11" >strings/0x409/manufacturer echo "Test" >strings/0x409/product mkdir configs/c.1 mkdir configs/c.1/strings/0x409 echo "Config1" >configs/c.1/strings/0x409/configuration # Setup functionfs mkdir functions/ffs.usb0 ln -s functions/ffs.usb0 configs/c.1 cd ../../../ mkdir -p ffs mount usb0 ffs -t functionfs cd ffs ffs-test 64 & # from the Linux kernel, with mods! sleep 3 cd .. # Enable the USB device echo 38100000.usb > config/usb_gadget/g1/UDC   EVK log root@imx8mpevk:~# ./test2.sh [ 17.859597] file system registered ffs-test: dbg: ep0: writing descriptors (in v2 format) ffs-test: dbg: ep0: writing strings ffs-test: dbg: ep1: starting ffs-test: dbg: ep2: starting ffs-test: dbg: ep1: starts ffs-test: dbg: ep0: starts ffs-test: dbg: ep2: starts Event BIND Event ENABLE Ubuntu PC log: lzm@lzm-GL552VW:~$ lsusb -D /dev/bus/usb/001/008 Device: ID 1fc9:0146 NXP Semiconductors Test Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 2.10 bDeviceClass 0 bDeviceSubClass 0 bDeviceProtocol 0 bMaxPacketSize0 64 idVendor 0x1fc9 NXP Semiconductors idProduct 0x0146 bcdDevice 6.01 iManufacturer 1 Signal 11 iProduct 2 Test iSerial 3 12345 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 0x0020 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 4 Config1 bmAttributes 0x80 (Bus Powered) MaxPower 2mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 2 bInterfaceClass 255 Vendor Specific Class bInterfaceSubClass 0 bInterfaceProtocol 0 iInterface 5 Source/Sink Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x01 EP 1 OUT bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 1 Binary Object Store Descriptor: bLength 5 bDescriptorType 15 wTotalLength 0x0016 bNumDeviceCaps 2 USB 2.0 Extension Device Capability: bLength 7 bDescriptorType 16 bDevCapabilityType 2 bmAttributes 0x0000010e BESL Link Power Management (LPM) Supported BESL value 256 us SuperSpeed USB Device Capability: bLength 10 bDescriptorType 16 bDevCapabilityType 3 bmAttributes 0x00 wSpeedsSupported 0x000f Device can operate at Low Speed (1Mbps) Device can operate at Full Speed (12Mbps) Device can operate at High Speed (480Mbps) Device can operate at SuperSpeed (5Gbps) bFunctionalitySupport 1 Lowest fully-functional device speed is Full Speed (12Mbps) bU1DevExitLat 0 micro seconds bU2DevExitLat 0 micro seconds Device Status: 0x0001 Self Powered  
View full article
Usually, device tree source files are not a signal pure dts file. It could include dtsi, dts or C code heads .h files. Need C compiler finish the pre-compile to a pure dts file first. It is integrated inside the like Linux build system(Makefile, etc.). This document shows the original way to compile device tree. This document will show compile device tree under windows.    
View full article
How to use UART4 on iMX8M from Linux User Space   The UART4 on iMX8MM-EVK and iMX8MN-EVK are thinking of debugging the M core which is not usable on Linux user space by default on pre-compiled images.   To use the UART4 on Linux user space you have to do the next modifications on the device tree and atf to assign that peripheral to Linux User Space     https://github.com/nxp-imx/imx-atf/blob/lf_v2.6/plat/imx/imx8m/imx8mm/imx8mm_bl31_setup.c     iMX8MN-EVK   imx8mn_bl31_setup.c   https://github.com/nxp-imx/imx-atf/blob/lf_v2.6/plat/imx/imx8m/imx8mn/imx8mn_bl31_setup.c   /* Master domain assignment */ RDC_MDAn(RDC_MDA_M7, DID1), /* peripherals domain permission */ - RDC_PDAPn(RDC_PDAP_UART4, D1R | D1W), + RDC_PDAPn(RDC_PDAP_UART4, D0R | D0W), RDC_PDAPn(RDC_PDAP_UART2, D0R | D0W), RDC_PDAPn(RDC_PDAP_RDC, D0R | D0W | D1R),       Device tree configurations for iMX8MN-EVK   iMX8MN-EVK.dtsi   https://github.com/nxp-imx/linux-imx/blob/lf-6.1.y/arch/arm64/boot/dts/freescale/imx8mn-evk.dtsi   &uart3 { pinctrl-names = "default"; pinctrl-0 = <&pinctrl_uart3>; assigned-clocks = <&clk IMX8MN_CLK_UART3>; assigned-clock-parents = <&clk IMX8MN_SYS_PLL1_80M>; uart-has-rtscts; status = "okay"; }; + &uart4 { + pinctrl-names = "default"; + pinctrl-0 = <&pinctrl_uart4>; + assigned-clocks = <&clk IMX8MN_CLK_UART4>; + assigned-clock-parents = <&clk IMX8MN_SYS_PLL1_80M>; + status = "okay"; + }; ********************** pinctrl_uart3: uart3grp { fsl,pins = < MX8MN_IOMUXC_ECSPI1_SCLK_UART3_DCE_RX 0x140 MX8MN_IOMUXC_ECSPI1_MOSI_UART3_DCE_TX 0x140 MX8MN_IOMUXC_ECSPI1_SS0_UART3_DCE_RTS_B 0x140 MX8MN_IOMUXC_ECSPI1_MISO_UART3_DCE_CTS_B 0x140 >; }; + pinctrl_uart4: uart4grp { + fsl,pins = < + MX8MN_IOMUXC_UART4_RXD_UART4_DCE_RX 0x140 + MX8MN_IOMUXC_UART4_TXD_UART4_DCE_TX 0x140 + >; + };   iMX8MM-EVK   https://github.com/nxp-imx/imx-atf/blob/lf_v2.6/plat/imx/imx8m/imx8mm/imx8mm_bl31_setup.c   imx8mm_bl31_setup.c   /* Master domain assignment */ RDC_MDAn(RDC_MDA_M7, DID1), /* peripherals domain permission */ - RDC_PDAPn(RDC_PDAP_UART4, D1R | D1W), + RDC_PDAPn(RDC_PDAP_UART4, D0R | D0W), RDC_PDAPn(RDC_PDAP_UART2, D0R | D0W), RDC_PDAPn(RDC_PDAP_RDC, D0R | D0W | D1R),   Device tree configurations for iMX8MM-EVK   iMX8MM-EVK.dtsi   https://github.com/nxp-imx/linux-imx/blob/lf-6.1.y/arch/arm64/boot/dts/freescale/imx8mm-evk.dtsi   &uart3 { pinctrl-names = "default"; pinctrl-0 = <&pinctrl_uart3>; assigned-clocks = <&clk IMX8MM_CLK_UART3>; assigned-clock-parents = <&clk IMX8MM_SYS_PLL1_80M>; uart-has-rtscts; status = "okay"; }; + &uart4 { + pinctrl-names = "default"; + pinctrl-0 = <&pinctrl_uart4>; + assigned-clocks = <&clk IMX8MM_CLK_UART4>; + assigned-clock-parents = <&clk IMX8MM_SYS_PLL1_80M>; + status = "okay"; + }; ********************** pinctrl_uart3: uart3grp { fsl,pins = < MX8MM_IOMUXC_ECSPI1_SCLK_UART3_DCE_RX 0x140 MX8MM_IOMUXC_ECSPI1_MOSI_UART3_DCE_TX 0x140 MX8MM_IOMUXC_ECSPI1_SS0_UART3_DCE_RTS_B 0x140 MX8MM_IOMUXC_ECSPI1_MISO_UART3_DCE_CTS_B 0x140 >; }; + pinctrl_uart4: uart4grp { + fsl,pins = < + MX8MM_IOMUXC_UART4_RXD_UART4_DCE_RX 0x140 + MX8MM_IOMUXC_UART4_TXD_UART4_DCE_TX 0x140 + >; + };   iMX8MP-EVK   https://github.com/nxp-imx/imx-atf/blob/lf_v2.6/plat/imx/imx8m/imx8mp/imx8mp_bl31_setup.c   imx8mp_bl31_setup.c   RDC_MDAn(RDC_MDA_M7, DID1), RDC_MDAn(RDC_MDA_LCDIF, DID2), RDC_MDAn(RDC_MDA_LCDIF2, DID2), RDC_MDAn(RDC_MDA_HDMI_TX, DID2), /* peripherals domain permission */ + RDC_PDAPn(RDC_PDAP_UART4, D0R | D0W), RDC_PDAPn(RDC_PDAP_UART2, D0R | D0W), RDC_PDAPn(RDC_PDAP_WDOG1, D0R | D0W), RDC_PDAPn(RDC_PDAP_RDC, D0R | D0W | D1R),   Device tree configurations for iMX8MP-EVK   iMX8MP-EVK.dts   https://github.com/nxp-imx/linux-imx/blob/lf-6.1.y/arch/arm64/boot/dts/freescale/imx8mp-evk.dts   &uart3 { pinctrl-names = "default"; pinctrl-0 = <&pinctrl_uart3>; assigned-clocks = <&clk IMX8MP_CLK_UART3>; assigned-clock-parents = <&clk IMX8MP_SYS_PLL1_80M>; fsl,uart-has-rtscts; status = "okay"; }; + &uart4 { + pinctrl-names = "default"; + pinctrl-0 = <&pinctrl_uart4>; + assigned-clocks = <&clk IMX8MP_CLK_UART4>; + assigned-clock-parents = <&clk IMX8MP_SYS_PLL1_80M>; + status = "okay"; + }; ************************************ pinctrl_uart3: uart3grp { fsl,pins = < MX8MP_IOMUXC_ECSPI1_SCLK__UART3_DCE_RX 0x140 MX8MP_IOMUXC_ECSPI1_MOSI__UART3_DCE_TX 0x140 MX8MP_IOMUXC_ECSPI1_SS0__UART3_DCE_RTS 0x140 MX8MP_IOMUXC_ECSPI1_MISO__UART3_DCE_CTS 0x140 >; }; + pinctrl_uart4: uart4grp { + fsl,pins = < + MX8MP_IOMUXC_UART4_RXD__UART4_DCE_RX 0x140 + MX8MP_IOMUXC_UART4_TXD__UART4_DCE_TX 0x140 + >; + };     After compiling the image with the changes previously shown, we obtained this result:      
View full article
Board : i.MX93 EVK BSP: imx L6.1.1-1.0.0 Gui guider: 1.6.1   We have a GUI software tool called GUI Guider. It is a user-friendly graphical user interface development tool from NXP that enables the rapid development of high quality displays with the open-source LVGL graphics library. The GUI demo can run on the i.MX93EVK board. (https://www.nxp.com/design/software/development-software/gui-guider:GUI-GUIDER)   This document will show you an example how the buttons(gpio) on the EVK to interacting with the GUI. Basically, customer could use the same method to use the gpio pins to control everything.   On the i.MX93 EVK board, there are two buttons BTN1 and BTN2. They are connected to GPIO IO23 and GPIO IO24. Below is the schematic.    Buttons on the board.      SW1005 on the board   In the EVK's device tree file, need to change the pinmux for the two buttons like this: pinctrl_spdif: spdifgrp { fsl,pins = < // MX93_PAD_GPIO_IO22__SPDIF_IN 0x31e // MX93_PAD_GPIO_IO23__SPDIF_OUT 0x31e MX93_PAD_GPIO_IO23__GPIO2_IO23 0x31e MX93_PAD_GPIO_IO24__GPIO2_IO24 0x31e >; note: all the pins are defined in imx93-pinfunc.h.   For getting the input value of the buttons in user's space, I use the sysfs gpio. Build the imx-image-multimedia image first and then select the GPIO_SYSFS in kernel's menuconfig.   $ DISTRO=fsl-imx-xwayland MACHINE=imx93evk source imx-setup-release.sh -b build-xwayland $ bitbake imx-image-multimedia   After the build completed, go to the kernel's menuconfig to select the GPIO sysfs. $ bitbake linux-imx -c menuconfig [*] General setup-> Configure standard kernel features (expert users) [*] Device Drivers->GPIO Support-> /sys/class/gpio/... (sysfs interface)   Build the whole image again by "$ bitbake imx-image-multimedia".   Using the UUU to program the image to the EMMC on the EVK board. uuu -b emmc_all imx-image-multimedia-imx93evk.rootfs.wic.zst   Connect the LVDS to the board. Use the corresponding dtb to boot the board. In u-boot, set the dtb file. => setenv fdtfile imx93-11x11-evk-boe-wxga-lvds-panel.dtb => saveenv   Then restart the board. After the board boot up, it will look like below.     You need to calibrate the LVDS touch screen before it can normally use. Please use this command: $ weston-touch-calibrator LVDS-1     Now, build the GUI guider example. I use the Air Conditioner example. Download the GUI guider from the gui-guider web page: https://www.nxp.com/design/software/development-software/gui-guider:GUI-GUIDER   Follow the steps from the below web page to build the i.MX BSP and the gui example code. https://docs.nxp.com/bundle/GUIGUIDERUG-1.6.1/page/topics/yocto.html   After the gui-guider build completed, use the 'scp' command to transfer the gui_guider executable file to the board. Execute the command on your host PC like this: $ scp bld-imx93evk/tmp/work/armv8a-poky-linux/gui-guider/1.6.0-r0/image/usr/bin/gui_guider root@<Your Board IP address>:/ Note: You could use a router to connect your board and your host PC. They are on the same network so could use the 'scp' command to transfer the file to your board.   On your board, type the following commands to execute the gui. $ chmod 755 gui_guider $ ./gui_guider &   Then the GUI is running like this:   Now, let me explain how to find out the gpio number. Type the following command to show the mapping addresses of gpio. root@imx93evk:/# cat /sys/kernel/debug/gpio gpiochip3: GPIOs 0-31, parent: platform/47400080.gpio, 47400080.gpio: gpiochip0: GPIOs 32-63, parent: platform/43810080.gpio, 43810080.gpio: gpiochip1: GPIOs 64-95, parent: platform/43820080.gpio, 43820080.gpio: gpio-64 ( |cd ) in hi IRQ ACTIVE LOW gpio-71 ( |regulator-usdhc2 ) out lo gpiochip2: GPIOs 96-127, parent: platform/43830080.gpio, 43830080.gpio: gpiochip6: GPIOs 472-477, parent: i2c/0-001a, wm8962, can sleep: gpiochip5: GPIOs 478-487, parent: platform/adp5585-gpio.1.auto, adp5585-gpio, can sleep: gpio-479 ( |regulator-audio-pwr ) out hi gpio-483 ( |regulator-can2-stby ) out hi ACTIVE LOW gpio-486 ( |enable ) out hi gpiochip4: GPIOs 488-511, parent: i2c/1-0022, 1-0022, can sleep: gpio-492 ( |Headphone detection ) in lo IRQ gpio-501 ( |? ) out hi gpio-502 ( |regulator-vdd-12v ) out hi gpio-505 ( |reset ) out lo gpio-507 ( |? ) out hi gpio-508 ( |reset ) out lo ACTIVE LOW   The gpio pins of two buttons are GPIO2_IO23 and GPIO2_IO24. They are belongs to gpio2. In the imx93.dtsi, the gpio2's address is "gpio2: gpio@43810080". So, base on the information output from "/sys/kernel/debug/gpio", the gpio2 is mapping to "gpiochip0: GPIOs 32-63". So, the GPIO2_IO23 is 32+23=55, and the GPIO2_IO24 is 32+24=56.   To verify the gpio number is correct or not. We could do the following test. root@imx93evk:/# echo 55 > /sys/class/gpio/export root@imx93evk:/# echo in > /sys/class/gpio/gpio55/direction root@imx93evk:/# echo 56 > /sys/class/gpio/export root@imx93evk:/# echo in > /sys/class/gpio/gpio56/direction   Then, run these two commands to check the values. root@imx93evk:/# cat /sys/class/gpio/gpio55/value root@imx93evk:/# cat /sys/class/gpio/gpio55/value   When the button is not pressed, the value is 1. When press the button, the value is 0.  We could add the same in the GUI's custom.c. Open the GUI Guider software and add the code in the custom.c. /********************* * INCLUDES *********************/ #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <errno.h> #include <fcntl.h> #include "lvgl.h" #include "custom.h" #include "ui_Aircon.h" #include "guider_customer_fonts.h" /********************** * STATIC VARIABLES **********************/ int fdbtn1,fdbtn2,fdgpio; int btn1_pressed; int btn2_pressed; char btn1_value, btn2_value; void custom_func(void) { fdbtn1 = open("/sys/class/gpio/gpio55/value", O_RDWR); fdbtn2 = open("/sys/class/gpio/gpio56/value", O_RDWR); read(fdbtn1, &btn1_value, 1); read(fdbtn2, &btn2_value, 1); if(btn1_value=='0' && btn1_pressed) { btn1_pressed=0; ui_aircon_update_temp(0, kAIRCON_TempUp); } if(btn1_value=='1') btn1_pressed=1; if(btn2_value=='0' && btn2_pressed) { btn2_pressed=0; ui_aircon_update_temp(0, kAIRCON_TempDown); } if(btn2_value=='1') btn2_pressed=1; close(fdbtn1); close(fdbtn2); } void custom_init(lv_ui *ui) { fdbtn1 = open("/sys/class/gpio/gpio55/value", O_WRONLY); if (fdbtn1 == -1) { fdgpio = open("/sys/class/gpio/export", O_WRONLY); write(fdgpio,"55",3); write(fdgpio,"56",3); close(fdgpio); fdgpio = open("/sys/class/gpio/gpio55/direction", O_WRONLY); write(fdgpio,"in",3); close(fdgpio); fdgpio = open("/sys/class/gpio/gpio56/direction", O_WRONLY); write(fdgpio,"in",3); close(fdgpio); } else close(fdbtn1); ... ... ... ...   Add the custom_func() in the custom.h. #ifndef __CUSTOM_H_ #define __CUSTOM_H_ #ifdef __cplusplus extern "C" { #endif #include "gui_guider.h" void custom_init(lv_ui *ui); + void custom_func(void);   Also, need to add the custom function() into the dead loop in main.c.   To modify the code, bld-imx93evk$ vim tmp/work/armv8a-poky-linux/gui-guider/1.6.0-r0/gui-guider-1.6.0/ports/linux/main.c   while(1) { + custom_func(); // <--- Add the custom function here. /* Periodically call the lv_task handler. * It could be done in a timer interrupt or an OS task too.*/ time_till_next = lv_wayland_timer_handler(); #if LV_USE_VIDEO video_play(&guider_ui); #endif /* Run until the last window closes */ if (!lv_wayland_window_is_open(NULL)) { break; }   Re-build the code after modified. bld-imx93evk$ bitbake gui-guider -c compile -f   Build the whole image again. bld-imx93evk$ bitbake gui-guider Then use the 'scp' command to transfer the new gui-guider file to the board.   Finally, you can use the buttons on the EVK board to set the temperature up and down.                          
View full article
    In i.MX93 EVK, it use RGMII in ethernet connection. Some customer use RMII connection. This article describe RMII HW design and SW config.
View full article
i.MX93 DDR stress test tool is different with previous i.MX tool. This Chinese article describe how to debug i.MX93 DDR and introduce DDR config tool usage.
View full article
test ov5640 with 480p, raw10 via ISP on imx8mp
View full article
The configuration of DDR is very important. NXP provides a tool for configuring DDR for users of i.MX series products. Here are the details steps for it. Hope can do help for someone. 1\ The DDR part startup and initialization sequence of MX8MM:   The MX 8M series DDR tools include: DDR Register Programming Aid --->Configurate custom DDR initialization MSCALE DDR Tool(DDR Stress Test Tool) --->Test DDR initialization And DDR interface ---> Generate custom DDR initialization code for the u-boot SPL DDR RPA(RPA) is an Excel spreadsheet tool used to develop DDR initialization for specific DDR configurations (DDR device type, density, etc.) of users. RPA generates DDR initialization (in a separate Excel worksheet tab). Detailed explanations and introductions will be provided here. DDR stress testing tool is a software tool based Windows that initializes PHY and generates DDRC configuration Uboot source code to verify whether DDR initialization can be used for u-boot and OS startup. DDR stress testing script, this format is specifically used for DDR stress detection. First, copy the content from this worksheet tab, and then paste it into a text file, naming the document with the ". ds" file extension. Select this file when performing DDR stress testing. 2\i.MX8M series DDR tool work flow           Above is the DDR Tool flow for the i.MX8MM: DDR RPA Tool: Configure DDR parameters to generate DDR Stress Test script ". ds". DDR Sress Test Tool: Test DDR initialization and DDR interface, generate DDR initialization code for the u-boot SPL DDR driver. For the newest DDR RPA version as below:   https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX8MMini-m845S-DDR-Register-Programming-Aid-RPA/ta-p/1172443 In the above link, you can download the corresponding DDR configuration tools for i.MX8MM using different DDRs.   3\How to use this script to configure DDR parameters (1)Obtain the required DRAM data sheet from the DRAM supplier firstly. The DDR parameter configuration content will be completed in the "Register Configuration" worksheet tab.   (2)"Register Configuration",Update the device information table to include DRAM information and system usage. DDR RPA tool:  Register Configuration---->Device Information table   It should be filled out based on the datasheet and relevant hardware circuit design of the selected DDR chip. Specific users can refer to the manual for selecting DDR chips and their own hardware design. Take the i.MX 8M Mini LPDDR4 EVK board as example, it selects the Micron MT53D512M32D2DS-053 WT:D, we can go the Micron website to download the DDR’s datasheet and we can see bellow:   Density per channel (Gb)= Device density (Per Channel Per CS)=8Gb Number of ROW Addresses=R[15:0]=16 Number of Channels=2 (2 Channels i.MX8MM DDR is 32bit) Number of COLUMN Addresses=C[9:0]=10 Total DRAM density(Gb) Automatic calculation:Density per channel (Gb) * Number of Channels * Number of Chip Selects used  =8Gb * 2 * 1=16Gb=2GB Bus Width=M32=32bit: i.MX8MM DDR support 32bit Cycle Freq (MHz)=1500MHZ: The DDR controller clock of the i.MX8MM is set to 1500MHZ. The information filled in is shown in the table below:   (3)Browse through various shaded cells in the spreadsheet to update using data from the DRAM table (pay special attention to the "Legend" table to determine the meaning of different shaded cells; in many cases, these cells may not need to be updated). On the parameter filling page, we can also see the following table, with different colors indicating the need to modify and maintain the original parameters and the affected parameter information. On the register configuration tab, basically only the orange part of the color represents the bit segments that usually need to be updated, and the rest do not need to be modified or configured.   (4)Go to the BoardDataBusConfig tab, fill in the i.MX8MM data bus mapping to the memory device correctly. DDR RPA tool: BoardDataBusConfig ---->Configurate data bus bit   Users should pay special attention to ensuring that this worksheet is configured correctly, otherwise the LPDDR4 system may not function properly. The memory controller of i.MX8MM allows for BYTE internal swapping. For layout convenience, BYTE internal swapping is usually performed, so the BoardDataBusConfig column needs to be configured according to the actual schematic design. We can see the tab in the BoardDataBusConfig, user fill the i.MX8MM data bit connection to associated LPDDR4, the filling in of data bits here should be consistent with the order of our hardware design wiring, which means that if there are swapped data bits, the corresponding relationship must be filled in. Take the LPDDR4 connection to the i.MX8MM as example, the highest 8 bits on the channel B of the LPDDR4   connect to the side of DRAM_DQ00~DRAM_DQ07 of CPU, and the lowest 8 bits on the channel B of the LPDDR4 DRAM_DQ08~DRAM_DQ15 of CPU side,the lowest 8 bits on the channel A of the LPDDR4 connect to the DRAM_DQ16~DRAM_DQ23 of CPU side,the highest 8 bits on the channel A of the LPDDR4 connect to the DRAM_DQ24~DRAM_DQ31 of the CPU side. The i.MX8MM memory controller allows for BYTE internal swapping. For layout convenience, BYTE internal swapping is usually performed, and this needs to be filled in according to the actual wiring in the data bus.       (5)Generate the “.ds” file DDR RPA tool: DDR stress test file ----> “.ds”   Copy the content of the DDR stress test file into a text file and name it a. ds file. For subsequent DDR stress testing purposes.   4\Do the DDR Stress test and Generate the DDR Code The following is the workflow of the DDR tool for the MX8MM series:   Preparation Board: i.MX 8M Mini LPDDR4 EVK Software download: mscale_ddr_tool_v3.31_setup.exe(Install it) PC:Window10 PC file .ds file Hardware requirements for the board: (Please note that these interfaces are necessary when using our stress testing tools) Serial download mode USB OTG port Debug UART port 4.1 Hardware connection   SW1101set 1010xxxxxx go to Serial Download mode, connect the USB-OTG and UART to PC, USB OTG is used for serial download of binary files: UART is used to communicate with users. Note: It is recommended to connect the USB OTG directly to the host PC, rather than through the USB Hub. When power on the board,we can see HID-compliant vendor-defined device and USB Input Device:   UART port are COM3 and COM4:   4.2 Open MSCALEDDR_Tool. exe in administrator mode for DDR parameter calibration and pressure testing:   Select serial port Select Search in Debug UART and you can read that the other two serial ports COM3 and COM4 have been tried. Click on the Connect button. It should be noted that we have two serial ports, one for the A core and the other for the M core. Here, COM4 must be selected to load the script normally. COM4 is used for the A core. Select Target Select the MX8M-mini,speed of CPU chosse1200MHZ, DDR LPDDR4 size 2GB. Select .ds file, Load DDR Script: Copy the generate mx8mm_micron_lpddr4_2gb_2d_1500m_200m_50m_32bit_1cs_RPAv22.ds to the path of the DDR TOOL, then press the Download button. After the download is successful, there will be a print message indicating the successful download and the startup information of the board. We can see the CPU parameters and DDR configuration.   Pres Calibration: This step mainly involves executing the DDR initialization and calibration process. If there is a failure, it is necessary to analyze the DDR problem based on the printed information. If there is no problem, the following interface will appear.   (5) If there are no problems after calibration, perform a pressure test. Only perform this operation when the calibration is passed. Run the test on all frequency set points. If the DDR pressure test passes, you can see that the test has passed successfully. If there is an error, you should search for the problem with the DDR based on the error message.   (6) Generate u-boot timing After the stress test is successfully completed, clicking the Gen Code button will generate a file lpddr4_timing. c, and then the lpddr4_timing. C file can be copied to the u boot directory.     5\ Modifying and configuring DDR frequencies that are not supported by default         The above test is for the frequency point 1500MHZ that is supported by default in our tool. RPA provides default DRAM PLL settings (DRAM frequency) based on the default settings supported in u-boot. If the customer is not using the default supported frequency, in addition to updating the new frequency in RPA, the new DRAM PLL settings should also be manually updated in the u boot SPL. (1) Firstly, in the RPA script, "Clock Cycle Freq (MHz)" is set to the frequency we need (2) Then search for 'memory set 0x30360054' in the RPA DDR stress test file worksheet tab, with a default setting of 1500MHZ.   We can see the DRAM PLL register and bit settings:   For special frequencies, we have a calculation formula here: DDR_freq = [(24MHz x pll_main_div)/(pll_pre_div x 2^pll_post_div)] x 2 1500 = [(24 x 250) / (8 x 2^1)] x 2 Bellow are some special examples of the required configurations for various frequencies:     Finishing configuration, create a. ds test DDR script in the RPA script to specify the frequency of this configuration. (3)After creating a DDR script for the DDR stress testing tool, run the calibration and perform the DDR pressure test. Generating the lpddr4_timing.c, modify the required DDR rate parameters Manually. (4)Modify the DRAM PLL,DRAM_freq = DRAM_PLL x 2 in SPL,u-boot SPL DDR driver can will not automatically change DRAM PLL based on generated code. Therefore, users will need to manually modify the dram_pll_init  for the required DDR PLL parameter.
View full article
On this tutorial we will review the implementation of Flutter on the i.MX8MP using the Linux Desktop Image. Please find more information about Flutter using the following link: Flutter: Option to create GUIs for Embedded System... - NXP Community Requirements: Evaluation Kit for the i.MX 8M Plus Applications Processor. (i.MX 8M Plus Evaluation Kit | NXP Semiconductors) NXP Desktop Image for i.MX 8M Plus (GitHub - nxp-imx/meta-nxp-desktop at lf-6.1.1-1.0.0-langdale) Note: This tutorial is based on the NXP Desktop Image with Yocto version 6.1.1 – Langdale. Steps: 1. First, run commands to update packages. $ sudo apt update $ sudo apt upgrade 2. Install Flutter for Linux using the following command. $ sudo snap install flutter --classic 3. Run the command to verify the correct installation. $ flutter doctor With this command you will find information about the installation. The important part for our purpose is the parameter "Linux toolchain - develop for Linux desktop". 4. Run the command “flutter create .” to create a flutter project, this framework will create different folders and files used to develop the application.  $ cd Documents $ mkdir flutter_hello $ cd flutter_hello $ flutter create .​ 5. Finally, you can run the “hello world” application using: $ flutter run Verify the program behavior incrementing the number displayed on the window.  
View full article
One of the most popular use cases for embedded systems are projects destinated to show information and interact with users. These views are called GUI or Graphic User Interface which are designed to be intuitive, attractive, consistent, and clear. There are many tools that we can use to achieve great GUIs, mostly implemented for platforms such as Web, Android, and iOS. Here, we will need to introduce the concept of framework, basically, it is a set of tools and rules that provides a minimal structure to start with your development. Frameworks usually comes with configuration files, code snippets, files and folders organization helping us to save time and effort. Also, it is important to review the concept of SDK or Software Development Kit which is a set of tools that allows to build software for specific platforms. Usually supplies debugging tools, documentation, libraries, API’s, emulators, and sample code. Flutter is an open-source UI software development kit by Google that help us to create applications with great GUIs on different platforms from a single codebase. Depends on the reference, you can find Flutter defined as a framework or SDK and both are correct, however, an SDK could be a best definition thanks to Flutter supplies a wide and complete package to create an application in which framework is also included. This article is aimed at those that are in a prototyping stage looking for a different tool to develop projects. Also, this article pretends to be a theoretical introduction explaining the most important concepts. However, is a good practice to learn more about reviewing the official documentation from Flutter. (Flutter documentation | Flutter) Here is the structure used throughout this article: What is Flutter? Flutter details Platforms Programming language Official documentation Flutter for embedded systems What is Flutter? Flutter was officially released by Google in December 2018 with a main aim, to give developers a tool to create applications natively compiled for mobile (Android, iOS), web and desktop (Windows, Linux) from a single codebase. It means that as a developer, Flutter will create a structure with minimal code, configuration files, build files for each operating system, manifests, etc. in which we will add our custom code and finally build this code for our preferred OS. For example, we can create an application to review fruit and vegetable information and compile for Android and iOS with the same code. A basic Flutter development process based on my experience looks like the following diagram: Flutter has the following key features: Cross-platform development. Flutter allows the developer to create applications for different platforms using a single codebase. It means that you will not need to recreate the application for each platform you want to support.   Hot-reload. This feature allows the developer to see changes in real time without restarting the whole application, this results in time savings for your project.   High Performance Flutter apps achieve high performance due to the app code is compiled to native ARM code. With this tool no interpreters are involved.   UI Widgets Flutter supplies a set of widgets (UI components such as boxes, inputs text, buttons, etc.) predefined by UI systems guidelines Material on Android and Cupertino for iOS. Source: Material 3 Design Kit | Figma Community Source: Design - Apple Developer   Great community support. This feature could be subjective but, it is useful when we are developing our project find solutions to known issues or report new ones. Because of Flutter is an open source and is widely implemented in the industry this tool owns a big community, with events, forums, and documentation. Flutter Details Supported Platforms With Flutter you can create applications for: Android iOS Linux Debian Linux Ubuntu macOS web Chrome, Firefox, Safari, Edge Windows Supported deployment platforms | Flutter Programming Language Flutter use Dart, a programming language is an open-source language supported by Google optimized to use on the creation of user interfaces. Dart key features: Statically typed. This feature helps catching errors making the code robust ensuring that the variable’s value always match with the declared variable’s type. Null safety. All variables on Dart are non-nullable which means that every variable must have a non-null value avoiding errors at execution time. This feature also, make the code robust and secure. Async/Await. Dart is client-optimized which means that this language was specially created to ensure the best performance as a client application. Async/Await is a feature part of this optimization making easier to manage network requests and other asynchronous operations. Object oriented. Dart is an object-oriented language with classes and mixin. This is especially useful to use on Flutter with the usage of widgets. Compiler support of Just-In-Time (JIT) and Ahead-of-Time (AOT) JIT provides the support that enables the Hot Reload Flutter feature that I mentioned before. It is a complex mechanism, but Dart “detects” changes in your code and execute only these changes avoiding recompiling all the code. AOT compiler produces efficient ARM code improving start up time and performance. Official documentation Flutter has a rich community and documentation that goes from UI guidelines to an Architectural Overview. You can find the official documentation at the following links: Flutter Official Documentation: Flutter documentation | Flutter Flutter Community: Community (flutter.dev) Dart Official Documentation: Dart documentation | Dart Flutter for embedded systems So far, we know all the excellent features and platforms that Flutter can support. But, what about the embedded systems? On the official documentation we can find that Flutter may be used for embedded systems but in fact there is no an official supported platform. This SDK has been supported by their community, specially there is one repository on GitHub supported by Sony that provides documentation and Yocto recipes to support Flutter on embedded Linux. To understand the reason to differentiate between Flutter for Linux Desktop with official support and to create a specific Flutter support for embedded Linux is important to describe the basics of Flutter architecture. Based on the Flutter documentation the system is designed using layers that can be illustrated as follows:   Source: Flutter architectural overview | Flutter We can see as a top level “Framework” which is a high-level layer that includes widgets, tools and libraries that are in contact with developers. Below “Framework,” the layer “Engine” is responsible of drawing the widgets specified in the previous layer and provides the connection between high-level and low-level code. This layer is mostly written in C++ for this reason Flutter can achieve high performance running applications. Specifically for graphics rendering Flutter implements Impeller for iOS and Skia for the rest of platforms. The bottom layer is “Embedder” which is specific for each target and operating system this layer allows Flutter application to run as a native app providing the access to interact with different services managed by the operating systems such as input, rendering surfaces and accessibility. This layer for Linux Desktop uses GTK/GDK and X11 as backend that is highly dependent of unnecessary libraries and expensive for embedded systems which have constrained resources for computation and memory. The work around founded by Sony’s Flutter for Embedded Linux repository is to change this backend using a widely implemented backend for embedded systems Wayland. The following image illustrates the difference between Flutter for Linux Desktop and Flutter for Embedded Linux.   Source: What's the difference between Linux desktop and Embedded Linux · sony/flutter-embedded-linux Wiki · GitHub   Source: What's the difference between Linux desktop and Embedded Linux · sony/flutter-embedded-linux Wiki · GitHub Here is the link to the mentioned repository: GitHub - sony/flutter-elinux: Flutter tools for embedded Linux (eLinux) Finally, I would like to encourage you to read the official Flutter documentation and consider this tool as a great option compared to widely used tools on embedded devices such as Qt or Chromium. Also, please have a look to a great article written by Payam Zahedi delving into the implementation of Flutter for Embedded Linux measuring performance and giving conclusions about the usage of Flutter in embedded systems. (Flutter on Embedded Devices. Learn how to run Flutter on embedded… | by Payam Zahedi | Snapp Embedded | Medium).    
View full article