i.MX处理器知识库

取消
显示结果 
显示  仅  | 搜索替代 
您的意思是: 

i.MX Processors Knowledge Base

讨论

排序依据:
This guide is a continuation from our latest Debian 12 Installation Guide for iMX8MM, iMX8MP, iMX8MN and iMX93. Here we will describe the process to install the multimedia and hardware acceleration packages, specifically GPU, VPU and Gstreamer on i.MX8M Mini, i.MX8M Plus and i.MX8M Nano. The guide is based on the one provided by our colleague Build Ubuntu For i.MX8 Series Platform - NXP Community, which requires to previously build an image using Yocto Project with the following distro and image name. Distro name - fsl-imx-wayland Image name – imx-image-multimedia For more information please check our BSP documentation i.MX Yocto Project User’s Guide.   Hardware Requirements Linux Host Computer (Ubuntu 20.04 or later) USB Card reader or Micro SD to SD adapter SD Card Evaluation Kit Board for the i.MX8M Nano, i.MX8M Mini, i.MX8M Plus   Software Requirements Linux Ubuntu (20.04 tested) or Debian for Host Computer BSP version 6.1.55 built with Yocto Project   After built the image we can start the installation by following the steps below:   GPU Installation The GPU Installation consists of copy the files from packages imx-gpu-g2d, imx-gpu-viv, libdrm to the Debian system. As our latest installation guide, we will continue naming “mountpoint” to the directory where Debian system is mounted on our host machine. Regarding the path provided on each step, we put labels <build-path> and <machine> that you will need to change based on your environment. These are the paths that Yocto Project uses to save the packages. However, this could change on your environment and you can find the work directory from each package using the following command: bitbake -e <package-name> | grep ^WORKDIR= This command will show you the absolute path of the package work directory. 1. Install GPU Packages $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/imx-gpu-g2d/6.4.11.p2.2-r0/image/* mountpoint $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/imx-gpu-viv/1_6.4.11.p2.2-aarch64-r0/image/* mountpoint $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/libdrm/2.4.115.imx-r0/image/* mountpoint   2. Install Linux IMX Headers and IMX Parser $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/linux-imx-headers/6.1-r0/image/* mountpoint $ sudo cp -Pra <build-path>/tmp/work/armv8a-poky-linux/imx-parser/4.8.2-r0/image/* mountpoint   3. Use chroot $ sudo LANG=C.UTF-8 chroot mountpoint/ qemu-aarch64-static /bin/bash   4. Install Dependencies $ apt install libudev-dev libinput-dev libxkbcommon-dev libpam0g-dev libx11-xcb-dev libxcb-xfixes0-dev libxcb-composite0-dev libxcursor-dev libxcb-shape0-dev libdbus-1-dev libdbus-glib-1-dev libsystemd-dev libpixman-1-dev libcairo2-dev libffi-dev libxml2-dev kbd libexpat1-dev autoconf automake libtool meson cmake ssh net-tools network-manager iputils-ping rsyslog bash-completion htop resolvconf dialog vim udhcpc udhcpd git v4l-utils alsa-utils git gcc less autoconf autopoint libtool bison flex gtk-doc-tools libglib2.0-dev libpango1.0-dev libatk1.0-dev kmod pciutils libjpeg-dev   5. Create a folder for Multimedia Installation. Here we will clone all the multimedia repositories.  $ mkdir multimedia_packages $ cd multimedia_packages   6. Build Wayland $ git clone https://gitlab.freedesktop.org/wayland/wayland.git $ cd wayland $ git checkout 1.22.0 $ meson setup build --prefix=/usr -Ddocumentation=false -Ddtd_validation=true $ cd build $ ninja install   7. Build Wayland Protocols IMX $ git clone https://github.com/nxp-imx/wayland-protocols-imx.git $ cd wayland-protocols-imx $ git checkout wayland-protocols-imx-1.32 $ meson setup build --prefix=/usr -Dtests=false $ cd build $ ninja install   8. Build Weston $ git clone https://github.com/nxp-imx/weston-imx.git $ cd weston-imx $ git checkout weston-imx-11.0.3 $ meson setup build --prefix=/usr -Dpipewire=false -Dsimple-clients=all -Ddemo-clients=true -Ddeprecated-color-management-colord=false -Drenderer-gl=true -Dbackend-headless=false -Dimage-jpeg=true -Drenderer-g2d=true -Dbackend-drm=true -Dlauncher-libseat=false -Dcolor-management-lcms=false -Dbackend-rdp=false -Dremoting=false -Dscreenshare=true -Dshell-desktop=true -Dshell-fullscreen=true -Dshell-ivi=true -Dshell-kiosk=true -Dsystemd=true -Dlauncher-logind=true -Dbackend-drm-screencast-vaapi=false -Dbackend-wayland=false -Dimage-webp=false -Dbackend-x11=false -Dxwayland=false $ cd build $ ninja install   VPU Installation To install VPU and Gstreamer please follow the steps below: 1. Install firmware-imx $ sudo cp -Pra <build-path>/tmp/work/all-poky-linux/firmware-imx/1_8.22-r0/image/lib/* mountpoint/lib/   2. Install VPU Driver $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/imx-vpu-hantro/1.31.0-r0/image/* mountpoint $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/imx-vpuwrap/git-r0/image/* mountpoint   3. Use chroot $ sudo LANG=C.UTF-8 chroot mountpoint/ qemu-aarch64-static /bin/bash   4. Install dependencies for Gstreamer Plugins $ apt install libgirepository1.0-dev gettext liborc-0.4-dev libasound2-dev libogg-dev libtheora-dev libvorbis-dev libbz2-dev libflac-dev libgdk-pixbuf-2.0-dev libmp3lame-dev libmpg123-dev libpulse-dev libspeex-dev libtag1-dev libbluetooth-dev libusb-1.0-0-dev libcurl4-openssl-dev libssl-dev librsvg2-dev libsbc-dev libsndfile1-dev   5. Change directory to multimedia packages. $ cd multimedia-packages   6. Build gstreamer $ git clone https://github.com/nxp-imx/gstreamer -b lf-6.1.55-2.2.0 $ cd gstreamer $ meson setup build --prefix=/usr -Dintrospection=enabled -Ddoc=disabled -Dexamples=disabled -Ddbghelp=disabled -Dnls=enabled -Dbash-completion=disabled -Dcheck=enabled -Dcoretracers=disabled -Dgst_debug=true -Dlibdw=disabled -Dtests=enabled -Dtools=enabled -Dtracer_hooks=true -Dlibunwind=disabled -Dc_args=-I/usr/include/imx $ cd build $ ninja install   7. Build gst-plugins-base $ git clone https://github.com/nxp-imx/gst-plugins-base -b lf-6.1.55-2.2.0 $ cd gst-plugins-base $ meson setup build --prefix=/usr -Dalsa=enabled -Dcdparanoia=disabled -Dgl-graphene=disabled -Dgl-jpeg=disabled -Dopus=disabled -Dogg=enabled -Dorc=enabled -Dpango=enabled -Dgl-png=enabled -Dqt5=disabled -Dtheora=enabled -Dtremor=disabled -Dvorbis=enabled -Dlibvisual=disabled -Dx11=disabled -Dxvideo=disabled -Dxshm=disabled -Dc_args=-I/usr/include/imx $ cd build $ ninja install   8. Build gst-plugins-good $ git clone https://github.com/nxp-imx/gst-plugins-good -b lf-6.1.55-2.2.0 $ cd gst-plugins-good $ meson setup build --prefix=/usr -Dexamples=disabled -Dnls=enabled -Ddoc=disabled -Daalib=disabled -Ddirectsound=disabled -Ddv=disabled -Dlibcaca=disabled -Doss=enabled -Doss4=disabled -Dosxaudio=disabled -Dosxvideo=disabled -Dshout2=disabled -Dtwolame=disabled -Dwaveform=disabled -Dasm=disabled -Dbz2=enabled -Dcairo=enabled -Ddv1394=disabled -Dflac=enabled -Dgdk-pixbuf=enabled -Dgtk3=disabled -Dv4l2-gudev=enabled -Djack=disabled -Djpeg=enabled -Dlame=enabled -Dpng=enabled -Dv4l2-libv4l2=disabled -Dmpg123=enabled -Dorc=enabled -Dpulse=enabled -Dqt5=disabled -Drpicamsrc=disabled -Dsoup=enabled -Dspeex=enabled -Dtaglib=enabled -Dv4l2=enabled -Dv4l2-probe=true -Dvpx=disabled -Dwavpack=disabled -Dximagesrc=disabled -Dximagesrc-xshm=disabled -Dximagesrc-xfixes=disabled -Dximagesrc-xdamage=disabled -Dc_args=-I/usr/include/imx $ cd build $ ninja install   9. Build gst-plugins-bad $ git clone https://github.com/nxp-imx/gst-plugins-bad -b lf-6.1.55-2.2.0 $ cd gst-plugins-bad $ meson setup build --prefix=/usr -Dintrospection=enabled -Dexamples=disabled -Dnls=enabled -Dgpl=disabled -Ddoc=disabled -Daes=enabled -Dcodecalpha=enabled -Ddecklink=enabled -Ddvb=enabled -Dfbdev=enabled -Dipcpipeline=enabled -Dshm=enabled -Dtranscode=enabled -Dandroidmedia=disabled -Dapplemedia=disabled -Dasio=disabled -Dbs2b=disabled -Dchromaprint=disabled -Dd3dvideosink=disabled -Dd3d11=disabled -Ddirectsound=disabled -Ddts=disabled -Dfdkaac=disabled -Dflite=disabled -Dgme=disabled -Dgs=disabled -Dgsm=disabled -Diqa=disabled -Dkate=disabled -Dladspa=disabled -Dldac=disabled -Dlv2=disabled -Dmagicleap=disabled -Dmediafoundation=disabled -Dmicrodns=disabled -Dmpeg2enc=disabled -Dmplex=disabled -Dmusepack=disabled -Dnvcodec=disabled -Dopenexr=disabled -Dopenni2=disabled -Dopenaptx=disabled -Dopensles=disabled -Donnx=disabled -Dqroverlay=disabled -Dsoundtouch=disabled -Dspandsp=disabled -Dsvthevcenc=disabled -Dteletext=disabled -Dwasapi=disabled -Dwasapi2=disabled -Dwildmidi=disabled -Dwinks=disabled -Dwinscreencap=disabled -Dwpe=disabled -Dzxing=disabled -Daom=disabled -Dassrender=disabled -Davtp=disabled -Dbluez=enabled -Dbz2=enabled -Dclosedcaption=enabled -Dcurl=enabled -Ddash=enabled -Ddc1394=disabled -Ddirectfb=disabled -Ddtls=disabled -Dfaac=disabled -Dfaad=disabled -Dfluidsynth=disabled -Dgl=enabled -Dhls=enabled -Dkms=enabled -Dcolormanagement=disabled -Dlibde265=disabled -Dcurl-ssh2=disabled -Dmodplug=disabled -Dmsdk=disabled -Dneon=disabled -Dopenal=disabled -Dopencv=disabled -Dopenh264=disabled -Dopenjpeg=disabled -Dopenmpt=disabled -Dhls-crypto=openssl -Dopus=disabled -Dorc=enabled -Dresindvd=disabled -Drsvg=enabled -Drtmp=disabled -Dsbc=enabled -Dsctp=disabled -Dsmoothstreaming=enabled -Dsndfile=enabled -Dsrt=disabled -Dsrtp=disabled -Dtinyalsa=disabled -Dtinycompress=enabled -Dttml=enabled -Duvch264=enabled -Dv4l2codecs=disabled -Dva=disabled -Dvoaacenc=disabled -Dvoamrwbenc=disabled -Dvulkan=disabled -Dwayland=enabled -Dwebp=enabled -Dwebrtc=disabled -Dwebrtcdsp=disabled -Dx11=disabled -Dx265=disabled -Dzbar=disabled -Dc_args=-I/usr/include/imx $ cd build $ ninja install   10. Build imx-gst1.0-plugin $ git clone https://github.com/nxp-imx/imx-gst1.0-plugin -b lf-6.1.55-2.2.0 $ cd imx-gst1.0-plugin $ meson setup build --prefix=/usr -Dplatform=MX8 -Dc_args=-I/usr/include/imx $ cd build $ ninja install   11. Exit chroot $ exit   Verify Installation For verification process, boot your target from the SD Card. (Review your specific target documentation) 1. Verify Weston For this verification you will need to be root user. # export XDG_RUNTIME_DIR=/run/user/0 # weston   2. Verify VPU and Gstreamer Use the following Gstreamer pipeline for Hardware Accelerated VPU Encode. # gst-launch-1.0 videotestsrc ! video/x-raw, format=I420, width=640, height=480 ! vpuenc_h264 ! filesink location=test.mp4   Then you can reproduce the file with this command: # gplay-1.0 test.mp4   Finally, you have installed and verified the GPU, VPU and Multimedia packages. Now, you can start testing audio and video applications.
查看全文
Hello, here Jorge. On this post I will explain how to enable MQS1 on i.MX8ULP. As background about how to setup the environment to build the image using Yocto, please take a look on our i.MX Yocto Project User's Guide: Requirements: i.MX 8ULP EVK. Serial console emulator (Tera Term, Putty, etc.). USB Type-C cable. Micro USB cable. Headphones/speakers. Linux PC. Build done in Linux 6.6.23_2.0.0. i.MX8ULP audio subsystem. i.MX 8ULP extends audio capabilities on i.MX 7ULP by adding dedicated DSP cores for voice trigger and audio processing, enabling lower latency and power efficiency to support variety of audio applications. Some of hardware blocks implemented on 8ULP to support audio use cases are the next: Cadence Fusion F1 DSP processor. Cadence HiFi4 DSP processor. PowerQuad hardware accelerator with fixed and floating + FFT. Digital Microphone interface with support of up-to 8 PDM channels. Up-to 8 independent SAI instances. Up-to 2 Medium Quality Sound (MQS). Sony/Philips Digital interface (SPDIF). As is described before, MQS0 and MQS1 are part of real time domain and application domain respectively. I’m going to focus this post on how to enable MQS1 on application domain. Medium Quality Sound (MQS)  This module is basically generates a PWM from PCM audio data. For the major part of typical audio applications will require an external CODEC to deliver the audio quality but, sometimes where the application does not demand this quality, MQS can provide a medium quality audio via GPIO pin that can directly drive the audio output to a speaker or headphone via inexpensive external amplifier/buffer instead of CODEC. The design of the MQS can be described as follows: Input the PCM audio data (from SAI) into a 16-bit register. Up-sample data to match PWM switching frequency. Perform a simple 2nd order Sigma-Delta smooth on the current data versus previous data. Convert the PCM register into a 6-bit PWM width register and output through a GPIO pin.   How to enable it? By default, our BSP does not enable clock for MQS1. This clock is controlled on CGC1 (AD), specifically on MQS1CLK (Multiplexer to select the audio clock connected to the MQS clock input). So, it is needed to modify imx8ulp-clock.h and clk-imx8ulp.c. Please take a look on patch attached at the end of this post to see the modification in drivers easily. These drivers have the definition/configuration for MQS1_SEL in CGC1 and needs to be added as follows: MQS1_SEL definition needs to bed added in imx8ulp-clock.h: #define IMX8ULP_CLK_MQS1_SEL 56 #define IMX8ULP_CLK_CGC1_END 57 MQS1_SEL configuration needs to be added in imx8ulp_clk_cgc1_init of clk-imx8ulp.c: clks[IMX8ULP_CLK_MQS1_SEL] = imx_clk_hw_mux2("mqs1_sel", base + 0x90c, 0, 2, sai45_sels, ARRAY_SIZE(sai45_sels)); Also, it is necessary to configure MQS1 on device tree of i.MX8ULP. Add this in soc: soc@0 of imx8ulp.dtsi: mqs1: mqs@0x29290064 { reg = <0x29290064 0x4>; compatible = "fsl,imx8qm-mqs"; assigned-clocks = <&cgc1 IMX8ULP_CLK_MQS1_SEL>; assigned-clock-parents = <&cgc1 IMX8ULP_CLK_SPLL3_PFD1_DIV1>; clocks = <&cgc1 IMX8ULP_CLK_MQS1_SEL>, <&cgc1 IMX8ULP_CLK_MQS1_SEL>; clock-names = "core", "mclk"; status = "disabled"; }; And create a new device tree, in this case is going to be named imx8ulp-evk-mqs.dts and is as follows: #include "imx8ulp-evk.dts" / { sound-simple-mqs { compatible = "simple-audio-card"; simple-audio-card,name = "imx-simple-mqs"; simple-audio-card,frame-master = <&sndcpu>; simple-audio-card,bitclock-master = <&sndcpu>; simple-audio-card,dai-link@0 { format = "left_j"; sndcpu: cpu { sound-dai = <&sai4>; }; codec { sound-dai = <&mqs1>; }; }; }; }; &cgc1 { assigned-clock-rates = <24576000>; }; &iomuxc1 { pinctrl_mqs1: mqs1grp { fsl,pins = < MX8ULP_PAD_PTF7__MQS1_LEFT 0x43 >; }; }; &mqs1 { #sound-dai-cells = <0>; pinctrl-names = "default"; pinctrl-0 = <&pinctrl_mqs1>; status = "okay"; }; &sai4 { #sound-dai-cells = <0>; assigned-clocks = <&cgc1 IMX8ULP_CLK_SAI4_SEL>; assigned-clock-parents = <&cgc1 IMX8ULP_CLK_SPLL3_PFD1_DIV1>; status = "okay"; }; Let’s apply these changes on our BSP, in my case I’m going to create a new layer in Yocto to add these modifications with a patch that can be found at the end on this post, here the steps: Install essential Yocto Project host packages: $ sudo apt install gawk wget git diffstat unzip texinfo gcc build-essential chrpath socat cpio python3 python3-pip python3-pexpect xz-utils debianutils iputils-ping python3-git python3-jinja2 python3-subunit zstd liblz4-tool file locales libacl1 Install the “repo” utility: $ mkdir ~/bin $ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo $ chmod a+x ~/bin/repo $ export PATH=~/bin:$PATH Set up Git: $ git config --global user.name "Your Name" $ git config --global user.email "Your Email" $ git config –list Download the i.MX Yocto Project Community BSP recipe layers and create build folder: $ mkdir imx-yocto-bsp $ cd imx-yocto-bsp $ repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-scarthgap -m imx-6.6.23-2.0.0.xml $ repo sync $ DISTRO=fsl-imx-wayland MACHINE=imx8ulp-lpddr4-evk source imx-setup-release.sh -b 8ulp_build Create the new layer: $ cd ~/imx-yocto-bsp/sources $ bibake-layers create-layer meta-mqs $ cd meta-mqs conf/layer.conf should be as follows: BBPATH .= ":${LAYERDIR}" BBFILES += "${LAYERDIR}/recipes-*/*/*.bb \ ${LAYERDIR}/recipes-*/*/*.bbappend" BBFILE_COLLECTIONS += "meta-mqs" BBFILE_PATTERN_meta-mqs = "^${LAYERDIR}/" BBFILE_PRIORITY_meta-mqs = "6" LAYERSERIES_COMPAT_meta-mqs = "nanbield" Let’s change the recipe: $ sudo rm -r recipes-example $ mkdir -p recipes-kernel/linux/files 0001-8ULP-MQS-Enable.patch should be copied to ~/imx-yocto-bsp/sources/meta-mqs/recipes-kernel/linux/files Add an append (on this case is called “linux-imx_%.bbappend”)to change the recipe with next content: FILESEXTRAPATHS:prepend := "${THISDIR}/files:" SRC_URI += "file:// 0001-8ULP-MQS-Enable.patch " addtask copy_dts after do_unpack before do_prepare_recipe_sysroot do_copy_dts () { if [ -n "${DTS_FILE}" ]; then if [ -f ${DTS_FILE} ]; then echo "do_copy_dts: copying ${DTS_FILE} in ${S}/arch/arm64/boot/dts/freescale" cp ${DTS_FILE} ${S}/arch/arm64/boot/dts/freescale/ fi fi } The next step is add the layer and build the image: $ cd ~/imx-yocto-bsp/8ulp_build $ bitbake-layers add-layer ~/imx-yocto-bsp/sources/meta-mqs Confirm that the layer has been added: $ bitbake-layers show-layers Build the image: $ bitbake imx-image-multimedia i.MX8ULP EVK limitations The i.MX8ULP has the next MQS1 pins available: But, in the EVK board, the mayor part of these pins are used for other functions such as: - Push button: - MIPI DSI:  - Etc… So, take the output signal of MQS1 pins of EVK board is difficult, in this article, I’m going to configure PTF7 only (MQS1_left) for practicality. If you are working with this board and you need to use these pins for MQS function you will need to manipulate the traces and take the required signals. If you are designing a custom board, planning is essential to avoid this issue. Flash the board. One the build has been finished, we will have the necessary files to flash the board and test it. If you are not too familiarized with this process I suggest you take a look on this post. First, put the board in serial download mode changing the boot configuration switches on the board:   The next step is connecting the power cable, micro-USB cable on the debug port and USB-C type cable to USB0 connector on the board. Then, turn-on the board and run the next command in terminal of build directory: uuu -b emmc_all imx-boot-imx8ulpevk-sd.bin-flash_singleboot_m33 imx-image-multimedia-imx8ulpevk.wic Now, power-off the board, change the boot mode to single boot-eMMC and power it on to test it. Test MQS1 in i.MX8ULP. To test MQS1 it is needed to change the device tree we created, we can do it with the next commands in U-boot: u-boot=> setenv fdtfile imx8ulp-evk-mqs.dtb u-boot=> saveenv u-boot=> boot Now we can test MQS1 on i.MX8ULP EVK, let's confirm that the clock is active in MQS module with the next command: $ cat /sys/kernel/debug/clk/clk_summary -n As you can see mqs1_sel is active and running at 24576000 Hz: And the card appears if we run the next command: $ aplay -l To play audio through MQS we can do it as any sound card: $ speaker-test -D sysdefault:CARD=imxsimplemqs -c 2 -f 48000 -F S16_LE -t pink -P 3 The signal should look like this in the pin output: And like this after a filter, for example the filter used in i.MX93 EVK.   With this post we have been able check the general operation of MQS, configure and compile the image with the required changes to enable MQS1 on EVK board and measure the output on the board. There is a considerable limitation on EVK board since we cannot test left and right outputs without intervene the base board, but this can be helpful as a reference to who would like to use this audio output on i.MX8ULP processor. Best regards. References. Yocto Project customization guide - NXP Community How to add a new layer and a new recipe in Yocto - NXP Community Flashing Linux BSP using UUU - NXP.  i.MX8ULP reference manual. Embedded Linux Projects Using Yocto Project Cookbook.
查看全文
The following steps allow to make use of device tree overlay files, a definition of device tree overlay provided by kernel.org is the next:  "A Devicetree’s overlay purpose is to modify the kernel’s live tree, and have the modification affecting the state of the kernel in a way that is reflecting the changes. Since the kernel mainly deals with devices, any new device node that result in an active device should have it created while if the device node is either disabled or removed all together, the affected device should be deregistered." Knowing that, in this post will be used as an example the baseboard "i.MX 93 EVK" and will be added with device tree overlay an LVDS panel, adding an automatic detection from u-boot, and will be used a host with linux version Ubuntu 20.04.2. Note: It only works for linux kernel version 6.6.3-nanbield onward. Linux device-tree overlay from linux-imx   This section explains all about device tree overlay compilation and building, to create a .dtso file, the equivalent of .dts for overlays, adding some difference between them, using as base the linux-imx repository. It can be downloaded from the following repository:   git clone https://github.com/nxp-imx/linux-imx.git -b <branch version>   Branch version used by this post "lf-6.6.3-1.0.0". Device tree source overlay (.dtso)    It can be similar to a device tree source (.dts) but it had little difference between them, there are some difference in the next list: There's another type of files to be included, if is used pinmux it's necessary adding it with "#include "imx93-pinfunc.h"" and libraries from dt-bindings, it depends on the type of device tree to implement "#include <dt-bindings/<library>>" At initialization it needs to add: "/dts-v1/;"  "/plugin/;" Addition of "fragment" nodes, it allow override parts of a device tree,  it can be a specific node or create a new node. following structure it's the structure of a fragment:   { /* ignored properties by the overlay */ fragment@0 { /* first child node */ target=<phandle>; /* phandle target of the overlay */ or target-path="/path"; /* target path of the overlay */ __overlay__ { property-a; /* add property-a to the target */ node-a { /* add to an existing, or create a node-a */ ... }; }; } fragment@1 { /* second child node */ ... }; /* more fragments follow */ }   kernel.org Overlays can't delete a property or a node when it's applied, so can't be used "/delete-node/" nor "/delete-prop/", but it can be added to the node "status = "disabled";" to disable it.  Using as an example the file imx93-11x11-evk-boe-wxga-lvds-panel.dts located in the previous repository file direction <linux-imx path>/arch/arm64/boot/dts/freescale/ using it as a base tree:   // SPDX-License-Identifier: (GPL-2.0+ OR MIT) /* * Copyright 2022 NXP */ #include "imx93-11x11-evk.dts" / { lvds_backlight: lvds_backlight { compatible = "pwm-backlight"; pwms = <&adp5585pwm 0 100000 0>; enable-gpios = <&adp5585gpio 8 GPIO_ACTIVE_HIGH>; power-supply = <&reg_vdd_12v>; status = "okay"; brightness-levels = < 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100>; default-brightness-level = <80>; }; ... }; ... &adv7535 { status = "disabled"; }; ...   imx93-11x11-evk-boe-wxga-lvds-panel.dts Using the previous points and making use of fragments, if we want adapt the node lvds_backlight as fragment, it will be  added in the section of overlay, and adding it to a target-path "/":   #include <dt-bindings/interrupt-controller/irq.h> #include "imx93-pinfunc.h" #include <dt-bindings/gpio/gpio.h> /dts-v1/; /plugin/; / { fragment@0 { target-path = "/"; __overlay__ { lvds_backlight: lvds_backlight { compatible = "pwm-backlight"; pwms = <&adp5585pwm 0 100000 0>; enable-gpios = <&adp5585gpio 8 GPIO_ACTIVE_HIGH>; power-supply = <&reg_vdd_12v>; status = "okay"; brightness-levels = < 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100>; default-brightness-level = <80>; }; }; }; ... };   imx93-11x11-evk-test-lvds-panel.dtso In the case of adding a property to an existing node, it will look in the following way using as example the node adv7535.   ... / { ... fragment@2 { target = <&adv7535>; __overlay__ { status = "disabled"; }; }; ... };   imx93-11x11-evk-boe-wxga-lvds-panel.dts At the end of this post, will be attach the complete file used for LVDS panel named as imx93-11x11-evk-test-lvds-panel.dtso Build device tree blob for overlay (dtbo)   To compile the previous .dtso it's necessary to include it to linux-imx repository, linux device tree overlay was included in BSP from version 6.6.3-nanbield onward in Makefile, so it's only necessary adding it as files to be compiled as .dtso, at the end of the post will be a patch file named as linux-imx-makefile.patch to add LVDS-panel to Makefile from branch lf-6.6.3-1.0.0 Add previously file imx93-11x11-evk-test-lvds-panel.dtso to path <linux-imx path>/arch/arm64/boot/dts/freescale/ Add imx93-11x11-evk-test-lvds-panel.dtso as file to be compiled in Makefile, it is located in the next path <linux-imx path>/arch/arm64/boot/dts/freescale/Makefile, it can be added with the next sentence format: <overlay without extension>-dtbs := <file to be overlayed>.dtb <overlay>.dtbo Example of how to add LVDS panel to makefile  imx93-11x11-evk-test-lvds-panel-dtbs := imx93-11x11-evk.dtb imx93-11x11-evk-test-lvds-panel.dtbo Makefile From main path, make the configuration to be compiled with the following bash command: $ cd <linux-imx path>/ $ make -j$(nproc --all) ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- imx_v8_defconfig​ Compile overlay to use $ make -j $(nproc --all) ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- freescale/<overlay>.dtbo​ as example for LVDS panel $ make -j $(nproc --all) ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- freescale/imx93-11x11-evk-test-lvds-panel.dtbo It will compile the device tree blob overlay to use. Copy .dtbo generated in memory used by i.MX 93, it can be sending it from scp. scp ./​<overlay>.dtbo​ root@<ip>:/run/media/<memory section used> u-boot   This section explain the procedure to load a device tree overlay, it will be from u-boot explaining commands used and using the LVDS panel as an example. Before applying overlay   Before applying, it's necessary had a device tree loaded so looking around in the process of booting in a i.MX 93 from u-boot, this process is defined by the enviroment variable "bsp_bootcmd" that calls the variable mmcboot, and looking what does these variables, it can be look in the following sentence:    bsp_bootcmd=echo Running BSP bootcmd ...; mmc dev ${mmcdev}; if mmc rescan; then if run loadbootscript; then run bootscript; else if test ${sec_boot} = yes; then if run loadcntr; then run mmcboot; else run netboot; fi; else if run loadimage; then run mmcboot; else run netboot; fi; fi; fi; fi; mmcboot=echo Booting from mmc ...; run mmcargs; if test ${sec_boot} = yes; then if run auth_os; then run boot_os; else echo ERR: failed to authenticate; fi; else if test ${boot_fit} = yes || test ${boot_fit} = try; then bootm ${loadaddr}; else if run loadfdt; then run boot_os; else echo WARN: Cannot load the DT; fi; fi;fi;   but reducing it in a normal situation, ignoring if else case and echoes, it can be simplify to:   mmc dev ${mmcdev}; run loadimage; run mmcargs; run loadfdt; run boot_os;   the device tree is load is in the section "run loadfdt" with fatload in his definition:   loadfdt=fatload mmc ${mmcdev}:${mmcpart} ${fdt_addr_r} ${fdtfile}   So, it's necessary to applying device tree overlay after "run loadfdt". How to apply an overlay   To load correctly an overlay it's necessary to following some steps: Load flattened device tree (fdt). (executed by loadfdt) Configure fdt address.  In some cases it's necessary to expand fdt memory size Load overlay Apply overlay The full sentence to apply it, it's the following u-boot command:   u-boot=> setexpr fdtovaddr ${fdt_addr} + 0xF0000; setexpr fdt_buffer 16384; fdt addr ${fdt_addr} && fdt resize ${fdt_buffer}; fatload mmc ${mmcdev}:${mmcpart} ${fdtovaddr} <overlay>.dtbo && fdt apply ${fdtovaddr};   First of all, setexpr it's just to create a new variable, in this case these variable is an integer. Spliting the previously command we can found the steps to applying it. "fdt addr ${fdt_addr};" used to configure fdt address, and point to the space of memory previously charged. "fdt resize ${fdt_buffer};" expand fdt memory size, is used as a value 16384 just to get the enough space to charge dtbo, this number was related with 2 14 "fatload mmc ${mmcdev}:${mmcpart} ${fdtovaddr} <overlay>.dtbo" Load device tree overlay using fdovaddr, that is fdt_addr adding an offset of memory space.  "fdt apply ${fdtovaddr};" apply device tree overlay Remembering about load overlay needs to be executed after loadfdt, it's possible to save the previous command to a variable and executing it after loadfdt with setexpr, in this case using as example lvds test.   u-boot=> setenv loadoverlay "setexpr fdtovaddr ${fdt_addr} + 0xF0000; setexpr fdt_buffer 16384; fdt addr $\{fdt_addr\} && fdt resize $\{fdt_buffer\}; fatload mmc $\{mmcdev\}:$\{mmcpart\} $\{fdtovaddr\} imx93-11x11-evk-test-lvds-panel.dtbo && fdt apply $\{fdtovaddr\};"   and modifying mmcboot with loadoverlay after loadfdt   u-boot=> setenv mmcboot "run mmcargs; run loadfdt; run loadoverlay; run boot_os;"   to save the environment variables created, it can be saved from u-boot wit the following command.   u-boot=> saveenv   At the end, boot imx93   u-boot=> boot   The LVDS panel should be working using the original dtb (imx93-11x11-evk.dtb) applied the overlay. Automatize u-boot LVDS Panel   This section explain how can be automatize the u-boot load overlay using an LVDS panel, it can vary depending the device to used for, the method used is detecting it in u-boot initialization and if found any device it will generate an environment variable. All the steps was using as a base uboot-imx repository, it can be downloaded from the following repository, at the end of this post will be a patch with the changes.   git clone https://github.com/nxp-imx/uboot-imx.git -b <branch version>   Branch version used "lf-6.6.3-1.0.0". Base   Knowing more about LVDS Panel used by imx93 it's really hard know more information about registers, so in this example will be limited to detect that is connected the address to a corresponding bus from touch controller.  To know i2c address and bus used by LVDS panel it was used searching it from the original device tree in the next section:   &lpi2c1 { exc80h60: touch@2a { compatible = "eeti,exc80h60"; reg = <0x2a>; pinctrl-names = "default"; pinctrl-0 = <&pinctrl_ctp_int>; /* * Need to do hardware rework here: * remove R131, short R181 */ interrupt-parent = <&gpio2>; interrupts = <21 IRQ_TYPE_LEVEL_LOW>; reset-gpios = <&pcal6524 17 GPIO_ACTIVE_HIGH>; status = "okay"; }; };   imx93-11x11-evk-boe-wxga-lvds-panel.dts Previous node is related with touch controller from LVDS using lpi2c1, the first channel of i2c corresponding to i2c bus 0, and the register used express the address used to be detected by device tree, in this case was the address 0x2A. u-boot generating a trigger   About how it can be detected touch controller from u-boot, this procedure use a function named as "board_late_init", it can be found by his definition from u-boot readme:   Board initialization settings: ------------------------------ During Initialization u-boot calls a number of board specific functions to allow the preparation of board specific prerequisites, e.g. pin setup before drivers are initialized. To enable these callbacks the following configuration macros have to be defined. Currently this is architecture specific, so please check arch/your_architecture/lib/board.c typically in board_init_f() and board_init_r(). - CONFIG_BOARD_EARLY_INIT_F: Call board_early_init_f() - CONFIG_BOARD_EARLY_INIT_R: Call board_early_init_r() - CONFIG_BOARD_LATE_INIT: Call board_late_init()   u-boot README In the case of i.MX 93 this function can be found in the next path <u-boot path>/board/freescale/imx93_evk/imx93_evk.c. Using the library included, "uclass.h", it will create a function that, if detect in the bus 0 (LVDS i2c bus) the address 0x2A (i2c LVDS address), it will create an environment variable with the overlay used, it can be set with the function env_set(<String with the name of the variable>, <String with the content of the variable>), the following function can detect and create the environment variable mentioned, creating it with the name "device-tree-overlay" with the content "lvds-panel".   #define LVDS_TOUCH_I2C_BUS 0 #define LVDS_TOUCH_I2C_ADDR 0x2A static void detect_display_connected(void) { struct udevice *bus = NULL; struct udevice *i2c_dev = NULL; int ret; ret = uclass_get_device_by_seq(UCLASS_I2C, LVDS_TOUCH_I2C_BUS, &bus); if (ret) { printf("%s: Can't find bus\n", __func__); } else { ret = dm_i2c_probe(bus, LVDS_TOUCH_I2C_ADDR, 0, &i2c_dev); if (ret) { printf("%s: Can't find device id=0x%x\n", __func__, LVDS_TOUCH_I2C_ADDR); } else { env_set("device-tree-overlay", "lvds-panel"); } } }   imx93_evk.c At the end, add this function to the previously mention, named as board_late_init, in the section CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG, like the following snipped from code:   int board_late_init(void) { #ifdef CONFIG_ENV_IS_IN_MMC board_late_mmc_env_init(); #endif env_set("sec_boot", "no"); #ifdef CONFIG_AHAB_BOOT env_set("sec_boot", "yes"); #endif #ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG env_set("board_name", "11X11_EVK"); env_set("board_rev", "iMX93"); detect_display_connected(); #endif return 0; }   imx93_evk.c Now, when it's starting u-boot after flashing, it will generate the environment variable as trigger if something it's connected with that i2c address, else it doesn't do anything. u-boot applying device tree overlay through event   As was explained in the section "How to apply device tree overlay", applying the device tree overlay automatically after configure the trigger it's easy, just adding an if/else case for this example, it can be more ways to applying it, even it's possible adding more of one device tree overlay, but in this example will load one.  Using u-boot command "test -e <environment variable>" it will detect if exist this environment variable, adding it to an if/else sentence it can create the event and applying the overlay if was detected or not, for this solution will be added this if/else as input if exists loadoverlay variable with the following structure:   u-boot=> if test -e ${device-tree-overlay}; then <case exists device-tree-overlay variable> else <case doesn't exists device-tree-overlay variable>; fi;   adding it to loadoverlay, it will be written like the following command:   u-boot=> setenv loadoverlay "if test -e ${device-tree-overlay}; then setexpr fdtovaddr ${fdt_addr} + 0xF0000; setexpr fdt_buffer 16384; fdt addr ${fdt_addr} && fdt resize $\{fdt_buffer\}; fatload mmc ${mmcdev}:${mmcpart} $\{fdtovaddr\} imx93-11x11-evk-test-lvds-panel.dtbo; fdt apply $\{fdtovaddr\} ; else echo no overlay; fi;"   A no recommended method it's that it can be saved the environment, and changing mmcboot variable with the following command:   u-boot=> setenv mmcboot "run mmcargs; run loadfdt; run loadoverlay; run boot_os;"; saveenv;   The problem about just saving it, it still necessary compile u-boot to load auto-detection of LVDS panel and flashing, another way to add the event trigger, it's adding it to u-boot as initial environment variable, it can be added in the header file of imx93, it is located in the next path <u-boot path>/include/configs/imx93_evk.h, line number 60, it can be added with the same string but it's recommended follow the same structure, like the following definition:   /* Initial environment variables */ #define CFG_EXTRA_ENV_SETTINGS \ ... "loadoverlay=echo loading overlays from mmc ...; " \ "if test -e ${device-tree-overlay}; then " \ "setexpr fdtovaddr ${fdt_addr} + 0xF0000; " \ "setexpr fdt_buffer 16384; " \ "fdt addr ${fdt_addr} && fdt resize ${fdt_buffer}; " \ "fatload mmc ${mmcdev}:${mmcpart} ${fdtovaddr} imx93-11x11-evk-test-lvds-panel.dtbo && fdt apply ${fdtovaddr}; " \ "else " \ "echo no overlay; " \ "fi;\0" \ ...   imx93_evk.h it also it's necessary to change mmcboot environment variable adding loadoverlay after executing loadfdt.    /* Initial environment variables */ #define CFG_EXTRA_ENV_SETTINGS \ .. "mmcboot=echo Booting from mmc ...; " \ "run mmcargs; " \ "if test ${sec_boot} = yes; then " \ "if run auth_os; then " \ "run run boot_os; " \ "else " \ "echo ERR: failed to authenticate; " \ "fi; " \ "else " \ "if test ${boot_fit} = yes || test ${boot_fit} = try; then " \ "bootm ${loadaddr}; " \ "else " \ "if run loadfdt; then " \ "run loadoverlay; " \ "run boot_os; " \ "else " \ "echo WARN: Cannot load the DT; " \ "fi; " \ "fi;" \ "fi;\0" \ ...   imx93_evk.h To build u-boot, copy the following commands in main path from u-boot   $ cd <u-boot path> $ make -j $(nproc --all) clean PLAT=imx93 CROSS_COMPILE=aarch64-linux-gnu- $ make -j $(nproc --all) ARCH=arm CROSS_COMPILE=aarch64-linux-gnu- imx93_11x11_evk_defconfig $ make -j $(nproc --all) PLAT=imx93 CROSS_COMPILE=aarch64-linux-gnu-   generating the files u-boot.bin and u-boot-spl.bin located in <uboot-imx path>/ and <uboot-imx path>/spl Build imx-boot image using imx-mkimage   To build the binary necessary to flash to iMX 93 EVK it's necessary build a file named as flash.bin, it can building using the next repository using the branch used for this example:    $ git clone https://github.com/nxp-imx/imx-mkimage.git -b lf-6.6.3_1.0.0   to build imx-boot image it's necessary adding some files to the path <imx-mkimage path>/iMX93, including 2 generated by u-boot, u-boot.bin and u-boot-spl.bin, move these files to iMX93 directory.   $ cp <uboot-imx path>/u-boot.bin <uboot-imx path>/spl/u-boot-spl.bin <imx-mkimage path>/iMX93/   follow the steps from imx linux users guide section 4.5.13 and imx linux release notes section 1.2 to build flash.bin, as an example of compile, there's the steps to compile for imx93. Get mx93a1-ahab-container.img $ wget https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/firmware-sentinel-0.11.bin $ chmod +x firmware-sentinel-0.11.bin $ ./firmware-sentinel-0.11.bin $ cp firmware-sentinel-0.11/mx93a1-ahab-container.img <imx-mkimage path>/iMX93/​ Get lpddr4_imem_1d_v202201.bin, lpddr4_dmem_2d_v202201.bin, lpddr4_imem_1d_v202201.bin and lpddr4_imem_2d_v202201.bin $ wget https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/firmware-imx-8.23.bin $ chmod +x firmware-imx-8.23.bin $ ./firmware-imx-8.23.bin $ cp firmware-imx-8.23/firmware/ddr/synopsys/lpddr4_dmem_1d_v202201.bin firmware-imx-8.23/firmware/ddr/synopsys/lpddr4_dmem_2d_v202201.bin firmware-imx-8.23/firmware/ddr/synopsys/lpddr4_imem_1d_v202201.bin firmware-imx-8.23/firmware/ddr/synopsys/lpddr4_imem_2d_v202201.bin <imx-mkimage path>/iMX93/​ Get bl31.bin $ git clone https://github.com/nxp-imx/imx-atf.git -b lf-6.6.3-1.0.0 $ cd imx-atf $ make -j $(nproc --all) PLAT=imx93 CROSS_COMPILE=aarch64-linux-gnu- $ cp <imx-atf path>/build/imx93/release/bl31.bin <imx-mkimage path>/iMX93​ Compile flash.bin from imx-mkimage $ cd <imx-mkimage path>/ $ make SOC=iMX9 REV=A1 flash_singleboot​ it will generate the binary flash.bin located in the path <imx-mkimage path>/iMX93/flash.bin. Flashing u-boot   Flashing just u-boot image using flash.bin, will be used uuu.exe, it can be downloaded from the his repositroy, try using the most recent version taged as "Latest"    https://github.com/nxp-imx/mfgtools/releases   make sure is using i.MX 93 EVK in boot mode download and connect it to your host from download USB port, using uuu.exe run the next code:   .\uuu.exe -b emmc .\flash.bin   or it can be flashed the full image with flash.bin binary.   .\uuu.exe -b emmc_all .\flash.bin ..\uuu\imx-image-full-imx93evk.wic   after that, starting be will using the created u-boot environment. Result   Inside u-boot, when it's connected the LVDS panel, it will create the variable named "device-tree-overlay" and will be charged automatically LVDS panel overlay, enabling it, if not it will working normally using DSI as output. Note: Ensure to have imx93-11x11-evk-test-lvds-panel.dtbo in memory. Reference   Device tree overlay: https://docs.kernel.org/devicetree/overlay-notes.html  
查看全文
On this tutorial we will review the implementation of Flutter on the i.MX8MP using the Linux Desktop Image. Please find more information about Flutter using the following link: Flutter: Option to create GUIs for Embedded System... - NXP Community Requirements: Evaluation Kit for the i.MX 8M Plus Applications Processor. (i.MX 8M Plus Evaluation Kit | NXP Semiconductors) NXP Desktop Image for i.MX 8M Plus (GitHub - nxp-imx/meta-nxp-desktop at lf-6.1.1-1.0.0-langdale) Note: This tutorial is based on the NXP Desktop Image with Yocto version 6.1.1 – Langdale. Steps: 1. First, run commands to update packages. $ sudo apt update $ sudo apt upgrade 2. Install Flutter for Linux using the following command. $ sudo snap install flutter --classic 3. Run the command to verify the correct installation. $ flutter doctor With this command you will find information about the installation. The important part for our purpose is the parameter "Linux toolchain - develop for Linux desktop". 4. Run the command “flutter create .” to create a flutter project, this framework will create different folders and files used to develop the application.  $ cd Documents $ mkdir flutter_hello $ cd flutter_hello $ flutter create .​ 5. Finally, you can run the “hello world” application using: $ flutter run Verify the program behavior incrementing the number displayed on the window.  
查看全文
  Just sharing some experiences during the development and studying.   Although, it appears some hardwares, it focuses on software to speed up your developing on your  hardware.     杂记共享一下在开发和学习过程中的经验。    虽然涉及一些硬件,但其本身关注软件,希望这些能加速您在自己硬件上的开发。 07/25/2024 iMX secondary boot collection https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/iMX-secondary-boot-collection/ta-p/1916915   07/25/2024 HSM Code-Signing Journey https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/HSM-Code-Signing-Journey/ta-p/1882244 25JUL2024 - add pkcs11 proxy                         HSM Code-Signing Journey_25JUL2024.pdf                          HSM Code-Signing Journey_25JUL2024.txt   06/06/2024 HSM Code-Signing Journey https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/HSM-Code-Signing-Journey/ta-p/1882244     02/07/2024 Device Tree Standalone Compile under Windows https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/Device-Tree-Standalone-Compile-under-Windows/ta-p/1855271   02/07/2024 i.MX8X security overview and AHAB deep dive i.MX8X security overview and AHAB deep dive - NXP Community   11/23/2023 “Standalone” Compile Device Tree https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/Standalone-Compile-Device-Tree/ta-p/1762373     10/26/2023 Linux Dynamic Debug https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/Linux-Dynamic-Debug/ta-p/1746611   08/10/2023 u-boot environment preset for sdcard mirror u-boot environment preset for sdcard mirror - NXP Community   06/06/2023 all(bootloader, device tree, Linux kernel, rootfs) in spi nor demo imx8qxpc0 mek all(bootloader, device tree, Linux kernel, rootfs)... - NXP Community     09/26/2022 parseIVT - a script to help i.MX6 Code Signing parseIVT - a script to help i.MX6 Code Signing - NXP Community   Provide  run under windows   09/16/2022   create sdcard mirror under windows create sdcard mirror under windows - NXP Community     08/03/2022   i.MX8MM SDCARD Secondary Boot Demo https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX8MM-SDCARD-Secondary-Boot-Demo/ta-p/1500011     02/16/2022 mx8_ddr_stress_test without UI   https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/mx8-ddr-stress-test-without-UI/ta-p/1414090   12/23/2021 i.MX8 i.MX8X Board Reset https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX8-i-MX8X-Board-Reset/ta-p/1391130       12/21/2021 regulator userspace-consumer https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/regulator-userspace-consumer/ta-p/1389948     11/24/2021 crypto af_alg blackkey demo crypto af_alg blackkey demo - NXP Community   09/28/2021 u-boot runtime modify Linux device tree(dtb) u-boot runtime modify Linux device tree(dtb) - NXP Community     08/17/2021 gpio-poweroff demo https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/gpio-poweroff-demo/ta-p/1324306         08/04/2021 How to use gpio-hog demo https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/How-to-use-gpio-hog-demo/ta-p/1317709       07/14/2021 SWUpdate OTA i.MX8MM EVK / i.MX8QXP MEK https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/SWUpdate-OTA-i-MX8MM-EVK-i-MX8QXP-MEK/ta-p/1307416     04/07/2021 i.MX8QXP eMMC Secondary Boot https://community.nxp.com/t5/i-MX-Community-Articles/i-MX8QXP-eMMC-Secondary-Boot/ba-p/1257704#M45       03/25/2021 sc_misc_board_ioctl to access the M4 partition from A core side sc_misc_board_ioctl to access the M4 partition fr... - NXP Community     03/17/2021 How to Changei.MX8X MEK+Base Board  Linux Debug UART https://community.nxp.com/t5/i-MX-Community-Articles/How-to-Change-i-MX8X-MEK-Base-Board-Linux-Debug-UART/ba-p/1246779#M43     03/16/2021 How to Change i.MX8MM evk Linux Debug UART https://community.nxp.com/t5/i-MX-Community-Articles/How-to-Change-i-MX8MM-evk-Linux-Debug-UART/ba-p/1243938#M40       05/06/2020 Linux fw_printenv fw_setenv to access U-Boot's environment variables Linux fw_printenv fw_setenv to access U-Boot's env... - NXP Community     03/30/2020 i.MX6 DDR calibration/stress for Mass Production https://community.nxp.com/docs/DOC-346065     03/25/2020 parseIVT - a script to help i.MX6 Code Signing https://community.nxp.com/docs/DOC-345998     02/17/2020 Start your machine learning journey from tensorflow playground Start your machine learning journey from tensorflow playground      01/15/2020 How to add  iMX8QXP PAD(GPIO) Wakeup How to add iMX8QXP PAD(GPIO) Wakeup    01/09/2020 Understand iMX8QX Hardware Partitioning By Making M4 Hello world Running Correctly https://community.nxp.com/docs/DOC-345359   09/29/2019 Docker On i.MX6UL With Ubuntu16.04 https://community.nxp.com/docs/DOC-344462   09/25/2019 Docker On i.MX8MM With Ubuntu https://community.nxp.com/docs/DOC-344473 Docker On i.MX8QXP With Ubuntu https://community.nxp.com/docs/DOC-344474     08/28/2019 eMMC5.0 vs eMMC5.1 https://community.nxp.com/docs/DOC-344265     05/24/2019 How to upgrade  Linux Kernel and dtb on eMMC without UUU How to upgrade Linux Kernel and dtb on eMMC without UUU     04/12/2019 eMMC RPMB Enhance and GP https://community.nxp.com/docs/DOC-343116   04/04/2019 How to Dump a GPT SDCard Mirror(Android O SDCard Mirror) https://community.nxp.com/docs/DOC-343079   04/04/2019 i.MX Create Android SDCard Mirror https://community.nxp.com/docs/DOC-343078   04/02/2019: i.MX Linux Binary_Demo Files Tips  https://community.nxp.com/docs/DOC-343075   04/02/2019:       Update Set fast boot        eMMC_RPMB_Enhance_and_GP.pdf   02/28/2019: imx_builder --- standalone build without Yocto https://community.nxp.com/docs/DOC-342702   08/10/2018: i.MX6SX M4 MPU Settings For RPMSG update    Update slide CMA Arrangement Consideration i.MX6SX_M4_MPU_Settings_For_RPMSG_08102018.pdf   07/26/2018 Understand ML With Simplest Code https://community.nxp.com/docs/DOC-341099     04/23/2018:     i.MX8M Standalone Build     i.MX8M Standalone Build.pdf     04/13/2018:      i.MX6SX M4 MPU Settings For RPMSG  update            Add slide CMA Arrangement  Consideration     i.MX6SX_M4_MPU_Settings_For_RPMSG_04132018.pdf   09/05/2017:       Update eMMC RPMB, Enhance  and GP       eMMC_RPMB_Enhance_and_GP.pdf 09/01/2017:       eMMC RPMB, Enhance  and GP       eMMC_RPMB_Enhance_and_GP.pdf 08/30/2017:     Dual LVDS for High Resolution Display(For i.MX6DQ/DLS)     Dual LVDS for High Resolution Display.pdf 08/27/2017:  L3.14.28 Ottbox Porting Notes:         L3.14.28_Ottbox_Porting_Notes-20150805-2.pdf MFGTool Uboot Share With the Normal Run One:        MFGTool_Uboot_share_with_NormalRun_sourceCode.pdf Mass Production with programmer        Mass_Production_with_NAND_programmer.pdf        Mass_Production_with_emmc_programmer.pdf AndroidSDCARDMirrorCreator https://community.nxp.com/docs/DOC-329596 L3.10.53 PianoPI Porting Note        L3.10.53_PianoPI_PortingNote_151102.pdf Audio Codec WM8960 Porting L3.10.53 PianoPI        AudioCodec_WM8960_Porting_L3.10.53_PianoPI_151012.pdf TouchScreen PianoPI Porting Note         TouchScreen_PianoPI_PortingNote_151103.pdf Accessing GPIO From UserSpace        Accessing_GPIO_From_UserSpace.pdf        https://community.nxp.com/docs/DOC-343344 FreeRTOS for i.MX6SX        FreeRTOS for i.MX6SX.pdf i.MX6SX M4 fastup        i.MX6SX M4 fastup.pdf i.MX6 SDCARD Secondary Boot Demo        i.MX6_SDCARD_Secondary_Boot_Demo.pdf i.MX6SX M4 MPU Settings For RPMSG        i.MX6SX_M4_MPU_Settings_For_RPMSG_10082016.pdf Security        Security03172017.pdf    NOT related to i.MX, only a short memo
查看全文
  Test environment   i.MX8MP EVK LVDS0 LVDS-HDMI  bridge(it6263) Uboot2022, Uboot2023 Background   Some customers need show logo using LVDS panel. Current BSP doesn't support LVDS driver in Uboot. This patch provides i.MX8MPlus LVDS driver support in Uboot. If you want to connect it to LVDS panel , you need port your lvds panel driver like  simple-panel.c   Update [2022.9.19] Verify on L5.15.32_2.0.0  0001-L5.15.32-Add-i.MX8MP-LVDS-driver-in-uboot 'probe device is failed, ret -2, probe video device failed, ret -19' is caused by below code. It has been merged in attachment. // /* Only handle devices that have a valid ofnode */ // if (dev_has_ofnode(dev) && !(dev->driver->flags & DM_FLAG_IGNORE_DEFAULT_CLKS)) { // /* // * Process 'assigned-{clocks/clock-parents/clock-rates}' // * properties // */ // ret = clk_set_defaults(dev, CLK_DEFAULTS_PRE); // if (ret) // goto fail; // }   [2023.3.14] Verify on L5.15.71 0001-L5.15.71-Add-i.MX8MP-LVDS-support-in-uboot   [2023.9.12] For some panel with low DE, you need uncomment CTRL_INV_DE line and set this bit to 1. #include <linux/string.h> @@ -110,9 +111,8 @@ static void lcdifv3_set_mode(struct lcdifv3_priv *priv, writel(CTRL_INV_HS, (ulong)(priv->reg_base + LCDIFV3_CTRL_SET)); /* SEC MIPI DSI specific */ - writel(CTRL_INV_PXCK, (ulong)(priv->reg_base + LCDIFV3_CTRL_CLR)); - writel(CTRL_INV_DE, (ulong)(priv->reg_base + LCDIFV3_CTRL_CLR)); - + //writel(CTRL_INV_PXCK, (ulong)(priv->reg_base + LCDIFV3_CTRL_CLR)); + //writel(CTRL_INV_DE, (ulong)(priv->reg_base + LCDIFV3_CTRL_CLR)); }       [2024.5.15] If you are uing simple-panel.c, need use below patch to set display timing from panel to lcdif controller. diff --git a/drivers/video/simple_panel.c b/drivers/video/simple_panel.c index f9281d5e83..692c96dcaa 100644 --- a/drivers/video/simple_panel.c +++ b/drivers/video/simple_panel.c @@ -18,12 +18,27 @@ struct simple_panel_priv { struct gpio_desc enable; }; +/* define your panel timing here and + * copy it in simple_panel_get_display_timing */ +static const struct display_timing boe_ev121wxm_n10_1850_timing = { + .pixelclock.typ = 71143000, + .hactive.typ = 1280, + .hfront_porch.typ = 32, + .hback_porch.typ = 80, + .hsync_len.typ = 48, + .vactive.typ = 800, + .vfront_porch.typ = 6, + .vback_porch.typ = 14, + .vsync_len.typ = 3, +}; + @@ -100,10 +121,18 @@ static int simple_panel_probe(struct udevice *dev) return 0; } +static int simple_panel_get_display_timing(struct udevice *dev, + struct display_timing *timings) +{ + memcpy(timings, &boe_ev121wxm_n10_1850_timing, sizeof(*timings)); + + return 0; +} static const struct panel_ops simple_panel_ops = { .enable_backlight = simple_panel_enable_backlight, .set_backlight = simple_panel_set_backlight, + .get_display_timing = simple_panel_get_display_timing, }; static const struct udevice_id simple_panel_ids[] = { @@ -115,6 +144,7 @@ static const struct udevice_id simple_panel_ids[] = { { .compatible = "lg,lb070wv8" }, { .compatible = "sharp,lq123p1jx31" }, { .compatible = "boe,nv101wxmn51" }, + { .compatible = "boe,ev121wxm-n10-1850" }, { } };   [2024.7.23] Update patch for L6.6.23(Uboot2023)
查看全文
This document is about to build an image by Yocto , and it will disable a function that normal user can’t use command line of “ su ”.
查看全文
Hello, on this post I will explain how to record separated audio channels using an 8MIC-RPI-MX8 Board. As background about how to setup the board to record and play audio using i.MX boards, I suggest you take a look on the next post: How to configure, record and play audio using an 8MIC-RPI-MX8 Board. Requirements: I.MX 8M Mini EVK. Linux Binary Demo Files - i.MX 8MMini EVK. 8MIC-RPI-MX8 Board. Serial console emulator (Tera Term, Putty, etc.). Headphones/speakers. Waveform Audio Format WAV, known for WAVE (Waveform Audio File Format), is a subset of Microsoft’s Resource Interchange File Format (RIFF) specification for storing digital audio files. This format does not apply compression to the information and stores the audio with different sampling rates and bitrates. WAV files are larger in size compared to other formats such as MP3 which uses compression to reduce the file size while maintaining a good audio quality but, there is always some lose on quality since audio information is too random to be compressed with conventional methods, the main advantage of this format is provide an audio file without losses that is also widely used on studio. This files starts with a file header with data chunks. A WAV file consists of two sub-chunks: fmt chunk: data format. data chunk: sample data. So, is structured by a metadata that is called WAV file header and the actual audio information. The header of a WAV (RIFF) file is 44 bytes long and has the following format: How to separate the channels? To separate each audio channel from the recording we need to use the next command that will record raw data of each channel. arecord -D plughw:<audio device> -c<number of chanels> -f <format> -r <sample rate> -d <duration of the recording> --separate-channels <output file name>.wav arecord -D plughw:2,0 -c8 -f s16_le -r 48000 -d 10 --separate-channels sample.wav This command will output raw data of recorded channels as is showed below. This raw data cannot be used as a “normal” .wav file because the header information is missing. It is possible to confirm it if import raw data to a DAW and play recorded samples: So, to use this information we need to create the header for each file using WAVE library on python. Here the script that I used: import wave import os name = input("Enter the name of the audio file: ") os.system("arecord -D plughw:2,0 -c8 -f s16_le -r 48000 -d 10 --separate-channels " + name + ".wav") for i in range (0,8): with open(name + ".wav." + str(i), "rb") as in_file: data = in_file.read() with wave.open(name + "_channel_" + str(i) +".wav", "wb") as out_file: out_file.setnchannels(1) out_file.setsampwidth(2) out_file.setframerate(48000) out_file.writeframesraw(data) os.system("mkdir output_files") os.system("mv " + name + "_channel_" + "* " + "output_files") os.system("rm " + name + ".wav.*") If we run the script, will generate a directory with the eight audio channels in .wav format. Now, we will be able to play each channel individually using an audio player. References IBM, Microsoft Corporation. (1991). Multimedia Programming Interface and Data Specifications 1.0. Microsoft Corporation. (1994). New Multimedia Data Types and Data Techniques. Standford University. (2024, January 30). Retrieved from WAVE PCM sound file format: http://hummer.stanford.edu/sig/doc/classes/SoundHeader/WaveFormat/
查看全文
The user interface has limited the use of the tool GUI Guider. Getting an interaction only through a mouse or touchscreen can be enough for some use cases. However, sometimes the use case requires to go beyond its limitations. This video/appnote explores the possibility of integrating voice by creating a bridge between a speech recognition technology, such as VIT, and the interface creator GUI Guider. It uses a universal way to link all the voice recognition commands and a wakeword to any interaction created by GUI Guider. The following video shows the steps necessary to create that connection by creating the voice recognition using VIT voice commands and wakewords, create an interface of GUI Guider using a template, how to connect between them using the board i.MX 93 evk and testing it. For more information consult the following links AppNote HTML: https://docs.nxp.com/bundle/AN14270/page/topics/abstract.html?_gl=1*1glzg9k*_ga*NDczMzk4MDYuMTcxNjkyMDI0OA..*_ga_WM5LE0KMSH*MTcxNjkyMDI0OC4xLjEuMTcxNjkyMDcyMy4wLjAuMA AppNote PDF: https://www.nxp.com/docs/en/application-note/AN14270.pdf Associated File: AN14270SW  
查看全文
-- DTS for gpio wakeup   // SPDX-License-Identifier: (GPL-2.0+ OR MIT) /*  * Copyright 2022 NXP  */   #include "imx93-11x11-evk.dts"   / {         gpio-keys {                 compatible = "gpio-keys";                 pinctrl-names = "default";                 pinctrl-0 = <&pinctrl_gpio_keys>;                   power {                   label = "GPIO Key Power";                   linux,code = <KEY_POWER>;                   gpios = <&gpio2 7 GPIO_ACTIVE_LOW>;                   wakeup-source;                   debounce-interval = <20>;                   interrupt-parent = <&gpio2>;                   interrupts = <7 IRQ_TYPE_LEVEL_LOW>;                 };         }; };   &iomuxc {         pinctrl_gpio_keys: gpio_keys_grp {                 fsl,pins = <                         MX93_PAD_GPIO_IO07__GPIO2_IO07  0x31e                 >;         }; }; -- testing the switch GPIO  First check if your gpio dts configuration to make it act as a switch works or not After executing the command - 'evtest /dev/input/event1' Trigger an interrupt by connecting GPIO2 7 to GND, as soon as you do that, you will receive Event logs such as below:- This shows that your dts configuration for GPIO works.     -- Verify the interrupt         -- Go to sleep and then connect the GPIO to GND to trigger a wakeup, in the logs we see that kernel exits the suspend mode    
查看全文
P3T1755DP is a ±0.5°C accurate temperature-to-digital converter with a -40 °C to +125 °C range. It uses an on-chip band gap temperature sensor and an A-to-D conversion technique with overtemperature detection. The temperature register always stores a 12-bit two's complement data, giving a temperature resolution of 0.0625 °C P3T1755DP which can be configured for different operation conditions: continuous conversion, one-shot mode, or shutdown mode.   The device has very good features but, unfortunately, is not supported by Linux yet!   The P31755 works very similarly to LM75, pct2075, and other compatibles.   We can add support to P3T1755 in the LM75.c program due to the process to communicate with the device is the same as LM75 and equivalents.   https://github.com/nxp-imx/linux-imx/blob/lf-6.1.55-2.2.0/drivers/hwmon/lm75.c route: drivers/hwmon/lm75.c   The modifications that we have to do are the next:    1. We have to add the configurations to the kernel on the imx_v8_defconfig file CONFIG_SENSORS_ARM_SCMI=y CONFIG_SENSORS_ARM_SCPI=y CONFIG_SENSORS_FP9931=y +CONFIG_SENSORS_LM75=m +CONFIG_HWMON=y +CONFIG_I2C=y +CONFIG_REGMAP_I2C=y CONFIG_SENSORS_LM90=m CONFIG_SENSORS_PWM_FAN=m CONFIG_SENSORS_SL28CPLD=m    2. Add the part on the list of parts compatible with the driver LM75.c enum lm75_type { /* keep sorted in alphabetical order */ max6626, max31725, mcp980x, + p3t1755, pct2075, stds75, stlm75,   3. Add the configuration in the structure lm75_params device_params[]. .default_resolution = 9, .default_sample_time = MSEC_PER_SEC / 18, }, + [p3t1755] = { + .default_resolution = 12, + .default_sample_time = MSEC_PER_SEC / 10, + }, [pct2075] = { .default_resolution = 11, .default_sample_time = MSEC_PER_SEC / 10,   Notes: You can change the configuration of the device using .set_mask and .clear_mask, see more details on LM75.c lines 57 to 78   4. Add the ID to the list in the structure i2c_device_id lm75_ids and of_device_id __maybe_unused lm75_of_match    { "max31725", max31725, }, { "max31726", max31725, }, { "mcp980x", mcp980x, }, + { "p3t1755", p3t1755, }, { "pct2075", pct2075, }, { "stds75", stds75, }, { "stlm75", stlm75, },   + { + .compatible = "nxp,p3t1755", + .data = (void *)p3t1755 + },   5. In addition to all modifications, I modify the device tree of my iMX8MP-EVK to connect the Sensor in I2C3 of the board.  https://github.com/nxp-imx/linux-imx/blob/lf-6.1.55-2.2.0/arch/arm64/boot/dts/freescale/imx8mp-evk.dts   }; }; + + p3t1755: p3t1755@48 { + compatible = "nxp,p3t1755"; + reg = <0x48>; + }; + };   Connections: We will use the expansion connector of the iMX8MP-EVK and J9 of the P3T1755DP-ARD board.   P3T1755DP-ARD board   iMX8MP-EVK   P3T1755DP-ARD ----> iMX8MP-EVK J9              ---------->            J21 +3v3 (Pin 9) ---> +3v3 (Pin 1) GND(Pin 7) ---> GND (PIN 9) SCL (Pin 4) ---> SCL (Pin 5) SDA (Pin 3) ---> SDA (Pin 3)     Reading the Sensor We can read the sensor using the next commands:   Read Temperature: $ cat /sys/class/hwmon/hwmon1/temp1_input Reading maximum temperature: $ cat /sys/class/hwmon/hwmon1/temp1_max Reading hysteresis: $ cat /sys/class/hwmon/hwmon1/temp1_max_hyst   https://www.nxp.com/design/design-center/development-boards-and-designs/analog-toolbox/arduino-shields-solutions/p3t1755dp-arduino-shield-evaluation-board:P3T1755DP-ARD    
查看全文
    The meta layer is designed for those guys who want to use i.MX8M series SOC and Yocto system to develop AGV and Robot.    The platform includes some key components: 1, ROS1 (kinetic, melodic) and ROS2(dashing, eloquent, foxy) 2, Real-time Linux solution : Xenomai 3.1 with ipipe 5.4.47 patch 3, Industrial protocol : libmodbus, linuxptp, ros-canopen, EtherCAT(TBD) 4, Security: Enhanced OpenSSL, Enhanced GmSSL, Enhanced eCryptfs, secure key store, secure boot(TBD), SE-Linux(TBD),  Dm-verity(TBD) The first release bases on i.MX Yocto release L5.4.47 2.2.0 and You need download Linux 5.4.47_2.2.0 according to​​ https://www.nxp.com/docs/en/user-guide/IMX_YOCTO_PROJECT_USERS_GUIDE.pdf  firstly. And then you can follow the below guide to build and test ROS and Xenomai. A, clone meta-robot-platform from gitee.com git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v0.1-L5.4.47-2.2.0 B, Adding the meta-robot-platform layer to your build 1,  copy meta-robot-platform into <i.MX Yocto folder>/source 2, You should create a symbol link: setup-imx-robot.sh -> sources/meta-robot-platform/imx/meta-robot/tools/setup-imx-robot.sh C, How to build Robot image (example for i.MX8MQ EVK board) $ DISTRO=imx-robot-xwayland MACHINE=imx8mqevk source setup-imx-robot.sh -r kinetic -b imx8mqevk-robot-kinetic [or DISTRO=imx-robot-xwayland MACHINE=imx8mqevk source setup-imx-robot.sh -r melodic -b imx8mqevk-robot-melodic ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mqevk source setup-imx-robot.sh -r dashing -b imx8mqevk-robot-dashing ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mqevk source setup-imx-robot.sh -r eloquent -b imx8mqevk-robot-eloquent ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mqevk source setup-imx-robot.sh -r foxy -b imx8mqevk-robot-foxy ] $ bitbake imx-robot-core [or bitbake imx-robot-system ] [or bitbake imx-robot-sdk ] And if you add XENOMAI_KERNEL_MODE = "cobalt" or XENOMAI_KERNEL_MODE = "mercury" in local.conf, you also can build real-time image with Xenomai by the below command: $ bitbake imx-robot-core-rt [or bitbake imx-robot-system-rt ] D, Robot image sanity testing //ROS1 Sanity Test #source /opt/ros/kinetic/setup.sh [or # source /opt/ros/melodic/setup.sh ] #echo $LD_LIBRARY_PATH #roscore & #rosnode list #rostopic list #only kinetic #rosmsg list #rosnode info /rosout //ROS2 Sanity Test #source ros_setup.sh #echo $LD_LIBRARY_PATH #ros2 topic list #ros2 msg list #only dashing #ros2 interface list #(sleep 5; ros2 topic pub /chatter std_msgs/String "data: Hello world") & #ros2 topic echo /chatter E, Xenomai sanity testing #/usr/xenomai/demo/cyclictest -p 50 -t 5 -m -n -i 1000 F, vSLAM demo You can find orb-slam2 demo under <i.MX Yocto folder>/sources/meta-robot-platform/imx/meta-robot/recipes-demo/orb-slam2. You should choose DISTRO=imx-robot-xwayland due to it depends on OpenCV with gtk+.   //////////////////////////////////////// update for Yocto L5.4.70 2.3.0  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v0.2-L5.4.70-2.3.0 for Yocto release L5.4.70 2.3.0 and it supports i.MX8M series (8MQ,8MM,8MN and 8MP) and i.MX8QM/QXP.  git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v0.2-L5.4.70-2.3.0 Updating: 1, Support i.MX8QM and i.MX8QXP 2, Add ROS driver of RPLIDAR and Orbbec 3D cameras in ROS1 3, Upgrade OpenCV to 3.4.13. 4, Add imx-robot-agv image with orb-slam2 demo 5, Fix the issue which failed to create image when adding orb-slam2 6, Fix the issue which failed to create imx-robot sdk image when add package ISP and ML Note: Currently, orb-slam2 demo don't run on i.MX8MM platform due to its GPU don't support OpenGL ES3. imx-robot-sdk image is just for building ROS package on i.MX board, not  for cross-compile. You can try "bitbake imx-robot-system -c populate_sdk" to create cross-compile sdk without gmssl-bin. diff --git a/imx/meta-robot/recipes-core/images/imx-robot-system.bb b/imx/meta-robot/recipes-core/images/imx-robot-system.bb index 1991ab10..68f9ad31 100644 --- a/imx/meta-robot/recipes-core/images/imx-robot-system.bb +++ b/imx/meta-robot/recipes-core/images/imx-robot-system.bb @@ -35,7 +35,7 @@ CORE_IMAGE_EXTRA_INSTALL += " \ ${@bb.utils.contains('DISTRO_FEATURES', 'x11 wayland', 'weston-xwayland xterm', '', d)} \ ${ISP_PKGS} \ " -IMAGE_INSTALL += " clblast openblas libeigen opencv gmssl-bin" +IMAGE_INSTALL += " clblast openblas libeigen opencv" IMAGE_INSTALL += " \ ${ML_PKGS} \   //////////////////////////////////////// Update for Yocto L5.4.70 2.3.2  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v0.3-L5.4.70-2.3.2 for Yocto release L5.4.70 2.3.2 .  git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v0.3-L5.4.70-2.3.2 Updated: 1, Upgrade to L5.4.70-2.3.2 2, Enable xenomai rtdm driver 3, Add NXP Software Content Register and BSP patches of i.MX8M Plus AI Robot board. Note: How to build for AI Robot board 1, DISTRO=imx-robot-wayland MACHINE=imx8mp-ddr4-ipc source setup-imx-robot.sh -r melodic -b imx8mp-ddr4-ipc-robot-melodic 2, Add BBLAYERS += " ${BSPDIR}/sources/meta-robot-platform/imx/meta-imx8mp-ai-robot " in bblayers.conf 3, bitbake imx-robot-sdk or bitbake imx-robot-agv   //////////////////////////////////////// Update for v1.0-L5.4.70-2.3.2  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v1.0-L5.4.70-2.3.2 .  git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v1.0-L5.4.70-2.3.2 Updated: 1, Upgrade ROS1 Kinetic Kame to Release 2021-05-11 which is final sync. 2, Add IgH EtherCAT Master for Linux in i.MX Robot platform. //////////////////////////////////////// Update for v1.1-L5.4.70-2.3.2  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v1.1-L5.4.70-2.3.2 .  git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v1.1-L5.4.70-2.3.2 Updated: 1, Add more packages passed building in ROS1 Kinetic Kame. 2, Change the board name (From IPC to AI-Robot) in Uboot and kernel for i.MX8M Plus AI Robot board. You can use the below setup command to build ROS image for AI Robot board: DISTRO=imx-robot-xwayland MACHINE=imx8mp-ai-robot source setup-imx-robot.sh -r kinetic -b imx8mp-ai-robot-robot-kinetic DISTRO=imx-robot-xwayland MACHINE=imx8mp-ai-robot source setup-imx-robot.sh -r melodic -b imx8mp-ai-robot-robot-melodic DISTRO=imx-robot-xwayland MACHINE=imx8mp-ai-robot source setup-imx-robot.sh -r dashing -b imx8mp-ai-robot-robot-dashing DISTRO=imx-robot-xwayland MACHINE=imx8mp-ai-robot source setup-imx-robot.sh -r eloquent -b imx8mp-ai-robot-robot-eloquent DISTRO=imx-robot-xwayland MACHINE=imx8mp-ai-robot source setup-imx-robot.sh -r foxy -b imx8mp-ai-robot-robot-foxy BTW, you should add BBLAYERS += " ${BSPDIR}/sources/meta-robot-platform/imx/meta-imx8mp-ai-robot " in conf/bblayers.conf.   //////////////////////////////////////// Update for v1.2-L5.4.70-2.3.3  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v1.2-L5.4.70-2.3.3 .  git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v1.2-L5.4.70-2.3.3 Updated: 1, Update to Yocto release L5.4.70-2.3.3 2, Enable RTNet FEC driver, test on i.MX8M Mini EVK and i.MX8M Plus EVK. For the detailed information,  Please refer to the community post 移植实时Linux方案Xenomai到i.MX ARM64平台 (Enable Xenomai on i.MX ARM64 Platform)    //////////////////////////////////////// Update for v2.1-L5.10.52-2.1.0  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v2.1-L5.10.52-2.1.0 .  git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v2.1.1-L5.10.52-2.1.0 Updated: 1, Update to Yocto release L5.10.52-2.1.0 2, Add ROS1 noetic, ROS2 galactic and rolling 3, Upgrade Xenomai to v3.2 4, Add vSLAM demo orb-slam3 5, Upgrade OpenCV to 3.4.15 for ROS1 A, Adding the meta-robot-platform layer to your build 1,  copy meta-robot-platform into <i.MX Yocto folder>/source 2, You should create a symbol link: setup-imx-robot.sh -> sources/meta-robot-platform/imx/meta-robot/tools/setup-imx-robot.sh B, How to build Robot image (example for i.MX8M Plus EVK board) $ DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r kinetic -b imx8mpevk-robot-kinetic [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r melodic -b imx8mpevk-robot-melodic ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r noetic-b imx8mpevk-robot-noetic] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r dashing -b imx8mpevk-robot-dashing ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r eloquent -b imx8mpevk-robot-eloquent ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r foxy -b imx8mpevk-robot-foxy ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r galactic -b imx8mpevk-robot-galactic ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r rolling -b imx8mpevk-robot-rolling ] $ bitbake imx-robot-agv [or bitbake imx-robot-core ] [or bitbake imx-robot-system ] [or bitbake imx-robot-sdk ]   //////////////////////////////////////// Update for v2.2-L5.10.72-2.2.0  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v2.2-L5.10.72-2.2.0 .  git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v2.2.0-L5.10.72-2.2.0 Updated: 1, Update to Yocto release L5.10.72-2.2.0   //////////////////////////////////////// Update for v2.2.3-L5.10.72-2.2.3  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v2.2.3-L5.10.72-2.2.3.  repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-hardknott -m imx-5.10.72-2.2.3.xml git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v2.2.3-L5.10.72-2.2.3 1,  copy meta-robot-platform into <i.MX Yocto folder>/source 2, You should create a symbol link: setup-imx-robot.sh -> sources/meta-robot-platform/imx/meta-robot/tools/setup-imx-robot.sh Updated: 1, Update to Yocto release L5.10.72-2.2.3 2, Update ISP SDK (isp-imx) patch for Github changing.   //////////////////////////////////////// Update for v3.1-L5.15.71-2.2.0  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v3.1-L5.15.71-2.2.0.  repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-kirkstone -m imx-5.15.71-2.2.0.xml git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v3.1-L5.15.71-2.2.0 1,  copy meta-robot-platform into <i.MX Yocto folder>/source 2, You should create a symbol link: setup-imx-robot.sh -> sources/meta-robot-platform/imx/meta-robot/tools/setup-imx-robot.sh Updated: 1, Update to Yocto release L5.15.71-2.2.0 and ROS1 Noetic and ROS2 Foxy to last version 2, Add ROS2 Humble and remove EOL distributions (ROS1 Kinetic, Melodic and ROS2 Dashing, Eloquent and Galactic). How to build Robot image (example for i.MX8M Plus EVK board) $DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r noetic-b imx8mpevk-robot-noetic [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r foxy -b imx8mpevk-robot-foxy ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r humble -b imx8mpevk-robot-humble ] $ bitbake imx-robot-sdk [or bitbake imx-robot-core ] [or bitbake imx-robot-system ] [or bitbake imx-robot-agv ]   //////////////////////////////////////// Update for v3.3-L5.15.71-2.2.0  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v3.3-L5.15.71-2.2.0.  repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-kirkstone -m imx-5.15.71-2.2.0.xml git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout v3.3-L5.15.71-2.2.0 1,  copy meta-robot-platform into <i.MX Yocto folder>/source 2, You should create a symbol link: setup-imx-robot.sh -> sources/meta-robot-platform/imx/meta-robot/tools/setup-imx-robot.sh Updated: 1, Add vSLAM ROS demo based on i.MX vSLAM SDK and i.MX AIBot. The demo video is here: Autonomous Navigation with vSLAM, Based on the i.MX 8M Plus Applications Processor   2, Enable DDS Security and SROS2 for ROS 2’s security features. How to build Robot image (example for i.MX8M Plus EVK board) $DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r noetic-b imx8mpevk-robot-noetic [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r foxy -b imx8mpevk-robot-foxy ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r humble -b imx8mpevk-robot-humble ] $ bitbake imx-robot-sdk [or bitbake imx-robot-agv ] [or bitbake imx-robot-system ] [or bitbake imx-robot-core ]   //////////////////////////////////////// Update for v4.0-L6.1.55-2.2.0  /////////////////////////////////////////////////////////// New release package meta-robot-platform-v4.0-L6.1.55-2.2.0.  repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-mickledore -m imx-6.1.55-2.2.0.xml git clone https://gitee.com/zxd2021-imx/meta-robot-platform.git git checkout mickledore-6.1.55 1,  copy meta-robot-platform into <i.MX Yocto folder>/source 2, You should create a symbol link: setup-imx-robot.sh -> sources/meta-robot-platform/imx/meta-robot/tools/setup-imx-robot.sh Updated: 1, Migrate i.MX Robot platform to Yocto mickledore with L6.1.55. 2, Add ROS2 iron. How to build Robot image (example for i.MX8M Plus EVK board) $DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r humble -b imx8mpevk-robot-humble [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r iron -b imx8mpevk-robot-iron ] [or DISTRO=imx-robot-xwayland MACHINE=imx8mpevk source setup-imx-robot.sh -r noetic-b imx8mpevk-robot-noetic] $ bitbake -k imx-robot-sdk [or bitbake imx-robot-agv ] [or bitbake imx-robot-system ] [or bitbake imx-robot-core ]  
查看全文
What is LGVL? LVGL is a graphics library to run on devices with limited resources. LVGL is fully open-source and has no external dependencies, works with any modern MCU or MPU, and can be used with any (RT)OS or bare metal setup. https://lvgl.io/   What is Framebuffer? The Linux framebuffer (fbdev) is a Linux subsystem used to show graphics on a display, typically manipulated on the system console   How to write on the frame buffer? The device is listed on de device list typically "fb0" on iMX.   1. Stop the window manager (Weston in our BSP) $ systemctl stop weston   2. Write random data on the frame buffer with the next command: $ cat /dev/urandom > /dev/fb0   You should see colored pixels on the screen   3. Restart the window manager. $ systemctl start weston     Cross-compiling the application   1. On the host computer we will clone the LGVL repo: $ git clone https://github.com/lvgl/lv_port_linux_frame_buffer.git -b release/v8.2 $ cd lv_port_linux_frame_buffer $ git submodule update --init --recursive 2. Configure the screen resolution, rotation, and the touch input.       2.1 The resolution is configured in lines 33 and 34 of the main.c disp_drv.hor_res = 1080; disp_drv.ver_res = 1920;           2.2 Rotation configured is on lines 32 and 57 of main.c. disp_drv.sw_rotate = 3; lv_disp_set_rotation(NULL, LV_DISP_ROT_270);     2.3 The touch input is configured on line 450 of lv_drv_conf.h # define EVDEV_NAME "/dev/input/event2"   Note: In my case is on /dev/input/event2 to check the inputs use the command "evtest"   3. Compile the application using the command "make"   Note: To compile the application on your host computer you have to set the environment.   4. Share the file called "demo" with your board and execute it on the board with the command $ ./demo   Note: You have to stop the weston service to run the application.     Notes: Tested on iMX8MN EVK with BSP 6.1.36 Works on Multimedia and Full image.
查看全文
Sometime need standalone compile device tree. Only Linux headers and device tree directory are needed.         
查看全文
This article is rather short that only mentions the script that is needed to make an iMX93EVK act as a USB mass storage device so that whenever you connect your iMX device to a windows/linux system via USB, it should get enumerated something like a usb drive.  The storage that is used in this example is mmc so the expectation is that you have inserted a mmc card in the slot. Below is the script:- #!/bin/sh   # This composite gadget include function: # - MASS STORAGE     # # Exit status is 0 for PASS, nonzero for FAIL # STATUS=0   # Check if there is udc available, if not, return fail UDC_DIR=/sys/class/udc if test "$(ls -A "$UDC_DIR")"; then echo "The available udc:" for entry in "$UDC_DIR"/* do echo "$entry" done else STATUS=1 echo "No udc available!" exit $STATUS; fi   id=1; udc_name=ci_hdrc.0 #back_file=/dev/mmcblk1 back_file=/tmp/lun0.img   mkdir /sys/kernel/config/usb_gadget/g$id cd /sys/kernel/config/usb_gadget/g$id   # Use NXP VID, i.MX8QXP PID echo 0x1fc9 > idVendor echo 0x12cf > idProduct   mkdir strings/0x409 echo 123456ABCDEF > strings/0x409/serialnumber echo NXP > strings/0x409/manufacturer echo "NXP iMX USB Composite Gadget" > strings/0x409/product   mkdir configs/c.1 mkdir configs/c.1/strings/0x409   echo 5 > configs/c.1/MaxPower echo 0xc0 > configs/c.1/bmAttributes   mkdir functions/mass_storage.1 echo $back_file > functions/mass_storage.1/lun.0/file ln -s functions/mass_storage.1 configs/c.1/   echo $udc_name > UDC First execute the script. After that insert the g_mass_storage module in the kernel by executing :- modprobe g_mass_storage file=/dev/mmcblk1 removable=1 In the dmesg output, you will see something like below:-   After that you can connect a C type USB cable to the USB1 port of imx93evk and the other end to any USB ports of a laptop. The moment it is connected, you would be able to see a USB drive similar to what you get when we connect a pen-drive. 
查看全文
Application Note AN13872  Enabling SWUpdate on i.MX 6ULL, i.MX 8M Mini, and i.MX 93 is available on www.nxp.com    SWUpdate: Embedded Systems become more and more complex. Software for Embedded Systems have new features and fixes can be updated in a reliable way. Most of time, we need OTA(Over-The-Air) to upgrade the system. Like Android has its own update system. Linux also need an update system. SWUpdate project is thought to help to update an embedded system from a storage media or from network. However, it should be mainly considered as a framework, where further protocols or installers (in SWUpdate they are called handlers) can be easily added to the application. Mongoose daemon mode: Mongoose is a daemon mode of SWUpdate that provides a web server, web interface and web application. Mongoose is running on the target board(i.MX8MM EVK/i.MX8QXP MEK).Using Web browser to access it.   Suricatta daemon mode: Suricatta regularly polls a remote server for updates, downloads, and installs them. Thereafter, it reboots the system and reports the update status to the server. The screenshot is SWUpdate scuricatta working with hawkbit server.          
查看全文
  Some customer need to config different I2C bus for their PMIC in DDR test period. There is a simple method can complete this, that is NXP DDR Config Tool. The tool download link is below: https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/config-tools-for-i-mx-applications-processors:CONFIG-TOOLS-IMX I'm going to use the i.MX 93 EVK board here as a demonstration. On i.MX 93 EVK board, the default PMIC I2C Bus is I2C2, I will show you how to change I2C2 to I2C1, the other i2c bus is same.  Step 1 : Rework the board and make sure the PMIC is connected to I2C1. Remove R714 R715, connnect I2C1_SCL(C20) to U701 pin 41  and I2C1_SDA(C21) tp U701 pin 42. Step 2 : Setup I2C1 PinMux: Config Tool UI:   Advance -> IOMUX config   Command:           Address                Size               Value memory   set     0x443c0170            32                   0x10 memory   set     0x443c0174            32                   0x10 memory   set     0x443c0320            32                   0x40000b9e memory   set     0x443c0324            32                   0x40000b9e Step 3 : Set PMIC VDDQ as 1.1 V Config Tool UI:   Advance -> Custom PMIC initialization enabled   #  PMIC commands        Value 0         pmic_cfg             0x0025       /*I2C bus 1,  PMIC address 0x25 */ (0 for I2C1, 1 for I2C2, 2 for I2C3, 3 for I2c4 …) 1         pmic_set             0x0C29       /* BUCKxOUT_DVS0/1, preset_buck1=0.8V, preset_buck2=0.7V, preset_buck3=0.8V PCA9451_BUCK123_DVS, 0x29 */ 2         pmic_set             0x1118      /*  BUCK1OUT_DVS0=0.9V   PCA9451_BUCK1OUT_DVS0, 0x18 */ 3         pmic_set             0x1718      /*  BUCK3OUT_DVS0=0.9V   PCA9451_BUCK3OUT_DVS0, 0x18 */ 4         pmic_set             0x1428      /*  Set VDDQ to 1.1V  PCA9451_BUCK2OUT_DVS0, 0x28  */ PS : About pmic register, The first two bytes are the register address and the next two bytes are the register setting. Step 4 : Run the DDR "Firmware init test" and see the test result. The success log is as follows: DEBUG memtool.comm.serial_channel ==================hardware_init======================= DEBUG memtool.comm.serial_channel DEBUG memtool.comm.serial_channel Power up ddr... DEBUG memtool.comm.serial_channel DEBUG memtool.comm.serial_channel DDRMIX power on done... DEBUG memtool.comm.serial_channel DEBUG memtool.comm.serial_channel DDRPHY coldreset... DEBUG memtool.comm.serial_channel DEBUG memtool.comm.serial_channel DEBUG memtool.comm.serial_channel DEBUG memtool.comm.serial_channel ********Found PMIC PCA945X********** DEBUG memtool.comm.serial_channel DEBUG memtool.comm.serial_channel Set VDDQ to 1.1V for LPDDR4 DEBUG memtool.comm.serial_channel DEBUG memtool.comm.serial_channel ==================hardware_init exit==================    
查看全文
GmSSL is an open source cryptographic toolbox that supports SM2 / SM3 / SM4 / SM9 and other national secret (national commercial password) algorithm, SM2 digital certificate and SM2 certificate based on SSL / TLS secure communication protocol to support the national security hardware password device , To provide in line with the national standard programming interface and command line tools, can be used to build PKI / CA, secure communication, data encryption and other standards in line with national security applications. For more information, please access GmSSL official website http://gmssl.org/english.html.   Software environments as the belows: Linux kernel: imx_4.14.98_2.0.0_ga cryptodev: 1.9 HW platform: i.MX6UL, i.MX7D/S, i.MX8M/MM, i.MX8QM/QXP. The patches include the following features: 1, Support SM2/SM9 encryption/decryption/sign/verify/key exchange, RSA encryption/decryption, DSA/ECDSA sign/verify, DH/ECDH key agreement, ECC & DLC & RSA key generation and big number operation and elliptic curve math by CAAM hardware accelerating. 2, run "git apply 0001-Enhance-cryptodev-and-its-engine-in-GmSSL-by-CAAM-s-.patch" under folder sources/poky, and "git apply 0001-Add-public-key-cryptography-operations-in-CAAM-drive.patch" under folder sources/meta-fsl-bsp-release for patch these codes. 3, GmSSL Build command: $ tar zxvf GmSSL-master-iMX.tgz $ cd GmSSL-master-iMX (For i.MX8M/MM, i.MX8QM/QXP) $ source /opt/arm-arch64/environment-setup-aarch64-poky-linux  $ ./Configure -DHAVE_CRYPTODEV -DUSE_CRYPTODEV_DIGESTS -DHW_ENDIAN_SWAP  --prefix=~/install64 --openssldir=/etc/gmssl --libdir=/usr/lib no-saf no-sdf no-skf no-sof no-zuc -no-ssl3 shared linux-aarch64 $ make  $ make install                            /*image and config file will be installed to folder ~/install64 */   (For i.MX6UL, i.MX7D/S) $ source /opt/arm-arch32/environment-setup-cortexa7hf-neon-poky-linux-gnueabi $ ./Configure -DHAVE_CRYPTODEV -DUSE_CRYPTODEV_DIGESTS --prefix=~/install32 --openssldir=/etc/gmssl --libdir=/usr/lib no-saf no-sdf no-skf no-sof no-zuc -no-ssl3 shared linux-armv4 $ make  $ make install                            /*image and config file will be installed to folder ~/install32 */   4, How to use GmSSL: copy image gmssl to /usr/bin on i.MX board; copy gmssl libcrypto.so.1.1 and libssl.so.1.1 to /usr/lib on i.MX board; copy folder etc/gmssl to /etc/ on i.MX board. copy test examples (dhtest, dsatest, rsa_test, ecdhtest, ecdsatest, eciestest, sm3test, sms4test, sm2test, sm9test) under GmSSL-master-iMX/test  to U disk for running. You can run test examples by the following commands: #insmod /lib/modules/4.14.98-imx_4.14.98_2.0.0_ga+g5d6cbeafb80c/extra/cryptodev.ko #/run/media/sda1/dhtest #/run/media/sda1/dsatest #/run/media/sda1/rsa_test #/run/media/sda1/ecdhtest #/run/media/sda1/ecdsatest #/run/media/sda1/eciestest #/run/media/sda1/sm3test #/run/media/sda1/sms4test #/run/media/sda1/sm2test #/run/media/sda1/sm9test and speed test commands: #gmssl speed sm2 #gmssl genrsa -rand -f4 512 #gmssl speed dsa #gmssl genrsa -rand -f4 1024 #gmssl speed rsa #gmssl genrsa -rand -f4 2048 #gmssl speed ecdsa #gmssl genrsa -rand -f4 3072 #gmssl speed ecdh #gmssl genrsa -rand -f4 4096   ++++++++++++++++++++++++++++     updating at 2019-09-10   +++++++++++++++++++++++++++++++++++++++++++++ 0001-fix-the-bug-which-hash-and-cipher-key-don-t-use-DMA-.patch fix the issue which dismatching on key buffer between crytodev and caam driver. Crytodev uses stack's buffer for key storage and caam driver use it to dma map which cause flush cache failure. The patch need to apply on cryptodev-module in Yocto build.   ++++++++++++++++++  updating at 2019-10-14 +++++++++++++++++++++++++++++++++++ This updating is for China C-V2X application. The meta-gmcrypto is Yocto layer which bases on GmSSL and Cryptodev. I add HW SM2 verification by dedicated CAAM job descriptor and enhanced SW SM2 verification by precomputed multiples of generator and ARMv8 assembler language to accelerate point  operation. Software environments as the belows: Linux kernel: imx_4.14.98_2.0.0_ga cryptodev: 1.9 HW platform: i.MX8M/MM/MN, i.MX8QM/QXP. How to build: 1, You need to git clone https://gitee.com/zxd2021-imx/meta-gmcrypto.git, and git checkout Linux-4.14.98_2.0.0.  Copy meta-gmcrypto to folder (Yocto 4.14.98_2.0.0_ga dir)/sources/ 2, Run DISTRO=fsl-imx-wayland MACHINE=imx8qxpmek source fsl-setup-release.sh -b build-cv2x and add BBLAYERS += " ${BSPDIR}/sources/meta-cv2x " into (Yocto 4.14.98_2.0.0_ga dir)/build-cv2x/conf/bblayers.conf and  IMAGE_INSTALL_append += " gmssl-bin "  into local.conf 3, Run bitbake fsl-image-validation-imx. 4, You can find cv2x-verify.c under (build dir)/tmp/work/aarch64-poky-linux/cryptodev-tests/1.9-r0/git/tests. It is example for using CAAM cryptdev interface to do C-V2X verification (includes SM2 p256, NIST p256 and brainpoolP256r1).  cv2x_benchmark.c under (build dir)/tmp/work/aarch64-poky-linux/gmssl/1.0-r0/gmssl-1.0/test is the benchmark test program of C-V2X verifying. It includes HW, SW and HW+SW(one CPU) verifying for SM2 p256, NIST p256 and brainpoolP256r1. 5, Run the below command on your i.MX8QXP MEK board. modprobe cryptodev ./cv2x_benchmark Note: the udpated GmSSL also support projective coordinates and affine coordinates (CAAM only support affine coordinates). Affine coordinates is used by default. You can call EC_GROUP_set_coordinates() and EC_GROUP_restore_coordinates() to change coordinates and restore default. When you hope to use some EC APIs under expected coordinates, you need to call EC_GROUP_set_coordinates() before EC APIs and EC_GROUP_restore_coordinates() after them. Like the below example: orig_coordinate = EC_GROUP_set_coordinates(EC_PROJECTIVE_COORDINATES); group = EC_GROUP_new_by_curve_name(NID_sm2p256v1); EC_GROUP_restore_coordinates(orig_coordinate);   ++++++++++++++++++++++++++++     updating at 2020-11-09   +++++++++++++++++++++++++++++++++++++++++++++ This updating is for Yocto release of Linux 5.4.47_2.2.0​​. The meta-gmcrypto is Yocto layer which also support c-v2x feature in previous release.  Software environments as the belows: Linux kernel: imx_5.4.47_2.2.0 cryptodev: 1.10 HW platform: i.MX6UL, i.MX7D/S, i.MX8M/8M Mini/8M Nano/8M Plus, i.MX8/8X. How to build: 1, You need to git clone https://gitee.com/zxd2021-imx/meta-gmcrypto.git, and git checkout Linux-5.4.47-2.2.0. Copy meta-gmcrypto to folder (Yocto 5.4.47_2.2.0 dir)/sources/ 2, Run DISTRO=fsl-imx-xwayland MACHINE=imx8mmevk source imx-setup-release.sh -b build-imx8mmevk and add BBLAYERS += " ${BSPDIR}/sources/meta-gmcrypto " into (Yocto 5.4.47_2.2.0 dir)/build-imx8mmevk/conf/bblayers.conf and  IMAGE_INSTALL_append += " gmssl-bin "  into local.conf 3, Run bitbake fsl-image-validation-imx. 4, You can find cv2x-verify.c under (build dir)/tmp/work/aarch64-poky-linux/cryptodev-tests/1.10caam-r0/git/tests. It is example for using CAAM cryptdev interface to do C-V2X verification (includes SM2 p256, NIST p256 and brainpoolP256r1).  cv2x_benchmark.c under (build dir)/tmp/work/aarch64-poky-linux/gmssl/1.0-r0/gmssl-1.0/test is the benchmark test program of C-V2X verifying. It includes HW, SW and HW+SW(one CPU) verifying for SM2 p256, NIST p256 and brainpoolP256r1. 5, Run the below command on your i.MX8M Mini evk board. modprobe cryptodev ./cv2x_benchmark gmssl speed sm2 gmssl speed dsa gmssl speed rsa gmssl speed ecdsa gmssl speed ecdh gmssl genrsa -rand -f4 -engine cryptodev 4096 Note: 1, the udpated GmSSL also support projective coordinates and affine coordinates (CAAM only support affine coordinates). Affine coordinates is used by default. You can call EC_GROUP_set_coordinates() and EC_GROUP_restore_coordinates() to change coordinates and restore default. When you hope to use some EC APIs under expected coordinates, you need to call EC_GROUP_set_coordinates() before EC APIs and EC_GROUP_restore_coordinates() after them. Like the below example: orig_coordinate = EC_GROUP_set_coordinates(EC_PROJECTIVE_COORDINATES); group = EC_GROUP_new_by_curve_name(NID_sm2p256v1); EC_GROUP_restore_coordinates(orig_coordinate); 2, Yocto Zeus integrates openssl 1.1.1g, so I change library name of gmssl from libcrypto to libgmcrypto and from libssl to libgmssl to avoid name confliction with openssl 1.1.1g (lib name are also libcrypto.so.1.1 and libssl.so.1.1). You should use -lgmcrypto and -lgmssl when you link gmssl library instead of -lcrypto and -lssl.   +++++++++++++++++++++++    updating at 2021-02-08  ++++++++++++++++++++++++++++ This updating is for Yocto release of Linux 5.4.70_2.3.0​​. The package meta-gmcrypto is Yocto layer which also support c-v2x feature in previous release. You need to git clone https://gitee.com/zxd2021-imx/meta-gmcrypto.git, and git checkout Linux-5.4.70-2.3.0.    +++++++++++++++++++++++    updating for Linux-5.10.52-2.1.0  +++++++++++++++++++++++ This updating is for Yocto release of Linux 5.10.52_2.1.0​​. The package meta-gmcrypto is Yocto layer which also support c-v2x feature in previous release.  1, You need to git clone https://gitee.com/zxd2021-imx/meta-gmcrypto.git, and git checkout Linux-5.10.52-2.1.0.  Copy meta-gmcrypto to folder (Yocto 5.10.52_2.1.0 dir)/sources/. 2, Run DISTRO=fsl-imx-xwayland MACHINE=imx8mmevk source imx-setup-release.sh -b build-imx8mmevk and add BBLAYERS += " ${BSPDIR}/sources/meta-gmcrypto " into (Yocto 5.10.52_2.1.0 dir)/build-imx8mmevk/conf/bblayers.conf and  IMAGE_INSTALL_append += " gmssl-bin "  into local.conf 3, Run bitbake imx-image-multimedia. 4, Run the below command on your i.MX8M Mini EVK board. modprobe cryptodev gmssl speed sm2 gmssl genrsa -rand -f4 -engine cryptodev 512 gmssl speed dsa gmssl genrsa -rand -f4 -engine cryptodev 1024 gmssl speed rsa gmssl genrsa -rand -f4 -engine cryptodev 2048 gmssl speed ecdsa gmssl genrsa -rand -f4 -engine cryptodev 3072 gmssl speed ecdh gmssl genrsa -rand -f4 -engine cryptodev 4096 gmssl speed -evp sha256 -engine cryptodev -elapsed gmssl speed -evp aes-128-cbc -engine cryptodev -elapsed gmssl speed -evp aes-128-ecb -engine cryptodev -elapsed gmssl speed -evp aes-128-cfb -engine cryptodev -elapsed gmssl speed -evp aes-128-ofb -engine cryptodev -elapsed gmssl speed -evp des-ede3 -engine cryptodev -elapsed gmssl speed -evp des-cbc -engine cryptodev -elapsed gmssl speed -evp des-ede3-cfb -engine cryptodev -elapsed +++++++++++++++++++++++    updating for Linux-5.15.71-2.2.0 +++++++++++++++++++++++ This updating is for Yocto release of Linux 5.15.71-2.2.0​​. The package meta-gmcrypto is Yocto layer which also support c-v2x feature in previous release.  1, You need to git clone https://gitee.com/zxd2021-imx/meta-gmcrypto.git, and git checkout Linux-5.15.71-2.2.0.  Copy meta-gmcrypto to folder (Yocto 5.15.71-2.2.0 dir)/sources/. 2, Run DISTRO=fsl-imx-xwayland MACHINE=imx8mmevk source imx-setup-release.sh -b build-imx8mmevk and add BBLAYERS += " ${BSPDIR}/sources/meta-gmcrypto " into (Yocto 5.15.71-2.2.0 dir)/build-imx8mmevk/conf/bblayers.conf and  IMAGE_INSTALL:append = " gmssl-bin "  into local.conf 3, Run bitbake imx-image-multimedia. 4, Run the below command on your i.MX8M Mini EVK board. modprobe cryptodev gmssl speed sm2 gmssl genrsa -rand -f4 -engine cryptodev 512 gmssl speed dsa gmssl genrsa -rand -f4 -engine cryptodev 1024 gmssl speed rsa gmssl genrsa -rand -f4 -engine cryptodev 2048 gmssl speed ecdsa gmssl genrsa -rand -f4 -engine cryptodev 3072 gmssl speed ecdh gmssl genrsa -rand -f4 -engine cryptodev 4096 gmssl speed -evp sha256 -engine cryptodev -elapsed gmssl speed -evp aes-128-cbc -engine cryptodev -elapsed gmssl speed -evp aes-128-ecb -engine cryptodev -elapsed gmssl speed -evp aes-128-cfb -engine cryptodev -elapsed gmssl speed -evp aes-128-ofb -engine cryptodev -elapsed gmssl speed -evp des-ede3 -engine cryptodev -elapsed gmssl speed -evp des-cbc -engine cryptodev -elapsed gmssl speed -evp des-ede3-cfb -engine cryptodev -elapsed   +++++++++++++++++++++++    Updating for Linux-6.1.55-2.2.0 +++++++++++++++++++++++ This updating is new GmSSL 3.1.1 and Yocto release of Linux 6.1.55-2.2.0. 主要特性 超轻量:GmSSL 3 大幅度降低了内存需求和二进制代码体积,不依赖动态内存,可以用于无操作系统的低功耗嵌入式环境(MCU、SOC等),开发者也可以更容易地将国密算法和SSL协议嵌入到现有的项目中。 更合规:GmSSL 3 可以配置为仅包含国密算法和国密协议(TLCP协议),依赖GmSSL 的密码应用更容易满足密码产品型号检测的要求,避免由于混杂非国密算法、不安全算法等导致的安全问题和合规问题。 更安全:TLS 1.3在安全性和通信延迟上相对之前的TLS协议有巨大的提升,GmSSL 3 支持TLS 1.3协议和RFC 8998的国密套件。GmSSL 3 默认支持密钥的加密保护,提升了密码算法的抗侧信道攻击能力。 跨平台:GmSSL 3 更容易跨平台,构建系统不再依赖Perl,默认的CMake构建系统可以容易地和Visual Studio、Android NDK等默认编译工具配合使用,开发者也可以手工编写Makefile在特殊环境中编译、剪裁。 More information, please refer to Readme Recipe file is the attached gmssl_3.1.1.bb.tar.gz
查看全文
    Xenomai is real-time framework, which can run seamlessly side-by-side Linux as a co-kernel system, or natively over mainline Linux kernels (with or without PREEMPT-RT patch). The dual kernel nicknamed Cobalt, is a significant rework of the Xenomai 2.x system. Cobalt implements the RTDM specification for interfacing with real-time device drivers. The native linux version, an enhanced implementation of the experimental Xenomai/SOLO work, is called Mercury. In this environment, only a standalone implementation of the RTDM specification in a kernel module is required, for interfacing the RTDM-compliant device drivers with the native kernel. You can get more detailed information from Home · Wiki · xenomai / xenomai · GitLab       I have ported xenomai 3.1 to i.MX Yocto 4.19.35-1.1.0, and currently support ARMv7 and tested on imx6ulevk/imx6ull14x14evk/imx6qpsabresd/imx6dlsabresd/imx6sxsabresdimx6slevk boards. I also did stress test by tool stress-ng on some boards.      You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm.git, and git checkout Linux-4.19.35-1.1.0. (which inlcudes all patches and bb file) and add the following variable in conf/local.conf before build xenomai by command bitake xenomai.  XENOMAI_KERNEL_MODE = "cobalt"  PREFERRED_VERSION_linux-imx = "4.19-${XENOMAI_KERNEL_MODE}" IMAGE_INSTALL_append += " xenomai" DISTRO_FEATURES_remove = "optee" or XENOMAI_KERNEL_MODE = "mercury" PREFERRED_VERSION_linux-imx = "4.19-${XENOMAI_KERNEL_MODE}" IMAGE_INSTALL_append += " xenomai" DISTRO_FEATURES_remove = "optee" If XENOMAI_KERNEL_MODE = "cobalt", you can build dual kernel version. And If XENOMAI_KERNEL_MODE = "mercury", it is single kernel with PREEMPT-RT patch. The following is test result by the command (/usr/xenomai/demo/cyclictest -p 50 -t 5 -m -n -i 1000 😞 //Mecury on 6ULL with stress-ng --cpu 4 --io 2 --vm 1 --vm-bytes 128M --metrics-brief policy: fifo: loadavg: 6.08 2.17 0.81 8/101 534 T: 0 (  530) P:99 I:1000 C:  74474 Min:     23 Act:  235 Avg:   77 Max:    8278 T: 1 (  531) P:99 I:1500 C:  49482 Min:     24 Act:   32 Avg:   56 Max:    8277 T: 2 (  532) P:99 I:2000 C:  36805 Min:     24 Act:   38 Avg:   79 Max:    8170 T: 3 (  533) P:99 I:2500 C:  29333 Min:     25 Act:   41 Avg:   54 Max:    7069 T: 4 (  534) P:99 I:3000 C:  24344 Min:     24 Act:   51 Avg:   60 Max:    7193   //Cobalt on 6ULL with stress-ng --cpu 4 --io 2 --vm 1 --vm-bytes 128M --metrics-brief policy: fifo: loadavg: 7.02 6.50 4.01 8/100 660 T: 0 (  652) P:50 I:1000 C: 560348 Min:      1 Act:   10 Avg:   15 Max:      71 T: 1 (  653) P:50 I:1500 C: 373556 Min:      1 Act:    9 Avg:   17 Max:      78 T: 2 (  654) P:50 I:2000 C: 280157 Min:      2 Act:   14 Avg:   20 Max:      64 T: 3 (  655) P:50 I:2500 C: 224120 Min:      1 Act:   12 Avg:   15 Max:      57 T: 4 (  656) P:50 I:3000 C: 186765 Min:      1 Act:   31 Avg:   19 Max:      53   //Cobalt on 6qp with stress-ng --cpu 4 --io 2 --vm 1 --vm-bytes 512M --metrics-brief policy: fifo: loadavg: 8.11 7.44 4.45 8/156 1057 T: 0 (  917) P:50 I:1000 C: 686106 Min:      0 Act:    3 Avg:    5 Max:      53 T: 1 (  918) P:50 I:1500 C: 457395 Min:      0 Act:    3 Avg:    5 Max:      49 T: 2 (  919) P:50 I:2000 C: 342866 Min:      0 Act:    2 Avg:    4 Max:      43 T: 3 (  920) P:50 I:2500 C: 274425 Min:      0 Act:    3 Avg:    5 Max:      58 T: 4 (  921) P:50 I:3000 C: 228682 Min:      0 Act:    2 Avg:    6 Max:      46   //Cobalt on 6dl with stress-ng --cpu 2 --io 2 --vm 1 --vm-bytes 256M --metrics-brief policy: fifo: loadavg: 3.35 4.15 2.47 1/122 850 T: 0 (  729) P:50 I:1000 C: 608088 Min:      0 Act:    1 Avg:    3 Max:      34 T: 1 (  730) P:50 I:1500 C: 405389 Min:      0 Act:    0 Avg:    4 Max:      38 T: 2 (  731) P:50 I:2000 C: 304039 Min:      0 Act:    1 Avg:    4 Max:      45 T: 3 (  732) P:50 I:2500 C: 243225 Min:      0 Act:    0 Avg:    4 Max:      49 T: 4 (  733) P:50 I:3000 C: 202683 Min:      0 Act:    0 Avg:    5 Max:      38   //Cobalt on 6SX stress-ng --cpu 4 --io 2 --vm 1 --vm-bytes 512M  --metrics-brief policy: fifo: loadavg: 7.51 7.19 6.66 8/123 670 T: 0 (  598) P:50 I:1000 C:2314339 Min:      0 Act:    3 Avg:    8 Max:      60 T: 1 (  599) P:50 I:1500 C:1542873 Min:      0 Act:   15 Avg:    8 Max:      72 T: 2 (  600) P:50 I:2000 C:1157152 Min:      0 Act:    4 Avg:    9 Max:      55 T: 3 (  601) P:50 I:2500 C: 925721 Min:      0 Act:    5 Avg:    9 Max:      57 T: 4 (  602) P:50 I:3000 C: 771434 Min:      0 Act:    6 Avg:    6 Max:      41   //Cobalt on 6Solo lite stress-ng --cpu 4 --io 2 --vm 1 --vm-bytes 512M  --metrics-brief policy: fifo: loadavg: 7.01 7.04 6.93 8/104 598 T: 0 (  571) P:50 I:1000 C:3639967 Min:      0 Act:    9 Avg:    7 Max:      60 T: 1 (  572) P:50 I:1500 C:2426642 Min:      0 Act:    9 Avg:   11 Max:      66 T: 2 (  573) P:50 I:2000 C:1819980 Min:      0 Act:   11 Avg:   10 Max:      57 T: 3 (  574) P:50 I:2500 C:1455983 Min:      0 Act:   12 Avg:   10 Max:      56 T: 4 (  575) P:50 I:3000 C:1213316 Min:      0 Act:    7 Avg:    9 Max:      43   //Cobalt on 7d with stress-ng --cpu 2 --io 2 --vm 1 --vm-bytes 256M --metrics-brief policy: fifo: loadavg: 5.03 5.11 5.15 6/107 683 T: 0 (  626) P:50 I:1000 C:6842938 Min:      0 Act:    1 Avg:    2 Max:      63 T: 1 (  627) P:50 I:1500 C:4561953 Min:      0 Act:    4 Avg:    2 Max:      66 T: 2 (  628) P:50 I:2000 C:3421461 Min:      0 Act:    0 Avg:    2 Max:      69 T: 3 (  629) P:50 I:2500 C:2737166 Min:      0 Act:    3 Avg:    2 Max:      71 T: 4 (  630) P:50 I:3000 C:2280969 Min:      0 Act:    2 Avg:    1 Max:      33   //////////////////////////////////////// Update for Yocto L5.10.52 2.1.0  /////////////////////////////////////////////////////////// New release for Yocto release L5.10.52 2.1.0. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm and git checkout xenomai-5.10.52-2.1.0. Updating: 1, Upgrade Xenomai to v3.2 2, Enable Dovetail instead of ipipe. Copy xenomai-arm to <Yocto folder>/sources/meta-imx/meta-bsp/recipes-kernel, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL_append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL_append += " xenomai" Notice: If XENOMAI_KERNEL_MODE = "cobalt", you can build dual kernel version. And If XENOMAI_KERNEL_MODE = "mercury", it is single kernel with PREEMPT-RT patch. //////////////////////////////////////// Update for Yocto L5.15.71 2.2.0  /////////////////////////////////////////////////////////// New release for Yocto release L5.15.71 2.2.0. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm and git checkout xenomai-5.15.71-2.2.0. Updating: 1, Upgrade Xenomai to v3.2.2 Copy xenomai-arm to <Yocto folder>/sources/meta-imx/meta-bsp/recipes-kernel, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL:append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL:append += " xenomai" Notice: If XENOMAI_KERNEL_MODE = "cobalt", you can build dual kernel version. And If XENOMAI_KERNEL_MODE = "mercury", it is single kernel with PREEMPT-RT patch.   ///////// Later update for Later Yocto release, please refer to the following community post //////////// 移植实时Linux方案Xenomai到i.MX ARM64平台 (Enable real-time Linux Xenomai on i.MX ARM64 Platform)   
查看全文
    Xenomai is real-time framework, which can run seamlessly side-by-side Linux as a co-kernel system, or natively over mainline Linux kernels (with or without PREEMPT-RT patch). The dual kernel nicknamed Cobalt, is a significant rework of the Xenomai 2.x system. Cobalt implements the RTDM specification for interfacing with real-time device drivers. The native linux version, an enhanced implementation of the experimental Xenomai/SOLO work, is called Mercury. In this environment, only a standalone implementation of the RTDM specification in a kernel module is required, for interfacing the RTDM-compliant device drivers with the native kernel. You can get more detailed information from Home · Wiki · xenomai / xenomai · GitLab       I have ported xenomai 3.1 to i.MX Yocto 4.19.35-1.1.0, and currently support ARM64 and test on i.MX8MQ EVK board. I did over night test( 5 real-time threads + GPU SDK test case) and stress test by tool stress-ng on i.MX8MQ EVK board. It looks lile pretty good. Current version (20200730) also support i.MX8MM EVK.     You need git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git, and git checkout xenomai-4.19.35-1.1.0-20200818 (which inlcudes all patches and bb file) and add the following variable in conf/local.conf before build xenomai by command bitbake xenomai.  XENOMAI_KERNEL_MODE = "cobalt"  PREFERRED_VERSION_linux-imx = "4.19-${XENOMAI_KERNEL_MODE}" IMAGE_INSTALL_append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" PREFERRED_VERSION_linux-imx = "4.19-${XENOMAI_KERNEL_MODE}" IMAGE_INSTALL_append += " xenomai" If XENOMAI_KERNEL_MODE = "cobalt", you can build dual kernel version. And If XENOMAI_KERNEL_MODE = "mercury", it is single kernel with PREEMPT-RT patch. The following is test result by the command (/usr/xenomai/demo/cyclictest -p 99 -t 5 -m -n -i 1000  -l 100000😞 //Over normal Linux kernel without GPU SDK test case T: 0 ( 4220) P:99 I:1000 C: 100000 Min: 7 Act: 10 Avg: 9 Max: 23 T: 1 ( 4221) P:99 I:1500 C: 66672 Min: 7 Act: 10 Avg: 10 Max: 20 T: 2 ( 4222) P:99 I:2000 C: 50001 Min: 7 Act: 12 Avg: 10 Max: 81 T: 3 ( 4223) P:99 I:2500 C: 39998 Min: 7 Act: 11 Avg: 10 Max: 29 T: 4 ( 4224) P:99 I:3000 C: 33330 Min: 7 Act: 13 Avg: 10 Max: 26 //Over normal Linux kernel with GPU SDK test case T: 0 ( 4177) P:99 I:1000 C: 100000 Min: 7 Act: 10 Avg: 11 Max: 51 T: 1 ( 4178) P:99 I:1500 C: 66673 Min: 7 Act: 12 Avg: 10 Max: 35 T: 2 ( 4179) P:99 I:2000 C: 50002 Min: 7 Act: 12 Avg: 11 Max: 38 T: 3 ( 4180) P:99 I:2500 C: 39999 Min: 7 Act: 12 Avg: 11 Max: 42 T: 4 ( 4181) P:99 I:3000 C: 33330 Min: 7 Act: 12 Avg: 11 Max: 36   //Cobalt with stress-ng --cpu 4 --io 2 --vm 1 --vm-bytes 512M --timeout 600s --metrics-brief T: 0 ( 4259) P:50 I:1000 C:3508590 Min:      0 Act:    0 Avg:    0 Max:      42 T: 1 ( 4260) P:50 I:1500 C:2338831 Min:      0 Act:    1 Avg:    0 Max:      36 T: 2 ( 4261) P:50 I:2000 C:1754123 Min:      0 Act:    1 Avg:    1 Max:      42 T: 3 ( 4262) P:50 I:2500 C:1403298 Min:      0 Act:    1 Avg:    1 Max:      45 T: 4 ( 4263) P:50 I:3000 C:1169415 Min:      0 Act:    1 Avg:    1 Max:      22   //Cobalt without GPU SDK test case T: 0 ( 4230) P:50 I:1000 C: 100000 Min: 0 Act: 0 Avg: 0 Max: 4 T: 1 ( 4231) P:50 I:1500 C:   66676 Min: 0 Act: 1 Avg: 0 Max: 4 T: 2 ( 4232) P:50 I:2000 C:   50007 Min: 0 Act: 1 Avg: 0 Max: 8 T: 3 ( 4233) P:50 I:2500 C:   40005 Min: 0 Act: 1 Avg: 0 Max: 3 T: 4 ( 4234) P:50 I:3000 C:   33338 Min: 0 Act: 1 Avg: 0 Max: 5 //Cobalt with GPU SDK test case T: 0 ( 4184) P:99 I:1000 C:37722968 Min: 0 Act: 1 Avg: 0 Max: 24 T: 1 ( 4185) P:99 I:1500 C:25148645 Min: 0 Act: 1 Avg: 0 Max: 33 T: 2 ( 4186) P:99 I:2000 C:18861483 Min: 0 Act: 1 Avg: 0 Max: 22 T: 3 ( 4187) P:99 I:2500 C:15089187 Min: 0 Act: 1 Avg: 0 Max: 23 T: 4 ( 4188) P:99 I:3000 C:12574322 Min: 0 Act: 1 Avg: 0 Max: 29 //Mercury without GPU SDK test case T: 0 ( 4287) P:99 I:1000 C:1000000 Min: 6 Act: 7 Avg: 7 Max: 20 T: 1 ( 4288) P:99 I:1500 C:  666667 Min: 6 Act: 9 Avg: 7 Max: 17 T: 2 ( 4289) P:99 I:2000 C:  499994 Min: 6 Act: 8 Avg: 7 Max: 24 T: 3 ( 4290) P:99 I:2500 C:  399991 Min: 6 Act: 9 Avg: 7 Max: 19 T: 4 ( 4291) P:99 I:3000 C:  333322 Min: 6 Act: 8 Avg: 7 Max: 21 //Mercury with GPU SDK test case T: 0 ( 4222) P:99 I:1000 C:1236790 Min: 6 Act: 7 Avg: 7 Max: 55 T: 1 ( 4223) P:99 I:1500 C:  824518 Min: 6 Act: 7 Avg: 7 Max: 44 T: 2 ( 4224) P:99 I:2000 C:  618382 Min: 6 Act: 8 Avg: 8 Max: 88 T: 3 ( 4225) P:99 I:2500 C:  494701 Min: 6 Act: 7 Avg: 8 Max: 49 T: 4 ( 4226) P:99 I:3000 C:  412247 Min: 6 Act: 7 Avg: 8 Max: 53 //////////////////////////////////////// Update for Yocto L5.4.47 2.2.0  /////////////////////////////////////////////////////////// New release for Yocto release L5.4.47 2.2.0 and it supports i.MX8M series (8MQ,8MM,8MN and 8MP). You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git,  and git checkout xenomai-5.4.47-2.2.0. You need to add the following variable in conf/local.conf before build xenomai by command bitbake imx-image-multimedia.  XENOMAI_KERNEL_MODE = "cobalt"  PREFERRED_VERSION_linux-imx = "5-${XENOMAI_KERNEL_MODE}" IMAGE_INSTALL_append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" PREFERRED_VERSION_linux-imx = "5-${XENOMAI_KERNEL_MODE}" IMAGE_INSTALL_append += " xenomai" //////////////////////////////////////// Update for Yocto L5.4.70 2.3.0  /////////////////////////////////////////////////////////// New release  for Yocto release L5.4.70 2.3.0 and it supports i.MX8M series (8MQ,8MM,8MN and 8MP) and i.MX8QM/QXP. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git and git checkout xenomai-5.4.70-2.3.0. Updating: 1, Support i.MX8QM and i.MX8QXP 2, Fix altency's the issue which uses legacy API to get time   //////////////////////////////////////// update for Yocto L5.4.70 2.3.2  /////////////////////////////////////////////////////////// New release for Yocto release L5.4.70 2.3.2. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git, and git checkout xenomai-5.4.70-2.3.2. Updating: 1, Enable Xenomai RTDM driver in Linux Kernel 2, Currently CAN, UART, GPIO,  SPI and Ethernet (in debug for RTNet)  are added in Xenomai. 3, Add KERNEL_DEVICETREE += " freescale/imx8mp-rt-evk.dtb " in sources/meta-imx/meta-bsp/conf/machine/imx8mpevk.conf to enable relative device in Xenomai domain, for example rt-imx8mp-flexcan.   //////////////////////////////////////// Update for Yocto L5.4.70 2.3.4  /////////////////////////////////////////////////////////// New release for Yocto release L5.4.70 2.3.4. You need to git clone  https://gitee.com/zxd2021-imx/xenomai-arm64.git and git checkout xenomai-5.4.70-2.3.4. Updating: 1, Enable RTNet FEC driver 2, Currently CAN, UART, GPIO,  SPI and Ethernet ( FEC Controller)  are added in Xenomai. 3, Add KERNEL_DEVICETREE += " freescale/imx8mp-rt-evk.dtb " in sources/meta-imx/meta-bsp/conf/machine/imx8mpevk.conf and KERNEL_DEVICETREE += " freescale/imx8mm-rt-ddr4-evk.dtb " in sources/meta-imx/meta-bsp/conf/machine/imx8mmddr4evk.conf to enable rt_fec device in Xenomai domain. Verifying the network connection by RTnet Ping Between i.MX8M Mini EVK and i.MX8M Plus EVK a, Setup test environment 1, Connect ENET1 of  i.MX8M Plus EVK (used as a master) and  ENET of i.MX8M Mini EVK (used as a slave) of  to a switch or hub 2, Modify /usr/xenomai/etc/rtnet.conf in i.MX8M Plus EVK board as the following: @@ -16,7 +16,7 @@ MODULE_EXT=".ko" # RT-NIC driver -RT_DRIVER="rt_eepro100" +RT_DRIVER="rt_fec" RT_DRIVER_OPTIONS="" # PCI addresses of RT-NICs to claim (format: 0000:00:00.0) @@ -30,8 +30,8 @@ REBIND_RT_NICS="" # The TDMA_CONFIG file overrides these parameters for masters and backup # masters. Leave blank if you do not use IP addresses or if this station is # intended to retrieve its IP from the master based on its MAC address. -IPADDR="10.0.0.1" -NETMASK="" +IPADDR="192.168.100.101" +NETMASK="255.255.255.0" # Start realtime loopback device ("yes" or "no") RT_LOOPBACK="yes" @@ -65,7 +65,7 @@ TDMA_MODE="master" # Master parameters # Simple setup: List of TDMA slaves -TDMA_SLAVES="10.0.0.2 10.0.0.3 10.0.0.4" +TDMA_SLAVES="192.168.100.102" # Simple setup: Cycle time in microsecond TDMA_CYCLE="5000" 3, Modify /usr/xenomai/etc/rtnet.conf in i.MX8M Mini EVK board as the following: @@ -16,7 +16,7 @@ MODULE_EXT=".ko" # RT-NIC driver -RT_DRIVER="rt_eepro100" +RT_DRIVER="rt_fec" RT_DRIVER_OPTIONS="" # PCI addresses of RT-NICs to claim (format: 0000:00:00.0) @@ -30,8 +30,8 @@ REBIND_RT_NICS="" # The TDMA_CONFIG file overrides these parameters for masters and backup # masters. Leave blank if you do not use IP addresses or if this station is # intended to retrieve its IP from the master based on its MAC address. -IPADDR="10.0.0.1" -NETMASK="" +IPADDR="192.168.100.102" +NETMASK="255.255.255.0" # Start realtime loopback device ("yes" or "no") RT_LOOPBACK="yes" @@ -59,13 +59,13 @@ STAGE_2_CMDS="" # TDMA mode of the station ("master" or "slave") # Start backup masters in slave mode, it will then be switched to master # mode automatically during startup. -TDMA_MODE="master" +TDMA_MODE="slave" # Master parameters # Simple setup: List of TDMA slaves -TDMA_SLAVES="10.0.0.2 10.0.0.3 10.0.0.4" +TDMA_SLAVES="192.168.100.102" # Simple setup: Cycle time in microsecond TDMA_CYCLE="5000" 4, rename imx8mm-rt-ddr4-evk.dtb to imx8mm-ddr4-evk.dtb in /run/media/mmcblk1p1,  rename imx8mp-rt-evk.dtb to imx8mp-evk.dtb in /run/media/mmcblk1p1, and reboot board. 5, Run the below command on i.MX8M Mini EVK board. cd /usr/xenomai/sbin/ ./rtnet start & 5, Run the below command on i.MX8M Plus EVK board. cd /usr/xenomai/sbin/ ./rtnet start & When you see the log (rt_fec_main 30be0000.ethernet (unnamed net_device) (uninitialized): Link is Up - 100Mbps/Full - flow control rx/tx) and you can run command "./rtroute" to check route table if the slave IP (192.168.100.102) is in route.. b, Verify the network connection using the command below: ./rtping -s 1024 192.168.100.102 //////////////////////////////////////// Update for Yocto L5.10.52 2.1.0  /////////////////////////////////////////////////////////// New release for Yocto release L5.10.52 2.1.0. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git and git checkout xenomai-5.10.52-2.1.0. Updating: 1, Upgrade Xenomai to v3.2 2, Enable Dovetail instead of ipipe. Copy xenomai-arm64 to <Yocto folder>/sources/meta-imx/meta-bsp/recipes-kernel, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitbake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL_append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL_append += " xenomai" Notice: If XENOMAI_KERNEL_MODE = "cobalt", you can build dual kernel version. And If XENOMAI_KERNEL_MODE = "mercury", it is single kernel with PREEMPT-RT patch.  Latency testing of Xenomai3.2+Dovetail with isolating CPU 2,3 ( Xenomai 3.2 on 8MM DDR4 EVK with GPU test case (GLES2/S08_EnvironmentMappingRefraction_Wayland) + iperf3 + 2 ping 65000 size + stress-ng --cpu 2 --io 2 --vm 1 --vm-bytes 256M --metrics-brief )😞 The following is test result by the command (/usr/xenomai/demo/cyclictest -a 2,3 -p 50 -t 5 -m -n -i 1000) root@imx8mmddr4evk:~# /usr/xenomai/demo/cyclictest -a 2,3 -p 50 -t 5 -m -n -i 1000 # /dev/cpu_dma_latency set to 0us policy: fifo: loadavg: 5.96 6.04 6.03 7/155 1349 T: 0 ( 615) P:50 I:1000 C:63448632 Min: 0 Act: 0 Avg: 0 Max: 55 T: 1 ( 616) P:50 I:1500 C:42299087 Min: 0 Act: 0 Avg: 1 Max: 43 T: 2 ( 617) P:50 I:2000 C:31724315 Min: 0 Act: 0 Avg: 1 Max: 51 T: 3 ( 618) P:50 I:2500 C:25379452 Min: 0 Act: 0 Avg: 1 Max: 53 T: 4 ( 619) P:50 I:3000 C:21149543 Min: 0 Act: 0 Avg: 1 Max: 47 //////////////////////////////////////// Update for Yocto L5.10.72 2.2.2  /////////////////////////////////////////////////////////// New release for Yocto release L5.10.72 2.2.2. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git and git checkout xenomai-5.10.72-2.2.2. Updating: 1, Upgrade Xenomai to v3.2.1 Copy xenomai-arm64 to <Yocto folder>/sources/meta-imx/meta-bsp/recipes-kernel, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitbake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL_append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL_append += " xenomai" //////////////////////////////////////// Update for Yocto L5.15.71 2.2.0  /////////////////////////////////////////////////////////// New release for Yocto release L5.15.71 2.2.0. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git and git checkout xenomai-5.15.71-2.2.0. Updating: 1, Upgrade Xenomai to v3.2.2 Copy xenomai-arm64 to <Yocto folder>/sources/meta-imx/meta-bsp/recipes-kernel, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitbake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL:append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL:append += " xenomai"   //////////////////////////////////////// Update for Yocto L6.1.55 2.2.0  /////////////////////////////////////////////////////////// New release for Yocto release L6.1.55 2.2.0. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git recipes-rtlinux-xenomai -b Linux-6.1.x Updating: 1, Upgrade Xenomai to v3.2.4 and support i.MX93 2, Enable EVL (aka Xenomai 4) for i.MX93 and legacy i.MX(6/7D/8X/8M) Copy recipes-rtlinux-xenomai to <Yocto folder>/sources/meta-imx/meta-bsp/, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitbake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL:append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL:append += " xenomai" or XENOMAI_KERNEL_MODE = "evl" IMAGE_INSTALL:append += " libevl"  
查看全文