NFCナレッジベース

キャンセル
次の結果を表示 
表示  限定  | 次の代わりに検索 
もしかして: 

NFC Knowledge Base

ディスカッション

ソート順:
This article provides information on the expected NFC communication range for NXP products (Connected tags) when used with various mobile phones and the CLRC663 reader.   1// NFC Antenna 54 mm vs 27 mm (NTAG 5 Boost Antenna 10 mm vs 10 mm)    1.1// Used antenna   1.2// Results  Note: NTAG5 Link - Energy harvesting is disabled      2// NFC Antenna 25 mm vs 18 mm    2.1// Used antenna   2.2// Results Note: NTAG5 Link - Energy harvesting is disabled      3//NFC Antenna 25 mm vs 18 mm with "filling"    3.1// Used antenna    3.2// Results    Note: NTAG5 Link - Energy harvesting is disabled 
記事全体を表示
This article describes how to evaluate ULPCD feature toghether with PN7642 EVK (OM27642EVK) and NFC Cockpit.  1// Disable DC-DC in EEPROM  OM27642EVK does not required any HW changes for ULPCD. User is only required to change the following settings in EEPROM  (disable DC-DC converter). Address: 0x0000 (Secure_Lib_Config) Value: 0x21  2//Set required ULPCD settings in EEPROM  The default settings can be used as a starting point as such. The optimum threshold for OM27642EVK is between 5-10. Below 5, user can observe higher occurrence of fake detection  Above 10, the detection range might drop significantly.  3// Perform "Reads HF Attenuator"  Once the required ULPCD settings is set (Guard times, Threshold....). Then User has to perform "Reads HF Attenuator". This will read and write the HF Attenuator value in the EEPROM at the address 0x63A (Secure_Lib_Config).  4//Enable that the RSSI value is calculated based on HF attenuator value  User is required to set most significant bit (7) to 1b. This will enable RSSI calculation based on the current HF attenuator value.  Example: If the HF Attenuator value is 0x0B, user has to write 0x8B in the eeprom field.  Note that if user reads the HF attenuator again, this step must be repeated.    Note: This has been updated in NFC Cockpit version 8.3.0. User needs to "check" the HF Attenuator check box.    5// Perform ULPCD Calibration and check RSSI Value  User can now perform the ULPCD Calibration and check the RSSI value by reading PCRM_ULPCD_STS register.  For OM27642EVK, the RSSI value for unloaded antenna is typically around 1500dec - 1550dec. 6//Enter ULPCD mode  User can enter the ULPCD mode. The board will be again connected once the load change is detected (e.g. NFC card or smarphone in the antenna proximity).
記事全体を表示
Prerequisites:  PN5190 instruction layer-> https://www.nxp.com/docs/en/user-manual/UM11942.pdf NFC Cockpit -> https://www.nxp.com/products/rfid-nfc/nfc-hf/nfc-readers/nfc-cockpit-configuration-tool-for-nfc-ics:NFC-COCKPIT   In case of PN5190, the NFC cockpit can only show a generic error messages. More detailed error description has to be decoded from the received "FrontEnd Packets" 1. See an example of the error returned after ULPCD calibration    2.  The Errors description is descibred in  PN5190 instruction layer UM. However, the error has to be "decoded"  →> Take the received packets before the error ntf. in NFC Cockpit → 80 00 0C 02 02 00 00 BB 07 00 00 23 00 00 00 Where:  2.1. Decode the "Event" 02 02 (Little endian format) → General_Error_Event + LPCD_Calibration_Done_Event   2.2 Check LPCD_CALIBRATION_DONE_EVENT  07 BB (Little endian format) → Measured RSSI Value    2.3. Check the GENERAL_ERROR_EVENT  00 23 (Little endian format) → Definition of the general error event → Error is : GPADC_ERROR, CLOCK_ERROR and XTAL_START_ERROR  
記事全体を表示
Hardware: 1. i.MX6ULL EVK board   2. OM27160A1HN   Software: 1. Build the Yocto Linux BSP for i.MX6ULL EVK. Here are the steps: $ mkdir L6.6.36_2.1.0 $ cd L6.6.36_2.1.0 $ repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-scarthgap -m imx-6.6.36-2.1.0.xml $ repo sync   $ DISTRO=fsl-imx-xwayland MACHINE=imx6ull14x14evk source imx-setup-release.sh -b build-for-6ullevk $ bitbake core-image-full-cmdline   2. Add the nxpnfc driver to kernel After the BSP build succeed, the kernel source code is located here: L6.6.36_2.1.0/build-for-6ullevk/tmp/work/imx6ull14x14evk-poky-linux-gnueabi/linux-imx/6.6.36+git/git/   Clone the nxpnfc repository into the kernel directory, replacing existing implementation: $ cd L6.6.36_2.1.0/build-for-6ullevk/tmp/work/imx6ull14x14evk-poky-linux-gnueabi/linux-imx/6.6.36+git/git/ $ rm -rf drivers/nfc $ git clone https://github.com/NXPNFCLinux/nxpnfc.git drivers/nfc  This will end-up with the folder drivers/nfc containing the following files: • README.md: repository information • Makefile: driver heading makefile • Kconfig: driver configuration file • LICENSE: driver licensing terms • i2c_devicetree.txt: example of I²C device tree definition • spi_devicetree.txt: example of SPI device tree definition • nfc sub folder containing: – Makefile: – common.c: generic driver implementation – common.h: generic driver interface definition – i2c.c: I2C specific driver implementation – i2c.h: I2C specific driver interface definition – spi.c: SPI-specific driver implementation – spi.h: SPI-specific driver interface definition   Through kernel menuconfig procedure include the targeted driver to the build, as built-in (<*>): $ bitbake linux-imx -c menuconfig <*> NFC I2C Slave driver for NXP-NFCC       3. Connection between i.MX6ULL EVK and the PN7160 There are some pins on the Arduino header on the i.MX6ULL EVK board can be used to connect the PN7160 board. Below is the schematic of the Arduino headers on the i.MX6ULL EVK board. The two I2C2 pins can be used for I2C connection. The UART2_RX, UART2_TX and UART2_RTS can be changed to GPIO for connecting IRQ, VEN and DWL_REQ of PN7160, respectively. Below is the J1704 and J1703 on the EVK board.   Below is the schematic of Arduino interface on OM27160A1HN. There is a connector board (OM29110ARD-B). The OM27160A1HN is connecting on top of it. Below is the connectors board schematic. So, on the i.MX6ULL EVK board, we need I2C2 SDA and I2C2 SCL for I2C connections. And 3 GPIO pins for PN7160's IRQ, VEN and DWL_REQ. Here is the connection between i.MX6ULL EVK and OM29110ARD-B. OM29110ARD-B pin i.MX6ULL EVK pin I2C_SCL J2-1 I2C2_SCL J1704-10 I2C_SDA J2-2 I2C2_SDA J1704-9 GPIO_0 J2-10 GPIO1_21 J1703-1 GPIO_1 J4_1 GPIO1_20 J1703-2 GPIO_2 J4_2 GPIO1_25 J1703-3 3.3V J1-4 3.3V J1705-4 5V J1-5 5V J1705-5 GND J1-6 GND J1705-6      4. Modify the device tree file of i.MX6ull evk. The device tree file for i.MX6ULL evk is imx6ul-14x14-evk.dtsi. The location of the device tree file is here: L6.6.36_2.1.0/build-for-6ullevk/tmp/work/imx6ull14x14evk-poky-linux-gnueabi/linux-imx/6.6.36+git/git/arch/arm/boot/dts/nxp/imx/imx6ul-14x14-evk.dtsi   As we don't use the UART2, we disabled it. &uart2 { pinctrl-names = "default"; pinctrl-0 = <&pinctrl_uart2>; uart-has-rtscts; /* for DTE mode, add below change */ /* fsl,dte-mode; */ /* pinctrl-0 = <&pinctrl_uart2dte>; */ status = "disabled"; // <--- change the status to "disabled" bluetooth { compatible = "nxp,88w8987-bt"; }; };   Put the below nxpnfc under the &I2C2 node. nxpnfc: nxpnfc@28 { compatible = "nxp,nxpnfc"; reg = <0x28>; pinctrl-names = "default"; pinctrl-0 = <&pinctrl_nfcgpio>; nxp,nxpnfc-irq = <&gpio1 21 0>; nxp,nxpnfc-ven = <&gpio1 20 0>; nxp,nxpnfc-fw-dwnld = <&gpio1 25 0>; };   Like this: Add the gpios for nxpnfc. pinctrl_nfcgpio: nfcgpiogrp { fsl,pins = < MX6UL_PAD_UART2_RX_DATA__GPIO1_IO21 0xb0 //irq MX6UL_PAD_UART2_TX_DATA__GPIO1_IO20 0xb0 //ven MX6UL_PAD_UART3_RX_DATA__GPIO1_IO25 0xb0 //dwld req >; };     5. Re-compile the kernel and the whole image. $ bitbake linux-imx -c compile $ bitbake core-image-full-cmdline     6. Using UUU to program the image to the board. The built image is .wic.zst file. We need to program it to the board. It is located in the deploy folder below. L6.6.36_2.1.0/build-for-6ullevk/tmp/deploy/images/imx6ull14x14evk/core-image-full-cmdline-imx6ull14x14evk.rootfs-20241113103828.wic.zst   Download the UUU.exe from here: https://github.com/nxp-imx/mfgtools/releases   Download the Demo image for i.MX6ULL EVK from the Linux BSP web page.   Unzip the demo image file to a folder. And then copy the UUU.exe to the same demo image folder.   Connect the board to your PC using the USB cable. Switch the boot mode to "Serial Downloader mode"   On the PC side, run the below command to program the image to SD card on the i.MX6ULL EVK. uuu -b sd_all core-image-full-cmdline-imx6ull14x14evk.rootfs-20241112083235.wic.zst   Then switch the boot mode to "Internal Boot (Development)". Restart the board. Now, you can login as "root" and use the board. And you can see the nxpnfc driver is properly loaded.     7. Build the NFC Library and the nfcDemoApp in Yocto In the Yocto's sources directory, download the meta-nxp-nfc layer from https://github.com/NXPNFCLinux/meta-nxp-nfc     $ git clone https://github.com/NXPNFCLinux/meta-nxp-nfc.git  Then, the NFC library recipe is located in L6.6.36_2.1.0/sources/meta-nxp-nfc/recipes-nfc/nxp_nfc. Change the recipe nxp-nfc_git.bb as below: # Copyright (C) 2016 NXP Semiconductors DESCRIPTION = "Linux NFC stack for NCI based NXP NFC Controllers." LICENSE = "Apache-2.0" LIC_FILES_CHKSUM = "file://LICENSE.txt;md5=86d3f3a95c324c9479bd8986968f4327" SRC_URI = " \ git://github.com/NXPNFCLinux/linux_libnfc-nci.git;branch=NCI2.0_PN7160;protocol=https \ " SRCREV = "6bf9f42b94e267f6384043009bda84c11e7ebbaa" SRC_URI[sha256sum] = "47bdc27108fc8d66ce5d6c33f76b419cdef20c24b9e187ada8e689d1bd7f79c7" inherit autotools pkgconfig lib_package S = "${WORKDIR}/git"   Add the meta-nxp-nfc layer to the build definition. Updating file build_dir/conf/bblayers.conf with: BBLAYERS += " ${BSPDIR}/sources/meta-nxp-nfc"   Build meta-nxp-nfc layer:     $ bitbake nxp-nfc After build succeed, the library files and the nfcDemoApp are located in here : L6.6.36_2.1.0/build-for-6ullevk/tmp/work/cortexa7t2hf-neon-poky-linux-gnueabi/nxp-nfc/git/   Use the "scp" command to copy the files to the EVK board via the Network. If the folder is not exist on the EVK, please use "mkdir" to make the folder on the EVK first. Then use the "scp" command.  Here is the example: (**The IP address below should change to your EVK's IP address.) scp build/.libs/* root@10.192.246.136:/.libs/ scp image/etc/libnfc* root@10.192.246.136:/etc/   scp image/usr/lib/* root@10.192.246.136:/usr/lib     On the EVK board: root@imx6ull14x14evk:/# mkdir /usr/local root@imx6ull14x14evk:/# mkdir /usr/local/etc root@imx6ull14x14evk:/# cp /etc/libnfc-nci.conf /usr/local/etc   Now, you can run the nfcDemoApp on the i.MX6ULL EVK. root@imx6ull14x14evk:/# cd .libs/ root@imx6ull14x14evk:/.libs# ./nfcDemoApp poll       References: 1. i.MX Yocto Project User's guide 2. PN7160 Linux Porting Guide 3. MCIMX6ULL-EVK_DESIGNFILES 4. OM27160A1HN Hardware Design Files 5. OM29110 NFC’s SBC Interface Board Design Files 6. PN7150 NFC Controller on i.MX8M mini evk running Yocto
記事全体を表示
  Some customers are trying to update the user firmware on PN7642 through host interface and using “DownloadLibEx1” demo,  and they are using SFWUMaker to create .esfwu file from .bin followed the readme file but failed to do a firmware update. Here is a step-by-step guide to do it. I will use the SDK led blinky demo,  and generate an Esfwu file , and program it into PN7642 board with LPC5516 host.  Led blinky demo is in PN7642_MCUXpresso_SDK_02-15-00_PUB.  You can download it from PN7642 product page.  Single-Chip Solution with High-Performance NFC Reader, Customizable MCU and Security Toolbox | NXP Semiconductors Step 1: compile pnev7642fama_led_blinky demo Please make sure the flash size is 180KB.  By default,  the output flash size is 180KB with MCUXpresso IDE.     Step 2: Bin file generation The binary (.bin) file is not generated by default, we can do it manually by doing following: Build your target application Open the debug/release folder in MCUXpresso Right-click on the *.axf file Choose 'Binary Utilities' → 'Create binary' in the menu The .bin should appear   Step 3: Make an ESFWU file To convert a bin file to an ESFWU file, we can use the ESFWU Maker Utility (sw810311). It can be downloaded from PN7642 product page. It is a secure file, and you need to have an active NDA to get it.  To run this utility, the toml file is very important.  You need to change the output name and binary name according to your project ,  and  you need to use the correct aes_root_key. For other parameters, we left them unchanged.   3.1   change the output name and binary name   3.2 set the correct aes_root_key The application flashed via SWD is a bin file and NOT encrypted neither is it flashed with our bootloader. The .esfwu file via host interface is encrypted and flashed by our own bootloader.  The keys have to be valid, else the bootloader will not be able to decrypt the received file. Please make sure we are using the right keys to create the user application firmware.  This is crucial and without it, it won’t work anyways. The default keys are mentioned in the datasheet as transport keys. See below picture.  But it is highly recommended to provision your own keys!  Please have a look at the secure key mode application note for further information on that.        If you are not sure whether you have provisioned the root key or not, you can check the SKM state by running SKM demo. if the root key is provisioned, please use the provisioned root key.  From below picture, I can see that the app_root_key is  not provisioned, so I use the default transport key.     3.3  use the EsfwuMaker command to generate the Esfwu file.     After this command, we can get the esfwu file.       Step 4: Secure firmware download   We use the firmware download example to update the PN7642 firmware.  It is in the host software package, it  holds examples to be used with LPC55S16 and MCUXpresso, to interact with the PN7642. The LPC55S16 Host Software can be download from PN7642 product page. LPC55S16 Host Software Version 02.01.00 (nxp.com) To run the demo, we need to edit the firmware location.  In file DownloadLibEx1.c,  about line 60.       Please set the correct hardware settings as below.  we have to stack the PNEV7642A Rev-B development board on top of the LPC55S16-EVK board. Align Pin.1 of J36 of the PNEV7642A Rev-B development board with Pin.1 of J9 of the LPC55 board. The last 4 pins, 17 - 20, of J12 of the LPC board are not connected. As well as pin 1-4 of J10 stay unconnected, as below picture shows.       Run the firmware download Demo with LPC55s16,  see the log output below.  Choose option “6” to update your application firmware. The update may take a while.  At the end, a successful update is indicated by the prompt of “Successful firmware upload ”.         To verify it is successful, we can run this demo, please keep J65 open.  you will see the D7 (RED LED) blinky (0.5 HZ rate). If you need the pnev7642fama_led_blinky.esfwu, please let me know.    
記事全体を表示
In the case, the Reader output power cannot be further reduced with the help of the tuning and TXLDO settings (e.g. EMI reasons)  Then further reduction can be done using DPC settings. The idea is to use just one DPC entry and adjust the GSN value as shown below: DPC Settings:    The DPC Entries (1-19) have been deactivated (Index Activate ->0), and only Entry 00 stays active.    An example (RF Field measured using a scope probe): No DPC, TXLDO 5V    NO DPC, TXLDO 2.7V   DPC Activated, One Entry, GSN-> 0x05   DPC Activated, One Entry, GSN-> 0x01   Please consider that the reading performance will be impacted. 
記事全体を表示
There is a basic GUI for PN7160 RF Settings available.
記事全体を表示
Extended NFC Factory Test Application includes:  Get Current value (current measurement in mA) DPC Check (Available from FW. Version 12.50.06) Get AGC Value  Get AGC Value NFCLD (AGC value reading with fixed NFC Level Detector level) Dump EEPROM settings    How to get it:  Just download the app from Github. Replace the "NfcFactoryTestApp.c" with the file which is here in the attachment.  Run the application as described in ->AN13287.   Tomas Parizek  Customer Application Support 
記事全体を表示
A Quick Solution for link issue of "missing --end-group" when you use the latest MCUXpresso IDE to compile the NFC reader library projects.
記事全体を表示
https://community.nxp.com/docs/DOC-340244 
記事全体を表示
Hello NFC enthusiasts, The following topics will be covered in this document: Activation of multiple Tags. For more information, please refer to Activating multiple Tags using NFC Reader Library  Read and Write NDEF messages. Reading values from GPIOs. This document will be segmented into three parts: Description. Software configuration section. Hardware configuration section. Demonstration. Description. The purpose of this project is to copy the information stored from one tag to another by making use of GPIOs to decide which tag to copy from. This way, topics such as read and write NDEF, card activation and GPIOs will be implemented.   Software configuration section: This demonstration is based on NXP NFC Reader Library v05.02.00, NfcrdlibEx3_NFCForum project for PNEV7462B, in which some modifications are going to be made in order to carry this out. These tags are compliant with NFC Forum Type 2 Tag and ISO/IEC14443 Type A specifications.    In phacDiscLoop.h modify the max number of cards supported (two cards for this demonstration):   #define PHAC_DISCLOOP_CFG_MAX_CARDS_SUPPORTED 0x02U      In NfcrdlibEx3_NFCForum.c add the following code in LoadDiscoveryConfiguration():   static phStatus_t LoadDiscoveryConfiguration() { ... /*Passive max typea devices*/ status = phacDiscLoop_SetConfig(pDiscLoop, PHAC_DISCLOOP_CONFIG_TYPEA_DEVICE_LIMIT, 2); CHECK_STATUS(status); }   A fix to the SW stack has to be made (Fix will be implemented in the next release): open "phacDiscLoop_Sw_Int_A.c", line 511, change if statement as below.     if((pDataParams->sTypeATargetInfo.bTotalTagsFound > 1) && ((bTypeATagIdx) < pDataParams->sTypeATargetInfo.bTotalTagsFound))   In NfcrdlibEx3_NFCForum.c add #include "phhalGpio.h" to local headers section. /* Local headers */ #include <cards.h> #include "phhalGpio.h" #include "NfcrdlibEx3_NFCForum.h"‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ In NfcrdlibEx3_NFCForum.c define uint16_t NDEFlength = 0 and declare void InitGPIOs(void) in Global Defines section. /******************************************************************************* **   Global Defines *******************************************************************************/ phacDiscLoop_Sw_DataParams_t       * pDiscLoop;       /* Discovery loop component */ void * ppalI18092mPI; void * ppalI18092mT; void * palTop; /* Variables and InitGPIOs() needed for this application */ uint8_t bTagState1; uint8_t* value; uint8_t* value1; uint8_t val,val1; uint16_t NDEFlength = 0;‍‍‍‍‍‍‍‍‍‍‍‍‍‍ void InitGPIOs(void);‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ in Main Function, initialize the following: /******************************************************************************* **   Main Function *******************************************************************************/ int main (void) {      /* Initialize section */      value=&val;      value1=&val1;      InitGPIOs();‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ In case of multiple devices (which is of our interest) add the following code and comment the if(wNumberOfTags > 1){...} section as follows: else if((status & PH_ERR_MASK) == PHAC_DISCLOOP_MULTI_DEVICES_RESOLVED)             {                 /*                  * Multiple cards resolved. It enters here if DEVICE LIMIT > 1 and more than one devices are                  * detected and resolved.                  */                 DEBUG_PRINTF (" \n Multiple cards resolved: \n");                 /* Get detected technology type */                 status = phacDiscLoop_GetConfig(pDiscLoop, PHAC_DISCLOOP_CONFIG_TECH_DETECTED, &wTagsDetected);                 CHECK_STATUS(status);                 /* Get number of tags detected */                 status = phacDiscLoop_GetConfig(pDiscLoop, PHAC_DISCLOOP_CONFIG_NR_TAGS_FOUND, &wNumberOfTags);                 CHECK_STATUS(status);                 DEBUG_PRINTF ("\tNumber of tags: %d \n",wNumberOfTags);                 /* Tag 1 information */                 DEBUG_PRINTF ("\n Tag 1 NDEF information: \n");                 status = phacDiscLoop_ActivateCard(pDataParams, PHAC_DISCLOOP_TECH_TYPE_A, 0x00);                 /* Check for NDEF presence */                 status = phalTop_CheckNdef(palTop, &bTagState1);                 DEBUG_ERROR_PRINT(status);                 status = ReadNdefMessage(PHAL_TOP_TAG_TYPE_T2T_TAG);                 DEBUG_ERROR_PRINT(status);                 /* Tag 2 information */                 DEBUG_PRINTF ("\n Tag 2 NDEF information: \n");                 status = phacDiscLoop_ActivateCard(pDataParams, PHAC_DISCLOOP_TECH_TYPE_A, 0x01);                 /* Check for NDEF presence */                 status = phalTop_CheckNdef(palTop, &bTagState1);                 DEBUG_ERROR_PRINT(status);                 status = ReadNdefMessage(PHAL_TOP_TAG_TYPE_T2T_TAG);                 DEBUG_ERROR_PRINT(status);                 DEBUG_PRINTF (" \n --------------------------------------------------------------------------------------- \n\n");                 DEBUG_PRINTF (" \n Options: \n\n");                 DEBUG_PRINTF (" \n 1.- Left button  -(X)-( )- To copy NDEF message from Tag 1 to Tag 2 \n\n");                 DEBUG_PRINTF (" \n 2.- Right button -( )-(X)- To copy NDEF message from Tag 2 to Tag 1 \n\n");                 DEBUG_PRINTF (" \n --------------------------------------------------------------------------------------- \n\n");                 /* Reading values from GPIOs 2 and 3 */                 do                 {                     phhalPcr_GetGpioVal(2,value);                     phhalPcr_GetGpioVal(3,value1);                 }while(*value==1 && *value1==1);                 /* Copy NDEF content from tag at index 0 to Tag at index 1*/                 if(*value==0 && *value1==1)                 {                      DEBUG_PRINTF (" \n Copy NDEF from Tag 1 to Tag 2 \n");                 status = phacDiscLoop_ActivateCard(pDataParams, PHAC_DISCLOOP_TECH_TYPE_A, 0x00);                 /* Check for NDEF presence */                 status = phalTop_CheckNdef(palTop, &bTagState1);                 DEBUG_ERROR_PRINT(status);                 status = ReadNdefMessage(PHAL_TOP_TAG_TYPE_T2T_TAG);                 DEBUG_ERROR_PRINT(status);                 status = phacDiscLoop_ActivateCard(pDataParams, PHAC_DISCLOOP_TECH_TYPE_A, 0x01);                 /* Check for NDEF presence */                 status = phalTop_CheckNdef(palTop, &bTagState1);                 DEBUG_ERROR_PRINT(status);                     if(bTagState1 == PHAL_TOP_STATE_READWRITE)                     {                     status = WriteNdefMessage(PHAL_TOP_TAG_TYPE_T2T_TAG);                     DEBUG_ERROR_PRINT(status);                     }                     DEBUG_PRINTF (" \n NDEF from Tag 1 to Tag 2 already copied \n");                 }                 /* Copy NDEF content from tag at index 1 to Tag at index 0*/                 else if(*value==1 && *value1==0)                 {                      DEBUG_PRINTF (" \n Copy NDEF from Tag 2 to Tag 1 \n");                     /* Check for NDEF presence */                     status = phalTop_CheckNdef(palTop, &bTagState1);                     status = ReadNdefMessage(PHAL_TOP_TAG_TYPE_T2T_TAG);                     DEBUG_ERROR_PRINT(status);                     status = phacDiscLoop_ActivateCard(pDataParams, PHAC_DISCLOOP_TECH_TYPE_A, 0x00);                     /* Check for NDEF presence */                     status = phalTop_CheckNdef(palTop, &bTagState1);                         if(bTagState1 == PHAL_TOP_STATE_READWRITE)                         {                         status = WriteNdefMessage(PHAL_TOP_TAG_TYPE_T2T_TAG);                         DEBUG_ERROR_PRINT(status);                         }                         DEBUG_PRINTF (" \n NDEF from Tag 2 to Tag 1 already copied \n");                 }                 DEBUG_PRINTF (" \n Please remove the tags \n\n");                 DEBUG_PRINTF (" \n Press any button to continue... \n\n");                                 /* Reading values from GPIOs 2 and 3 */                 do                 {                     phhalPcr_GetGpioVal(2,value);                     phhalPcr_GetGpioVal(3,value1);                 }while(*value==1 && *value1==1); /*                if(wNumberOfTags > 1)                 {                      Get 1st detected tag and activate device at index 0                     for(bIndex = 0; bIndex < PHAC_DISCLOOP_PASS_POLL_MAX_TECHS_SUPPORTED; bIndex++)                     {                         if(PHAC_DISCLOOP_CHECK_ANDMASK(wTagsDetected, (1 << bIndex)))                         {                             DEBUG_PRINTF("\t Activating device @ index 0\n");                             status = phacDiscLoop_ActivateCard(pDataParams, bIndex, 0);                             break;                         }                     }                     if( ((status & PH_ERR_MASK) == PHAC_DISCLOOP_DEVICE_ACTIVATED) ||                             ((status & PH_ERR_MASK) == PHAC_DISCLOOP_PASSIVE_TARGET_ACTIVATED))                     {                          Get detected technology type                         status = phacDiscLoop_GetConfig(pDiscLoop, PHAC_DISCLOOP_CONFIG_TECH_DETECTED, &wTagsDetected);                         CHECK_STATUS(status);                         GetTagInfo(pDataParams, 0x01, wTagsDetected);                         DEBUG_PRINTF("\t\t Activation successful\n");                     }                     else                     {                         DEBUG_PRINTF("\t\tCard activation failed\n");                     }                 }*/                 /* Switch to LISTEN mode if supported after POLL mode */             }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ In NfcrdlibEx3_NFCForum.h declare WriteNdefMessage(). /** * Write NDEF message to a detected tag. * */ phStatus_t WriteNdefMessage(     uint8_t TopTagType);      /* [in] Tag type to which write NDEF */‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ In NfcrdlibEx3_NFCForum.c define the function WriteNdefMessage(). /** * Writes NDEF Message to a tag */ phStatus_t WriteNdefMessage(uint8_t TopTagType) {     phStatus_t status;     uint8_t bTagState;     uint16_t wDataLength = 0;     /* Configure Top layer for specified tag type */     status = phalTop_SetConfig(palTop, PHAL_TOP_CONFIG_TAG_TYPE, TopTagType);     DEBUG_ERROR_PRINT(status);     /* Check for NDEF presence */     status = phalTop_CheckNdef(palTop, &bTagState);     DEBUG_ERROR_PRINT(status);     if(bTagState == PHAL_TOP_STATE_READWRITE)     {         /* Write NDEF message */         status = phalTop_WriteNdef(palTop, baSnepAppBuffer, NDEFlength);         DEBUG_ERROR_PRINT(status);         /* Print NDEF message, if not NULL NDEF */         if(NDEFlength)         {             DEBUG_PRINTF("\tNDEF detected...\n");             DEBUG_PRINTF("\tNDEF length: %d\n", wDataLength);             DEBUG_PRINTF("\tNDEF message:\n");             //DumpBuffer(aData, wDataLength);             DumpBuffer(baSnepAppBuffer, 50);         }         else         {             DEBUG_PRINTF("\tNDEF content is NULL...\n");         }     }     else     {         DEBUG_PRINTF("\tNo NDEF content detected...\n");     }     return status; }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ In NfcrdlibEx3_NFCForum.c define InitGPIOs(). void InitGPIOs(void) {     phhalPcr_ConfigInput(2,true,false,false,false,true,false);     phhalPcr_ConfigInput(3,true,false,false,false,true,false); }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Hardware configuration section: For the Hardware set up, two push buttons will be connected to GPIO_2 and GPIO_3 of PNEV7462B as follows. Vdd will be connected to 3V3 pin on the board: GND can be connected to any GND on the board. Demonstration: Each tag was previously written with a text NDEF message respectively.   Tag 1: Text: Tag1 Language: en   Tag 2: Text: Tag2 Language: en   Writing to a tag can be done by making use of our TagWriter app available in the play store: NFC TagWriter by NXP - Aplicaciones de Android en Google Play  First both tag's NDEF text messages will be displayed: Once the information is read, you'll be asked to select an option from the following menu: If left button (GPIO_2) is pressed, the content from Tag 1 will be written to Tag 2: Otherwise, If left button (GPIO_3) is pressed, the content from Tag 2 will be written to Tag 1: Please find the modified files attached. I hope this is of great help! Best regards, Ivan.
記事全体を表示
Based on NFC reader library porting guide for LPC11u37h(Ver 5.12) ,We have a partial ported NFC reader library like below: Now, it is time to port other demos in this project. You may choose any demo, but here NfcrdlibEx2_AdvancedDiscoveryLoop is selected. and similar with before, the first step is creating a new build configuration: then in the project references, choose the LPCopen library for LPC11u37 instead. Change the MCU settings: Change the build settings: Change FreeRTOS portable to cortex M0: Search "PHDRIVER_LPC1769RC663_BOARD" in the source code of "NfcrdlibEx2_AdvancedDiscoveryLoop" project, and you may simply replace it with "PHDRIVER_LPC11U37RC663_BOARD", and there are only two places needs to be fixed. Search "PHDRIVER_LPC1769" in the source code of "NfcrdlibEx2_AdvancedDiscoveryLoop" project, and you may simply replace it with "PHDRIVER_LPC11U37". Most changes are in phApp_Init.c. Also please don't forget to enable optimization for size. Building result: Demo testing result:
記事全体を表示
This post contains step by step guide of how to use NTAG I²C plus with i.MX RT MCUs. The goal of this post is to enable developers to start developing their NFC Applications using NTAG I²C plus and i.MX RT MCUs quickly and easily. Attached with this post are two ready to use packages: ‘evkbimxrt1060_ntagI2C’ is to be used with MIMXRT1060-EVK and NTAG I²C plus kit for Arduino pinout. ‘evkbimxrt1050_ntagI2C’ is to be used with MIMXRT1050-EVK and NTAG I²C plus kit for Arduino pinout. Both packages contain the same example code but are configured for the two different boards. The example code demonstrates the following basic operations: Reading the EEPROM of NTAG I²C plus. Writing NTAG messages to NTAG I²C plus. Reading SRAM of NTAG I²C plus. Writing to SRAM of NTAG I²C plus. Using Field detect pin as interrupt to turn on an LED when an RF field is detected by the NTAG I²C board. The document has been structured as follows: NTAG I²C plus kit for Arduino pinout The NTAG I²C plus Arduino kit consist of two PCBs stacked together: The upper PCB is the antenna board with the connected tag The lower PCB is an interface adaptor board to the Arduino pinout This kit can be used to connect and evaluate the NTAG I²C plus  into many popular MCUs with Arduino compliant headers, for example:  Kinetis (e.g. KW41Z, i.MX (e.g. UDOO Neo, i.MX 6UL, i.MX 6 ULL, i.MX 7D), LPC MCUs (e.g. LPCXpresso MAX, V2 and V3 boards) and i.MX RT boards (e.g. i.MX RT1050, i.MX RT1060) The kit support package includes several software examples. The OM29110ARD is a generic interface board which offers support for connection to any PCB implementing Arduino connectors. It exposes: 3.3V and 5V power supply pins. I2C, SPI and UART host interfaces. Generic GPIOs (e.g. to be used for field detect, interrupts, reset pins or others) As such, it allows the NTAG I²C plus to be plugged into Arduino devices seamlessly. Hardware Requirements EVKB-IMXRT1050 board or EVKB-IMXRT1060 board. NTAG I²C plus kit for Arduino pinout (OM23221ARD) Cables: Micro USB cable 6 jumper wires Male to Female (Only required if using EVKB-IMXRT1050 board) Using NTAG I²C plus kit for Arduino pinout with EVKB-IMXRT1060 Hardware Connections The hardware connections are simple. Both the EVKB-IMXRT1060 board and OM23221ARD (NTAG I²C plus) board have Arduino interface. So simply connect both as shown in figure:  Running the Demo Follow the below mentioned steps to run the demo: Download the ‘evkbimxrt1060_ntagI2C’ package which you will find attached to this post.  Drag and drop the downloaded package to your MCUXpresso IDE workspace (If you don’t have MCUXpresso, it can be downloaded for free from here: https://www.nxp.com/support/developer-resources/software-development-tools/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE Now that the package has been imported to the MCUXpresso IDE, click on Debug icon from the Quickstart panel to begin a debug session. Once the debug session has started click on the run icon to run the code:                                 Note:  If this is your first time using IMXRT1060EVK board, it is recommended to follow the getting started guide first ( i.MX RT1060 Evaluation Kit | NXP  ) To see the output, you need to have a terminal application installed (like Tera term or PuTTY). The output looks like this:                                                    Using NTAG I²C plus kit for Arduino pinout with EVKB-IMXRT1050 Hardware Connections In case of EVKB-IMXRT1050, the I2C pins on the Arduino interface’s J24 pin 9 and 10 are only connected to the i.MX RT slave I²C port, not to a master I²C port. So, we cannot just plug in the NTAG I²C plus kit, instead we need to connect two boards with the help of jumper wires. The connections required are show in figure below.                                Running the Demo Download the ‘evkbimxrt1050_ntagI2C’ package which you will find attached to this post. Drag and drop the downloaded package to your MCUXpresso IDE workspace (If you don’t have MCUXpresso, it can be downloaded for free from here: https://www.nxp.com/support/developer-resources/software-development-tools/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE Now that the package has been imported to the MCUXpresso IDE, click on Debug icon from the Quickstart panel to begin a debug session. Once the debug session has started click on the run icon to run the code:                                Note:  If this is your first time using IMXRT1050EVK board, it is recommended to follow the getting started guide first ( i.MX RT1050 Evaluation Kit | NXP  ) To see the output, you need to have a terminal application installed (like Tera term or PuTTY). The output looks like this:                                            Porting the Package to any other i.MX RT Boards    If you want to use NTAG I²C plus with i.MX RT boards other than the i.MX RT1050 or the i.MX RT1060, then you’ve       to port the example package. This is fairly straightforward and the procedure is described below: Import the ‘hello world’ project from the SDK of the board to which you want to port the package. (SDKs for every board are freely available for download from the MCUXpresso SDK Builder website).We will modify this ‘hello world’ project adding code from attached packages, to make it work on the desired board.                                     Copy the following folders from the attached ‘evkbimxrt1060_ntagI2C’ or ‘evkbimxrt1050_ntagI2C’ package to the ‘hello world’ project imported in step 1:                               Copy the two files to the ‘drivers’ folder of ‘hello world’ project: Delete the ‘hello_world.c’ file from the source folder: Now copy the following preprocessor micros from ‘evkbimxrt1060_ntagI2C’ or ‘evkbimxrt1050_ntagI2C’ package to ‘hello world’ project:      Preprocessor settings can be found by right clicking Project-Properties>C++Build > Settings  Now we need to change the project configuration:        a.  Add the newly copied folders to source location; Right click on Project->Properties and add the following        folders:    b.  Include paths to the added libraries in the project. These can be copied from the from ‘evkbimxrt1060_ntagI2C’ or ‘evkbimxrt1050_ntagI2C’ package. Open project->properties and copy the following in the respective places as shown in the images:  Change pin configurations according to the board pins you are using:             a. For changing field detect pin, the code can be found in the source file:                   b. For I2C instance, the lines of code are in app_ntag->app_ntag.h:              c. These pins also need to be initialized which can be done through the pin initialization tool of MCUXpresso or code can be added to the ‘board.c’ file in ‘board’ folder. Once these changes are done, porting is complete. Build the project, it should build without any errors. Available resources BLE pairing with NFC on KW41 and NTAG I²C plus source code www.nxp.com/downloads/en/snippets-boot-code-headers-monitors/SW4223.zip NTAG I²C plus kit for Arduino pinout www.nxp.com/demoboard/OM23221ARD    
記事全体を表示
As NFC reader library 5.12 also supports PN5180, switching the NFC frontend from CLRC663 to PN5180 is quite easy based on previous porting. The porting also includes the hardware settings and software modification. Hardware Setup for porting: a) Remove resistors on PNEV5180B to disconnect the onboard lpc1769 from PN5180, following steps on page 16 of https://www.nxp.com/docs/en/application-note/AN11908.pdf  b) Connect LPCXpresso board for LPC11U37 with PNEV5180 as below: Software Modification for porting: 1. Make a copy of Board_Lpc11u37Rc663.h , and change its name to "Board_Lpc11u37Pn5180.h", and import it into the DAL/boards folder. 2.Change the source code in the header file as below: 3. Add two more pins' definition and configuration for BUSY and DWL pins of PN5180, and new configuration for reset pin. and modify the reset logic: 4.Change the IRQ interrupt trigger type to rising edge. 5.Include this header file in BoardSelection.h 6.Add this new configuration in ph_NxpBuild_App.h 7.Add this new configuration in phApp_Init.h 8.Add this new configuration in ph_NxpBuild_Platform.h 9.Add this new configuration in Settings. 10.Building result: Testing result:
記事全体を表示
Hello NFC community, MIFARE® Ultralight-based tickets offer an ideal solution for low-cost, high-volume applications such as public transport, loyalty cards and event ticketing. They serve as a perfect contactless replacement for magnetic stripe, barcode, or QR-code systems. The introduction of the contactless MIFARE Ultralight® ICs for limited-use applications can lead to reduced system installation and maintenance costs. As you may know the MIFARE family has the Ultralight C tag which is a contactless IC supporting 3DES cryptography is mostly used in limited use applications such smart ticketing, this tag complies with ISO 14443-3 type A and it is defined as type 2 tag, in this document I want to show you the procedure to change the default key to a custom key also to protect certain areas in the tag so the authentication is needed to perform a read or write operation. --------------------------------------------------------------------------------------------------- For this document I used : MFEV710: PEGODA Contactless Smart Card Reader RFIDDiscover Software Lite version  Full Version Available in Docstore Mifare Ultralight c --------------------------------------------------------------------------------------------------- Information Old Key : 49454D4B41455242214E4143554F5946 New Key : 88776655443322117766554433221199 Data sheet ---------------------------------------------------------------------------------------------------- First we start with the procedure to activate the tag and the anticollision procedure explained in the ISO/IEC 14443-3. Command Direction    ">" this direction is command send from PCD (Reader) to PICC(Ultralight c)    "<" this direction is command send from PICC (Ultralight c) to PCD (Reader)    "=" Prepare this command before sending Command   Data message REQA =  Request Command, Type A >  26 ATQA = Answer To Request, Type A  <  4400 SEL + NVB = SEL (Select code for cascade level ) 93, NVB (Number of Valid bits) 20 >  9320 ANTICOLLISION START <  8804598356   >  93708804598356 SAK (Select Acknowledge) = indicates additional cascade level <  x04   >  9520   <  E1ED2580A9   >  9570E1ED2580A9   <  x00 UID = 045983E1ED2580  ** the following procedure is explained in section 7.5.5 from the datasheet** Command   Data message Authenticate Part 1  (command 1A) >  1A00   <  AFA1ED1D682E5101422CC7 Authenticate Part 2 (command AF) >  AF2970D895F186D0302970D895F186D030188AAF4DAF68C5B9   <  006BD027CEC3E04EBC6919 [AUTHENTICATED] Then according to  section 7.5.7 of the datasheet the sections  where the 3DES key are saved are the 2C (Page 44) to the 2F (Page 47). We proceed to  write our new key using the A2 (WRITE command) Command   Data message DATA = byte 07,06,05,04 = 11223344 WRITE to page 44 (2C) >  A22C11223344 Positive acknowledge (ACK) <  0A DATA = byte 03,02,01,00 = 55667788 WRITE to page 45 (2D) >  A22D55667788  Positive acknowledge (ACK) <  0A DATA = byte 0F,0E,0D,0C = 99112233 WRITE to page 46 (2E) >  A22E99112233  Positive acknowledge (ACK) <  0A DATA = byte 0B,0A,09,08 = 44556677 WRITE to page 47 (2F) >  A22F44556677  Positive acknowledge (ACK) <  0A [RESET FIELD] [Authenticate with new key] Command   Data message Authenticate Part 1  (command 1A >  1A00   <  AFFAE2EFF17FAAD69862E7 Authenticate Part 2 (command AF) >  AFFD5794F2D4EA1B19FD5794F2D4EA1B196CF420CD4D9E8104   <  0030922228601939B8FA18 [AUTENTICATED WITH NEW KEY] we proceed to define from which sector the authentication is needed in order to read or write, to do this we use a write command to the AUTH0 (AUTH0 defines the page address from which the authentication is required. Valid address values for byte AUTH0 are from 03h to 30h.) the AUTH0 is located on the section 2A please check table 5 from #datasheet. **for this example we will define that from page 6 (06) we will need authentication to perform a read or write operation** Command   Data message WRITE command (A2) to AUTH0 (2A) from page 6 (06) >  A22A06000000 Positive acknowledge (ACK) <  0A Now the Read capabilities from page 06  require an Authentication in order to be read or written. Hope you find this document useful to get a better understanding of the behavior of the Ultralight C and how its security features can help you in your applications. Have a great day! BR Jonathan
記事全体を表示
This post contains a guide of how to use the NFC Reader Library with LPC55S69. A ready to use package for using the “Basic Discovery Loop” example from the NFC Reader Library with LPC55S69 and CLRC663 plus frontend is attached with this document. This document is structured as follows: Overview of LPC55S69: The LPCXpresso55S69 development board provides the ideal platform for evaluation of and development with the LPC55S6x MCU based on the Arm® Cortex®-M33 architecture. The board includes a high performance onboard debug probe, audio subsystem and accelerometer, with several options for adding off-the-shelf add-on boards for networking, sensors, displays and other interfaces. The LPCXpresso55S69 is fully supported by the MCUXpresso suite of tools, which provides device drivers, middleware and examples to allow rapid development, plus configuration tools and an optional free IDE. MCUXpresso software is compatible with tools from popular tool vendors such as Arm and IAR, and the LPCXpresso55S69 may also be used with the popular debug probes available from SEGGER and P&E Micro. Hardware Requirements: Following hardware is required to run the project: LPC55S69-EVK development board. CLEV6630B board or BLE-NFC-V2 board. BLE-NFC-V2: It is easier to use the BLE-NFC-V2 board since it can be just plugged on top of the arduino interface available on the LPCXpresso55S69 board. The following figure shows the pin mapping between the two boards. CLEV6630B board: The CLEV6630B board consists of CLRC663 plus (NFC frontend) connected by default to an LPC1769 µC via SPI. However, the board is made in such a way that the LPC1769 MCU can be bypassed to connect to an external MCU (in our case the LPC55S69) easily. For doing so: Six resistors from the board need to be removed. These are highlighted in red in the Figure 1: Use the SPI pin connectors available on the left-hand side, on the board edge to connect to external MCU (LPC55S69 in this case) Solder jumper wires onto the following pins of CLEV6630B Board:  GND IRQ CLRC_NRST SSEL MOSI MISO SCK IF0 IF1      The CLEV6630B is shown in Figure 2 after the required changes have been made to it (Removal of resistors and soldering of wires).   Now connect the two boards as follows:   Running Basic Discovery Loop on LPC55S69:   If this is the first time you’re using LPC55S69-EVK board, follow the getting started guide first à  LPC55S69-EVK | NXP . Make sure to install the SDK package for LPC55S69-EVKboard which is required for the project below to run. Download either‘lpcxpresso55s69_BasicDiscoveryLoop_CLEV6630b' or 'lpcxpresso55s69_BasicDiscoveryLoop_BLE-NFC' package which you will find attached to this post. Drag and drop the downloaded package to the “Project Explorer” tab of your MCUXpresso IDE workspace (If you don’t have MCUXpresso, it can be downloaded for free from here: https://www.nxp.com/support/developer-resources/software-development-tools/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE Now that the package has been imported to the MCUXpresso IDE (via drag and drop), click on Debug icon from the Quickstart panel to begin a debug session. Once the debug session has started, click on the run icon to run the code: The project should be running now. The project contains basic discovery loop functionality. Here is how the output looks like in the terminal. Bring any NFC card near the frontend’s antenna and the output console will show the detection and type of the card. For example, in the picture below, we can see that type 4A card was detected:     Running other NFC Reader Library examples on LPC55S69: Once the “lpcxpresso55s69_BasicDiscoveryLoop” project is running on the LPC55S69. Running other examples from is simple. First step is to install the NFC Reader Library : Installing the NFC Reader Library: Go to www.nxp.com/pages/:NFC-READER-LIBRARY Go to the Downloads tab and click on the download button Click download on the NFC Reader Library for Kinetis K82F package. Import the library package in the workspace. The easiest way is to use the Quick Start Panel on the left-hand side: Click on Import project from file system Then, browse the library package in your file system. Click Finish to import it all to your workspace. After completing the import wizard, all projects are listed in the “Project Explorer” window. As can be seen in the screenshot, it contains different folders: API documentation folder Driver Abstraction Layer FreeRTOS support The platform support (in the screenshot, corresponding to the LPC support) The software examples  The Reader Library implementation And the OS abstraction layer   Running "NfcrdlibEx9_NTagI2C" on LPC55S69: Here we use the “NfcrdlibEx9_NTagI2C” example from the reader library to describe the method. The same method can be used to run other examples from the NFC Reader Library.  To run "NfcrdlibEx9_NTagI2C" on LPC55S69, we look at "lpcxpresso55s69_BasicDiscoveryLoop" project (available as a download below) and "NfcrdlibEx9_NTagI2C" project (from the Reader Library). We make changes to the following folders: In “intfs” folder remove everything except the “phaApp_Init.h” file. Then go to the “intfs” folder of the NFC Reader Library example you want to run (“NfcrdlibEx9_NTagI2C” in this case), and copy all the files except “phaApp_Init.h” and paste them in the original “intfs” folder. In line 57 of the “ph_NxpBuild_App.h” file in “intfs” folder, replace #if defined(PHDRIVER_LPC1769RC663_BOARD) \     || defined(PHDRIVER_FRDM_K82FRC663_BOARD)\ #   define NXPBUILD__PHHAL_HW_RC663 #endif with #if defined(PHDRIVER_LPC1769RC663_BOARD) \     || defined(PHDRIVER_FRDM_K82FRC663_BOARD)\     || defined(PHDRIVER_LPC55S69RC663_BOARD) #   define NXPBUILD__PHHAL_HW_RC663 #endif Go to “source” folder and remove every file except “phApp_Init.c“ and “semihost_hardfault.c” files. Then go to “src” folder of the example you want to run (“NfcrdlibEx9_NTagI2C” in this case) and copy all the files except “phaApp_Init.c” and paste them into the “source” folder. Finally, copy the main file of the example you want to run (NfcrdlibEx9_NTagI2C in this case) and paste it into the “source” folder as well. The project is ready to build and run on LPC55S69.       Available Resources: Porting NFC Reader Library to i.MX RT1050. (Detailed Description of porting) https://community.nxp.com/docs/DOC-341843 LPC55S69 https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/lpc-cortex-m-mcus/lpc5500-cortex-m33/lpcxpresso55s69-development-board:LPC55S69-EVK BLE-NFC-V2 https://www.nxp.com/products/identification-security/rfid/nfc-hf/nfc-readers/clrc663-iplus-i-and-qn902x-nfc-bluetooth-low-energy-solution-for-consumer-applications:BLE-NFC
記事全体を表示
Hello NFC Community! This document demonstrates that multiple records can be also read from a Tag with TagXplorer. Please follow the steps below. Let's begin... Please make sure that you have written more than on record with NXP TagWriter app. For a more detailed explanation on this, please refer to the following document: Writing multiple NDEF text records with TagWrite app  The app can be found and downloaded from the Play Store: NFC TagWriter by NXP - Apps on Google Play  -> Connect the reader in TagXplorer -> Place the card on the reader and press Connect Tag -> Check for NDEF (1) and then, read NDEF (2). The Text Records can be visualized in the NDEF Payload Info below: I hope this is of great help! Ivan R.
記事全体を表示
SPIM module is one of the master interfaces provided by PN7462 , which is a 32-bit ARM Cortex-M0-based NFC microcontroller, and users may use this interface to connect with up to two SPI slave devices. The NFC reader library provides SPIM driver code in phHal/phhalSPIM, and users may directly use the following APIs in their application to implement simple SPI transaction, just like what is done  in the demo of "PN7462AU_ex_phExHif". While this demo has limitation with some SPI nor flash devices, which need a write-read operation in one NSS session, for example, the SPI nor flash device on OM27462 as below: Please note to solder R202 and connect it to 3V3 to make sure nHold pin has pull-up out of POR. The following is one of the command sets this device supports: This command contains 1 write(9F) followed by 3 read operations in one NSS session, but if you implement it with phhalSPIM_Transmit() and phhalSPIM_Receive() as below: status = phhalSPIM_Transmit(PH_EXHIF_HW_SPIM_SLAVE, PH_EXHIF_HW_SPIM_INIT_CRC, PH_EXHIF_HW_SPIM_APPEND_CRC, PH_EXHIF_HW_SPIM_CRC_INIT, 2, cmd_buf, PH_EXHIF_HW_SPIM_CRC_OFFSET);    status = phhalSPIM_Receive(PH_EXHIF_HW_SPIM_SLAVE, PH_EXHIF_HW_SPIM_INIT_CRC, PH_EXHIF_HW_SPIM_CRC_INIT, data_length, dst, PH_EXHIF_HW_SPIM_CRC_OFFSET);" You will have the following result: expected: NSS   \__________________________/ MOSI     CMD A7-A0 MISO                            DATA       actual:                         NSS   \____________||______________/ MOSI     CMD A7-A0 MISO                           DATA so the pulse between the write and read is the problem, and here we have to handle the NSS line manually, with the help of NSS_VAL and NSS_CONTROL bits in SPIM_CONFIG_REG. so the code should be like this:   Assert NSS   status = phhalSPIM_Transmit(PH_EXHIF_HW_SPIM_SLAVE, PH_EXHIF_HW_SPIM_INIT_CRC, PH_EXHIF_HW_SPIM_APPEND_CRC, PH_EXHIF_HW_SPIM_CRC_INIT, 2, cmd_buf, PH_EXHIF_HW_SPIM_CRC_OFFSET);    status = phhalSPIM_Receive(PH_EXHIF_HW_SPIM_SLAVE, PH_EXHIF_HW_SPIM_INIT_CRC, PH_EXHIF_HW_SPIM_CRC_INIT, data_length, dst, PH_EXHIF_HW_SPIM_CRC_OFFSET);"   De-assert NSS The NSS line assert and de-assert function can be implemented with register bit level APIs, just like below:             PH_REG_SET_BIT(SPIM_CONFIG_REG, NSS_VAL);//de-assert NSS             PH_REG_SET_BIT(SPIM_CONFIG_REG, NSS_CTRL);             PH_REG_CLEAR_BIT(SPIM_CONFIG_REG, NSS_VAL);//assert NSS Please also include the following header files in your application code. #include "ph_Reg.h" #include "PN7462AU/PN7462AU_spim.h" Please notice that phhalSPIM_Transmit() and phhalSPIM_Receive() are Rom based function, which clear NSS_CTRL bit by default. We can not change ROM API's behave but fortunately we have phhalSPIM_TransmitContinue() and phhalSPIM_ReceiveContinue() instead. so the final solution will be like below: Assert NSS   status = phhalSPIM_TransmitContinue(1, cmd_buf);    status = phhalSPIM_ReceiveContinue(3, dst);   De-assert NSS This doesn't mean phhalSPIM_Transmit() and phhalSPIM_Receive() are useless, because they can also help up to configure the SPI master interface, if you don't want to use register bit level API to initial the SPIM module manually. Please note to use 1 byte for write/read length to make these two functions work properly. so the whole pseudo code is like below: phhalSPIM_Init(PH_HW_SPIM_TIMEOUT) ; phhalSPIM_Configure(PH_HW_SPIM_SLAVE, PH_HW_SPIM_MSB_FIRST,                 \                                     PH_HW_SPIM_MODE, PH_HW_SPIM_BAUDRATE,  \                                     PH_HW_SPIM_NSSPULSE, PH_HW_SPIM_NSSPOL) ; status = phhalSPIM_Transmit(PH_EXHIF_HW_SPIM_SLAVE, PH_EXHIF_HW_SPIM_INIT_CRC, PH_EXHIF_HW_SPIM_APPEND_CRC, PH_EXHIF_HW_SPIM_CRC_INIT, 1, cmd_buf, PH_EXHIF_HW_SPIM_CRC_OFFSET);    status = phhalSPIM_Receive(PH_EXHIF_HW_SPIM_SLAVE, PH_EXHIF_HW_SPIM_INIT_CRC, PH_EXHIF_HW_SPIM_CRC_INIT, 1, dst, PH_EXHIF_HW_SPIM_CRC_OFFSET);" Assert NSS   status = phhalSPIM_TransmitContinue(1, cmd_buf);    status = phhalSPIM_ReceiveContinue(3, dst);   De-assert NSS The following steps show how to create a new project based on NFC reader library, please refer to https://www.nxp.com/docs/en/user-guide/UM10883.pdf  on how to import the NFC reader library. 1. Create a new project after importing the NFC reader library. 2. if you installed PN7462 support package, you will see this: 3. add a link to NFC reader lib: 4. add path and enable NFC reader lib in the project: 5. delete cr_startup.c and create the main code as well as the header file: 6. Build result: 7.Debug result: To fetch the ready demo, please submit a private ticket via the guide of https://community.nxp.com/docs/DOC-329745 . Hope that helps, Best regards, Kan
記事全体を表示
PN5190-NTAG X DNA High Speed Communication Demo: This article describes important feature of these two chips when interacting with each other at contactless interface: Passthrough demonstrator at high bit rates for ISO/IEC14443-A between PN5190 and NTAG X DNA Scope of demonstrator: ▪ Demonstrating a unique feature of NXP Semiconductors. High bit rates for ISO14443 communication (up to 848 kbps) between a PN5190 reader IC and an NTAG X DNA when connected to MCXA153 host MCU, when simulating the transmission of a dummy file as big as 101 kbytes. ▪ Through MCUXpresso console, the user can configure the contactless bit rate: 106 kbps 212 kbps 424 kbps or 848 kbps The amount of data is fixed in this demo. ▪ transmission mode is implemented from NFC reader library at K82 MCU built in the PNEV5190BP evaluation kit. On the other side, NTAG X DNA + Level shifter (represented by evaluation kit NTAG-X-DNA-EVAL) is connected to a Freedom Board, equipped with MCXA153 - FRDM-MCXA153). ▪ The PN5190 prints on the MCUXpresso console (debug mode) the outcome of the transaction and average baud rate achieved. ▪ In order to handle full file transmission from K82 to MCXA153 (MCU <-> MCU communication), we are using NTAG X DNA GPIO wires as well as proper settings on the NTAG X DNA <-> MCXA153 side and hard coded timeout on the PN5190 + MCU side. For more details, please open attached file PN5190_NTAGXDNA_MCXA153_DualInterface_HBR_Demo_SetupInstructions_Q32025.pdf. Required hardware and software enablement: Hardware ▪ PNEV5190BP Development Board ▪ FRDM-MCXA153 Development Board ▪ NTAG X DNA Development Board ▪ 2 x USB micro cables (for PNEV5190BP dev. br., one for DC power, other for Jlink debug on MCUxpresso IDE) ▪ 1 x USB-C cable (for FRDM-MCXA153 dev. br., only for DC power) Software ▪ MCUxpresso project (firmware Source Code) for PNEV5190BP is attached to this article, containing keywork pn5190: pn5190-ntagxdna-highspeed-demo1.zip. Instructions will be given in from future release of NFC Reader Library public v07.14.00 (NxpNfcRdLib_PN5190_v07.14.00_Pub.zip). ▪ SDK_2.x_FRDM-K82F is already included in bundle mentioned above. ▪ Firmware Source Code for FRDM-MCXA153 is attached to this article, containing keyword MCXA153: MCXA153.zip ▪ MCUXpresso IDE recent version, for instance v24.12.148 or above. Demonstrator bring up: Hardware assembly for FRDM-MCXA153: • Connect NTAG X DNA to level shifter (see Fig. 1) • Connect bundle NTAG X DNA+ level shifter bundle to flat cable (contained in demokit box) to FRDM-MCXA153 according to Fig. 2. • Make sure each wire is connected to proper position in Arduino socket: - black wire IO2 goes to J1-14 - white wire IO1 goes to J1-16 - gray wire SCL goes to J2-20 - violet wire SDA goes to J2-18 - blue wire GND goes to J3-14 - green wire VCC goes to J3-8 • Connect FRDM-MCXA153 via J15 (MCU-Link) to your computer (Debug Link Input), for the first time that you have to flash binary in it. Then after storing binary, you may just connect USB-C cable from a power supply to J6 port (named Ext-debugger). • No additional power source is needed. Hardware assembly for PNEV5190B: • Connect two USB micro cables to PNEV5190B board for power, flashing firmware and UART connection (see Fig. 3): • microUSB on J7 is necessary for DC power. Check that jumper J9 is in the position USB dc supply • microUSB on J20 is the Jlink debug port, and it will be connected to your Windows computer, where MCUxpresso has been installed. • Red LED indicates power is enabled • Green LED debugging/UART status Alternatively, if you have a DC power supply (voltage above 7 V), you may change Jumper J9 to Ext power supply, and avoid using second microUSB cable. Software loading on FRDM-MCXA153: 1. Create a new workspace for MCXA153 MCUxpresso example: 2. Make sure you have installed MCXA153 SDK: - install MCXA153 SDK which can be downloaded from: https://mcuxpresso.nxp.com/  3. Unzip "MCXA153.zip" file in local C: directory, with reasonable path length. 4. Import existing projects from file system, into MCUXpresso IDE: 5. Select proper root directory (keyword is MCXA153): 6. Click "Finish" 7. If you get this warning, simply click "OK": 8. Highlight project, click "build", and check that there are no errors: Finished building target: MCXA153_NTAGXDNA_DualInterface_DataRead_Demo.axf Performing post-build steps arm-none-eabi-size "MCXA153_NTAGXDNA_DualInterface_DataRead_Demo.axf"; # arm-none-eabi-objcopy -v -O binary "MCXA153_NTAGXDNA_DualInterface_DataRead_Demo.axf" "MCXA153_NTAGXDNA_DualInterface_DataRead_Demo.bin" ; # checksum -p MCXA153 -d "MCXA153_NTAGXDNA_DualInterface_DataRead_Demo.bin";    text        data         bss         dec         hex     filename   23524          20        3684       27228        6a5c      MCXA153_NTAGXDNA_DualInterface_DataRead_Demo.axf 16:27:26 Build Finished. 0 errors, 0 warnings. (took 5s.787ms) 9. Now, flash the binary into MCXA153 MCU using GUI Flash tool; select suitable  MCUxpresso probe (CMSIS-DAP). Make sure USB-c cable is connected to J15 in Freedom board (MCU-link port for flashing FW). 10. Select binary file *.axf as indicated below: It may happen that your MCXA153 has outdated FW on CMSIS-DAP, but you can continue, it will make no harm; click then Ok to flash. 11. After flashing, reboot your board. Following LEDs should be on: - D15 RGB led should be "white" lit. - D7 should be blinking "red" - D8 and D4 should be "green" lit. D15 will blink "white" only during file transmission. You may disconnect USB-c from J15 (the one used with MCUxpresso for flah and connect it to J8. Then, plug the other cable tip to any USB  5 volt battery charger. Now your Freedom board FRDM-MCXA153 is ready to receive data from PNEV5190 board, once project will be imported too in MCUxpresso. Software loading on PNEV5190BP: 1. Unzip *.zip file in directory with reasonable path length. 2. Import existing projects from file system 3. Select Example 12 "NfcrdlibEx12_NTAGXDNA" 4. Uncheck the choice "copy projects into workspace" 5. Install SDK_2.x_FRDM-K82F if not yet done. Such SDK is included in project file tree: • ...Examples\Platform\SDK_2.x_FRDM-K82F • This specific SDK can be obtained from https://mcuxpresso.nxp.com/ by selecting following K82F tab related "PN5180" : • FRDM-K82F-PN5180 (MK82FN256xxx15) • SDK 2.0 is no longer officially available, but SDK 2.2 and newer are backward compatible and recommended by NXP • Build project and check that there are no errors ("warnings" are allowed). • Start Debug session to see available bitrate options on the console. Hardware combination of PNEV5190B and NTAG X DNA connected to FRDM-MCXA153: Under MCUXpresso: 1. Click "Debug" icon on quick access left panel. Accept agreement in case of J-Link tool: 2. Click on icon "Run" on top side of MCUxpresso, and observe the following on "Console" tab: [MCUXpresso Semihosting Telnet console for 'NfcrdlibEx12_NTAGXDNA_mcux JLink DebugFRDMK82F' started on port 59973 @ 127.0.0.1] SEGGER J-Link GDB Server V8.12a - Terminal output channel *** NTAG X DNA Example *** Please place NTAG X DNA Card and Select Demo option. 1 : Perform Data Read Write using AES128 Key Authentication 2 : Perform Data Read Write using ECC Sigma-I Authentication Host as Initiator with NIST P-256 Curve, session key AES128 3 : Perform Data Read Write using ECC Sigma-I Authentication Host as Responder with NIST P-256 Curve, session key AES128 4 : Perform HBR transfer to Microcontroller through NTAG X DNA. 5 : Configure NTAG X DNA for HBR transfer Enter your option : Menu options when two boards have NFC antennas facing each other: There are 5 options in console menu as soon as you "Run" the debug. 1 - options from 1 until and including 3 are related to crypto functionality (symmetric and asymmetric) and are out of the scope of this article. 2 - Then option 5 is used for the first time that you are configuring your NTAG X DNA product. It will set registers and GPIO properly for High bit rate transfer. Once you have run option 5, then go to option 4: 3 - Four options of bitrate are available for transfer a fixed amount of data from host (K82) to NTAG X DNA MCU (MCXA153) using PN5190 as tunnel: Please configure the required baud rate 1 : 106 Kbps 2 : 212 Kbps 3 : 424 Kbps 4 : 848 Kbps Enter your option : Demonstration flow: Once one of these option is selected, reader is ready to detect a tag. ▪ When tag is detected, reader configures selected bitrate and starts data exchange. ▪ Blinking RGB LED D15 indicates transfer ongoing and the console shows a progress. Here are some results of transaction at the different bit rates and data sizes offered by this demonstrator: 1 - 106 Kbps - Baud rate 7.6 kBytes/s - elapsed time: 13.99 s Type A Tag is discovered. ***** Perform Transfer sequence ******* Select Application Successful Select File Successful Data transferring NFC -> NTAG X DNA -> Microcontroller... Amount of data exchanged 101200 Bytes, Baudrate (total) = 7.6 kB/s, Time = 13.99 s Please Remove the Card   After removing the card, K82 firmware starts again prompting for a new selection, in the previous menu. First select 4 again and then chose again another new baud rate: 2 - 212 Kbps - Baud rate 10.51 kBytes/s - elapsed time: 9.39 s 3 - 424 Kbps - Baud rate 13.92 kBytes/s - elapsed time: 7.90 s 4 - 848 Kbps - Baud rate 16.60 kBytes/s - elapse time: 5.95 s   Using Example 12 of NFC Reader Library v.07.14.00 to prepare High Speed demo on PNEV5190BP and NTAG X DNA: 1. Go to https://nxp.com web site and type "NFC Reader Library" in Search tab. Follow the instructions until you get to this screenshot: 2. Start by downloading NFC Reader library V.07.14.00 from NXP website; agree with Terms and Conditions. Then download the bundle to your local C: drive: 3. Click on “down arrow” to download version 07.14.00. Once zip file is received, unzip previous bundle to a local drive directory.   4. Start a new workspace, then choose "Import from Existing Projects into Workspace": 5. De-select all useless Examples and keep only example 12; please including all other essential items; click "Finish": 6. If you find this error, it means you need to install K82F SDK: 7. Click install, then MCUxpresso SDKs pages will open. Select K82F from Processor tab: Click “Install” button; after installation is completed, you will get a screen showing all installed sdk's. Afterwards you may get the prompt "Make SDK persistent"; just click ok. 8. Highlight project NfcrdlibEx12_NTAGXDNA_mcux and click build; check if there are errors: Finished building target: NfcrdlibEx12_NTAGXDNA_mcux.axf Performing post-build steps arm-none-eabi-size "NfcrdlibEx12_NTAGXDNA_mcux.axf" ; arm-none-eabi-objcopy -O binary "NfcrdlibEx12_NTAGXDNA_mcux.axf" "NfcrdlibEx12_NTAGXDNA_mcux.bin" ; #checksum -p MK82FN256xxx15 -d "NfcrdlibEx12_NTAGXDNA_mcux.bin"    text        data         bss         dec         hex     filename  222400          92       86816     309308       4b83c      NfcrdlibEx12_NTAGXDNA_mcux.axf 17:32:59 Build Finished. 0 errors, 3 warnings. (took 33s.718ms) 9. Now, check in MCUxpresso the tab Windows > Preferences > Run/Debug. Untick the box related to General Options Build (if required) before launching; it will save you much time! Then, click button “Apply and Close”. 10. Using this Example 12 as it is given by NXP in this library, when you will debug it, you will realize that there are only 3 Menu options related to NTAG X DNA cryptography (and no high speed options). In order to “unlock” the high-speed demo option, please do the following. 11. Go to Quick Settings → Defined Symbols and open it in a new window: Now add after last symbol, the following line: "PH_EX12_ENABLE_DUALINTERFACE_HBR", by clicking on “add button” ("+" shown in green) on top right side of above window; add it manually then click OK two times. Now, build Ex12 again and check that there are no errors. 12. Debug Example 12, then press Run button and check if Console has 5 options in its Menu: Please place NTAG X DNA Card and Select Demo option. 1 : Perform Data Read Write using AES128 Key Authentication 2 : Perform Data Read Write using ECC Sigma-I Authentication Host as Initiator     with NIST P-256 Curve, session key AES128 3 : Perform Data Read Write using ECC Sigma-I Authentication Host as Responder     with NIST P-256 Curve, session key AES128 4 : Perform HBR transfer to Microcontroller through NTAG X DNA. 5 : Configure NTAG X DNA for HBR transfer Enter your option : 13. Let's focus on the last two options: 4 – perform HBR (high bit rate) transfer, and 5 – Configure your NTAG X DNA for HBR. 14. If this is the first time you are using this NTAG X DNA connected to MCXA153, then choose option 5 so that PN5190 will write proper configuration data to NTAG X DNA next to it. For this reason, turn on NTAG X DNA connected to FRDM-MCXA153 board (after powering it up with a simple 5V-USB source), and place NTAG X DNA antenna over PNEV5190BP board antenna (connected to MCUxpresso), as in picture shown above. Enter your option : 5 Ready to detect Type A Tag is discovered.       Select NDEF Application Successful       Authenticate Application Successful       SetConfig Successful       StdDataFile with File ID 0xE106 already exists. Please Remove the Card 15. Remove NTAG X DNA antenna from PN5190 antenna, until you get back to initial menu. Then, choose option 4 on previous menu: 4 : Perform HBR transfer to Microcontroller through NTAG X DNA. 5 : Configure NTAG X DNA for HBR transfer Enter your option : 4  Please configure the required baud rate 1 : 106 Kbps 2 : 212 Kbps 3 : 424 Kbps 4 : 848 Kbps Enter your option : 16. Now, choose the lowest speed "1"; check final result: Ready to detect Type A Tag is discovered. ***** Perform Transfer sequence *******       Select Application Successful       Select File Successful       Data transferring NFC -> NTAG X DNA -> Microcontroller...       Amount of data exchanged 101200 Bytes, Baudrate (total) = 5.72 kB/s, Time = 17.25 s Please Remove the Card 17. Separate both antennas, and then, choose option "2"; check final result: Enter your option : 2 Ready to detect Type A Tag is discovered. ***** Perform Transfer sequence *******       Select Application Successful       Select File Successful       Data transferring NFC -> NTAG X DNA -> Microcontroller… Amount of data exchanged 101200 Bytes, Baudrate (total) = 10.49 kB/s, Time = 9.41 s 18. Separate both antennas, and then, choose option "3"; check final result: Enter your option : 3 Ready to detect Type A Tag is discovered. ***** Perform Transfer sequence *******       Select Application Successful       Select File Successful       Data transferring NFC -> NTAG X DNA -> Microcontroller...       Amount of data exchanged 101200 Bytes, Baudrate (total) = 13.89 kB/s, Time = 7.11 s Please Remove the Card 19. Separate both antennas, and then, choose option "4"; check final result:  Enter your option : 4 Ready to detect Type A Tag is discovered. ***** Perform Transfer sequence *******       Select Application Successful       Select File Successful       Data transferring NFC -> NTAG X DNA -> Microcontroller...       Amount of data exchanged 101200 Bytes, Baudrate (total) = 16.57 kB/s, Time = 5.96 s Please Remove the Card Conclusions: This demonstrator HW & SW can show that high speed interaction can be achieved between PN5190 (NFC Front end) and NTAG X DNA (NFC connected tag), making use of available commands described in its product support package (https://www.nxp.com/products/NTAG-X-DNA). Disclaimer:All SW available here is aimed only for evaluation purposes and NXP disclaims any direct or indirect liability damages, since referred SW bundles are not yet official part of PN5190/NTAG X DNA standard product support packages currently available at nxp.com.  
記事全体を表示
RF power regulation is a critical factor in the development of NFC devices, as it directly influences performance, reliability, and compliance with industry standards. There are three main reasons for this:  If the PN7642 VUP current exceeds the limit given by the product Data sheet, the PN7642 can be damaged. If too high RF power is radiated from the antenna, there exists a risk for NFC Cards. Too high RF power might lead to exceeding a given RF limit (NFC Forum, ISO, EMVCo). NXP provides comprehensive documentation on Dynamic Power Control for the PN7642 and PN5190. Designers are expected to adhere to these guidelines, especially when aiming for compliance with standards such as EMVCo. PN5190 Dynamic Power Control Quick Calibration and TxShaping Demo Automatic DPC Calibration for PN7642 and PN5190 However, if the user's design is intended for infrastructure applications, such as a smart lock. At a minimum, Dynamic Power Control (DPC) should be enabled to serve as a current limiter. The evaluation can be done with the help of NFC Cockpit.  1// Start DPC Calibration  "Press" Start DPC Calibration  "Press" Load protocol  Make sure that the DPC is "Enabled" 2// Adjust current reduction table  Set all entries to "0" Write into EEPROM   3// Set the "Target" current Use approx. the same current as "TxLDO Vales"  Save to EEPROM   4// Check the power regulation  Start DPC Calibration  Place a card or any metal object in the antenna's proximity  Observe VDDPA and "TxLDO" current  The current should stay around the given target  The VDDPA will drop once the antenna is loaded  5// Set a minimum VDDPA in DPC  In the case that the current is still too high, a user can define a minimum VDDPA that is used for the DPC regulation. By default, this value is set to 2.2V. The user can decrease it up to 1.5V.  In that case, NXP also recommends disabling the RDOn control.  Note: The User has to consider the "DPC_TXLDO_MAX_DROPOUT" parameter, which defines the maximum voltage drop on TXLDO. By default, it is set to 3.6 V. That means if the user wants to use the minimum VDDPA 1.5 V, then the maximum TXLDO input shall not exceed 5.1 V. This feature protects the TXLDO from overheating.    Once the evaluation is done, the customer shall program the following EEPROM entries in their application. For more info, see PN7642 Product Data sheet.  DPC_CONFIG (Address: 0x0068) -> example: enabled -> 0x01 DPC_TARGET_CURRENT (Address: 0x0069) -> example: 229 mA -> 0xE5 DPC_TXLDO_MAX_DROPOUT (Addresses: 0x0073 - 0x0074) -> example: 3.6 V -> 0x10,0x0E DPC_TXLDOVDDPALow (Address: 0x006F) -> example: 1.5 V -> 0x00 DPC_HYSTERESIS_LOADING (Address: 0x006B) -> example: 20 mA -> 0x14 DPC_HYSTERESIS_UNLOADING (Address: 0x006E) -> example: 10 mA - 0x0A DPC lookup table entries (Addresses: 0x007D - 0x0125) -> example: for current limitation only -> all 0x00 If a user does not want to use a maximum range of VDDPA during DPC (5.7V), e.g., their system uses a 3.3V supply domain. Then, the maximum VDDPA in DPC can be limited by the following EEPROM settings:  TXLDO_VDDPA_MAX_RDR (Address: 0x0007)-> example: 3.0 V -> 0x0F Note: TXLDO has approx. 0.3V voltage drop. Always set this parameter 0.3V lower. Once this is done, the user has to check the "TxLDO" current and adjust the target current accordingly. In this case, to approximately 150 mA. If you don´t change it, the DPC starts to limit the power around 229 mA, as has been set in a previous step. 
記事全体を表示