NFC Knowledge Base

cancel
Showing results for 
Search instead for 
Did you mean: 

NFC Knowledge Base

Knowledge Base Articles

The latest NXP-NCI example is rev 1.6, and when you run this demo with the lpc11xx board, for example, lpc1115 rev A, and the OM5577, you may meet the following issue: The problem is due to two aspects: one is hardware and the other is software. For hardware solution, besides following what is described in AN11658 section 2.4 LPC11xx, you have to do one more thing: a) The I2C lines are not pulled-up: LPC11xx doesn't offer internal pull-up setting of the I2C lines so external pull-up resistors must be added. For software solution, the function of Sleep()( in tool.c) was optimized too much, and it didn't meet the timing requirement of OM5577, so we should let the IDE ignore it. The solution I use is as below: __attribute__((optimize("O0"))) void my_func() { blah } You may check the attachment for details. The result is shown as below: Original Attachment has been moved to: tool.c.zip
View full article
The NXP-NCI example is based on NXP-NCI lib and LPCopen lib, and due to the good consistency, the porting is mainly focus on LPCopen lib switching.   Software setup download lpcopen package via http://www.nxp.com/assets/downloads/data/en/software/lpcopen_3_01_lpcxpresso_nxp_lpcxpresso_11u68.zip  download SW3241 via https://www.nxp.com/webapp/Download?colCode=SW3241&appType=license&location=null&fsrch=1&sr=3&pageNum=1&Parent_n…  import NXP-NCI_LPC11Uxx_example by LPCXpresso v8.1.4.   LPCopen porting remove *.h and *.c in the folder of LPC11Uxx/inc and LPC11Uxx/src. 2.import header files and c files from lpc_chip_11u6x/inc and lpc_chip_11u6x/src to LPC11Uxx/inc and LPC11Uxx/src 3. repeat step 2 , import source files and header files from lpc_board_nxp_lpcxpresso_11u68/inc and lpc_board_nxp_lpcxpresso_11u68/src to Drivers/inc and Drivers/src. 4.Change MCU settings 5.Change project settings. 6.compiling error fixes: 6.1 solution: replace with i2c_11u6x.h 6.2 solution: 6.3 solution: create a template project for LPC11U6x and import the source file of "cr_startup_lpc11u6x.c"   Porting Result   This porting guide is for LPC11U68 Xpresso v2 Rev C, and can also be used a reference when you try to port NXP-NCI examples to other lpcxpresso boards.   Please kindly refer to the attachment for details. Original Attachment has been moved to: NXP-NCI_LPC11Uxx_example.zip
View full article
The NXPNCI-KDS_Example for the PN7120/PN7150 Arduino interface boards available in NXP webpage at the time of publishing this document includes a project compatible with KSDK v2.0 for FRDM-K64F platform. With the latest KSDK v2.1 some changes in the drivers along with the later FreeRTOS v9.0.0 make the build process fail when following the instructions in the application note AN11845 NXP NCI KDS Example due to incompatibilities. Meanwhile until the project in NXP webpage is updated there is a temporary project attached to this document fixed to work with KSDK v2.1. The steps to build this project are the same as explained in the appnote, summarized below: - Download and install KSDK v2.1 for FRDM-K64F using MCUXpresso SDK online builder: Welcome to MCUXpresso | MCUXpresso Config Tools  Create a new workspace in KDS IDE. Import the "NXPNCI-KDS_Example_KSDK2.1" project from the archive file. Update the PROJECT_KSDK_PATH build variable according to the installation path of KSDK v2.1. Build the project. For more details please refer to the application note AN11845. Regards! Jorge Gonzalez
View full article
Hello NFC and Kinetis enthusiasts, NTAG I2C plus tag ICs offer both, a contact (I2C) and a contactless interface (NFC) to ease the development of IoT, home-automation and consumer applications. The target of this document and the example projects is to show how NTAG I2C plus can act as the bridge from a host NFC device, like a smartphone or PC, to an embedded board such as a Kinetis Freedom board. 2 main functionalities are demonstrated: embedded board control via NFC and firmware upgrades over NFC. Board control with NFC enabled device NTAG I2C plus provides an easy way of sending/receiving any kind of data between a product embedding an MCU to a host NFC device (e.g. smartphone). Some use cases include product configuration, control or data sensing. A major advantage is that we can have a customized application or graphic interface in the smartphone instead of expense of an LCD screen for the embedded board. Bootloader over NFC Firmware updates in the field are a very common practice for products based in an embedded system. The main advantages of a bootloader over NFC are the simplicity and the non intrusive nature, as it communicates using NFC antennas, i.e. without any wires or physical connections. DEMO PROJECT The next picture shows the setup and connections from the NTAG I2C Plus antenna board to the FRDM-K64F. Hardware - Kinetis Freedom board FRDM-K64F - NTAG I2C Plus Antenna board or flex antenna with the NTAG I2C plus IC. Software - Kinetis Software Development Kit (KSDK) v2.0 - Kinetis Design Studio (KDS) v3.2 - NTAG I2C Demo Android application. Available from Google Play. :smileyalert: Note: Please verify that your smartphone supports NFC. Otherwise the Android app can be installed but it cannot be used for interfacing with the NTAG I2C Plus IC. TESTING THE DEMO PROJECTS There are two KDS projects attached to this document: - NTAG_I2C_Plus_FRDMK64_Demo: Demonstrates the transfer of data between the phone and the MCU. - NTAG_I2C_Plus_FRDMK64_Bootloader: Provides a mean to update the firmware in the Kinetis MCU. The application must be prepared to be placed at an offset of 0x4000 in the MCU internal flash. To load any of these demos please open the corresponding project in KDS IDE, build the project and start a debugger session to program the K64. NTAG_I2C_Plus_FRDMK64_Bootloader 1- In FRDM-K64F, SW2 must be pressed during reset to enter bootloader mode. Hence the 2 usual ways are:+    A) If the board is powered, press and hold SW2 and then press Reset button.    B) When the board is not powered, press and hold SW2 and then plug the USB cable. 2- From the Android demo app go to the "Flash" option. Then click on "Select from Storage" to browse for the application binary file. :smileyinfo: Note: For this bootloader example, the application including the vector table must be relocated to an offset of 0x4000 in Flash. 3- Finally tap the phone to the NTAG I2C Plus antenna and hold it steady during the flashing progress. When the app shows "Flash Completed" the new application starts executing. NTAG_I2C_Plus_FRDMK64_Demo :smileyalert: NOTE: By default the demo project has the 0x4000 offset, so please build the project and then load the generated binary using the bootloader as described above. - Bring the NFC enabled phone near the NTAG I2C Antenna. - Verify transfer is already in progress, by checking the "Board Status". - Press the Orange/Blue/Green buttons in the Android app to change the color of the RGB LED. - Enable the checkbox for "Enable Temperature Sensor" to see the reading of the K64 internal temperature. I hope these demo projects are useful. Please feel free to share your comments or ask any questions. Regards! Jorge Gonzalez
View full article
The NFC reader library is supporting multiple frontends. For a customer this might become a more difficult to use, if only the part for one of the frontend chips is needed. To enhance the readability and usability, you can remove the support for not used reader ICs by simply removing the folders below NxpRdLib/comps/phhalHw/src. For instance: if you only want to use the RC663, you could simply delete the folders Pn5180, Rc523. The result would be a library that only supports RC663. This short screen recording shows the steps to reduce the number of supported Frontends.
View full article