NFC Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

NFC Knowledge Base

Discussions

Sort by:
This article provides information on the expected NFC communication range for NXP products (Connected tags) when used with various mobile phones and the CLRC663 reader.   1// NFC Antenna 54 mm vs 27 mm (NTAG 5 Boost Antenna 10 mm vs 10 mm)    1.1// Used antenna   1.2// Results  Note: NTAG5 Link - Energy harvesting is disabled      2// NFC Antenna 25 mm vs 18 mm    2.1// Used antenna   2.2// Results Note: NTAG5 Link - Energy harvesting is disabled      3//NFC Antenna 25 mm vs 18 mm with "filling"    3.1// Used antenna    3.2// Results    Note: NTAG5 Link - Energy harvesting is disabled 
View full article
this is a step by step guider to port PN7160 to Android 14 on i.MX 8M Nano board
View full article
The Raspberry Pi Foundation released the Raspberry Pi 5 in October 2023, Raspberry Pi 5 features the Broadcom BCM2712 quad-core Arm Cortex A76 processor @2.4GHz, making it up to three times fast than Raspberry Pi 4.   The latest version of Raspberry Pi OS is Bookworm. However, some customers found the PN7160 is not detected over I2C/SPI on the Raspberry Pi 5. Running "i2cdetect -y 1" produces a blank table, and running "nfcDemoApp poll" results in an "nfcservice init fail" message. The incompatibility appears to be between the PN7160 and the new Raspberry Pi OS—Bookworm.  This reason is Raspberry Pi OS received a major update in Linux Kernel 6.6,  the classic way of GIPO handling no long work.   In step 6, a new GPIO interface is introduced to resolve the incompatibility issue. This article is a step-by-step guide to port PN7160 NCI2 stack to Raspberry Pi OS--Bookworm.   Hardware setup: For detail information about Raspberry Pi 5, please refer to below link.  https://www.raspberrypi.com/products/   The PN7160 EVK board must be connected to Raspberry Pi using the following instructions:   Raspberry Pi 5 board pin NFC controller board signal #1 3.3V PWR VDD (PAD) +5V VBAT and VDD (UP) #16 GPIO23 IRQ #18 GPIO24 VEN #22 DWL_REQ #6 GND #5 I2C_SCL #3 I2C_SDA     This matches the Raspberry Pi version of OM27160A1EVK (I2C variant).  The kit can then be plugged on Raspberry Pi 5 board to run the example. First of all, assemble the PN7160 NFC controller board (OM27160A1HN or OM27160B1HN) with the Raspberry Pi interface board (OM29110RPI)      Then stacked together the boards with the Raspberry Pi board.     Software Setup: 1    Install Rasp 5 OS -Bookworm We use Raspberry Pi Imager tool to install Raspberry Pi OS (64bit, Bookworm). Click choose device and select Raspberry Pi 5, next click choose OS and select an operating system –Raspberry Pi OS (64-bit) , and select Micro SD card. Next we can write the Image to the Micro SD card.   2 Enable i2c interface 1). Run command:     sudo raspi-config     2). Use the down arrow to select "Interface Options"   3). Arrow down to "I5 I2C"     4). Select "yes" when it asks you to enable I2C 5). Use the right arrow to select the <Finish> button To verify the i2c interface is enabled, enter the following command: $ ls /dev/i2c* The Pi should respond with “ /dev/i2c-1” which represents the user-mode i2c interface to which is connected the PN7160    3 Install necessary tools   We need to use APT commands to install , update software package in Raspberry Pi OS, please refer to  below link. https://www.raspberrypi.com/documentation/computers/os.html Libtool needs to be installed to run the NCI stack.    4 Clone Linux libnfc-nci library repository NFC NCI library is available from the following repository: https://github.com/NXPNFCLinux/linux_libnfc-nci $ git clone https://github.com/NXPNFCLinux/linux_libnfc-nci.git -b NCI2.0_PN7160     5 Apply 64bit patch To install on 64bit OS, we need to apply 64bit patch.  It is under folder linux_libnfc-nci/64bit_patch/ROOT_src.patch   6 Modifications for GPIO Raspberry Pi OS (Bookworm) received a major update which includes the Linux kernel 6.6.   In the new OS update, the classic way of interfacing with GPIO has been deprecated.  Unfortunately our PN7160 NCI stack still interact with GPIO using /sys/class/gpio pseudo-filesystem,  low level control of GPIOs no longer work with Bookworm.  So we need to use the new GPIO interface on the Raspberry PI: libgpiod.  At this point Raspberry OS with a kernel 6.6 both libgpiod and gpiod are not pre-packaged and we need to install them.   6.1  Installation of gpiod tools We can look more into what is installed   The output of gpioinfo reports all of the available GPIO lines, by default for all chips. 6.2 Installation of the gpio libraries If we want to install libraries for development we need to do the following   Here is the info on libgpiod-dev     The development package installs the C libraries and header files for us to use. Namely, the /usr/include/gpiod.h C header file and the /usr/lib/arm-linux-gnueabihf/libgpiod.so Shared Library.   6.3 Modifications in PN7160 NCI2 library. In source code, we need to add the gpiod library support 6.3.1 Makefile.am    6.3.2 src/nfcandroid_nfc_hidlimpl/halimpl/tml/transport/NfccAltTransport.cc    ......     and src/nfcandroid_nfc_hidlimpl/halimpl/tml/transport/NfccAltTransport.h   If you need the modified source code files, please let me know. I can send the source code changes to you.    7 Configure the library       8 Set the library to map i2c interface   9 Build and install the library   $ make $ sudo make install $ export LD_LIBRARY_PATH=/usr/local/lib   10 Run & Verify the NFC functionality     This demo works as expected.   Summary: Porting PN7160 NCI2 stack to Raspberry Pi 5, we need to follow PN7160 Linux porting guide and update the classic GPIO interface to gpiod libraries.   Happy porting 😊
View full article
In the case, the Reader output power cannot be further reduced with the help of the tuning and TXLDO settings (e.g. EMI reasons)  Then further reduction can be done using DPC settings. The idea is to use just one DPC entry and adjust the GSN value as shown below: DPC Settings:    The DPC Entries (1-19) have been deactivated (Index Activate ->0), and only Entry 00 stays active.    An example (RF Field measured using a scope probe): No DPC, TXLDO 5V    NO DPC, TXLDO 2.7V   DPC Activated, One Entry, GSN-> 0x05   DPC Activated, One Entry, GSN-> 0x01   Please consider that the reading performance will be impacted. 
View full article
Extended NFC Factory Test Application includes:  Get Current value (current measurement in mA) DPC Check (Available from FW. Version 12.50.06) Get AGC Value  Get AGC Value NFCLD (AGC value reading with fixed NFC Level Detector level) Dump EEPROM settings    How to get it:  Just download the app from Github. Replace the "NfcFactoryTestApp.c" with the file which is here in the attachment.  Run the application as described in ->AN13287.   Tomas Parizek  Customer Application Support 
View full article
AN13189 provides guidelines for the integration of PN7160 NXP NCI-based NFC controller to an Android platform from software perspective. But some developers found some compile issues when integrating PN7160 NFC package into Android 11.   This article describes how to fix the build error when you integrating PN7160 NXP NCI-based NFC controller to Android 11 system.  You need to follow the AN13189 (PN7160 Android porting guide ) first.  After you run the installation script install_NFC.sh, the following modification should be added to the source code. 1) Open package/apps/Nfc/nci/jni/Android.bp Add  "-DNXP_EXTNS=TRUE",   2 )  open system/nfc/src/Android.bp Add   "-DNXP_EXTNS=TRUE",     3 )   open packages/apps/Nfc/src/com/android/nfc/NfcService.java And add this: between isNfcSecureEnabled and setNfcSecure methods:             @Override         public IBinder getNfcAdapterVendorInterface(String vendor) {             if(vendor.equalsIgnoreCase("nxp")){                     return (IBinder) mNfcAdapter;             } else {                    return null;             }         }     Next, follow AN13189, complete the following steps in section 4.2. Then you can build the package successfully.  Thanks  @andraz_skupek .      
View full article
A Quick Solution for link issue of "missing --end-group" when you use the latest MCUXpresso IDE to compile the NFC reader library projects.
View full article
https://community.nxp.com/docs/DOC-340244 
View full article
This post contains a guide of how to use the NFC Reader Library with LPC55S69. A ready to use package for using the “Basic Discovery Loop” example from the NFC Reader Library with LPC55S69 and CLRC663 plus frontend is attached with this document. This document is structured as follows: Overview of LPC55S69: The LPCXpresso55S69 development board provides the ideal platform for evaluation of and development with the LPC55S6x MCU based on the Arm® Cortex®-M33 architecture. The board includes a high performance onboard debug probe, audio subsystem and accelerometer, with several options for adding off-the-shelf add-on boards for networking, sensors, displays and other interfaces. The LPCXpresso55S69 is fully supported by the MCUXpresso suite of tools, which provides device drivers, middleware and examples to allow rapid development, plus configuration tools and an optional free IDE. MCUXpresso software is compatible with tools from popular tool vendors such as Arm and IAR, and the LPCXpresso55S69 may also be used with the popular debug probes available from SEGGER and P&E Micro. Hardware Requirements: Following hardware is required to run the project: LPC55S69-EVK development board. CLEV6630B board or BLE-NFC-V2 board. BLE-NFC-V2: It is easier to use the BLE-NFC-V2 board since it can be just plugged on top of the arduino interface available on the LPCXpresso55S69 board. The following figure shows the pin mapping between the two boards. CLEV6630B board: The CLEV6630B board consists of CLRC663 plus (NFC frontend) connected by default to an LPC1769 µC via SPI. However, the board is made in such a way that the LPC1769 MCU can be bypassed to connect to an external MCU (in our case the LPC55S69) easily. For doing so: Six resistors from the board need to be removed. These are highlighted in red in the Figure 1: Use the SPI pin connectors available on the left-hand side, on the board edge to connect to external MCU (LPC55S69 in this case) Solder jumper wires onto the following pins of CLEV6630B Board:  GND IRQ CLRC_NRST SSEL MOSI MISO SCK IF0 IF1      The CLEV6630B is shown in Figure 2 after the required changes have been made to it (Removal of resistors and soldering of wires).   Now connect the two boards as follows:   Running Basic Discovery Loop on LPC55S69:   If this is the first time you’re using LPC55S69-EVK board, follow the getting started guide first à  LPC55S69-EVK | NXP . Make sure to install the SDK package for LPC55S69-EVKboard which is required for the project below to run. Download either‘lpcxpresso55s69_BasicDiscoveryLoop_CLEV6630b' or 'lpcxpresso55s69_BasicDiscoveryLoop_BLE-NFC' package which you will find attached to this post. Drag and drop the downloaded package to the “Project Explorer” tab of your MCUXpresso IDE workspace (If you don’t have MCUXpresso, it can be downloaded for free from here: https://www.nxp.com/support/developer-resources/software-development-tools/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE Now that the package has been imported to the MCUXpresso IDE (via drag and drop), click on Debug icon from the Quickstart panel to begin a debug session. Once the debug session has started, click on the run icon to run the code: The project should be running now. The project contains basic discovery loop functionality. Here is how the output looks like in the terminal. Bring any NFC card near the frontend’s antenna and the output console will show the detection and type of the card. For example, in the picture below, we can see that type 4A card was detected:     Running other NFC Reader Library examples on LPC55S69: Once the “lpcxpresso55s69_BasicDiscoveryLoop” project is running on the LPC55S69. Running other examples from is simple. First step is to install the NFC Reader Library : Installing the NFC Reader Library: Go to www.nxp.com/pages/:NFC-READER-LIBRARY Go to the Downloads tab and click on the download button Click download on the NFC Reader Library for Kinetis K82F package. Import the library package in the workspace. The easiest way is to use the Quick Start Panel on the left-hand side: Click on Import project from file system Then, browse the library package in your file system. Click Finish to import it all to your workspace. After completing the import wizard, all projects are listed in the “Project Explorer” window. As can be seen in the screenshot, it contains different folders: API documentation folder Driver Abstraction Layer FreeRTOS support The platform support (in the screenshot, corresponding to the LPC support) The software examples  The Reader Library implementation And the OS abstraction layer   Running "NfcrdlibEx9_NTagI2C" on LPC55S69: Here we use the “NfcrdlibEx9_NTagI2C” example from the reader library to describe the method. The same method can be used to run other examples from the NFC Reader Library.  To run "NfcrdlibEx9_NTagI2C" on LPC55S69, we look at "lpcxpresso55s69_BasicDiscoveryLoop" project (available as a download below) and "NfcrdlibEx9_NTagI2C" project (from the Reader Library). We make changes to the following folders: In “intfs” folder remove everything except the “phaApp_Init.h” file. Then go to the “intfs” folder of the NFC Reader Library example you want to run (“NfcrdlibEx9_NTagI2C” in this case), and copy all the files except “phaApp_Init.h” and paste them in the original “intfs” folder. In line 57 of the “ph_NxpBuild_App.h” file in “intfs” folder, replace #if defined(PHDRIVER_LPC1769RC663_BOARD) \     || defined(PHDRIVER_FRDM_K82FRC663_BOARD)\ #   define NXPBUILD__PHHAL_HW_RC663 #endif with #if defined(PHDRIVER_LPC1769RC663_BOARD) \     || defined(PHDRIVER_FRDM_K82FRC663_BOARD)\     || defined(PHDRIVER_LPC55S69RC663_BOARD) #   define NXPBUILD__PHHAL_HW_RC663 #endif Go to “source” folder and remove every file except “phApp_Init.c“ and “semihost_hardfault.c” files. Then go to “src” folder of the example you want to run (“NfcrdlibEx9_NTagI2C” in this case) and copy all the files except “phaApp_Init.c” and paste them into the “source” folder. Finally, copy the main file of the example you want to run (NfcrdlibEx9_NTagI2C in this case) and paste it into the “source” folder as well. The project is ready to build and run on LPC55S69.       Available Resources: Porting NFC Reader Library to i.MX RT1050. (Detailed Description of porting) https://community.nxp.com/docs/DOC-341843 LPC55S69 https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/lpc-cortex-m-mcus/lpc5500-cortex-m33/lpcxpresso55s69-development-board:LPC55S69-EVK BLE-NFC-V2 https://www.nxp.com/products/identification-security/rfid/nfc-hf/nfc-readers/clrc663-iplus-i-and-qn902x-nfc-bluetooth-low-energy-solution-for-consumer-applications:BLE-NFC
View full article
Introduction I am trying to make one page that contain all the useful information about NFC Antenna Design. I will keep update and add the information to this page when I found something useful.   Training First of all, there are 6 webinars about NFC Antenna Design. It is a good training before to start your antenna design for NFC. Training & Events | NXP  (Search "Antenna design")   Application Notes AN11740 : PN5180 Antenna design guide AN11706 : PN7462AU Antenna design guide AN11019 : CLRC663, MFRC630, MFRC631, SLRC610 Antenna Design Guide AN11755 : PN7150 Antenna Design and Matching Guide AN11564 : PN7120 Antenna Design and Matching Guide AN11741 : How to design an antenna with DPC AN11535 : Measurement and tuning of a NFC and Reader IC antenna with a MiniVNA Tools NFC Antenna Design Hub
View full article
Hello NFC enthusiasts,   In the NFC communication protocol, when a device acts as a NFC reader (it provides its own field), it is waiting for a tag to approach. When this occurs, the reader energizes the tag and depending on the application, it can read from or write to a tag.   When multiple tags are in the field, the power decreases according to the number of tags being energized, for which the tag operations will not work properly. For this, there is a process called anti-collision, in which the reader decides, from the detected tags, one to work with.   The purpose of this document is to demonstrate the activation of each tag at a given index.   This demonstration is going to be made with two NTAG 216.     This demonstration is based on NXP NFC Reader Library v05.02.00, NfcrdlibEx3_NFCForum project for PNEV7462B, in which some modifications are going to be made in order to carry this out. These tags are compliant with NFC Forum Type 2 Tag and ISO/IEC14443 Type A specifications.    In phacDiscLoop.h modify the max number of cards supported (two cards for this demonstration):   #define PHAC_DISCLOOP_CFG_MAX_CARDS_SUPPORTED 0x02U      In NfcrdlibEx3_NFCForum.c add the following code in LoadDiscoveryConfiguration():   static phStatus_t LoadDiscoveryConfiguration() { ... /*Passive max typea devices*/ status = phacDiscLoop_SetConfig(pDiscLoop, PHAC_DISCLOOP_CONFIG_TYPEA_DEVICE_LIMIT, 2); CHECK_STATUS(status); }   A fix to the SW stack has to be made (Fix will be implemented in the next release): open "phacDiscLoop_Sw_Int_A.c", line 511, change if statement as below.     if((pDataParams->sTypeATargetInfo.bTotalTagsFound > 1) && ((bTypeATagIdx) < pDataParams->sTypeATargetInfo.bTotalTagsFound))     Until now, the reader is able to detect a maximum of two tags and work with up to two type A devices.   The activation of a tag at a given index is possible to the phacDiscLoop_ActivateCard() function.   Once this function is called, it will receive the discovery loop data parameters, the type of tag and the index of a tag to be activated.   The code will be added after knowing that multiple tags are detected and resolved in the NfcrdlibEx3_NFCForum.c file.   else if((status & PH_ERR_MASK) == PHAC_DISCLOOP_MULTI_DEVICES_RESOLVED) { /* * Multiple cards resolved. It enters here if DEVICE LIMIT > 1 and more than one devices are * detected and resolved. */ DEBUG_PRINTF (" \n Multiple cards resolved: \n"); /* Get detected technology type */ status = phacDiscLoop_GetConfig(pDiscLoop, PHAC_DISCLOOP_CONFIG_TECH_DETECTED, &wTagsDetected); CHECK_STATUS(status); /* Get number of tags detected */ status = phacDiscLoop_GetConfig(pDiscLoop, PHAC_DISCLOOP_CONFIG_NR_TAGS_FOUND, &wNumberOfTags); CHECK_STATUS(status); DEBUG_PRINTF ("\tNumber of tags: %d \n",wNumberOfTags); /* Code */ ... } Note: The code to be inserted in the comment /* Code */ is below in the Code section of this document.   The demonstration will be as simple as activating one tag, read its NDEF message, activate the second tag and read its NDEF message as well so that we make sure the activation process is performed correctly.   Each tag was previously written with a text NDEF message respectively.   Tag 1: Text: Hallo! Language: de   Tag 2: Text: ¡Hola! Language: es   Writing to a tag can be done by making use of our TagWriter app available in the play store: NFC TagWriter by NXP - Aplicaciones de Android en Google Play    Code section:   uint8_t bTagState1; /* Tag 1 */ /* Activate tag at index 0 */ status = phacDiscLoop_ActivateCard(pDataParams, PHAC_DISCLOOP_TECH_TYPE_A, 0x00); /* Check for NDEF presence */ status = phalTop_CheckNdef(palTop, &bTagState1); /* Read NDEF message */ status = ReadNdefMessage(PHAL_TOP_TAG_TYPE_T2T_TAG); DEBUG_ERROR_PRINT(status); /* Tag 2 */ /* Activate tag at index 1 */ status = phacDiscLoop_ActivateCard(pDataParams, PHAC_DISCLOOP_TECH_TYPE_A, 0x01); /* Check for NDEF presence */ status = phalTop_CheckNdef(palTop, &bTagState1); /* Read NDEF message */ status = ReadNdefMessage(PHAL_TOP_TAG_TYPE_T2T_TAG); DEBUG_ERROR_PRINT(status);   Behavior shown in the console monitor:   NFC Forum Example:       This implementation demonstrated the activation of two type A tags at a given index. I hope this is of great help!   Best regards, Ivan. Original Attachment has been moved to: Project-files.zip
View full article
This post contains a step by step guide of how to use PN7150 with i.MX RT1060. This document is structured as follows: Overview of PN7150 PN7150 is a Plug-and-Play all-in-one NFC solution for easy integration into any OS environment like Linux and Android, reducing Bill of Material (BoM) size and cost. The embedded Arm® Cortex®-M0 microcontroller core is loaded with the integrated firmware, simplifying the implementation as all the NFC real-time constraints, protocols and the device discovery (polling loop) are processed internally. In few NCI commands, the host SW can configure the PN7150 to notify for card or peer detection and start communicating with them. It has the following salient features: Full NFC forum compliancy with small form factor antenna Embedded NFC firmware providing all NFC protocols as pre-integrated feature Direct connection to the main host or microcontroller, by I2C-bus physical and NCI protocol Ultra-low power consumption in polling loop mode Highly efficient integrated power management unit (PMU) allowing direct supply from a Battery Hardware Requirements      1. OM5578/PN7150ARD      2. i.MX RT1060 EVK Evaluation Board + usb micro cable        Using PN7150 with i.MX RT1060 Hardware Connections The hardware connections are simple. Both the EVKB-IMXRT1060 board and OM5578/PN7150ARD board have an Arduino interface. So, mount the PN7150ARD board with male Arduino connector onto the female Arduino connector of the EVKB-IMXRT1060 board.  Running the Demo If this is the first time you’re using EVK-MIMXRT1060 board, follow the getting started guide first: i.MX RT1060 Evaluation Kit | NXP . Make sure to install the SDK package for EVK-MIMXRT1060 board which is required for the project to run.   Download the ‘evkbimxrt1060_PN7150’ package which you will find attached to this post. Drag and drop the downloaded package to the “Project Explorer” tab of your MCUXpresso IDE workspace (If you don’t have MCUXpresso, it can be downloaded for free from here: https://www.nxp.com/support/developer-resources/software-development-tools/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE Now that the package has been imported to the MCUXpresso IDE (via drag and drop), click on Debug icon from the Quickstart panel to begin a debug session. Once the debug session has started, click on the run icon to run the code: After step 3, the project should be running now. The project contains basic discovery loop functionality. Here is how the output looks in the console tab on MCUXpresso: Bring any NFC card near the PN7150 board’s antenna and the output console will show the detection and type of the card. For example, in the picture below, we can see that type 4 card was detected: Available Resources AN11990 NXP-NCI MCUXpresso example document. (https://www.nxp.com/docs/en/application-note/AN11990.pdf) The example project explained in this project was ported to i.MX RT1060 using section 5.3 and 6 of the above mentioned document. PN7150 datasheet (https://www.nxp.com/docs/en/data-sheet/PN7150.pdf) PN7150 User Manual (https://www.nxp.com/docs/en/user-guide/UM10936.pdf) PN7150 NFC Controller SBC Kit User Manual  (https://www.nxp.com/docs/en/user-guide/UM10935.pdf)
View full article
This page contains information about the supported NXP MCU/MPU and NXP NFC product combinations which have ready to use packages. These can be used as a reference. The table below contains link to where you can find the projects as well.    MCU ↓   NFC IC →  NTAG I²C  plus NTAG 5 PN7150 CLRC663 plus family* PN5180 i.MX RT1050 i.MX RT1050 + NTAG I²C plus i.MX RT1050 + CLRC663 plus   Video: Using i.MX RT1050 with CLRC663 plus family and the NFC Reader Library | NXP  i.MX RT1060 i.MX RT1060 + NTAG I²C plus  i.MX RT1060 + PN7150 i.MX 8M Mini i.MX 8M Mini + PN7150 (Andriod) i.MX 8M Mini + PN7150 (linux-yocto) i.MX 7 Dual Sabre i.MX7 Dual Sabre + PN5180 LPC1769 LPC1769 + CLRC663 plus LPC1769 + PN5180 LPC55S69 LPC55S69 + NTAG I²C plus LPC55S69 + NTAG 5 LPC55S69 + PN7150 LPC55S69 + CLRC663 plus LPC55S69 + CLRC663 plus + SE050 (smart lock) LPC11u37h LPC11u37 + PN7150 LPC11u37h + CLRC663 plus LPC11u68 LPC11u68 + PN7150 LPC82X LPC82X + PN7150 LPC845 LPC845 + CLRC663 plus Kinetis K82F K82F + CLRC663 plus K82F + PN5180 Kinetis K64F K64F + PN7150 K64F + CLRC663 plus Kinetis K63 K63 + PN7150 Kinetis K24 K24 + PN7150 KW41Z KW41Z + NTAG I²C plus KW41Z + NTAG 5 KW41Z + PN7150 *CLRC663 plus family: CLRC663 plus, MFRC630 plus, MFRC631 plus, SLRC610 plus For more information on the NFC products, please visit https://www.nxp.com/nfc
View full article
This document show the detail steps of following the Personalization example in AN12196. Tool : Pegoda3 and RFIDDiscover.    
View full article
A user can evaluate the current consumption of PN7642 in low power modes with the help of the PN7642 Evaluation Board (OM27642) and:  MCUXpresso SKD example (LPCD)  NFC Cockpit or MCUXpresso SKD example (ULPCD) NXP defines the current consumption in ULPCD/LPCD as VBAT current + VDDIO currents for the LPCD/ULPCD cycle time of 330 ms. Make sure that DC/DC is disabled.  VBAT_PWR can be neglected (around 1uA in ULPCD). VUP current depends on the antenna impedance tuning and ULPCD/LPCD pulse length (typically around 10 uA in ULPCD) See the snapshot from the PN7642 Datasheet below:    See where to measure the currents on PN7642 EVK: J63 and J64 are used for enabling/disabling the LEDs that are connected to PN7642 GPIOs.  A modification of R69 and R70 is necessary to perform the current measurement on VDDIO in LPCD mode. 1. LPCD current consumption evaluation The user has to import the example (pnev7642fama_nfc_low_power_mode_Pub) from the PN7642 SDK.  Before building it, the following change in the code has to be made:  -> Comment line 84   A user can adjust the LPCD cycle time as shown below:   1.1 VBAT Current measurement  See an example of the VBAT current measurement below:   The current should be measured as an average over, e.g., 10 seconds.  In this case, the VBAT current is approximately 123 μA. 1.2 VDDIO Current measurement Note: Before VDDIO measurement, place jumpers J63 and J64 on PN7642 EVK. This will disable LEDs that are connected to PN7642 GPIOs.  The VDDIO current measurement requires the following steps:  Run the "pnev7642fama_nfc_low_power_mode_Pub" example  Once the example is running, disconnect the debugger (J-link, LPC-Link...) from J21 (NFC Debug connector)    Remove R70  Populate a 10K resistor on the R69 position (it disables the SWD interface) Once the measurement is done, change it back to the default state (R70=0R, R69=Open). Note: It is recommended to prepare the board with the option to easily populate or remove R70 and R69 when the LPCD example is running. E.g., with the help of jumpers/pin headers as shown below.   Only then will the correct VDDIO be measured on PN7642 EVK.  See an example of VDDIO current measurement below:    The current should be measured as an average over, e.g., 10 seconds.  In this case, the VDDIO current is approximately 5.48 μA.  Then the overall current comsumption in LPCD is I_VBAT + I_VDDIO= 123 μA + 5.48 μA = 128.48 μA Note: For this measurement, the NFC Cockpit is not suitable because the IC does not go into standby mode between LPCD RF pings. Meaning LPCD works normally, but a user can measure higher current consumption.  2. ULPCD current consumption evaluation For the ULPCD evaluation, the NFC Cockpit or SDK example can be used. In this article, we will focus on evaluation using the NFC Cockpit.  See the typical ULPCD settings below (3 ULPCD cycles per 1s, VDDPA=1.5V)  2.1 VBAT Current measurement  See an example of the VBAT current measurement below: The current should be measured as an average over, e.g., 10 seconds.  In this case, the VBAT current is approximately 14.4 μA. 2.2 VDDIO Current measurement  Note: Before VDDIO measurement, place jumpers J63 and J64 on PN7642 EVK. This will disable LEDs that are connected to PN7642 GPIOs.  See an example of VDDIO current measurement below:  The current should be measured as an average over, e.g., 10 seconds.  In this case, the VDDIO current is approximately 2.7 μA.  Then the overall current comsumption in ULPCD is I_VBAT + I_VDDIO= 14.4 μA + 2.7 μA = 17.1 μA   Used Ampere meter -> Power Profiler Kit II
View full article
This article describes how to evaluate ULPCD feature toghether with PN7642 EVK (OM27642EVK) and NFC Cockpit.  1// Disable DC-DC in EEPROM  OM27642EVK does not required any HW changes for ULPCD. User is only required to change the following settings in EEPROM  (disable DC-DC converter). Address: 0x0000 (Secure_Lib_Config) Value: 0x21  2//Set required ULPCD settings in EEPROM  The default settings can be used as a starting point as such. The optimum threshold for OM27642EVK is between 5-10. Below 5, user can observe higher occurrence of fake detection  Above 10, the detection range might drop significantly.  3// Perform "Reads HF Attenuator"  Once the required ULPCD settings is set (Guard times, Threshold....). Then User has to perform "Reads HF Attenuator". This will read and write the HF Attenuator value in the EEPROM at the address 0x63A (Secure_Lib_Config).  4//Enable that the RSSI value is calculated based on HF attenuator value  User is required to set most significant bit (7) to 1b. This will enable RSSI calculation based on the current HF attenuator value.  Example: If the HF Attenuator value is 0x0B, user has to write 0x8B in the eeprom field.  Note that if user reads the HF attenuator again, this step must be repeated.  5// Perform ULPCD Calibration and check RSSI Value  User can now perform the ULPCD Calibration and check the RSSI value by reading PCRM_ULPCD_STS register.  For OM27642EVK, the RSSI value for unloaded antenna is typically around 1500dec - 1550dec. 6//Enter ULPCD mode  User can enter the ULPCD mode. The board will be again connected once the load change is detected (e.g. NFC card or smarphone in the antenna proximity).
View full article
Prerequisites:  PN5190 instruction layer-> https://www.nxp.com/docs/en/user-manual/UM11942.pdf NFC Cockpit -> https://www.nxp.com/products/rfid-nfc/nfc-hf/nfc-readers/nfc-cockpit-configuration-tool-for-nfc-ics:NFC-COCKPIT   In case of PN5190, the NFC cockpit can only show a generic error messages. More detailed error description has to be decoded from the received "FrontEnd Packets" 1. See an example of the error returned after ULPCD calibration    2.  The Errors description is descibred in  PN5190 instruction layer UM. However, the error has to be "decoded"  →> Take the received packets before the error ntf. in NFC Cockpit → 80 00 0C 02 02 00 00 BB 07 00 00 23 00 00 00 Where:  2.1. Decode the "Event" 02 02 (Little endian format) → General_Error_Event + LPCD_Calibration_Done_Event   2.2 Check LPCD_CALIBRATION_DONE_EVENT  07 BB (Little endian format) → Measured RSSI Value    2.3. Check the GENERAL_ERROR_EVENT  00 23 (Little endian format) → Definition of the general error event → Error is : GPADC_ERROR, CLOCK_ERROR and XTAL_START_ERROR  
View full article
Step 1:  Disable the DCDC in settings (Valid for PNEV5190B and OM27642EVK) Write 0x21 into EEPROM PWR_CONFIG (address: 0x0000) This disables the DCDC. & selects that the VUP must be supplied with the same supply voltage as VBAT = VBATPWR. Do not enable RF afterwards, before the hardware is modified properly! Enabling the RF without supplying the VUP might kill the PN5190/PN7642! Step 2: Supply VUP = VBATPWR  Connect jumper J13 positions: 1-2: This supplies the VUP with VBATPWR = 3.3V PN5190 EVK: Please note that for a final application using ULPCD, the "DC-DC" inductor (L2) has to be replaced by a zero resistor/short.    PN7642 EVK:  The OM27642EVK does not require any jumper settings (DC-DC is not used by default), the User must only disable DC-DC in EEPROM (address 0x0000, value 0x21) Then you can turn-on RF and perform ULPCD   Please note that for a final application using ULPCD, the "DC-DC" inductor (L2) has to be replaced by a zero resistor/short.  Also, R8 shall be placed   
View full article
Hardware: 1. i.MX6ULL EVK board   2. OM27160A1HN   Software: 1. Build the Yocto Linux BSP for i.MX6ULL EVK. Here are the steps: $ mkdir L6.6.36_2.1.0 $ cd L6.6.36_2.1.0 $ repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-scarthgap -m imx-6.6.36-2.1.0.xml $ repo sync   $ DISTRO=fsl-imx-xwayland MACHINE=imx6ull14x14evk source imx-setup-release.sh -b build-for-6ullevk $ bitbake core-image-full-cmdline   2. Add the nxpnfc driver to kernel After the BSP build succeed, the kernel source code is located here: L6.6.36_2.1.0/build-for-6ullevk/tmp/work/imx6ull14x14evk-poky-linux-gnueabi/linux-imx/6.6.36+git/git/   Clone the nxpnfc repository into the kernel directory, replacing existing implementation: $ cd L6.6.36_2.1.0/build-for-6ullevk/tmp/work/imx6ull14x14evk-poky-linux-gnueabi/linux-imx/6.6.36+git/git/ $ rm -rf drivers/nfc $ git clone https://github.com/NXPNFCLinux/nxpnfc.git drivers/nfc  This will end-up with the folder drivers/nfc containing the following files: • README.md: repository information • Makefile: driver heading makefile • Kconfig: driver configuration file • LICENSE: driver licensing terms • i2c_devicetree.txt: example of I²C device tree definition • spi_devicetree.txt: example of SPI device tree definition • nfc sub folder containing: – Makefile: – common.c: generic driver implementation – common.h: generic driver interface definition – i2c.c: I2C specific driver implementation – i2c.h: I2C specific driver interface definition – spi.c: SPI-specific driver implementation – spi.h: SPI-specific driver interface definition   Through kernel menuconfig procedure include the targeted driver to the build, as built-in (<*>): $ bitbake linux-imx -c menuconfig <*> NFC I2C Slave driver for NXP-NFCC       3. Connection between i.MX6ULL EVK and the PN7160 There are some pins on the Arduino header on the i.MX6ULL EVK board can be used to connect the PN7160 board. Below is the schematic of the Arduino headers on the i.MX6ULL EVK board. The two I2C2 pins can be used for I2C connection. The UART2_RX, UART2_TX and UART2_RTS can be changed to GPIO for connecting IRQ, VEN and DWL_REQ of PN7160, respectively. Below is the J1704 and J1703 on the EVK board.   Below is the schematic of Arduino interface on OM27160A1HN. There is a connector board (OM29110ARD-B). The OM27160A1HN is connecting on top of it. Below is the connectors board schematic. So, on the i.MX6ULL EVK board, we need I2C2 SDA and I2C2 SCL for I2C connections. And 3 GPIO pins for PN7160's IRQ, VEN and DWL_REQ. Here is the connection between i.MX6ULL EVK and OM29110ARD-B. OM29110ARD-B pin i.MX6ULL EVK pin I2C_SCL J2-1 I2C2_SCL J1704-10 I2C_SDA J2-2 I2C2_SDA J1704-9 GPIO_0 J2-10 GPIO1_21 J1703-1 GPIO_1 J4_1 GPIO1_20 J1703-2 GPIO_2 J4_2 GPIO1_25 J1703-3 3.3V J1-4 3.3V J1705-4 5V J1-5 5V J1705-5 GND J1-6 GND J1705-6      4. Modify the device tree file of i.MX6ull evk. The device tree file for i.MX6ULL evk is imx6ul-14x14-evk.dtsi. The location of the device tree file is here: L6.6.36_2.1.0/build-for-6ullevk/tmp/work/imx6ull14x14evk-poky-linux-gnueabi/linux-imx/6.6.36+git/git/arch/arm/boot/dts/nxp/imx/imx6ul-14x14-evk.dtsi   As we don't use the UART2, we disabled it. &uart2 { pinctrl-names = "default"; pinctrl-0 = <&pinctrl_uart2>; uart-has-rtscts; /* for DTE mode, add below change */ /* fsl,dte-mode; */ /* pinctrl-0 = <&pinctrl_uart2dte>; */ status = "disabled"; // <--- change the status to "disabled" bluetooth { compatible = "nxp,88w8987-bt"; }; };   Put the below nxpnfc under the &I2C2 node. nxpnfc: nxpnfc@28 { compatible = "nxp,nxpnfc"; reg = <0x28>; pinctrl-names = "default"; pinctrl-0 = <&pinctrl_nfcgpio>; nxp,nxpnfc-irq = <&gpio1 21 0>; nxp,nxpnfc-ven = <&gpio1 20 0>; nxp,nxpnfc-fw-dwnld = <&gpio1 25 0>; };   Like this: Add the gpios for nxpnfc. pinctrl_nfcgpio: nfcgpiogrp { fsl,pins = < MX6UL_PAD_UART2_RX_DATA__GPIO1_IO21 0xb0 //irq MX6UL_PAD_UART2_TX_DATA__GPIO1_IO20 0xb0 //ven MX6UL_PAD_UART3_RX_DATA__GPIO1_IO25 0xb0 //dwld req >; };     5. Re-compile the kernel and the whole image. $ bitbake linux-imx -c compile $ bitbake core-image-full-cmdline     6. Using UUU to program the image to the board. The built image is .wic.zst file. We need to program it to the board. It is located in the deploy folder below. L6.6.36_2.1.0/build-for-6ullevk/tmp/deploy/images/imx6ull14x14evk/core-image-full-cmdline-imx6ull14x14evk.rootfs-20241113103828.wic.zst   Download the UUU.exe from here: https://github.com/nxp-imx/mfgtools/releases   Download the Demo image for i.MX6ULL EVK from the Linux BSP web page.   Unzip the demo image file to a folder. And then copy the UUU.exe to the same demo image folder.   Connect the board to your PC using the USB cable. Switch the boot mode to "Serial Downloader mode"   On the PC side, run the below command to program the image to SD card on the i.MX6ULL EVK. uuu -b sd_all core-image-full-cmdline-imx6ull14x14evk.rootfs-20241112083235.wic.zst   Then switch the boot mode to "Internal Boot (Development)". Restart the board. Now, you can login as "root" and use the board. And you can see the nxpnfc driver is properly loaded.     7. Build the NFC Library and the nfcDemoApp in Yocto In the Yocto's sources directory, download the meta-nxp-nfc layer from https://github.com/NXPNFCLinux/meta-nxp-nfc     $ git clone https://github.com/NXPNFCLinux/meta-nxp-nfc.git  Then, the NFC library recipe is located in L6.6.36_2.1.0/sources/meta-nxp-nfc/recipes-nfc/nxp_nfc. Change the recipe nxp-nfc_git.bb as below: # Copyright (C) 2016 NXP Semiconductors DESCRIPTION = "Linux NFC stack for NCI based NXP NFC Controllers." LICENSE = "Apache-2.0" LIC_FILES_CHKSUM = "file://LICENSE.txt;md5=86d3f3a95c324c9479bd8986968f4327" SRC_URI = " \ git://github.com/NXPNFCLinux/linux_libnfc-nci.git;branch=NCI2.0_PN7160;protocol=https \ " SRCREV = "6bf9f42b94e267f6384043009bda84c11e7ebbaa" SRC_URI[sha256sum] = "47bdc27108fc8d66ce5d6c33f76b419cdef20c24b9e187ada8e689d1bd7f79c7" inherit autotools pkgconfig lib_package S = "${WORKDIR}/git"   Add the meta-nxp-nfc layer to the build definition. Updating file build_dir/conf/bblayers.conf with: BBLAYERS += " ${BSPDIR}/sources/meta-nxp-nfc"   Build meta-nxp-nfc layer:     $ bitbake nxp-nfc After build succeed, the library files and the nfcDemoApp are located in here : L6.6.36_2.1.0/build-for-6ullevk/tmp/work/cortexa7t2hf-neon-poky-linux-gnueabi/nxp-nfc/git/   Use the "scp" command to copy the files to the EVK board via the Network. If the folder is not exist on the EVK, please use "mkdir" to make the folder on the EVK first. Then use the "scp" command.  Here is the example: (**The IP address below should change to your EVK's IP address.) scp build/.libs/* root@10.192.246.136:/.libs/ scp image/etc/libnfc* root@10.192.246.136:/etc/   scp image/usr/lib/* root@10.192.246.136:/usr/lib     On the EVK board: root@imx6ull14x14evk:/# mkdir /usr/local root@imx6ull14x14evk:/# mkdir /usr/local/etc root@imx6ull14x14evk:/# cp /etc/libnfc-nci.conf /usr/local/etc   Now, you can run the nfcDemoApp on the i.MX6ULL EVK. root@imx6ull14x14evk:/# cd .libs/ root@imx6ull14x14evk:/.libs# ./nfcDemoApp poll       References: 1. i.MX Yocto Project User's guide 2. PN7160 Linux Porting Guide 3. MCIMX6ULL-EVK_DESIGNFILES 4. OM27160A1HN Hardware Design Files 5. OM29110 NFC’s SBC Interface Board Design Files 6. PN7150 NFC Controller on i.MX8M mini evk running Yocto
View full article