i.MX Processors Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

i.MX Processors Knowledge Base

Discussions

Sort by:
  Test environment   i.MX8MP EVK LVDS0 LVDS-HDMI  bridge(it6263) L5.15.5_1.0.0 Background   Some customers need show logo using LVDS panel. Current BSP doesn't support LVDS driver in Uboot. This patch provides i.MX8MPlus LVDS driver support in Uboot. If you want to connect it to LVDS panel , you need port your lvds panel driver like  simple-panel.c   Update [2022.9.19] Verify on L5.15.32_2.0.0  0001-L5.15.32-Add-i.MX8MP-LVDS-driver-in-uboot 'probe device is failed, ret -2, probe video device failed, ret -19' is caused by below code. It has been merged in attachment. // /* Only handle devices that have a valid ofnode */ // if (dev_has_ofnode(dev) && !(dev->driver->flags & DM_FLAG_IGNORE_DEFAULT_CLKS)) { // /* // * Process 'assigned-{clocks/clock-parents/clock-rates}' // * properties // */ // ret = clk_set_defaults(dev, CLK_DEFAULTS_PRE); // if (ret) // goto fail; // }   [2023.3.14] Verify on L5.15.71 0001-L5.15.71-Add-i.MX8MP-LVDS-support-in-uboot   [2023.9.12] For some panel with low DE, you need uncomment CTRL_INV_DE line and set this bit to 1. #include <linux/string.h> @@ -110,9 +111,8 @@ static void lcdifv3_set_mode(struct lcdifv3_priv *priv, writel(CTRL_INV_HS, (ulong)(priv->reg_base + LCDIFV3_CTRL_SET)); /* SEC MIPI DSI specific */ - writel(CTRL_INV_PXCK, (ulong)(priv->reg_base + LCDIFV3_CTRL_CLR)); - writel(CTRL_INV_DE, (ulong)(priv->reg_base + LCDIFV3_CTRL_CLR)); - + //writel(CTRL_INV_PXCK, (ulong)(priv->reg_base + LCDIFV3_CTRL_CLR)); + //writel(CTRL_INV_DE, (ulong)(priv->reg_base + LCDIFV3_CTRL_CLR)); }      
View full article
    Xenomai is real-time framework, which can run seamlessly side-by-side Linux as a co-kernel system, or natively over mainline Linux kernels (with or without PREEMPT-RT patch). The dual kernel nicknamed Cobalt, is a significant rework of the Xenomai 2.x system. Cobalt implements the RTDM specification for interfacing with real-time device drivers. The native linux version, an enhanced implementation of the experimental Xenomai/SOLO work, is called Mercury. In this environment, only a standalone implementation of the RTDM specification in a kernel module is required, for interfacing the RTDM-compliant device drivers with the native kernel. You can get more detailed information from Home · Wiki · xenomai / xenomai · GitLab       I have ported xenomai 3.1 to i.MX Yocto 4.19.35-1.1.0, and currently support ARM64 and test on i.MX8MQ EVK board. I did over night test( 5 real-time threads + GPU SDK test case) and stress test by tool stress-ng on i.MX8MQ EVK board. It looks lile pretty good. Current version (20200730) also support i.MX8MM EVK.     You need git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git, and git checkout xenomai-4.19.35-1.1.0-20200818 (which inlcudes all patches and bb file) and add the following variable in conf/local.conf before build xenomai by command bitbake xenomai.  XENOMAI_KERNEL_MODE = "cobalt"  PREFERRED_VERSION_linux-imx = "4.19-${XENOMAI_KERNEL_MODE}" IMAGE_INSTALL_append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" PREFERRED_VERSION_linux-imx = "4.19-${XENOMAI_KERNEL_MODE}" IMAGE_INSTALL_append += " xenomai" If XENOMAI_KERNEL_MODE = "cobalt", you can build dual kernel version. And If XENOMAI_KERNEL_MODE = "mercury", it is single kernel with PREEMPT-RT patch. The following is test result by the command (/usr/xenomai/demo/cyclictest -p 99 -t 5 -m -n -i 1000  -l 100000😞 //Over normal Linux kernel without GPU SDK test case T: 0 ( 4220) P:99 I:1000 C: 100000 Min: 7 Act: 10 Avg: 9 Max: 23 T: 1 ( 4221) P:99 I:1500 C: 66672 Min: 7 Act: 10 Avg: 10 Max: 20 T: 2 ( 4222) P:99 I:2000 C: 50001 Min: 7 Act: 12 Avg: 10 Max: 81 T: 3 ( 4223) P:99 I:2500 C: 39998 Min: 7 Act: 11 Avg: 10 Max: 29 T: 4 ( 4224) P:99 I:3000 C: 33330 Min: 7 Act: 13 Avg: 10 Max: 26 //Over normal Linux kernel with GPU SDK test case T: 0 ( 4177) P:99 I:1000 C: 100000 Min: 7 Act: 10 Avg: 11 Max: 51 T: 1 ( 4178) P:99 I:1500 C: 66673 Min: 7 Act: 12 Avg: 10 Max: 35 T: 2 ( 4179) P:99 I:2000 C: 50002 Min: 7 Act: 12 Avg: 11 Max: 38 T: 3 ( 4180) P:99 I:2500 C: 39999 Min: 7 Act: 12 Avg: 11 Max: 42 T: 4 ( 4181) P:99 I:3000 C: 33330 Min: 7 Act: 12 Avg: 11 Max: 36   //Cobalt with stress-ng --cpu 4 --io 2 --vm 1 --vm-bytes 512M --timeout 600s --metrics-brief T: 0 ( 4259) P:50 I:1000 C:3508590 Min:      0 Act:    0 Avg:    0 Max:      42 T: 1 ( 4260) P:50 I:1500 C:2338831 Min:      0 Act:    1 Avg:    0 Max:      36 T: 2 ( 4261) P:50 I:2000 C:1754123 Min:      0 Act:    1 Avg:    1 Max:      42 T: 3 ( 4262) P:50 I:2500 C:1403298 Min:      0 Act:    1 Avg:    1 Max:      45 T: 4 ( 4263) P:50 I:3000 C:1169415 Min:      0 Act:    1 Avg:    1 Max:      22   //Cobalt without GPU SDK test case T: 0 ( 4230) P:50 I:1000 C: 100000 Min: 0 Act: 0 Avg: 0 Max: 4 T: 1 ( 4231) P:50 I:1500 C:   66676 Min: 0 Act: 1 Avg: 0 Max: 4 T: 2 ( 4232) P:50 I:2000 C:   50007 Min: 0 Act: 1 Avg: 0 Max: 8 T: 3 ( 4233) P:50 I:2500 C:   40005 Min: 0 Act: 1 Avg: 0 Max: 3 T: 4 ( 4234) P:50 I:3000 C:   33338 Min: 0 Act: 1 Avg: 0 Max: 5 //Cobalt with GPU SDK test case T: 0 ( 4184) P:99 I:1000 C:37722968 Min: 0 Act: 1 Avg: 0 Max: 24 T: 1 ( 4185) P:99 I:1500 C:25148645 Min: 0 Act: 1 Avg: 0 Max: 33 T: 2 ( 4186) P:99 I:2000 C:18861483 Min: 0 Act: 1 Avg: 0 Max: 22 T: 3 ( 4187) P:99 I:2500 C:15089187 Min: 0 Act: 1 Avg: 0 Max: 23 T: 4 ( 4188) P:99 I:3000 C:12574322 Min: 0 Act: 1 Avg: 0 Max: 29 //Mercury without GPU SDK test case T: 0 ( 4287) P:99 I:1000 C:1000000 Min: 6 Act: 7 Avg: 7 Max: 20 T: 1 ( 4288) P:99 I:1500 C:  666667 Min: 6 Act: 9 Avg: 7 Max: 17 T: 2 ( 4289) P:99 I:2000 C:  499994 Min: 6 Act: 8 Avg: 7 Max: 24 T: 3 ( 4290) P:99 I:2500 C:  399991 Min: 6 Act: 9 Avg: 7 Max: 19 T: 4 ( 4291) P:99 I:3000 C:  333322 Min: 6 Act: 8 Avg: 7 Max: 21 //Mercury with GPU SDK test case T: 0 ( 4222) P:99 I:1000 C:1236790 Min: 6 Act: 7 Avg: 7 Max: 55 T: 1 ( 4223) P:99 I:1500 C:  824518 Min: 6 Act: 7 Avg: 7 Max: 44 T: 2 ( 4224) P:99 I:2000 C:  618382 Min: 6 Act: 8 Avg: 8 Max: 88 T: 3 ( 4225) P:99 I:2500 C:  494701 Min: 6 Act: 7 Avg: 8 Max: 49 T: 4 ( 4226) P:99 I:3000 C:  412247 Min: 6 Act: 7 Avg: 8 Max: 53 //////////////////////////////////////// Update for Yocto L5.4.47 2.2.0  /////////////////////////////////////////////////////////// New release for Yocto release L5.4.47 2.2.0 and it supports i.MX8M series (8MQ,8MM,8MN and 8MP). You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git,  and git checkout xenomai-5.4.47-2.2.0. You need to add the following variable in conf/local.conf before build xenomai by command bitbake imx-image-multimedia.  XENOMAI_KERNEL_MODE = "cobalt"  PREFERRED_VERSION_linux-imx = "5-${XENOMAI_KERNEL_MODE}" IMAGE_INSTALL_append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" PREFERRED_VERSION_linux-imx = "5-${XENOMAI_KERNEL_MODE}" IMAGE_INSTALL_append += " xenomai" //////////////////////////////////////// Update for Yocto L5.4.70 2.3.0  /////////////////////////////////////////////////////////// New release  for Yocto release L5.4.70 2.3.0 and it supports i.MX8M series (8MQ,8MM,8MN and 8MP) and i.MX8QM/QXP. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git and git checkout xenomai-5.4.70-2.3.0. Updating: 1, Support i.MX8QM and i.MX8QXP 2, Fix altency's the issue which uses legacy API to get time   //////////////////////////////////////// update for Yocto L5.4.70 2.3.2  /////////////////////////////////////////////////////////// New release for Yocto release L5.4.70 2.3.2. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git, and git checkout xenomai-5.4.70-2.3.2. Updating: 1, Enable Xenomai RTDM driver in Linux Kernel 2, Currently CAN, UART, GPIO,  SPI and Ethernet (in debug for RTNet)  are added in Xenomai. 3, Add KERNEL_DEVICETREE += " freescale/imx8mp-rt-evk.dtb " in sources/meta-imx/meta-bsp/conf/machine/imx8mpevk.conf to enable relative device in Xenomai domain, for example rt-imx8mp-flexcan.   //////////////////////////////////////// Update for Yocto L5.4.70 2.3.4  /////////////////////////////////////////////////////////// New release for Yocto release L5.4.70 2.3.4. You need to git clone  https://gitee.com/zxd2021-imx/xenomai-arm64.git and git checkout xenomai-5.4.70-2.3.4. Updating: 1, Enable RTNet FEC driver 2, Currently CAN, UART, GPIO,  SPI and Ethernet ( FEC Controller)  are added in Xenomai. 3, Add KERNEL_DEVICETREE += " freescale/imx8mp-rt-evk.dtb " in sources/meta-imx/meta-bsp/conf/machine/imx8mpevk.conf and KERNEL_DEVICETREE += " freescale/imx8mm-rt-ddr4-evk.dtb " in sources/meta-imx/meta-bsp/conf/machine/imx8mmddr4evk.conf to enable rt_fec device in Xenomai domain. Verifying the network connection by RTnet Ping Between i.MX8M Mini EVK and i.MX8M Plus EVK a, Setup test environment 1, Connect ENET1 of  i.MX8M Plus EVK (used as a master) and  ENET of i.MX8M Mini EVK (used as a slave) of  to a switch or hub 2, Modify /usr/xenomai/etc/rtnet.conf in i.MX8M Plus EVK board as the following: @@ -16,7 +16,7 @@ MODULE_EXT=".ko" # RT-NIC driver -RT_DRIVER="rt_eepro100" +RT_DRIVER="rt_fec" RT_DRIVER_OPTIONS="" # PCI addresses of RT-NICs to claim (format: 0000:00:00.0) @@ -30,8 +30,8 @@ REBIND_RT_NICS="" # The TDMA_CONFIG file overrides these parameters for masters and backup # masters. Leave blank if you do not use IP addresses or if this station is # intended to retrieve its IP from the master based on its MAC address. -IPADDR="10.0.0.1" -NETMASK="" +IPADDR="192.168.100.101" +NETMASK="255.255.255.0" # Start realtime loopback device ("yes" or "no") RT_LOOPBACK="yes" @@ -65,7 +65,7 @@ TDMA_MODE="master" # Master parameters # Simple setup: List of TDMA slaves -TDMA_SLAVES="10.0.0.2 10.0.0.3 10.0.0.4" +TDMA_SLAVES="192.168.100.102" # Simple setup: Cycle time in microsecond TDMA_CYCLE="5000" 3, Modify /usr/xenomai/etc/rtnet.conf in i.MX8M Mini EVK board as the following: @@ -16,7 +16,7 @@ MODULE_EXT=".ko" # RT-NIC driver -RT_DRIVER="rt_eepro100" +RT_DRIVER="rt_fec" RT_DRIVER_OPTIONS="" # PCI addresses of RT-NICs to claim (format: 0000:00:00.0) @@ -30,8 +30,8 @@ REBIND_RT_NICS="" # The TDMA_CONFIG file overrides these parameters for masters and backup # masters. Leave blank if you do not use IP addresses or if this station is # intended to retrieve its IP from the master based on its MAC address. -IPADDR="10.0.0.1" -NETMASK="" +IPADDR="192.168.100.102" +NETMASK="255.255.255.0" # Start realtime loopback device ("yes" or "no") RT_LOOPBACK="yes" @@ -59,13 +59,13 @@ STAGE_2_CMDS="" # TDMA mode of the station ("master" or "slave") # Start backup masters in slave mode, it will then be switched to master # mode automatically during startup. -TDMA_MODE="master" +TDMA_MODE="slave" # Master parameters # Simple setup: List of TDMA slaves -TDMA_SLAVES="10.0.0.2 10.0.0.3 10.0.0.4" +TDMA_SLAVES="192.168.100.102" # Simple setup: Cycle time in microsecond TDMA_CYCLE="5000" 4, rename imx8mm-rt-ddr4-evk.dtb to imx8mm-ddr4-evk.dtb in /run/media/mmcblk1p1,  rename imx8mp-rt-evk.dtb to imx8mp-evk.dtb in /run/media/mmcblk1p1, and reboot board. 5, Run the below command on i.MX8M Mini EVK board. cd /usr/xenomai/sbin/ ./rtnet start & 5, Run the below command on i.MX8M Plus EVK board. cd /usr/xenomai/sbin/ ./rtnet start & When you see the log (rt_fec_main 30be0000.ethernet (unnamed net_device) (uninitialized): Link is Up - 100Mbps/Full - flow control rx/tx) and you can run command "./rtroute" to check route table if the slave IP (192.168.100.102) is in route.. b, Verify the network connection using the command below: ./rtping -s 1024 192.168.100.102 //////////////////////////////////////// Update for Yocto L5.10.52 2.1.0  /////////////////////////////////////////////////////////// New release for Yocto release L5.10.52 2.1.0. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git and git checkout xenomai-5.10.52-2.1.0. Updating: 1, Upgrade Xenomai to v3.2 2, Enable Dovetail instead of ipipe. Copy xenomai-arm64 to <Yocto folder>/sources/meta-imx/meta-bsp/recipes-kernel, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitbake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL_append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL_append += " xenomai" Notice: If XENOMAI_KERNEL_MODE = "cobalt", you can build dual kernel version. And If XENOMAI_KERNEL_MODE = "mercury", it is single kernel with PREEMPT-RT patch.  Latency testing of Xenomai3.2+Dovetail with isolating CPU 2,3 ( Xenomai 3.2 on 8MM DDR4 EVK with GPU test case (GLES2/S08_EnvironmentMappingRefraction_Wayland) + iperf3 + 2 ping 65000 size + stress-ng --cpu 2 --io 2 --vm 1 --vm-bytes 256M --metrics-brief )😞 The following is test result by the command (/usr/xenomai/demo/cyclictest -a 2,3 -p 50 -t 5 -m -n -i 1000) root@imx8mmddr4evk:~# /usr/xenomai/demo/cyclictest -a 2,3 -p 50 -t 5 -m -n -i 1000 # /dev/cpu_dma_latency set to 0us policy: fifo: loadavg: 5.96 6.04 6.03 7/155 1349 T: 0 ( 615) P:50 I:1000 C:63448632 Min: 0 Act: 0 Avg: 0 Max: 55 T: 1 ( 616) P:50 I:1500 C:42299087 Min: 0 Act: 0 Avg: 1 Max: 43 T: 2 ( 617) P:50 I:2000 C:31724315 Min: 0 Act: 0 Avg: 1 Max: 51 T: 3 ( 618) P:50 I:2500 C:25379452 Min: 0 Act: 0 Avg: 1 Max: 53 T: 4 ( 619) P:50 I:3000 C:21149543 Min: 0 Act: 0 Avg: 1 Max: 47 //////////////////////////////////////// Update for Yocto L5.10.72 2.2.2  /////////////////////////////////////////////////////////// New release for Yocto release L5.10.72 2.2.2. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git and git checkout xenomai-5.10.72-2.2.2. Updating: 1, Upgrade Xenomai to v3.2.1 Copy xenomai-arm64 to <Yocto folder>/sources/meta-imx/meta-bsp/recipes-kernel, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitbake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL_append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL_append += " xenomai" //////////////////////////////////////// Update for Yocto L5.15.71 2.2.0  /////////////////////////////////////////////////////////// New release for Yocto release L5.15.71 2.2.0. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git and git checkout xenomai-5.15.71-2.2.0. Updating: 1, Upgrade Xenomai to v3.2.2 Copy xenomai-arm64 to <Yocto folder>/sources/meta-imx/meta-bsp/recipes-kernel, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitbake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL:append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL:append += " xenomai"   //////////////////////////////////////// Update for Yocto L6.1.55 2.2.0  /////////////////////////////////////////////////////////// New release for Yocto release L6.1.55 2.2.0. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git recipes-rtlinux-xenomai -b Linux-6.1.x Updating: 1, Upgrade Xenomai to v3.2.4 and support i.MX93 2, Enable EVL (aka Xenomai 4) for i.MX93 and legacy i.MX(6/7D/8X/8M) Copy recipes-rtlinux-xenomai to <Yocto folder>/sources/meta-imx/meta-bsp/, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitbake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL:append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL:append += " xenomai" or XENOMAI_KERNEL_MODE = "evl" IMAGE_INSTALL:append += " libevl"  
View full article
Sometimes it is helpful/faster to build a i.MX8MM boot binary outside of the Yocto environment. There are instructions on how to accomplish this on different places, this document tries to provide an example for the i.MX8M Mini LPDDR4 EVK, whenever possible pointing how to build for other boards. For the 8MM SoC a boot image is generated by imx-mkimage tool and requires: - u-boot - ARM trusted firmware image - ddr training firmware 1. Download and Build u-boot: mkdir imx-boot-bin cdimx-boot-bin git clone https://source.codeaurora.org/external/imx/uboot-imx.git cd uboot-imx/ git checkout -b imx_v2019.04_4.19.35_1.1.0 origin/imx_v2019.04_4.19.35_1.1.0 (Optional) Here you can "git log -1" to check that the commit matches SRCREV on the recipe. Next, use the BSP SDK script to setup the cross compilation environment, instructions on how to build it are here. source /opt/fsl-imx-wayland/4.19-warrior/environment-setup-aarch64-poky-linux export ARCH=arm Build make clean Supported boards have configuration files on "configs". Using the LPDDR4 EVK here: make imx8mm_evk_defconfig make 2.   Download and build the ARM Trusted Firmware cd .. git clone https://source.codeaurora.org/external/imx/imx-atf.git cd imx-atf/ git checkout -b imx_4.19.35_1.1.0 origin/imx_4.19.35_1.1.0 (Optional) Again, you can "git log -1" to check that the commit matches SRCREV on the recipe. https://source.codeaurora.org/external/imx/meta-fsl-bsp-release/tree/imx/meta-bsp/recipes-bsp/imx-atf/imx-atf_2.0.bb?h=warrior-4.19.35-1.1.0 Build: make PLAT=imx8mm bl31 If you run into this error: aarch64-poky-linux-ld.bfd: unrecognized option '-Wl,-O1' aarch64-poky-linux-ld.bfd: use the --help option for usage information make: *** [Makefile:712: build/imx8mm/release/bl31/bl31.elf] Error 1 try:  unset LDFLAGS make PLAT=imx8mm bl31 3. Download the LPDDR4 training binaries It is on firmware-imx, recipe is here: https://source.codeaurora.org/external/imx/meta-fsl-bsp-release/tree/imx/meta-bsp/recipes-bsp/firmware-imx?h=warrior-4.19.35-1.1.0 cd .. mkdir firmware-imx cd firmware-imx wget https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/firmware-imx-8.5.bin chmod a+x firmware-imx-8.5.bin ./firmware-imx-8.5.bin 4. Download imx-mkimage and build the boot image cd .. git clone https://source.codeaurora.org/external/imx/imx-mkimage.git cd imx-mkimage/ git checkout -b imx_4.19.35_1.1.0 origin/imx_4.19.35_1.1.0 (Optional) "git log -1" matches SRCREV on: https://source.codeaurora.org/external/imx/meta-fsl-bsp-release/tree/imx/meta-bsp/recipes-bsp/imx-mkimage/imx-mkimage_git.inc?h=warrior-4.19.35-1.1.0 Now, you can check the build targets and required binaries at iMX8M/soc.mak For the flash_evk for the imx8mm we will need binaries: u-boot: u-boot-spl.bin, u-boot-nodtb.bin, fsl-imx8mm-evk.dtb  ARM trusted firmware: bl31.bin LPDDR4 files: lpddr4_pmu_train_1d_imem.bin lpddr4_pmu_train_1d_dmem.bin lpddr4_pmu_train_2d_imem.bin lpddr4_pmu_train_2d_dmem.bin mkimage for mkimage_uboot Copy all these to imx-mkimage/iMX8M/ cp ../uboot-imx/spl/u-boot-spl.bin iMX8M/ cp ../uboot-imx/u-boot-nodtb.bin iMX8M/ cp ../uboot-imx/arch/arm/dts/fsl-imx8mm-evk.dtb iMX8M/ cp ../imx-atf/build/imx8mm/release/bl31.bin iMX8M/ cp ../firmware-imx/firmware-imx-8.5/firmware/ddr/synopsys/lpddr4_pmu_train_* iMX8M/ cp ../uboot-imx/tools/mkimage iMX8M/mkimage_uboot Build: make SOC=iMX8MM flash_evk Output binary is on ./iMX8M/flash.bin 5. Program on the SD Card: sudo dd if=iMX8M/flash.bin of=/dev/<path to your sd> bs=1024 seek=33
View full article
Design Check Lists: HW Design Checking List for i.MX6DQSDL HW Design Checking List for i.Mx53 Hardware Design Checklist for i.MX28 HW_Design_Checking_List_for_i.MX6SoloX i.MX6UL Hardware design checklist   DDR Design Tool: I.MX53 DDR3 Script Aid imx53 DDR stress tester V0.042 i.Mx6DQSDL DDR3 Script Aid MX6DQP DDR3 Script Aid i.Mx6DQSDL LPDDR2 Script Aid i.Mx6SL LPDDR2 Script Aid i.MX6SX DDR3 Script Aid I.MX6UL DDR3 Script Aid i.MX6UL_LPDDR2_Script_Aid i.MX6ULL_DDR3_Script_Aid  i.MX6ULL_LPDDR2_Script_Aid  MX6SLL_LPDDR2_Script_Aid  MX6SLL_LPDDR3_Script_Aid  i.MX6 DDR Stress Test Tool V1.0.3 i.MX6/7 DDR Stress Test Tool V3.00 i.MX8MSCALE DDR Tool Release  i.MX8M DDR3L register programming aid  i.MX 8/8X Family DDR Tools Release   Application Notes: MX_Design_Validation_Guide I.MX6 series USB Certification Guides
View full article
Low power demo on i.MX8MM.   9/28/2020: Attachments updated. 1. Fix a bug in 5.4.24 kernel that system can only wakeup once. 2. Remove 0x104 from atf patch. On 5.4.24, tested OK without PLL2.   9/8/2020: Attachments updated. Add patches for 5.4.24 kernel.   We use it to test power consumption on i.MX8MM EVK.   Usage: 1. Kernel: echo "mem" > /sys/power/state   2. M4: Select a power mode from menu and wait for wakeup. Default wakeup method is GPT.   Add more patches, which will add functions for the case: 1. M core RUN and A core in suspend with DDR OFF. 2. M core wakeup A core without DDR support.   Descriptions: freertos_lowpower.zip. A simple freertos example for M4 RUN when A core in DSM. Generally, we use MU_TriggerInterrupts(MUB, kMU_GenInt0InterruptTrigger); to do wakeup. low_power_demo.zip A simple baremetal example for M4 RUN when A core in DSM. Generally, we use MU_TriggerInterrupts(MUB, kMU_GenInt0InterruptTrigger); to do wakeup. Note that the freertos version will have more options in menu. atf patch: Allow A53 to enter fast-wakeup stop when M4 RUN. Also avoid bypass of some plls, which is important to make M4 RUN when A53 enters suspend. 0001-iMX8MM-GIR-wakeup.patch: GIR wakeup patch for kernel. Need kernel to use fsl-imx8mm-evk-m4.dtb. 0002-Don-t-keep-root-clks-when-M4-is-ON.patch. Don't keep root clocks when M4 is ON. 0001-plat-imx8mm-keep-the-necessary-clock-enabled-for-rdc.patch. There's a design issue that when wakeup from DSM, described in patch: "if NOC power down is enabled in DSM mode, when system resume back, RDC need to reload the memory regions config into the MRCs, so PCIE, DDR, GPU bus related clock must on to make sure RDC MRCs can be successfully reloaded." Note that this patch will keep PCIE, DDR and GPU clock on, which will increase the power. An optimization will be decrease PCIE, DDR and GPU clock before entering DSM.   Power measurement: Supply Domain Voltage(V) I(mA) P(mW) peak avg peak avg peak avg VDD_ARM(L6) 1.010029 1.009513 1.109 1.030 1.120 1.039 VDD_SOC(L5) 0.855199 0.854857 190.110 189.973 162.582 162.400 VDD_GPU_VPU_DRAM(L10) 0.977240 0.977050 19.865 19.800 19.413 19.346 NVCC_DRAM(L15) 1.094407 1.094168 2.059 1.984 2.253 2.171 Total         185.367 184.956   Notes: This power measurements is got by putting Cortex-A in DSM and Cortex-M in RUNNING. In other tests, if M core can be put to STOP mode, additional power can be saved (5 - 20mA in VDD_SOC). From the table, we can see that by putting DDR to retain, a lot of power can be saved in VDD_SOC and NVCC_DRAM.
View full article
GmSSL is an open source cryptographic toolbox that supports SM2 / SM3 / SM4 / SM9 and other national secret (national commercial password) algorithm, SM2 digital certificate and SM2 certificate based on SSL / TLS secure communication protocol to support the national security hardware password device , To provide in line with the national standard programming interface and command line tools, can be used to build PKI / CA, secure communication, data encryption and other standards in line with national security applications. For more information, please access GmSSL official website http://gmssl.org/english.html.   Software environments as the belows: Linux kernel: imx_4.14.98_2.0.0_ga cryptodev: 1.9 HW platform: i.MX6UL, i.MX7D/S, i.MX8M/MM, i.MX8QM/QXP. The patches include the following features: 1, Support SM2/SM9 encryption/decryption/sign/verify/key exchange, RSA encryption/decryption, DSA/ECDSA sign/verify, DH/ECDH key agreement, ECC & DLC & RSA key generation and big number operation and elliptic curve math by CAAM hardware accelerating. 2, run "git apply 0001-Enhance-cryptodev-and-its-engine-in-GmSSL-by-CAAM-s-.patch" under folder sources/poky, and "git apply 0001-Add-public-key-cryptography-operations-in-CAAM-drive.patch" under folder sources/meta-fsl-bsp-release for patch these codes. 3, GmSSL Build command: $ tar zxvf GmSSL-master-iMX.tgz $ cd GmSSL-master-iMX (For i.MX8M/MM, i.MX8QM/QXP) $ source /opt/arm-arch64/environment-setup-aarch64-poky-linux  $ ./Configure -DHAVE_CRYPTODEV -DUSE_CRYPTODEV_DIGESTS -DHW_ENDIAN_SWAP  --prefix=~/install64 --openssldir=/etc/gmssl --libdir=/usr/lib no-saf no-sdf no-skf no-sof no-zuc -no-ssl3 shared linux-aarch64 $ make  $ make install                            /*image and config file will be installed to folder ~/install64 */   (For i.MX6UL, i.MX7D/S) $ source /opt/arm-arch32/environment-setup-cortexa7hf-neon-poky-linux-gnueabi $ ./Configure -DHAVE_CRYPTODEV -DUSE_CRYPTODEV_DIGESTS --prefix=~/install32 --openssldir=/etc/gmssl --libdir=/usr/lib no-saf no-sdf no-skf no-sof no-zuc -no-ssl3 shared linux-armv4 $ make  $ make install                            /*image and config file will be installed to folder ~/install32 */   4, How to use GmSSL: copy image gmssl to /usr/bin on i.MX board; copy gmssl libcrypto.so.1.1 and libssl.so.1.1 to /usr/lib on i.MX board; copy folder etc/gmssl to /etc/ on i.MX board. copy test examples (dhtest, dsatest, rsa_test, ecdhtest, ecdsatest, eciestest, sm3test, sms4test, sm2test, sm9test) under GmSSL-master-iMX/test  to U disk for running. You can run test examples by the following commands: #insmod /lib/modules/4.14.98-imx_4.14.98_2.0.0_ga+g5d6cbeafb80c/extra/cryptodev.ko #/run/media/sda1/dhtest #/run/media/sda1/dsatest #/run/media/sda1/rsa_test #/run/media/sda1/ecdhtest #/run/media/sda1/ecdsatest #/run/media/sda1/eciestest #/run/media/sda1/sm3test #/run/media/sda1/sms4test #/run/media/sda1/sm2test #/run/media/sda1/sm9test and speed test commands: #gmssl speed sm2 #gmssl genrsa -rand -f4 512 #gmssl speed dsa #gmssl genrsa -rand -f4 1024 #gmssl speed rsa #gmssl genrsa -rand -f4 2048 #gmssl speed ecdsa #gmssl genrsa -rand -f4 3072 #gmssl speed ecdh #gmssl genrsa -rand -f4 4096   ++++++++++++++++++++++++++++     updating at 2019-09-10   +++++++++++++++++++++++++++++++++++++++++++++ 0001-fix-the-bug-which-hash-and-cipher-key-don-t-use-DMA-.patch fix the issue which dismatching on key buffer between crytodev and caam driver. Crytodev uses stack's buffer for key storage and caam driver use it to dma map which cause flush cache failure. The patch need to apply on cryptodev-module in Yocto build.   ++++++++++++++++++  updating at 2019-10-14 +++++++++++++++++++++++++++++++++++ This updating is for China C-V2X application. The meta-gmcrypto is Yocto layer which bases on GmSSL and Cryptodev. I add HW SM2 verification by dedicated CAAM job descriptor and enhanced SW SM2 verification by precomputed multiples of generator and ARMv8 assembler language to accelerate point  operation. Software environments as the belows: Linux kernel: imx_4.14.98_2.0.0_ga cryptodev: 1.9 HW platform: i.MX8M/MM/MN, i.MX8QM/QXP. How to build: 1, You need to git clone https://gitee.com/zxd2021-imx/meta-gmcrypto.git, and git checkout Linux-4.14.98_2.0.0.  Copy meta-gmcrypto to folder (Yocto 4.14.98_2.0.0_ga dir)/sources/ 2, Run DISTRO=fsl-imx-wayland MACHINE=imx8qxpmek source fsl-setup-release.sh -b build-cv2x and add BBLAYERS += " ${BSPDIR}/sources/meta-cv2x " into (Yocto 4.14.98_2.0.0_ga dir)/build-cv2x/conf/bblayers.conf and  IMAGE_INSTALL_append += " gmssl-bin "  into local.conf 3, Run bitbake fsl-image-validation-imx. 4, You can find cv2x-verify.c under (build dir)/tmp/work/aarch64-poky-linux/cryptodev-tests/1.9-r0/git/tests. It is example for using CAAM cryptdev interface to do C-V2X verification (includes SM2 p256, NIST p256 and brainpoolP256r1).  cv2x_benchmark.c under (build dir)/tmp/work/aarch64-poky-linux/gmssl/1.0-r0/gmssl-1.0/test is the benchmark test program of C-V2X verifying. It includes HW, SW and HW+SW(one CPU) verifying for SM2 p256, NIST p256 and brainpoolP256r1. 5, Run the below command on your i.MX8QXP MEK board. modprobe cryptodev ./cv2x_benchmark Note: the udpated GmSSL also support projective coordinates and affine coordinates (CAAM only support affine coordinates). Affine coordinates is used by default. You can call EC_GROUP_set_coordinates() and EC_GROUP_restore_coordinates() to change coordinates and restore default. When you hope to use some EC APIs under expected coordinates, you need to call EC_GROUP_set_coordinates() before EC APIs and EC_GROUP_restore_coordinates() after them. Like the below example: orig_coordinate = EC_GROUP_set_coordinates(EC_PROJECTIVE_COORDINATES); group = EC_GROUP_new_by_curve_name(NID_sm2p256v1); EC_GROUP_restore_coordinates(orig_coordinate);   ++++++++++++++++++++++++++++     updating at 2020-11-09   +++++++++++++++++++++++++++++++++++++++++++++ This updating is for Yocto release of Linux 5.4.47_2.2.0​​. The meta-gmcrypto is Yocto layer which also support c-v2x feature in previous release.  Software environments as the belows: Linux kernel: imx_5.4.47_2.2.0 cryptodev: 1.10 HW platform: i.MX6UL, i.MX7D/S, i.MX8M/8M Mini/8M Nano/8M Plus, i.MX8/8X. How to build: 1, You need to git clone https://gitee.com/zxd2021-imx/meta-gmcrypto.git, and git checkout Linux-5.4.47-2.2.0. Copy meta-gmcrypto to folder (Yocto 5.4.47_2.2.0 dir)/sources/ 2, Run DISTRO=fsl-imx-xwayland MACHINE=imx8mmevk source imx-setup-release.sh -b build-imx8mmevk and add BBLAYERS += " ${BSPDIR}/sources/meta-gmcrypto " into (Yocto 5.4.47_2.2.0 dir)/build-imx8mmevk/conf/bblayers.conf and  IMAGE_INSTALL_append += " gmssl-bin "  into local.conf 3, Run bitbake fsl-image-validation-imx. 4, You can find cv2x-verify.c under (build dir)/tmp/work/aarch64-poky-linux/cryptodev-tests/1.10caam-r0/git/tests. It is example for using CAAM cryptdev interface to do C-V2X verification (includes SM2 p256, NIST p256 and brainpoolP256r1).  cv2x_benchmark.c under (build dir)/tmp/work/aarch64-poky-linux/gmssl/1.0-r0/gmssl-1.0/test is the benchmark test program of C-V2X verifying. It includes HW, SW and HW+SW(one CPU) verifying for SM2 p256, NIST p256 and brainpoolP256r1. 5, Run the below command on your i.MX8M Mini evk board. modprobe cryptodev ./cv2x_benchmark gmssl speed sm2 gmssl speed dsa gmssl speed rsa gmssl speed ecdsa gmssl speed ecdh gmssl genrsa -rand -f4 -engine cryptodev 4096 Note: 1, the udpated GmSSL also support projective coordinates and affine coordinates (CAAM only support affine coordinates). Affine coordinates is used by default. You can call EC_GROUP_set_coordinates() and EC_GROUP_restore_coordinates() to change coordinates and restore default. When you hope to use some EC APIs under expected coordinates, you need to call EC_GROUP_set_coordinates() before EC APIs and EC_GROUP_restore_coordinates() after them. Like the below example: orig_coordinate = EC_GROUP_set_coordinates(EC_PROJECTIVE_COORDINATES); group = EC_GROUP_new_by_curve_name(NID_sm2p256v1); EC_GROUP_restore_coordinates(orig_coordinate); 2, Yocto Zeus integrates openssl 1.1.1g, so I change library name of gmssl from libcrypto to libgmcrypto and from libssl to libgmssl to avoid name confliction with openssl 1.1.1g (lib name are also libcrypto.so.1.1 and libssl.so.1.1). You should use -lgmcrypto and -lgmssl when you link gmssl library instead of -lcrypto and -lssl.   +++++++++++++++++++++++    updating at 2021-02-08  ++++++++++++++++++++++++++++ This updating is for Yocto release of Linux 5.4.70_2.3.0​​. The package meta-gmcrypto is Yocto layer which also support c-v2x feature in previous release. You need to git clone https://gitee.com/zxd2021-imx/meta-gmcrypto.git, and git checkout Linux-5.4.70-2.3.0.    +++++++++++++++++++++++    updating for Linux-5.10.52-2.1.0  +++++++++++++++++++++++ This updating is for Yocto release of Linux 5.10.52_2.1.0​​. The package meta-gmcrypto is Yocto layer which also support c-v2x feature in previous release.  1, You need to git clone https://gitee.com/zxd2021-imx/meta-gmcrypto.git, and git checkout Linux-5.10.52-2.1.0.  Copy meta-gmcrypto to folder (Yocto 5.10.52_2.1.0 dir)/sources/. 2, Run DISTRO=fsl-imx-xwayland MACHINE=imx8mmevk source imx-setup-release.sh -b build-imx8mmevk and add BBLAYERS += " ${BSPDIR}/sources/meta-gmcrypto " into (Yocto 5.10.52_2.1.0 dir)/build-imx8mmevk/conf/bblayers.conf and  IMAGE_INSTALL_append += " gmssl-bin "  into local.conf 3, Run bitbake imx-image-multimedia. 4, Run the below command on your i.MX8M Mini EVK board. modprobe cryptodev gmssl speed sm2 gmssl genrsa -rand -f4 -engine cryptodev 512 gmssl speed dsa gmssl genrsa -rand -f4 -engine cryptodev 1024 gmssl speed rsa gmssl genrsa -rand -f4 -engine cryptodev 2048 gmssl speed ecdsa gmssl genrsa -rand -f4 -engine cryptodev 3072 gmssl speed ecdh gmssl genrsa -rand -f4 -engine cryptodev 4096 gmssl speed -evp sha256 -engine cryptodev -elapsed gmssl speed -evp aes-128-cbc -engine cryptodev -elapsed gmssl speed -evp aes-128-ecb -engine cryptodev -elapsed gmssl speed -evp aes-128-cfb -engine cryptodev -elapsed gmssl speed -evp aes-128-ofb -engine cryptodev -elapsed gmssl speed -evp des-ede3 -engine cryptodev -elapsed gmssl speed -evp des-cbc -engine cryptodev -elapsed gmssl speed -evp des-ede3-cfb -engine cryptodev -elapsed +++++++++++++++++++++++    updating for Linux-5.15.71-2.2.0 +++++++++++++++++++++++ This updating is for Yocto release of Linux 5.15.71-2.2.0​​. The package meta-gmcrypto is Yocto layer which also support c-v2x feature in previous release.  1, You need to git clone https://gitee.com/zxd2021-imx/meta-gmcrypto.git, and git checkout Linux-5.15.71-2.2.0.  Copy meta-gmcrypto to folder (Yocto 5.15.71-2.2.0 dir)/sources/. 2, Run DISTRO=fsl-imx-xwayland MACHINE=imx8mmevk source imx-setup-release.sh -b build-imx8mmevk and add BBLAYERS += " ${BSPDIR}/sources/meta-gmcrypto " into (Yocto 5.15.71-2.2.0 dir)/build-imx8mmevk/conf/bblayers.conf and  IMAGE_INSTALL:append = " gmssl-bin "  into local.conf 3, Run bitbake imx-image-multimedia. 4, Run the below command on your i.MX8M Mini EVK board. modprobe cryptodev gmssl speed sm2 gmssl genrsa -rand -f4 -engine cryptodev 512 gmssl speed dsa gmssl genrsa -rand -f4 -engine cryptodev 1024 gmssl speed rsa gmssl genrsa -rand -f4 -engine cryptodev 2048 gmssl speed ecdsa gmssl genrsa -rand -f4 -engine cryptodev 3072 gmssl speed ecdh gmssl genrsa -rand -f4 -engine cryptodev 4096 gmssl speed -evp sha256 -engine cryptodev -elapsed gmssl speed -evp aes-128-cbc -engine cryptodev -elapsed gmssl speed -evp aes-128-ecb -engine cryptodev -elapsed gmssl speed -evp aes-128-cfb -engine cryptodev -elapsed gmssl speed -evp aes-128-ofb -engine cryptodev -elapsed gmssl speed -evp des-ede3 -engine cryptodev -elapsed gmssl speed -evp des-cbc -engine cryptodev -elapsed gmssl speed -evp des-ede3-cfb -engine cryptodev -elapsed   +++++++++++++++++++++++    Updating for Linux-6.1.55-2.2.0 +++++++++++++++++++++++ This updating is new GmSSL 3.1.1 and Yocto release of Linux 6.1.55-2.2.0. 主要特性 超轻量:GmSSL 3 大幅度降低了内存需求和二进制代码体积,不依赖动态内存,可以用于无操作系统的低功耗嵌入式环境(MCU、SOC等),开发者也可以更容易地将国密算法和SSL协议嵌入到现有的项目中。 更合规:GmSSL 3 可以配置为仅包含国密算法和国密协议(TLCP协议),依赖GmSSL 的密码应用更容易满足密码产品型号检测的要求,避免由于混杂非国密算法、不安全算法等导致的安全问题和合规问题。 更安全:TLS 1.3在安全性和通信延迟上相对之前的TLS协议有巨大的提升,GmSSL 3 支持TLS 1.3协议和RFC 8998的国密套件。GmSSL 3 默认支持密钥的加密保护,提升了密码算法的抗侧信道攻击能力。 跨平台:GmSSL 3 更容易跨平台,构建系统不再依赖Perl,默认的CMake构建系统可以容易地和Visual Studio、Android NDK等默认编译工具配合使用,开发者也可以手工编写Makefile在特殊环境中编译、剪裁。 More information, please refer to Readme Recipe file is the attached gmssl_3.1.1.bb.tar.gz
View full article
This document describes all the i.MX 8 MIPI-CSI use cases, showing the available cameras and daughter cards supported by the boards, the compatible Device Trees (DTS) files, and how to enable these different camera options on the i.MX 8 boards. Plus, this document describes some Advanced camera use cases too, such as multiples cameras output using imxcompositor_g2d plugin, GStreamer zero-copy pipelines and V4L2 API extra-controls examples.
View full article
Application Note AN13872  Enabling SWUpdate on i.MX 6ULL, i.MX 8M Mini, and i.MX 93 is available on www.nxp.com    SWUpdate: Embedded Systems become more and more complex. Software for Embedded Systems have new features and fixes can be updated in a reliable way. Most of time, we need OTA(Over-The-Air) to upgrade the system. Like Android has its own update system. Linux also need an update system. SWUpdate project is thought to help to update an embedded system from a storage media or from network. However, it should be mainly considered as a framework, where further protocols or installers (in SWUpdate they are called handlers) can be easily added to the application. Mongoose daemon mode: Mongoose is a daemon mode of SWUpdate that provides a web server, web interface and web application. Mongoose is running on the target board(i.MX8MM EVK/i.MX8QXP MEK).Using Web browser to access it.   Suricatta daemon mode: Suricatta regularly polls a remote server for updates, downloads, and installs them. Thereafter, it reboots the system and reports the update status to the server. The screenshot is SWUpdate scuricatta working with hawkbit server.          
View full article
Introduction ARM SoC+FPGA/CPLD is widely used in some application like industry control and data acquisition system, there were many customers adopted i.MX6 EIM (a memory parallel interface) to access FPGA/CPLD, and archived good data throughput, but EIM is removed from i.MX8M and i.MX9, some customers is asking for such a compatible solution for i.MX8/8M and coming i.MX9 family.  FlexSPI is designed for connecting storage devices like NOR Flash, integrated in most of i.MXRT/i.MX8/LS products and provides flexible configuration for 4-wire/8wire working mode, this article provides a low-cost and efficiency demo to show how  to support CPLD/FPGA  via FlexSPI, as a replacement of EIM for EP i.MX8/9/LS products. key features Implement a  new kernel driver for FlexSPI to support read/write access to FPGA/CPLD. Support two type connections: Support 4-wire(QSPI) and 8-wire(HypeBUS, OctalSPI) Deliverables A new kernel driver for FlexSPI to support read/write access to FPGA/CPLD by AHB command A kernel patch to disable the QSPI Flash in kernel A test program shows how to do read/write performance test. Hardware Hardware Prepare: i.MX8MM-LPDDR4-EVK Lattice LFE5U EVK Figure1 4-wire SPI HW Block diagram Figure2 8-wire OctalSPI   Hardware Rework on i.MX8MM-EVK     1 Need to remove the SPI-Flash(U5, MT25QU256ABA) on the i.MX8MM-EVK board, and wire below signals: QSPI_DATA0 QSPI_DATA1 QSPI_DATA2 QSPI_DATA3 QSPI_SCLK QSPI_nSS0 VDD_1V8 GND Figure3 QPSI signals for FPGA/CPLD Figure4 Hardware rework on i.MX8MM-EVK board Note that, i.MX8MM-EVK QSPI power rails is 1.8v, so be careful that the FPGA/CPLD side IO should be 1.8V. Software BSP version 1 Linux BSP version: L5.10.52 Software Change  Apply 0001-FlexSPI-FPGA-need-to-disable-flexspi-for-fpga-usage.patch in Linux kernel and generate the new dtb extract the flexspi-fpga driver compile the flexspi-fpga driver with the kernel$ $make -C $(YOUR_KDIR) M=$(FlexSPI_FPGAW_DIVER_DIR) modules ARCH=arm64 CROSS_COMPILE=$(CROSS_COMPILE) Deployment  upload new generated i.mx8mm-evk.dtb to the target board(the 1st partition) upload the flex-spi driver and fpga/cpld test program to the target board   Test Test1: Set the flexspi working at 40Mhz   $insmod imx_flexspi_fpga.ko pre_div=2 post_div=5 Read/write FPGA/CPLD test .$/flexspi_fpga_test -p 0x08000000 -s 768 Test2: Set the FlexSPI working at 100MHz   $ insmod imx_flexspi_fpga.ko pre_div=1 post_div=4 Read/write FPGA/CPLD test $./flexspi_fpga_test -p 0x08000000 -s 768   Limitation FPGA and Flash devices can’t work at the same time due to just one FlexSPI controller. Due to the IO assignment conflict in i.MX8M EVK design, this demo just tested 4-wire(QSPI) mode at 50MHz and got data throughput as expected. Disclaimer: − “Any support, information, and technology (“Materials”) provided by NXP are provided AS IS, without any warranty express or implied, and NXP disclaims all direct and indirect liability and damages in connection with the Material to the maximum extent permitted by the applicable law. NXP accepts no liability for any assistance with applications or product design. Materials may only be used in connection with NXP products. Any feedback provided to NXP regarding the Materials may be used by NXP without restriction.”
View full article
  Just sharing some experiences during the development and studying.   Although, it appears some hardwares, it focuses on software to speed up your developing on your  hardware.     杂记共享一下在开发和学习过程中的经验。    虽然涉及一些硬件,但其本身关注软件,希望这些能加速您在自己硬件上的开发。   02/07/2024 i.MX8X security overview and AHAB deep dive i.MX8X security overview and AHAB deep dive - NXP Community   11/23/2023 “Standalone” Compile Device Tree https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/Standalone-Compile-Device-Tree/ta-p/1762373     10/26/2023 Linux Dynamic Debug https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/Linux-Dynamic-Debug/ta-p/1746611   08/10/2023 u-boot environment preset for sdcard mirror u-boot environment preset for sdcard mirror - NXP Community   06/06/2023 all(bootloader, device tree, Linux kernel, rootfs) in spi nor demo imx8qxpc0 mek all(bootloader, device tree, Linux kernel, rootfs)... - NXP Community     09/26/2022 parseIVT - a script to help i.MX6 Code Signing parseIVT - a script to help i.MX6 Code Signing - NXP Community   Provide  run under windows   09/16/2022   create sdcard mirror under windows create sdcard mirror under windows - NXP Community     08/03/2022   i.MX8MM SDCARD Secondary Boot Demo https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX8MM-SDCARD-Secondary-Boot-Demo/ta-p/1500011     02/16/2022 mx8_ddr_stress_test without UI   https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/mx8-ddr-stress-test-without-UI/ta-p/1414090   12/23/2021 i.MX8 i.MX8X Board Reset https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX8-i-MX8X-Board-Reset/ta-p/1391130       12/21/2021 regulator userspace-consumer https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/regulator-userspace-consumer/ta-p/1389948     11/24/2021 crypto af_alg blackkey demo crypto af_alg blackkey demo - NXP Community   09/28/2021 u-boot runtime modify Linux device tree(dtb) u-boot runtime modify Linux device tree(dtb) - NXP Community     08/17/2021 gpio-poweroff demo https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/gpio-poweroff-demo/ta-p/1324306         08/04/2021 How to use gpio-hog demo https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/How-to-use-gpio-hog-demo/ta-p/1317709       07/14/2021 SWUpdate OTA i.MX8MM EVK / i.MX8QXP MEK https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/SWUpdate-OTA-i-MX8MM-EVK-i-MX8QXP-MEK/ta-p/1307416     04/07/2021 i.MX8QXP eMMC Secondary Boot https://community.nxp.com/t5/i-MX-Community-Articles/i-MX8QXP-eMMC-Secondary-Boot/ba-p/1257704#M45       03/25/2021 sc_misc_board_ioctl to access the M4 partition from A core side sc_misc_board_ioctl to access the M4 partition fr... - NXP Community     03/17/2021 How to Changei.MX8X MEK+Base Board  Linux Debug UART https://community.nxp.com/t5/i-MX-Community-Articles/How-to-Change-i-MX8X-MEK-Base-Board-Linux-Debug-UART/ba-p/1246779#M43     03/16/2021 How to Change i.MX8MM evk Linux Debug UART https://community.nxp.com/t5/i-MX-Community-Articles/How-to-Change-i-MX8MM-evk-Linux-Debug-UART/ba-p/1243938#M40       05/06/2020 Linux fw_printenv fw_setenv to access U-Boot's environment variables Linux fw_printenv fw_setenv to access U-Boot's env... - NXP Community     03/30/2020 i.MX6 DDR calibration/stress for Mass Production https://community.nxp.com/docs/DOC-346065     03/25/2020 parseIVT - a script to help i.MX6 Code Signing https://community.nxp.com/docs/DOC-345998     02/17/2020 Start your machine learning journey from tensorflow playground Start your machine learning journey from tensorflow playground      01/15/2020 How to add  iMX8QXP PAD(GPIO) Wakeup How to add iMX8QXP PAD(GPIO) Wakeup    01/09/2020 Understand iMX8QX Hardware Partitioning By Making M4 Hello world Running Correctly https://community.nxp.com/docs/DOC-345359   09/29/2019 Docker On i.MX6UL With Ubuntu16.04 https://community.nxp.com/docs/DOC-344462   09/25/2019 Docker On i.MX8MM With Ubuntu https://community.nxp.com/docs/DOC-344473 Docker On i.MX8QXP With Ubuntu https://community.nxp.com/docs/DOC-344474     08/28/2019 eMMC5.0 vs eMMC5.1 https://community.nxp.com/docs/DOC-344265     05/24/2019 How to upgrade  Linux Kernel and dtb on eMMC without UUU How to upgrade Linux Kernel and dtb on eMMC without UUU     04/12/2019 eMMC RPMB Enhance and GP https://community.nxp.com/docs/DOC-343116   04/04/2019 How to Dump a GPT SDCard Mirror(Android O SDCard Mirror) https://community.nxp.com/docs/DOC-343079   04/04/2019 i.MX Create Android SDCard Mirror https://community.nxp.com/docs/DOC-343078   04/02/2019: i.MX Linux Binary_Demo Files Tips  https://community.nxp.com/docs/DOC-343075   04/02/2019:       Update Set fast boot        eMMC_RPMB_Enhance_and_GP.pdf   02/28/2019: imx_builder --- standalone build without Yocto https://community.nxp.com/docs/DOC-342702   08/10/2018: i.MX6SX M4 MPU Settings For RPMSG update    Update slide CMA Arrangement Consideration i.MX6SX_M4_MPU_Settings_For_RPMSG_08102018.pdf   07/26/2018 Understand ML With Simplest Code https://community.nxp.com/docs/DOC-341099     04/23/2018:     i.MX8M Standalone Build     i.MX8M Standalone Build.pdf     04/13/2018:      i.MX6SX M4 MPU Settings For RPMSG  update            Add slide CMA Arrangement  Consideration     i.MX6SX_M4_MPU_Settings_For_RPMSG_04132018.pdf   09/05/2017:       Update eMMC RPMB, Enhance  and GP       eMMC_RPMB_Enhance_and_GP.pdf 09/01/2017:       eMMC RPMB, Enhance  and GP       eMMC_RPMB_Enhance_and_GP.pdf 08/30/2017:     Dual LVDS for High Resolution Display(For i.MX6DQ/DLS)     Dual LVDS for High Resolution Display.pdf 08/27/2017:  L3.14.28 Ottbox Porting Notes:         L3.14.28_Ottbox_Porting_Notes-20150805-2.pdf MFGTool Uboot Share With the Normal Run One:        MFGTool_Uboot_share_with_NormalRun_sourceCode.pdf Mass Production with programmer        Mass_Production_with_NAND_programmer.pdf        Mass_Production_with_emmc_programmer.pdf AndroidSDCARDMirrorCreator https://community.nxp.com/docs/DOC-329596 L3.10.53 PianoPI Porting Note        L3.10.53_PianoPI_PortingNote_151102.pdf Audio Codec WM8960 Porting L3.10.53 PianoPI        AudioCodec_WM8960_Porting_L3.10.53_PianoPI_151012.pdf TouchScreen PianoPI Porting Note         TouchScreen_PianoPI_PortingNote_151103.pdf Accessing GPIO From UserSpace        Accessing_GPIO_From_UserSpace.pdf        https://community.nxp.com/docs/DOC-343344 FreeRTOS for i.MX6SX        FreeRTOS for i.MX6SX.pdf i.MX6SX M4 fastup        i.MX6SX M4 fastup.pdf i.MX6 SDCARD Secondary Boot Demo        i.MX6_SDCARD_Secondary_Boot_Demo.pdf i.MX6SX M4 MPU Settings For RPMSG        i.MX6SX_M4_MPU_Settings_For_RPMSG_10082016.pdf Security        Security03172017.pdf    NOT related to i.MX, only a short memo
View full article
What is a device tree? The device tree is a data structure that is passed to the Linux kernel to describe the physical devices in a system. Before device trees came into use, the bootloader (for example, U-Boot) had to tell the kernel what machine type it was booting. Moreover, it had to pass other information such as memory size and location, kernel command line, etc. Sometimes, the device tree is confused with the Linux Kernel configuration, but the device tree specifies what devices are available and how they are accessed, not whether the hardware is used. The device tree is a structure composed of nodes and properties: Nodes: The node name is a label used to identify the node. Properties: A node may contain multiple properties arranged with a name and a value. Phandle: Property in one node that contains a pointer to another node. Aliases: The aliases node is an index of other nodes. A device tree is defined in a human-readable device tree syntax text file such as .dts or .dtsi. The machine has one or several .dts files that correspond to different hardware configurations. With these .dts files we can compile them into a device tree binary (.dtb) blobs that can either be attached to the kernel binary (for legacy compatibility) or, as is more commonly done, passed to the kernel by a bootloader like U-Boot. What is Devshell? The Devshell is a terminal shell that runs in the same context as the BitBake task engine. It is possible to run Devshell directly or it may spawn automatically. The advantage of this tool is that is automatically included when you configure and build a platform project so, you can start using it by installing the packages and following the setup of i.MX Yocto Project User's Guide on section 3 “Host Setup”. Steps: Now, let’s see how to compile your device tree files of i.MX devices using Devshell. On host machine. Modify or make your device tree on the next path: - 64 bits. ~/imx-yocto-bsp/<build directory>/tmp/work-shared/<machine>/kernel-source/arch/arm64/boot/dts/freescale - 32 bits. ~/imx-yocto-bsp/<build directory>/tmp/work-shared/<machine>/kernel-source/arch/arm/boot/dts To compile, it is needed to prepare the environment as is mentioned on i.MX Yocto Project User's Guide on section 5.1 “Build Configurations”. $ cd ~/imx-yocto-bsp $ DISTRO=fsl-imx-xwayland MACHINE=<machine> source imx-setup-release.sh -b <build directory> $ bitbake -c devshell virtual/kernel (it will open a new window) On Devshell window. $ make dtbs (after finished, close the Devshell window) On host machine. $ bitbake -c compile -f virtual/kernel $ bitbake -c deploy -f virtual/kernel This process will compile all the device tree files linked to the machine declared on setup environment and your device tree files will be deployed on the next path: ~/imx-yocto-bsp/<build directory>/tmp/deploy/images/<machine> I hope this article will be helpful. Best regards. Jorge.
View full article
In i.MX8MQ and i.MX8M Mini, the codec used is WM8524, which only supports audio playback. Although 8M Mini does have PDM microphone interface (MICFIL), there is no support for audio record via I2S. This guide will show you how to add audio recording driver in i.MX8MQ/8MM step by step.   Hardware: i.MX8MQ/8MM Evk, I2S output digital microphone OS: Android/Linux Kernel version: 4.14.78 For detailed steps, please see attachment.
View full article
Some processor’s GPIO settings on the i.MX Pins Tool version 7 may not show allow to select direction and just show an option “Input/Output” as shown. This will be fixed, but the settings can be changed on the local processor data as a workaround. For more information and documentation for the Pins Tool for i.MX please visit its home page on the link below: https://www.nxp.com/design/designs/pins-tool-for-i-mx-application-processors:PINS-TOOL-IMX   First, find where the Pins Tool data package is stored. To do this open the Pins Tool and click Help > About. On the About screen click the Details button. Take also note of the name of the package that needs to be fixed.   Go to the location where the data package is stored and find the processor data. The file that would need to be updated is signal_configuration.xml    Find the GPIO pin data and change the directions from the string ““inOut”to the string “in out”. Then save this file.    Close and reopen the Pins Tool. The direction on the updated package should now show the options Input and Output.  
View full article
This documents describes how to add the NFC support to i.MX8M mini evk running Android Pie. Hardware setup: The i.MX8M mini evk (see i.MX 8M Mini Evaluation Kit | NXP) featuring Raspberry Pi compliant connector, the OM5578/RPI PN7150 demo kit can be used to perform this porting (see NFC Development Kits for Arduino and more|NXP). However a small modification must be done because some of the signals required by PN7150 are not mapped to i.MX8M mini expansion connector pins. OM5578 IRQ signal must be mapped to Raspberry Pi connector pin #19 and OM5578 VEN signal must be mapped to Raspberry Pi connector pin #21. See below a picture of the modification: Then, the two boards can fit together as shown in the picture below: Quick start using demo image: The demo image including support for PN7150, is based on Android P9.0.0 Pie (P9.0.0_1.0.0, 4.14 kernel) i.MX software release (see i.MX Software | NXP). Related documentation can be downloaded from here: https://www.nxp.com/docs/en/supporting-information/android_p9.0.0_1.0.0-ga_docs.zip. Just flash the demo image (downloaded from here:https://www.nxp.com/lgfiles/updates/NFC/ANDROID_P9-0-0_PN7150_IMAGE_8MMEVK.zip) following guidelines from i.MX_Android_Quick_Start document (part of Android P9.0.0_1.0.0 Documentation package mentioned above). The NFC support is then included in the device settings, as shown in below screenshot of the device: Approaching the NFC tag, provided as reference in the OM5578 demo kit, to the NFC Antenna will trigger a sound notification: Unfortunately the Android demo image doesn't embed a web browser, so it won't be automatically open when the NFC tag content (an URL to the demo kit web page) is read. Otherwise (if a web browser is installed) you could see such page opening on the device: Adding PN7150 support to imx-android-pie release: If you wish to add PN7150 support to your imx-android-pie environment, just apply the patches (imx-p9.0.0_1.0.0-ga_pn7150_patches.tar.gz file attached) from the ${MY_ANDROID} source code root folder (refer to i.MX_Android_User_Guide document part of Android P9.0.0_1.0.0 Documentation package mentioned above).  $ patch -p1 -d device/fsl/ <device_fsl.patch  $ patch -p1 -d packages/apps/Nfc <packages_apps_Nfc.patch  $ patch -p1 -d hardware/nxp/nfc <hardware_nxp_nfc.patch  $ patch -p1 -d vendor/nxp <vendor_nxp.patch  $ patch -p1 -d vendor/nxp-opensource/kernel_imx/ <vendor_nxp-opensource_kernel_imx.patch When building, the PN7150 support will then be included to the android image, as shown in the demo image described above. Reference: This porting have been done (demo image and patches creation) following guidelines provided in AN11690_NXP-NCI_Android_Porting_Guidelines document.
View full article
  Platform & BSP :i.MX8MPlus, L6.1.36   The attachments enable the i.MX8MPlus pci function in uboot. lspci in Linux root@imx8mpevk:~# lspci -nn 00:00.0 PCI bridge [0604]: Synopsys, Inc. DWC_usb3 / PCIe bridge [16c3:abcd] (rev 01) 01:00.0 Ethernet controller [0200]: Marvell Technology Group Ltd. Device [1b4b:2b42] (rev 11) pci test results in uboot:  u-boot=> pci BusDevFun VendorId DeviceId Device Class Sub-Class _____________________________________________________________ 00.00.00 0x16c3 0xabcd Bridge device 0x04 u-boot=> pci bar 00.00.00 ID Base Size Width Type ---------------------------------------------------------- 0 0x0000000018000000 0x0000000000100000 32 MEM u-boot=> pci regions 00 Buses 00-01 # Bus start Phys start Size Flags 0 0x0000000000000000 0x000000001ff80000 0x0000000000010000 io 1 0x0000000018000000 0x0000000018000000 0x0000000007f00000 mem 2 0x0000000040000000 0x0000000040000000 0x0000000016000000 mem sysmem 3 0x0000000058000000 0x0000000058000000 0x00000000a8000000 mem sysmem 4 0x0000000100000000 0x0000000100000000 0x00000000c0000000 mem sysmem u-boot=> pci header 00.00.00 vendor ID = 0x16c3 device ID = 0xabcd command register ID = 0x0007 status register = 0x0010 revision ID = 0x01 class code = 0x06 (Bridge device) sub class code = 0x04 programming interface = 0x00 cache line = 0x08 latency time = 0x00 header type = 0x01 BIST = 0x00 base address 0 = 0x18000000 base address 1 = 0x00000000 primary bus number = 0x00 secondary bus number = 0x01 subordinate bus number = 0x01 secondary latency timer = 0x00 IO base = 0x10 IO limit = 0x00 secondary status = 0x0000 memory base = 0x1820 memory limit = 0x1810 prefetch memory base = 0xfff0 prefetch memory limit = 0x0000 prefetch memory base upper = 0x00000000 prefetch memory limit upper = 0x00000000 IO base upper 16 bits = 0x0000 IO limit upper 16 bits = 0x0000 expansion ROM base address = 0x18100000 interrupt line = 0xff interrupt pin = 0x01 bridge control = 0x0000
View full article
The Linux L4.9.88_2.0.0 Rocko, i.MX7ULP Linux/SDK2.4 RFP(GA) release files are now available. Linux on IMX_SW web page, Overview -> BSP Updates and Releases ->Linux L4.9.88_2.0.0 SDK on https://mcuxpresso.nxp.com/ web page.   Files available: Linux:  # Name Description 1 imx-yocto-L4.9.88_2.0.0.tar.gz L4.9.88_2.0.0 for Linux BSP Documentation. Includes Release Notes, User Guide. 2 L4.9.88_2.0.0_images_MX6QPDLSOLOX.tar.gz i.MX 6QuadPlus, i.MX 6Quad, i.MX 6DualPlus, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo, i.MX 6Solox Linux Binary Demo Files 3 L4.9.88_2.0.0_images_MX6SLEVK.tar.gz i.MX 6Sololite EVK Linux Binary Demo Files 4 L4.9.88_2.0.0_images_MX6UL7D.tar.gz i.MX 6UltraLite EVK, 7Dual SABRESD, 6ULL EVK Linux Binary Demo Files 5 L4.9.88_2.0.0_images_MX6SLLEVK.tar.gz i.MX 6SLL EVK Linux Binary Demo Files 6 L4.9.88_2.0.0_images_MX8MQ.tar.gz i.MX 8MQuad EVK Linux Binary Demo files 7 L4.9.88_images_MX7ULPEVK.tar.gz i.MX 7ULP EVK Linux Binary Demo Files  8 L4.9.88_2.0.0-ga_mfg-tools.tar.gz Manufacturing Toolkit for Linux L4.9.88_2.0.0 iMX6,7 BSP 9 L4.9.88_2.0.0_mfg-tool_MX8MQ.tar.gz Manufacturing Toolkit for Linux L4.9.88_2.0.0 i.MX8MQ BSP 10 imx-aacpcodec-4.3.5.tar.gz Linux AAC Plus Codec for L4.9.88_2.0.0   SDK:   On https://mcuxpresso.nxp.com/, click the Select Development Board to customize the SDK based on your configuration then download the SDK package.    Target board: i.MX 6QuadPlus SABRE-SD Board and Platform i.MX 6QuadPlus SABRE-AI Board i.MX 6Quad SABRE-SD Board and Platform i.MX 6DualLite SABRE-SD Board i.MX 6Quad SABRE-AI Board i.MX 6DualLite SABRE-AI Board i.MX 6SoloLite EVK Board i.MX 6SoloX SABRE-SD Board i.MX 6SoloX SABRE-AI Board i.MX 7Dual SABRE-SD Board i.MX 6UltraLite EVK Board i.MX 6ULL EVK Board i.MX 6SLL EVK Board i.MX 7ULP EVK Board i.MX 8MQ EVK Board   What’s New/Features: Please consult the Release Notes.   Known issues For known issues and more details please consult the Release Notes.   More information on changes of Yocto, see: README: https://source.codeaurora.org/external/imx/imx-manifest/tree/README?h=imx-linux-rocko ChangeLog: https://source.codeaurora.org/external/imx/imx-manifest/tree/ChangeLog?h=imx-linux-rocko
View full article
Before reading: only a personal works and sharing, not any form of "release". I didn't find any confidential information from the packages. So, I'm publishing it here. This is only for testing purpose. Do NOT use it for building a product. Use it at your own risk!! Yocto is flexible and powerful, and also, big and slow (when building). Sometimes we only need to build uboot or kernel or some piece of testing code. It's really a waste of time to build-up the whole Yocto environment which may cost over 50GB disk space and over 3 hours of building. I've made some scripts and sum them up to form a toolset for building uboot, kernel and some testing code out of Yocto environment. It's only a simple container and expect to use with uboot and kernel source code from formal Freescale release and a SDK built from Yocto project. GitHub source repo:       https://github.com/gopise/gopbuild What’s made off (a full package, not only the container): 1.    Some scripts and configurations files. 2.    SDK built from Yocto. 3.    Uboot/kernel from specific version. 4.    A hello-world to demonstrate how to build app in this environment. 5.    A slimmed rootfs binary from specific BSP pre-built as base. Will customize base on the source under “rootfs” folder. Only a placeholder in the container-only version. How to use it: Several common used board configurations have been included in the script: 6qsabresd/6qsabreai/6qpsabreai. You can add more into the “gopbuild” script easily. The “sabresd” has been set as default.      If you want to build all for sabresd (First of all, de-compress the package): cd <de-compressed-folder> source envsetup [It will prompt for selecting board configuration to be built. Choose one by input corresponding number or click <ENTER> for default board.] gmk ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍      If you want to build specific module for default board, such as uboot: gmk uboot ‍‍‍‍‍‍‍‍‍      Build kernel for sabreai board instead of default device: gmk kernel sabreai ‍‍‍‍‍‍‍‍‍      Clean everything? gmk all clean ‍‍‍‍‍‍‍‍‍ After a successfully full build, you will get everything under “output” folder, including a log folder contains full build log:      “u-boot.imx/zImage/rootfs.tar.bz2/*.dtb”, can be used with MFG or uuu.      “fsl-image.sdcard”, can be burn into SD card directly. "Ready-for-building" Package: The "gopbuild" itself is a "container-only" package which doesn't contain any source or SDK. I've also made some packages based on latest BSP release for i.MX6/i.MX7/i.MX8. These packages are "ready-for-build" package which you can de-compress and build it directly. -------------------------------------------------------------------------------------------------- URL:https://pan.baidu.com/s/1Xlh1OBGsTRXez_NQw-Rjxg Password: gdc9 -------------------------------------------------------------------------------------------------- Note: 1. To build for i.MX8 (8QM/8MQ/8QXP), you need L4.14.* or above. 2. To build for i.MX8, please download the SCFW from i.MX software page       i.MX Software and Development Tools | NXP      After download, decompress corresponding package for specific chip and put it under "/platform/scfw/". Take i.MX8QXP for example:             /platform/scfw/scfw_export_mx8qx/ All material (uboot/kernel/test code and SDK) are from official Yocto release. Thanks!
View full article
When you do long test (days or weeks) test on i.MX board and your test fails, you often wants to know what has happen with a JTAG probe. The problem is when you have 50 boards running in parallel, you don't have the budget to have 50 JTAG debug probe. If you do a "hot plug" of your JTAG probe, you have roughly one chance out 2 to reset your board... so you'll have to wait another couple of hour to resee the problem. Anyway to have a reliable JTAG plug with no reset, it is really simple... cut the RESET line on your cable! then you'll still be able to "attach" to your i.MX. On the MEK board, with a 10-pin JTAG connector, you have the cut the cable line 10 of the ribbon cable: On the cable, cut the reset line like this: With my Lauterbach JTAG  probe, when I do a "hot plug" I never have a reset of my i.MX. BR Vincent
View full article
Hello everyone, this document will explain on how to use the UUU (Universal Update Utility) tool to flash Linux to an i.MX device (i.MX 8MM).   Requirements:   MX 8M Mini EVK UUU tool documentation, available here Linux Binary Demo Files - i.MX 8MMini EVK UUU 1.2.135 binary Serial console emulator (tera term or putty)   UUU auto script For this example is used the L4.14.98_2.0.0_ga demo image for the i.MX 8MM, inside the demo image we will find the auto script, which by default flash the eMMC of the board, the structure of the script is as following   /***********************************************************************************/ uuu_version 1.2.39   # This command will be run when i.MX6/7 i.MX8MM, i.MX8MQ SDP: boot -f imx-boot-imx8mmevk-sd.bin-flash_evk   # This command will be run when ROM support stream mode # i.MX8QXP, i.MX8QM SDPS: boot -f imx-boot-imx8mmevk-sd.bin-flash_evk   # These commands will be run when use SPL and will be skipped if no spl # SDPU will be deprecated. please use SDPV instead of SDPU # { SDPU: delay 1000 SDPU: write -f imx-boot-imx8mmevk-sd.bin-flash_evk -offset 0x57c00 SDPU: jump # }   # These commands will be run when use SPL and will be skipped if no spl # if (SPL support SDPV) # { SDPV: delay 1000 SDPV: write -f imx-boot-imx8mmevk-sd.bin-flash_evk -skipspl SDPV: jump # }   FB: ucmd setenv fastboot_dev mmc FB: ucmd setenv mmcdev ${emmc_dev} FB: ucmd mmc dev ${emmc_dev} FB: flash -raw2sparse all fsl-image-validation-imx-imx8mmevk.sdcard FB: flash bootloader imx-boot-imx8mmevk-sd.bin-flash_evk FB: ucmd if env exists emmc_ack; then ; else setenv emmc_ack 0; fi; FB: ucmd mmc partconf ${emmc_dev} ${emmc_ack} 1 0 FB: done /***********************************************************************************/    In short, when the board goes into serial downloader mode UUU downloads the bootloader to internal RAM, once done and uboot is running, through fastboot utility it will flash .sdcard file and uboot to the eMMC on the board.   More information about the protocol UUU use please refer to the UUU documentation (UUU.pdf) section 5 Supported protocol.   Running the tool In order to run the tool the binary of uuu needs to be downloaded, the binary files can be downloaded from the link above, uuu.exe is for Windows and uuu is for Linux. Once downloaded it can be placed inside the same file as the demo image, this so it is easy to run and cleaner on the shell commands.   Windows In windows OS the tool should be run using the Windows PowerShell in administrator mode, once open we will run the next commands: > .\uuu.exe uuu.auto   Linux >$ sudo ./uuu uuu.auto   The tool will start running and should be waiting for any i.MX device to be detected by host pc   Preparing the board For the board to be flashed it is needed to be in download mode, the switch configuration (i.MX 8MM EVK) is as following: SW1101  -  1010XXXXXX SW1102  -  XXXXXXXXX0   Connect a USB cable from the host pc which will run the tool to the USB OTG/TYPE C port, usually specified as download, on the board.   Connect a USB cable from the host to the OTG-to-UART for console output, usually specified as debug, on the board.   Open terminal emulator program with the following settings: Bits per second - 115200 Data bits - 8 Parity - None Stop bits - 1 Flow control - None   Power on the board, the download will start and the serial prompt will show the progress in uboot, wait until the tool show success.   Finally power off the board and change the switch configuration to boot from the eMMC, power on the board again and it should boot successfully!   Built in scripts One can use the built in scripts using the -b option to burn the bootloader  and the rootfs to the target flash, just type the command accordingly to the target flash device.    SD Write bootloader only: Windows: > .\uuu.exe -b sd <bootloader> Linux: $ sudo ./uuu -b sd <bootloader>   Replace <bootloader> for your .imx/.bin file, example using the i.MX 8MM for Windows and Linux respectively below. > .\uur.exe -b sd imx-boot-imx8mmevk-sd.bin-flash_evk $ sudo ./uuu -b sd imx-boot-imx8mmevk-sd.bin-flash_evk    Write whole Linux image Windows: > .\uuu.exe -b sd_all <bootloader> <rootfs>.sdcard Linux: $ sudo ./uuu -b sd_all <bootloader> <rootfs>.sdcard   Replace <bootloader> and <rootfs> for the name of your .imx/.bin and .sdcard files respectively, example using the i.MX 8MM below. > .\uuu.exe -b sd_all  imx-boot-imx8mmevk-sd.bin-flash_evk fsl-image-validation-imx-imx8mmevk.sdcard $ sudo ./uuu -b sd_all  imx-boot-imx8mmevk-sd.bin-flash_evk fsl-image-validation-imx-imx8mmevk.sdcard   eMMC Write bootloader only Windows: > .\uuu.exe -b emmc <bootloader> Linux: $ sudo ./uuu -b emmc <bootloader>   Example using i.MX 8MM > .\uuu.exe -b emmc imx-boot-imx8mmevk-sd.bin-flash_evk $ sudo ./uuu -b emmc imx-boot-imx8mmevk-sd.bin-flash_evk   Write whole Linux image Windows: > .\uuu.exe -b emmc_all <bootloader> <rootfs>.sdcard Linux: $ sudo ./uuu -b emmc_all <bootloader> <rootfs>.sdcard   Example using i.MX 8MM > .\uuu.exe -b emmc_all imx-boot-imx8mmevk-sd.bin-flash_evk fsl-image-validation-imx-imx8mmevk.sdcard $ sudo ./uuu -b emmc_all imx-boot-imx8mmevk-sd.bin-flash_evk fsl-image-validation-imx-imx8mmevk.sdcard   Hope this will helpful for everyone who is starting to use this flashing tool.
View full article
Instrumenting A Board To instrument a board, the connection between the power supply and the target device needs to be broken, usually via a series resistor that's placed on the board. Sometimes the inductor needs to be lifted if no series resistor was included on the rail by the board's designer. In the ideal case, through-hole connections were also provided on the board for the connection of these off-board sensors. Here are three close-up photos that show several boards that have been instrumented: In all three cases, the sensors stand in place via the two outer current carrying wires. The middle and right used insulated wires where as the one on the left used bare wires. In all three cases, the sensor's + connection needs to go towards the power supply and the - connection goes to the target device. The outer wires here are 24-26 gauge. (The relatively heavy gauge wire is used to keep the series resistance of inserting a smart sensor to a minimum.) The ground connection is the middle hole of the smart sensor. In the left and middle photos, a 30 gauge wire connects to the middle hole ground connection on the  board. In the right photo, the ground wire was more conveniently added to a big cap just below the bottom of edge of the photo. Here are wider angle view photos of two of the boards above: The sensors on the left are free-standing since the current carrying wires are stiff enough to hold them upright. Care must be taken since too much flexing will cause a wire to break. Too much bending can also cause a short to the board (and that's why insulated wires were used on these boards). The board on the right has the sensors laying parallel to the board. They are not affixed to the board, but a wire is wrapped around the bundle of ribbon cables out of view past the right edge of the photo. For boards without the through hole connections, the smart sensors need to be immobilized to keep from pulling the SMT pads off the board. If there is room on the board or sides of connectors or large components, the sensors may be attached down with foam double-sticky tape (see photo below, sensor affixed on top i.MX7ULP): For boards where there are no convenient unpopulated areas or there are too many sensors, some other means needs to be devised to immoblize the smart sensors. In the left photo below, two inductors per sensor have been flipped and the two sensors inserted to instrument the two rails. The solder pads on the inductors would easily be broken off by any movement of the smart sensors, so a cage with clamps to hold the ribbon cables was 3D printed. On the back side, there is room for the aggregator to be zip tied to the bottom plate, so the instrumented board can be moved as a single unit with minimal flexing of the ribbon cables.
View full article