无线连接知识库

取消
显示结果 
显示  仅  | 搜索替代 
您的意思是: 

Wireless Connectivity Knowledge Base

讨论

排序依据:
This document describes how to update and sniff Bluetooth LE wireless applications on the USB-KW41 Programming the USB-KW41 as sniffer   It was noticed that there are some issues trying to follow a Bluetooth LE connection, even if the sniffer catches the connection request. These issues have been fixed in the latest binary file which can be found in the Test Tool for Connectivity Products 12.8.0.0 or newest.   After the Test Tool Installation, you’ll find the sniffer binary file at the following path. C:\NXP\Test Tool 12.8.1.0\images\KW41_802.15.4_SnifferOnUSB.bin   Programming Process. 1. Connect the USB-KW41Z to your PC, and it will be enumerated as Mass Storage Device 2. Drag and drop the "KW41_802.15.4_SnifferOnUSB.bin" included in Test tool for Connectivity Products.    "C:\NXP\Test Tool 12.8.0.0\images\KW41_802.15.4_SnifferOnUSB.bin"   3. Unplug the device and hold the RESET button of the USB-KW41Z, plug to your PC and the K22 will enter in bootloader mode. 4. Drag and drop the "sniffer_usbkw41z_k22f_0x8000.bin" included in Test tool for Connectivity Products.    "C:\NXP\Test Tool 12.8.5.9\images\sniffer_usbkw41z_k22f_0x8000.bin"   5. Then, unplug and plug the USB-KW41Z to your PC.                                                                                                          Note: If the USB-KW41 is not enumerated as Mass Storage Device, please look at the next thread https://community.nxp.com/thread/444708   General Recommendations   Software Tools  Kinetis Protocol Analyzer Wireshark version (2.4.8) Hardware Tools 1 USB-KW41 (updated with KW41_802.15.4_SnifferOnUSB.bin from Test Tool 12.8 or later)   The Kinetis Protocol Analyzer provides the ability to monitor the Bluetooth LE Advertisement Channels. It listens to all the activity and follows the connection when capturing a Connection Request.   Bluetooth LE Peripheral device transmits packets on the 3 advertising channels one after the other, so the USB-KW41 will listen to the 3 channels one by one and could or not catch the connection request.   Common use case The USB-KW41 will follow the Bluetooth LE connection if the connection request happens on the same channel that It is listening. If is listening to a different channel when the connection request is sent, it won't be able to follow it.   A Simple recommendation is the Bluetooth LE Peripheral should be set up to send the adv packets only to one channel and the sniffer just capturing on the same channel.   Improvement Use 3 USB-KW41, each of them will be dedicated to one channel and will catch the connection request.   Configure Kinetis Protocol Analyzer and Wireshark Network Analyzer   Note: For better results, address filter can be activated. When you are capturing all the packets in the air, you will notice 3 adv packets. Each packet will show the adv channel that is getting the adv frame.       One of the three sniffers will capture the Connection Request. In this case, it happens on channel 38.       You will be able to follow the connection, see all the data exchange.   For a better reference, you can look at the USB-KW41 Getting Started     Hope it helps   Regards, Mario
查看全文
Thread is a secure, wireless, simplified IPv6-based mesh networking protocol developed by industry leading technology companies, including Freescale, for connecting devices to each other, to the internet and to the cloud. Before starting a Thread Network implementation, users should be familiar with some concepts and how they are related to Thread protocol. IPv6 Addressing Devices in the Thread stack support IPv6 addressing IPv6 addresses are 128-bit identifiers (IPv4 is only 32-bit) for interfaces and sets of interfaces.  Thread supports the following types of addresses: Unicast:  An identifier for a single interface.  A packet sent to a unicast address is delivered to the interface identified by that address. Multicast: An identifier for a set of interfaces (typically belonging to different nodes).  A packet sent to a multicast address is delivered to all interfaces identified by that address. NOTES There are no broadcast addresses in IPv6, their function being superseded by multicast addresses. Each device joining the Thread Network is also assigned a 16-bit short address as specified in IEEE 802.15.4. 6LoWPAN All Thread devices use 6LoWPAN 6LoWPAN stands for “IPv6 over Low Power Wireless Personal Networks”. 6LoWPAN is a set of standards defined by the Internet Engineering Task Force (IETF), which enables the efficient use of IPv6 over low-power, low-rate wireless networks on simple embedded devices through an adaptation layer and the optimization of related protocols. Its main goal is to send/receive IPv6 packets over 802.15.4 links. Next figure compares IP and 6LoWPAN protocol stacks: The following concepts would explain the transport layer. ICMP Thread devices support the ICMPv6 (Internet Control Message Protocol version 6) protocol and ICMPv6 error messages, as well as the echo request and echo reply messages. The Internet Control Message Protocol (ICMP) is an error reporting and diagnostic utility and is considered a required part of any IP implementation. ICMPs are used by routers, intermediary devices, or hosts to communicate updates or error information to other routers, intermediary devices, or hosts. For instance, ICMPv6 is used by IPv6 nodes to report errors encountered in processing packets, and to perform other internet-layer functions, such as diagnostics. ICMP differs from transport protocols such as TCP and UDP in that it is not typically used to exchange data between systems, nor is it regularly employed by end-user network applications.  The ICMPv6 messages have the following general format: The type field indicates the type of the message.  Its value determines the format of the remaining data. The code field depends on the message type.  It is used to create an additional level of message granularity. The checksum field is used to detect data corruption in the ICMPv6 message and parts of the IPv6 header. ICMPv6 messages are grouped into two classes: error messages and informational messages.  Error messages are identified as such by a zero in the high-order bit of their message Type field values.  Thus,   error messages have message types from 0 to 127; informational messages have message types from 128 to 255. UDP The Thread stack supports UDP for messaging between devices. This User Datagram Protocol  (UDP)  is defined  to  make available  a datagram   mode of  packet-switched   computer communication  in  the environment  of an  interconnected  set  of  computer  networks, assuming that the Internet  Protocol (IP) is used as the underlying protocol. With UDP, applications can send data messages to other hosts on an IP network without prior communications to set up special transmission channels or data paths. UDP is suitable for purposes where error checking and correction is either not necessary or is performed in the application, avoiding the overhead of such processing at the network interface level. The UDP format is as follows: Source Port is an optional field, when meaningful, it indicates the port of the sending  process,  and may be assumed  to be the port  to which a reply should be addressed  in the absence of any other information.  If not used, a value of zero is inserted. Destination Port has a meaning within the context of a particular internet destination address. Length is the length in octets of this user datagram including this header and the data.   (This means the minimum value of the length is eight.) Checksum is the 16-bit one's complement of the one's complement sum of a pseudo header of information from the IP header, the UDP header, and the data, padded  with zero octets at the end (if  necessary)  to  make  a multiple of two octets. References White papers available at http://threadgroup.org/ “6LoWPAN: The Wireless Embedded Internet” by Zach Shelby and Carsten Bromann RFC 4291, RFC 4944, RFC 4443 and RFC 768 from https://www.ietf.org
查看全文
FRDM-KW36 Software Development Kit (SDK) includes drivers and examples of FlexCAN module for KW36 which can be easily configured for a custom communication. For example, if user want to change the default baud rate from FlexCAN driver demo examples then the only needed change is the default value on "config->baudRate" and "config->baudRateFD" from "FLEXCAN_GetDefaultConfig" function (See Figure 1). Segments within a bit time will be automatically configured to obtain the desired baud rate. By default, demos are configured to work with CAN FD communication. Figure 1. FRDM-KW36's default baudrate from flexcan_interrupt_transfer driver example Even so, there are cases where segments within a bit time are not well configured and it's necessary that user configure segments manually. An example occurs by setting the maximum FD baud rate "3.2MHz" using the 32MHz xtal or "2.6MHz" using a 26MHz xtal where demo reports an error. See Figure 2. Figure 2. Error by setting maximum baud rate When this error occurs, the fix is on setting the timing config parameters correctly by including the definition of SET_CAN_QUANTUM on application source file (see Figure 3) and then declare and initialize the timing config parameters shown in Figure 4. Figure 3. SET_CAN_QUANTUM define Figure 4. Custom timing config parameters For this example we are going to show how to calculate timing config parameters in an scenario where a CAN FD communication is used with baud rate of 500kHz on nominal phase and 3.2MHz on FD phase. See Figure 5.  To do it, we need to calculate Time Quanta and value of segments within the bit time.    Figure 5. Custom CAN FD baudrate KW36 Reference Manual in chapter "37.4.8.7 Protocol timing" shows the segments within a bit time for CAN nominal phase configured in "CAN_CTRL1" register (see Figure 6), and segments for FD phase configured in CAN_FDCBT register (see Figure 7). Figure 6. Segment within a bit time for CAN nominal phase Figure 7. Segment within a bit time for CAN FD phase Before calculating the value of segments, first we need to calculate the Time Quanta which is the atomic number of time handled by the CAN engine. The formula to calculate Time Quanta is shown in Figure 8 taken from KW36 Reference Manual. Figure 8. Time Quanta Formula CANCLK can be selected by CLKSRC bits on CAN_CTRL1 register as shown in Figure 9, where the options are Peripheral clock=20MHz or Oscillator clock (16MHz if using 32MHz xtal or 13MHz if using 26MHz xtal). The recomiendation is to use the Oscillator clock due to peripheral clock can have jitter that affect communication.  Figure 9. CAN clocks To select the Oscillator clock, search for flexcanConfig.clkSrc definition and set it to kFLEXCAN_ClkSrcOsc as shown in Figure 10. Figure 10. CANCLK selection Next step is selecting the PRESDIV value for nominal phase and FPRESDIV for FD phase. You have to select the right value to achieve the TQ needed to obtain the configured baudrate. For this example, let's set FPRESDIV value to 0 and PRESDIV value to 3. TQ calculation for nominal phase: TQ = (PRESDIV + 1) / CANCLK = (3 + 1) / 16000000 = 0.00000025 TQ calculation for FD phase: TQ = (FPRESDIV + 1) / CANCLK = (0 + 1) / 16000000 = 0.0000000625 The bit rate, which defines the rate of CAN message is given by formula shown in Figure 11 taken from KW36 Reference Manual. Figure 11. CAN Bit Time and Bit Rate Formulas With this info and with our TQ calculated, we can deduce that we need: For Nominal phase: 8 = Number of Time Quanta in 1 bit time For FD phase: 5 = Number of Time Quanta in 1 bit time Now, let's define the value of segments. For nominal phase: Bit Time =  (number of Tq in 1 bit time) x Tq CAN Bit Time = (1 + (PROPSEG + PSEG1 + 2) + (PSEG2 + 1) ) x Tq CAN Bit Time = (1 + (1 + 2  + 2) + (1 + 1) ) x Tq = 8 x 0.00000025 =  Baud rate = 1/ CAN Bit Time = 500KHz For FD phase: CAN Bit Time = (number of Tq in 1 bit time) x Tq CAN Bit Time = (1 + (FPROPSEG + FPSEG1 + 1) + (FPSEG2 + 1) ) x Tq CAN Bit Time = (1 + (0 + 1 + 1) + (1 + 1) ) x Tq = 5 x Tq =  0.0000003125 Bit Rate = 1/CAN Bit Time = 1 / 0.0000003125 =  3.2MHz To finish, just update the calculated values on your firmware on flexcanConfig.timingConfig structure.  Notes: FRDM-KW36 Software Development Kit (SDK) can be downloaded from MCUXpresso webpage. FlexCAN driver examples are located in path: "SDK_2.2.0_FRDM-KW36\boards\frdmkw36\driver_examples" from your downloaded FRDM-KW36 SDK. Take in consideration that not all the baud rates are achievables and will depend on the flexcan clock and segment values used.
查看全文
Generality on the Oscillation Margin Outline It is a margin to the oscillation stop and the most important item in the oscillation circuit. This margin is indicated by ratio based on the resistance of crystal, and it shows how amplification oscillation capability the circuit has. The oscillation circuit can theoretically operate if the oscillation margin is 1 or more. However, if oscillation margin is close to 1, the risk of operation failure will increase on module due to a too long oscillation start up time and so on. Such problems will be able to be solved by a larger oscillation margin. It is recommended to keep 3 times or more as oscillation margin during the startup of the oscillation. Factor of 10 is commonly requested for Automotive at startup and 5 for IoT market. However, some providers accept to have 3 times as oscillation margin for steady state. Here below is an oscillation example to explain better the phenomenon: At start up, the configuration is set internally by the hardware in order to be sure to start the oscillation, the load capacitor is 0pF. After this time, it is the steady state and the load capacitor from the internal capabank is taken into account.     If load capacitor is not set correctly with the right oscillator gain, the oscillation will not be maintained after the start up.   The oscillator gain value will also depend on the resisting path on the crystal track.  A good way to evaluate it is to add a resistor on the crystal path and try to launch the oscillation. In the SDK, the gain and the load capacitor can set directly in the application code.   Calculation The oscillation margin is able to be calculated as follows: The oscillation margin calculation is based on the motional resistor Rm by formula below :               Example: for the EVK board’s 32kHz crystal (NX2012SE) ESR   80000,0 ohm Rm1   79978,2 ohm Lm1    3900 H Cm1   6,00E-15 F C0      1,70E-12 F CL      1,25E-08 F fr        32901,2 Hz fosc    32771 Hz Series Resistor Rsmax      7,50E+05 Ohm Oscillation Margin   10,3   Measurement Requirements for measurement PCB Crystal unit (with equivalent circuit constants data) Resistors (SMD) Measurement equipment (Oscilloscope, Frequency counter or others capable to observe oscillation) Add a resistor to the resonator in serial and check if the oscillation circuit works or not. If the oscillation is confirmed by 2), change the resistor to larger. If there is no oscillation, change the resistor to smaller. Find out the maximum resistor (=Rs_max) which is the resistor just before the oscillation stop. Measure the oscillating frequency with Rs_max. Calculate the oscillation margin based on the Rs_max.   Notes The Oscillation margin is affected not only by crystal characteristics but also parts that compose the oscillation circuit (MCU, capacitor and resistor). Therefore, it is recommended to check the oscillation margin after the MCU functionality is checked on your module. The series resistor is only for the evaluation. Please do not use this resistor in actual usage. It is recommended to check the functionality of your module also. It is possible that the module does not work correctly due to a frequency shift on oscillation circuit and so on. Jig and socket could be used in measurement, but stray of them will give influence for oscillation margin.   KW45/K32W1 product oscillation margin overview 32MHz crystal NXP recommends to use the quartz NDK NX1612SA (EXS00A-CS14160) or NDK NX2016SA (EXS00A-CS14161) to be compliant with the +/-50ppm required in Bluetooth LE. Using the current SDK, NXP guarantees an oscillation margin of 10 for startup commonly used by Automotive customers and 3 for steady state. Higher oscillation margin can be reached by using higher ISEL and CDAC parameters with some drawback respectively on the power consumption and the clock accuracy. ( the load capacitance bank (CDAC) and the oscillator amplifier current (ISEL)) NDK recommended / target values for oscillation margin is informed case by case. On general basis requested oscillation margin has to be between recommended value and 3 times this value. "NDK quartz provider (FR) explains this oscillation margin specification is only mandatory at the start-up phase, not at the steady state. Starting the oscillation is the phase that needs more energy. That's why the gain of the oscillator gain is at the maximum value which means not optimal consumption. When the oscillation stability is reached, the gain could be reduced to save power. The oscillation will not be affected.  Keep in mind a quartz oscillates by mechanical effect. So, when the oscillation is starting you need the highest energy to emulate it. By its own inertial, you need less energy to maintain the mechanical oscillation. NDK provides a good picture of this. Starting up a crystal into oscillation is like a train what you would like to start moving. At the beginning the train is stopped and you need a lot of energy to start running. When the train is running at its nominal speed, you need less effort to maintain that movement and a very big effort to stop it completely."   Example: for the oscillation margin 10 (Series Resistor Rsmax = 560W) The CDAC/ISEL area where the oscillation starts and propagates in the internal blocks is defined (‘oscill’) in the table below.     32kHz crystal NXP recommends to use the quartz NDK NX2012SE (EXS00A-MU01517) or NDK NX2012SA (EXS00A-MU00801) to be compliant with the +/-500ppm required in Bluetooth LE. using the current SDK, the oscillation margin with this quartz is 10 with some limitation on the Crystal load capacitance selection (Cap_Sel) and the Oscillator coarse gain amplifier (ESR_Range) values, with some drawback respectively on the power consumption and the clock accuracy. For an oscillation margin at 10 for instance, the Capacitor value from the databank (CapSel) is limited (green area) as shown in the graph below: Example:  for an oscillation margin at 6.4, if the load cap is set at 14pF and the ESR_Range to 3, the 32kHz frequency accuracy will be around 91ppm. From this point, the oscillation margin can be enlarged to 10.3 by decreasing the load cap to 10pF but the accuracy will be degraded (183ppm). For an Oscillation margin at 10, the graph below is showing the ESR_Range versus the load cap. The possible load cap variation range (in green) is larger when the ESR_Range increases:   Example: at oscillation margin 10.3, the clock accuracy can be improved from 213ppm to 183ppm by setting the ESR_range 2 to an ESR_Range 3 but the current consumption will be increased to 169.5nA. An other important point is that for a given ESR_Range value, getting higher the load cap is much more increasing the current than in the example above.   Remark: Under a high oscillation margin condition, the crystal voltage will be smaller.   Other possible ways to improve the oscillation margin exist: - Use external capacitor instead of internal capacitor banks. Oscillation margin goes up to 10. - Use the internal 32kFRO is supported for BLE (target:+/-500ppm)
查看全文
The border router device provides connectivity of the nodes in the Thread network with the possibility to connect to the networks as the www. Requirements Hardware K32W/JN5189 DK6 Board Udoo Neo Ethernet Cable Software MCUXpresso IDE v11.4.1 o newer. SDK 2.6.4. https://mcuxpresso.nxp.com/en/dashboard DK6 Production Flash Programmer Tool udoo_neo_os_nxp.img Docker Image Software Set up 1. Flash udoo_neo_os_nxp.img on an SD card using a tool. You could use any tool to flash the image, make sure that the SD card is correctly formatted. 2. Flash the ot-rcp.bin file on the USB Dongle(K32W/JN5189),  included in the SDK. \K32W061DK6\middleware\wireless\openthread\openthread\output\k32w061\bin DK6Programmer.exe -V5 -s COM2 -p ot-rcp.bin Running OpenThread BorderRouter You have connected your Udoo Neo board to an Ethernet cable, just open a new terminal to be sure that you have a connection. You could type the ping 8.8.8.8 command. If you do not have the IPV4, you could access connection your board to your computer and use the USB IP. After that, you could open a browser and enter to the Udoo Neo page using the USB IP. You could use the different address for creating a SSH connection.   Install Docker Copy the Docker image and Bash scripts to the Udoo Board; Install docker; curl -sSl https://get.docker.com | sh; The command will take some time   Verify the Docker images was successfully loaded Launch a Docker container   In this case, the UDOO NEO Extended doesn't have an Ethernet port, so, there is a USB converter to Ethernet. The OpenThread Example requires an IPV6 address sudo ./run_br_container.sh; Note: You have to have Ethernet Connection because the OpenThread requires IPV6. Be sure that the file has the execute permissions. The image below shows the process of the container. You cannot use this terminal, as this is a running Docker instance. It will output logs from the wpantund while it’s running.   Open a new terminal and look at for the container ID     After that, open a browser and search the IPV4 of your UDOO Neo, and you will find an OpenThread web page.     On the left side, select the option form, and a new page will be displayed for the network creation. Then you can ask for the wpanctl status, it will show all the Thread information, the address, the channel of the network, etc. sudo wpanctl status sudo wpanctl getprop Thread:OnMeshPrefixes Node A In the same UDOO terminal, start the border router internal commissioner and allow that a Thread node with the preshared key could join in this network. sudo wpanctl commissioner start; sudo wpanctl commissioner joiner-add “*” 120 J01NME; Node B Flash another JN5189/K32W using the REED example and type the next command for enabling and join to a Thread Network. \K32W061DK6\boards\k32w061dk6\wireless_examples\openthread\reed ifconfig up joiner start J01NME After the joining process is complete, type the next command to attach to the border router. thread start Look at the image below, you will notice the Node B Commands.   Ping the external internet 64:ff9b::808:808 to be sure that you have access to the internet.   For a better reference please look at the OpenThread Demo Applications User Guide included in your SDK documentation. "\K32W061DK6\docs\wireless\OpenThread" 11 Chapter Running Border Router Application Scenarios   Regards, Mario    
查看全文
This document provides the calculation of the Bluetooth Low Power consumption linked to the setting of the Kinetis.   The Power Profile Calculator is build to provide the power consumption of your application. It's a mix between real measurements in voltage and temperature. The process is not taken into account which may create some variation.   DISCLAIMER: This excel workbook is provided as an estimation tool for NXP customers and is based on power profile measurements done on a set of randomly selected parts. A specific part may exhibit deviation from the nominal measurements used on this tool.   This document is the summary of all the information available in the AN12180 Power Consumption Analysis - FRDM-KW36 available in the NXP web page.   Several parameters could be fill-in: Buck or bypass mode (DCDC) Supply Voltage (2.4V to 3.6V) Temperature (-40°C to +105°C) Processor configuration (20MHz, 32MHz or 48MHz) 2 different deep sleep modes (LLS3 or VLLS2) Different Tx output power (0dBm, +3.5dBm or +5dBm) Possibility to set the Advertising interval, connection interval, scan interval and active scan windows duration Fix the Bluetooth Packet sizes in Advertising and Connection  Tx/Rx payload.   One optional information is to provide an idea of the duration life time on typical batteries.
查看全文
Channel Sounding 
查看全文
This document provides the calculation of the Bluetooth Low Power consumption linked to the setting of the Kinetis.   The Power Profile Calculator is build to provide the power consumption of your application. It's a mix between real measurements in voltage and temperature. The process is not taken into account which may create some variation.   DISCLAIMER: This excel workbook is provided as an estimation tool for NXP customers and is based on power profile measurements done on a set of randomly selected parts. A specific part may exhibit deviation from the nominal measurements used on this tool.   This document is the summary of all the information available in the AN12459 Power Consumption Analysis - FRDM-KW38 available in the NXP web page.   Several parameters could be fill-in: Buck or bypass mode (DCDC) Supply Voltage (2.4V to 3.6V) Temperature (-40°C to +105°C) Processor configuration (20MHz, 32MHz or 48MHz) 10 different deep sleep modes Different Tx output power (0dBm, +3.5dBm or +5dBm) Data rate (1Mbps, 2Mbps, 500kbps, 125kbps) Possibility to set the Advertising interval, connection interval, scan interval and active scan windows duration Fix the Bluetooth Packet sizes in Advertising and Connection  Tx/Rx payload.   One optional information is to provide an idea of the duration life time on 9 typical batteries.
查看全文
What you need: USB-KW40Z boards (at least 3 recommended) Kinetis KW40Z Connectivity Software Kinetis Protocol Analyzer Adapter Wireshark Consult the USB-KW40Z getting started guide for an in depth tutorial on how to program the boards with the sniffer software and how to install and use the Kinetis Protocol Analyzer Adapter and Wireshark. For best performance at least 3 boards are needed to continuously monitor all 3 BLE advertising channels: 37, 38 and 39. If you have more then it’s even better. Having less than 3 sniffer boards will lead to the BLE sniffer setup missing some advertising packets and connection events. If only 1 or 2 boards are present they will have to jump between the 3 advertising channels. After the initial setup is complete make sure the boards are plugged into USB ports and then start the Kinetis Protocol Analyzer Adapter software. Immediately after the application is started it will start looking for the sniffers: After the sniffers are detected the application window should look like the screenshot below. There should be a separate row shown for each sniffer board which is plugged in (3 in the example below – COM32, COM34, and COM33). Set each sniffer on a different advertising channel and (37, 38 and 39) and if you’re looking to sniff a specific device enable the Address Filter checkbox and enter the device’s address in the adjacent field as shown in the screenshot below. Use the same device address for all sniffer devices. Press the “shark fin” button in the upper right of the window to start Wireshark. After Wireshark starts select the PCAP IF shown in the Kinetis Protocol Analyzer Adapter window and start capturing packets. Local Area Connection 2 is the PCAP IF in the example. Wireshark will start showing the captured packets and the sniffers will catch Connection Request packets sent to the target device on any of the advertising channels. Useful tip: You can use the btle.advertising_header.length != 0 or btle.data_header.length != 0 filter in Wireshark to filter out empty BLE packets.
查看全文
Thread provides basic services required for application frameworks implementation with the usage of Unicast and Multicast transmissions over UDP. Thread specification is only focused on the network layer; many application layers can be designed to run without any problem as it is application layer agnostic.  In this laboratory the user will work with the Constrain Application Protocol (CoAP) for this application layer as the Thread stack uses CoAP for most of the multi-hop network management and commissioning messages. The Constrained Application Protocol (CoAP) is a specialized web transfer protocol to use with constrained nodes and constrained networks in the Internet of Thing.  It uses a binary RESTful protocol with four methods POST GET PUT DELETE CoAP also uses ACK responses; CONfirmable (ACK requested) and NONconfirmable messages. The Thread stack uses CoAP for the majority of multi-hop network management and commissioning messages   Objectives Through this laboratory the user will modify the firmware to achieve the following list: Add 2 new COAP URI resources “/resource1” and “/resource2”. Send an ACK message in “/resource1” in case a CON request was received as specified by the CoAP standard. Include a default payload in the ACK message. All packets destined to “/resource1” will trigger a NON POST packet reply (independent from the expected ACK packet) destined to “/resource2” URI path with a default payload. Print in shell all CoAP transactions to fully understand when a request was sent and when a response was received, indicating the method and the resource, e.g. If a CON POST was received, print on shell “‘NON’ packet received, ‘POST’ with payload of ‘<payload>’ If a NON POST was sent, print on shell “‘NON’ packet sent, ‘POST’ with payload ‘<payload>’ The process desired behavior by the laboratory is shown in figure 1.   Figure 1 Diagram showing the desired behavior of the laboratory   Setup In the following list, the components with a dash (—) will be the ones used to create this laboratory.   2 FRDM-KW41Z       — Rev.  A Connectivity Software from the latest NXP release.       — Thread Router Eligible Device project Serial Terminal       — TeraTerm   Figure 2 FRDM-KW41Z    Modifying Firmware       The following changes will be made in the router_eligible_device_app.c file.  1. Define the URI path names that will be used in the shell to access the resources. #define APP_RESOURCE1_URI_PATH                       "/resource1" #define APP_RESOURCE2_URI_PATH                       "/resource2" 2. Declare the URI resources with coapUriPath_t. When using this struct the user must enter the length of the URI path and the path created in the last step. const coapUriPath_t gAPP_RESOURCE1_URI_PATH = {SizeOfString(APP_RESOURCE1_URI_PATH), APP_RESOURCE1_URI_PATH}; const coapUriPath_t gAPP_RESOURCE2_URI_PATH = {SizeOfString(APP_RESOURCE2_URI_PATH), APP_RESOURCE2_URI_PATH}; 3. Create the callbacks for the resources. This callbacks will handle the packet received and perform the desired action depending on the type of COAP method received. static void APP_CoapResource1Cb(coapSessionStatus_t sessionStatus, void *pData, coapSession_t *pSession, uint32_t dataLen); static void APP_CoapResource2Cb(coapSessionStatus_t sessionStatus, void *pData, coapSession_t *pSession, uint32_t dataLen); 4. Add the callback handler for the packet received, in this function it will be defined which action will be performed depending on the type of COAP method received. APP_CoapResource1Cb static void APP_CoapResource1Cb ( coapSessionStatus_t sessionStatus, void *pData, coapSession_t *pSession, uint32_t dataLen ) {   static uint8_t pMySessionPayload[3]={0x31,0x32,0x33};   static uint32_t pMyPayloadSize=3;   coapSession_t *pMySession = NULL;   pMySession = COAP_OpenSession(mAppCoapInstId);   COAP_AddOptionToList(pMySession,COAP_URI_PATH_OPTION, APP_RESOURCE2_URI_PATH,SizeOfString(APP_RESOURCE2_URI_PATH));     if (gCoapConfirmable_c == pSession->msgType)   {     if (gCoapGET_c == pSession->code)     {       shell_write("'CON' packet received 'GET' with payload: ");     }     if (gCoapPOST_c == pSession->code)     {       shell_write("'CON' packet received 'POST' with payload: ");     }     if (gCoapPUT_c == pSession->code)     {       shell_write("'CON' packet received 'PUT' with payload: ");     }         if (gCoapFailure_c!=sessionStatus)     {       COAP_Send(pSession, gCoapMsgTypeAckSuccessChanged_c, pMySessionPayload, pMyPayloadSize);     }   }   else if(gCoapNonConfirmable_c == pSession->msgType)   {     if (gCoapGET_c == pSession->code)     {       shell_write("'NON' packet received 'GET' with payload: ");     }     if (gCoapPOST_c == pSession->code)     {       shell_write("'NON' packet received 'POST' with payload: ");     }     if (gCoapPUT_c == pSession->code)     {       shell_write("'NON' packet received 'PUT' with payload: ");     }      }   shell_writeN(pData, dataLen);   shell_write("\r\n");   pMySession -> msgType=gCoapNonConfirmable_c;   pMySession -> code= gCoapPOST_c;   pMySession -> pCallback =NULL;   FLib_MemCpy(&pMySession->remoteAddr,&gCoapDestAddress,sizeof(ipAddr_t));   COAP_SendMsg(pMySession,  pMySessionPayload, pMyPayloadSize);   shell_write("'NON' packet sent 'POST' with payload: ");   shell_writeN((char*) pMySessionPayload, pMyPayloadSize);   shell_write("\r\n"); } There can be one COAP instance per UDP port, in case the application only uses one port, one instance will be enough. There can be multiple COAP sessions per instance, a COAP session is per packet/transaction. In this case as the desired result was to have a different response of the ACK, it will be necessary to create a new session with the new resource. APP_CoapResource2Cb   static void APP_CoapResource2Cb ( coapSessionStatus_t sessionStatus, void *pData, coapSession_t *pSession, uint32_t dataLen ) {   if (gCoapNonConfirmable_c == pSession->msgType)   {       shell_write("'NON' packet received 'POST' with payload: ");        shell_writeN(pData, dataLen);       shell_write("\r\n");   }  } 5. After creating the callbacks, those must be registered in the CoAP callback array in the function APP_InitCoapDemo(void) {APP_CoapResource1Cb, (coapUriPath_t*)&gAPP_RESOURCE1_URI_PATH}, {APP_CoapResource2Cb, (coapUriPath_t*)&gAPP_RESOURCE2_URI_PATH},   There are some things to mention of the usage of the CoAP library that were not used for this laboratory but might be useful for other types of applications. When using COAP_SendMsg() the session will close automatically by default unless it is indicated with the usage of pSession->autoClose. There are two options while sending the message: Confirmable (CON): It waits for an ACK reply and until it gets the message it will close the session or it will close the session when retransmissions are exhausted. Non-confirmable (NON): For NON, immediately after sending the message. In case a message was sent and there was no response a retransmission will be sent each COAP_ACK_TIMEOUT (in miliseconds), the retransmissions are sent exponentially: first after random (2, 3) seconds, next doubles the timeout and so on, until COAP_MAX_RETRANSMIT is reached. After retransmissions stop, the session is automatically closed and informs the application of failure the application callback will be called with status gCoapFailure_c. When the callback is called the current session is still valid, but CoAP session will close it after exiting the function. There are two different work this out: A new session must be created Set pSession->autoClose = FALSE. If autoClose is set to FALSE, without forgetting to close the session from application, using COAP_CloseSession().     Running the demo    1. Download the modified firmware in the boards 2. Open a serial terminal for each board with a baud rate of 115200 Figure 3 Serial terminal and its configuration  3. In one of the board’s terminal type “thr create”, this board will be the leader. Figure 4 Board 1 with command "thr create" Figure 5 Board 1 after the command "thr create"   4. Once the network has been created type “thr join” in the second board’s terminal. Figure 6 Board 2 with command "thr join" Figure 7 Board 2 after command "thr join" 5. In both serial terminals type the command “ifconfig”. This command will display all the addresses of the board. Figure 8 Board 1 after command "ifconfig" Figure 9 Board 2 after command "ifconfig"   6. To test the callbacks created, a CoAP message must be sent. The following command must be typed; coap <type> <method> <address> <URI> <payload>                                                                                      coap CON POST fe80::5df0:2bf0:d69b:1b3c  /resource1 hello                                                                                      Figure 10 CoAP command to send 7. The result of sending must look like : — Board 1 The board 1 will request the board 2 the resource1 Figure 11 Board 1 before sending the CoAP command As it was coded the other board will send an ACK and print the message. Figure 12 Board 1 after sending the CoAP command — Board 2 Figure 13 Board 2 after receiving the CoAP command If using the CON message the requester board will receive a response, while if the message is a NON type it will not have the response.   When using this types of messages independently of the package type when sending a message a new session will be open and it will send a NON type of message.
查看全文
Introduction The MTU (Maximum Transmission Unit) in Bluetooth LE, is an informational parameter that indicates to the remote device, the maximum number of bytes that the local can handle in such channel, for example, the ATT_MTU for KW36 is fixed in 247 bytes. A few applications require to have long characteristics defined in the GATT database, and sometimes the length of the characteristic exceeds the MTU negotiated by the client and server Bluetooth LE devices. For this scenario, the Bluetooth LE specification defines a procedure to write and read the characteristic of interest. In summary, it consists in perform multiple writes and reads on the same characteristic value, using specific commands. For the "write long characteristic value" procedure, these commands are ATT_PREPARE_WRITE_REQ and ATT_EXECUTE_WRITE_REQ. For the "read long characteristic value" procedure, these commands are ATT_READ_REQ and ATT_READ_BLOB_REQ. This document provides an example of how to write and read long characteristic values, from the perspective of Client and Server devices.   APIs to Write and Read Characteristic Values Write Characteristic Values The GattClient_WriteCharacteristicValue API is used to perform any write operation. It is implemented by the GATT Client device. The following table describes the input parameters. Input Parameters Description deviceId_t deviceId Device ID of the peer device. gattCharacteristic_t * pCharacteristic Pointer to a gattCharacteristic struct type. This struct must contain a valid handle of the characteristic value in the "value.handle" field. The handle of the characteristic value that you want to write is commonly obtained after the service discovery procedure.  uint16_t valueLength This value indicates the length of the array pointed by aValue. const uint8_t * aValue Pointer to an array containing the value that will be written to the GATT database. bool_t withoutResponse If true, it means that the application wishes to perform a "Write Without Response", in other words, when the command will be ATT_WRITE_CMD or ATT_SIGNED_WRITE_CMD. bool_t signedWrite If withoutResponse and signedWrite are both true, the command will be ATT_SIGNED_WRITE_CMD. If withoutResponse is false, this parameter is ignored. bool_t doReliableLongCharWrites This field must be set to true if the application needs to write a long characteristic value. const uint8_t * aCsrk If withoutResponse and signedWrite are both true, this pointer must contain the CSRK to sign the data. Otherwise, this parameter is ignored.   Read Characteristic Values The GattClient_ReadCharacteristicValue API is used to perform read operations. It is implemented by the GATT Client device. The following table describes the input parameters. Input Parameters Description deviceId_t deviceId Device ID of the peer device. gattCharacteristic_t * pIoCharacteristic Pointer to a gattCharacteristic struct type. This struct must contain a valid handle of the characteristic value in the "value.handle" field. The handle of the characteristic value that you want to write is commonly obtained after the service discovery procedure. As well, the "value.paValue" field of this struct, must point to an array which will contain the characteristic value read from the peer. unit16_t maxReadBytes The length of the characteristic value that should be read. This API takes care of the long characteristics, so there is no need to worry about a special parameter or configuration. The following sections provide a functional example of how to write and read long characteristics. This example was based on the temperature collector and temperature sensor SDK examples. The example also shows how to create a custom service at the GATT database and how to discover its characteristics.   Bluetooth LE Server (Temperature Sensor) Modifications in gatt_uuid128.h Define the 128 bit UUID of the "custom service" which will be used for this example. Add the following code: /* Custom service */ UUID128(uuid_service_custom, 0xE0, 0x1C, 0x4B, 0x5E, 0x1E, 0xEB, 0xA1, 0x5C, 0xEE, 0xF4, 0x5E, 0xBA, 0x00, 0x01, 0xFF, 0x01) UUID128(uuid_char_custom, 0xE0, 0x1C, 0x4B, 0x5E, 0x1E, 0xEB, 0xA1, 0x5C, 0xEE, 0xF4, 0x5E, 0xBA, 0x01, 0x01, 0xFF, 0x01)‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Modifications in gatt_db.h Define the characteristics of the "custom service", for this example, our service will have just one characteristic, it can be written or read, and it has a variable-length limited to 400 bytes (remember that the ATT_MTU of KW36 is 247 byte, so with this length, we ensure long writes and reads). Add the following code: PRIMARY_SERVICE_UUID128(service_custom, uuid_service_custom) CHARACTERISTIC_UUID128(char_custom, uuid_char_custom, (gGattCharPropWrite_c | gGattCharPropRead_c)) VALUE_UUID128_VARLEN(value_custom, uuid_char_custom, (gPermissionFlagWritable_c | gPermissionFlagReadable_c), 400, 1)‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Modifications in app_preinclude.h One of the most important considerations to write and read long characteristics is the memory allocation needed for this. You must increment the current "AppPoolsDetails_c" configuration, the "_block_size_" and "_number_of_blocks_". Please ensure that "_block_size_" is aligned with 4 bytes. Once you have found the configuration that works in your application, please follow the steps in Memory Pool Optimizer on MKW3xA/KW3xZ Application Note, to found the best configuration without waste memory resources. For this example, configure "AppPoolsDetails_c" as follows: /* Defines pools by block size and number of blocks. Must be aligned to 4 bytes.*/ #define AppPoolsDetails_c \ _block_size_ 264 _number_of_blocks_ 8 _eol_‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍   Bluetooth LE Client (Temperature Collector) Modifications in gatt_uuid128.h Define the 128 bit UUID of the "custom service" which will be used for this example. Add the following code: /* Custom service */ UUID128(uuid_service_custom, 0xE0, 0x1C, 0x4B, 0x5E, 0x1E, 0xEB, 0xA1, 0x5C, 0xEE, 0xF4, 0x5E, 0xBA, 0x00, 0x01, 0xFF, 0x01) UUID128(uuid_char_custom, 0xE0, 0x1C, 0x4B, 0x5E, 0x1E, 0xEB, 0xA1, 0x5C, 0xEE, 0xF4, 0x5E, 0xBA, 0x01, 0x01, 0xFF, 0x01)‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Modifications in temperature_collector.c 1. Define the following variables at the "Private type definitions" section: typedef struct customServiceConfig_tag { uint16_t hService; uint16_t hCharacteristic; } customServiceConfig_t; typedef struct appCustomInfo_tag { tmcConfig_t tempClientConfig; customServiceConfig_t customServiceClientConfig; }appCustomInfo_t; typedef enum { mCustomServiceWrite = 0, mCustomServiceRead }customServiceState_t;‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ 2. Add two arrays of 400 bytes, one to send and the other to receive the data from the server in "Private memory declarations" section: /* Dummy array for custom service */ uint8_t mWriteDummyArray[400]; uint8_t mReadDummyArray[400];‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ 3. Define a new function in "Private functions prototypes" section, to write and read the characteristic value: static void BleApp_SendReceiveCustomService (customServiceState_t state);‍‍‍‍ 4. Locate the "BleApp_Config" function, add the following code here to fill the "mWriteDummyArray" with a known pattern before to write our custom characteristic. static void BleApp_Config(void) { uint16_t fill_pattern; /* Fill pattern to write long characteristic */ for (fill_pattern = 0; fill_pattern<400; fill_pattern++) { mWriteDummyArray[fill_pattern] = (uint8_t)fill_pattern; } /* Configure as GAP Central */ BleConnManager_GapCommonConfig(); ... ... }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ 5. Locate the "BleApp_StoreServiceHandles" function. Modify this function to include our custom service in the service discovery procedure. This is to save the handle of the custom characteristic since it is used by GattClient_WriteCharacteristicValue and GattClient_ReadCharacteristicValue APIs. static void BleApp_StoreServiceHandles ( gattService_t *pService ) { uint8_t i,j; if ((pService->uuidType == gBleUuidType128_c) && FLib_MemCmp(pService->uuid.uuid128, uuid_service_temperature, 16)) { /* Found Temperature Service */ mPeerInformation.customInfo.tempClientConfig.hService = pService->startHandle; for (i = 0; i < pService->cNumCharacteristics; i++) { if ((pService->aCharacteristics[i].value.uuidType == gBleUuidType16_c) && (pService->aCharacteristics[i].value.uuid.uuid16 == gBleSig_Temperature_d)) { /* Found Temperature Char */ mPeerInformation.customInfo.tempClientConfig.hTemperature = pService->aCharacteristics[i].value.handle; for (j = 0; j < pService->aCharacteristics[i].cNumDescriptors; j++) { if (pService->aCharacteristics[i].aDescriptors[j].uuidType == gBleUuidType16_c) { switch (pService->aCharacteristics[i].aDescriptors[j].uuid.uuid16) { /* Found Temperature Char Presentation Format Descriptor */ case gBleSig_CharPresFormatDescriptor_d: { mPeerInformation.customInfo.tempClientConfig.hTempDesc = pService->aCharacteristics[i].aDescriptors[j].handle; break; } /* Found Temperature Char CCCD */ case gBleSig_CCCD_d: { mPeerInformation.customInfo.tempClientConfig.hTempCccd = pService->aCharacteristics[i].aDescriptors[j].handle; break; } default: ; /* No action required */ break; } } } } } } else if ((pService->uuidType == gBleUuidType128_c) && FLib_MemCmp(pService->uuid.uuid128, uuid_service_custom, 16)) { /* Found Custom Service */ mPeerInformation.customInfo.customServiceClientConfig.hService = pService->startHandle; if (pService->cNumCharacteristics > 0U && pService->aCharacteristics != NULL) { /* Found Custom Characteristic */ mPeerInformation.customInfo.customServiceClientConfig.hCharacteristic = pService->aCharacteristics[0].value.handle; } } else { ; } }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ 6. Develop the "BleApp_SendReceiveCustomService" as shown below. This function is used to write and read the custom characteristic values using long operations. Focus your attention in this function, here is the example of how to use GattClient_WriteCharacteristicValue and GattClient_ReadCharacteristicValue APIs to write and read long characteristic values. Note that the "characteristic" struct was filled before to use the last APIs, with the handle of our custom characteristic and a destination address to receive the value read from the peer. Note that the "doReliableLongCharWrites" field must be TRUE to allow long writes using GattClient_WriteCharacteristicValue.  static void BleApp_SendReceiveCustomService (customServiceState_t state) { bleResult_t bleResult; gattCharacteristic_t characteristic; /* Verify if there is a valid peer */ if (gInvalidDeviceId_c != mPeerInformation.deviceId) { /* Fill the characteristic struct with a read destiny and the custom service handle */ characteristic.value.handle = mPeerInformation.customInfo.customServiceClientConfig.hCharacteristic; characteristic.value.paValue = &mReadDummyArray[0]; /* Try to write the custom characteristic value */ if(mCustomServiceWrite == state) { bleResult = GattClient_WriteCharacteristicValue(mPeerInformation.deviceId, &characteristic, (uint16_t)400, &mWriteDummyArray[0], FALSE, FALSE, TRUE, NULL); /* An error occurred while trying to write the custom characteristic value, disconnect */ if(gBleSuccess_c != bleResult) { (void)Gap_Disconnect(mPeerInformation.deviceId); } } /* Try to read the custom characteristic value */ else { bleResult = GattClient_ReadCharacteristicValue(mPeerInformation.deviceId, &characteristic, (uint16_t)400); /* An error occurred while trying to read the custom characteristic value, disconnect */ if(gBleSuccess_c != bleResult) { (void)Gap_Disconnect(mPeerInformation.deviceId); } } } }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ 7. Modify the "BleApp_GattClientCallback" as shown below. In this function, we implement the "BleApp_SendReceiveCustomService" which writes or reads the characteristic depending on the input parameter "state". The expected behavior of this example is, first, write the 400-byte pattern contained in the mWriteDummyArray to our custom characteristic value, just after to write the characteristic descriptor of the temperature service (which is indicated by this callback in the gGattProcWriteCharacteristicDescriptor_c event). When the write has been executed successfully, it is indicated in this callback, by the "gGattProcWriteCharacteristicValue_c" event, therefore, here we can execute our function to read the characteristic value. Then "gGattProcReadCharacteristicValue_c" event is triggered if the read has been completed, here, we compare the value written with the value read from the GATT server and, if both are the same, the green RGB led should turn on indicating that our long characteristic has been written and read successfully, otherwise, the GATT client disconnects from the GATT server.   static void BleApp_GattClientCallback( deviceId_t serverDeviceId, gattProcedureType_t procedureType, gattProcedureResult_t procedureResult, bleResult_t error ) { if (procedureResult == gGattProcError_c) { attErrorCode_t attError = (attErrorCode_t)(uint8_t)(error); if (attError == gAttErrCodeInsufficientEncryption_c || attError == gAttErrCodeInsufficientAuthorization_c || attError == gAttErrCodeInsufficientAuthentication_c) { /* Start Pairing Procedure */ (void)Gap_Pair(serverDeviceId, &gPairingParameters); } BleApp_StateMachineHandler(serverDeviceId, mAppEvt_GattProcError_c); } else { if (procedureResult == gGattProcSuccess_c) { switch(procedureType) { case gGattProcReadCharacteristicDescriptor_c: { if (mpCharProcBuffer != NULL) { /* Store the value of the descriptor */ BleApp_StoreDescValues(mpCharProcBuffer); } break; } case gGattProcWriteCharacteristicDescriptor_c: { /* Try to write to the custom service */ BleApp_SendReceiveCustomService(mCustomServiceWrite); } break; case gGattProcWriteCharacteristicValue_c: { /* If write to the custom service was completed, try to read the custom service */ BleApp_SendReceiveCustomService(mCustomServiceRead); } break; case gGattProcReadCharacteristicValue_c: { /* If read to the custom service was completed, compare write and read buffers */ if(FLib_MemCmp(&mWriteDummyArray[0], &mReadDummyArray[0], 400)) { Led3On(); } else { (void)Gap_Disconnect(mPeerInformation.deviceId); } } break; default: { ; /* No action required */ break; } } BleApp_StateMachineHandler(serverDeviceId, mAppEvt_GattProcComplete_c); } } /* Signal Service Discovery Module */ BleServDisc_SignalGattClientEvent(serverDeviceId, procedureType, procedureResult, error); }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Modifications in app_preinclude.h One of the most important considerations to write and read long characteristics is the memory allocation needed for this. You must increment the current "AppPoolsDetails_c" configuration, the "_block_size_" and "_number_of_blocks_". Please ensure that "_block_size_" is aligned with 4 bytes. You can know when the current configuration of pools do not satisfy the application requirements if the return value of either "GattClient_WriteCharacteristicValue" or "GattClient_ReadCharacteristicValue " is "gBleOutOfMemory_c" instead of "gBleSuccess_c" (If it is the case, the device will disconnect to the peer according to the code in step 6 in "Modifications in temperature_collector.c"). Once you have found the configuration that works in your application, please follow the steps in Memory Pool Optimizer on MKW3xA/KW3xZ Application Note, to found the best configuration without waste memory resources. For this example, configure "AppPoolsDetails_c" as follows: /* Defines pools by block size and number of blocks. Must be aligned to 4 bytes.*/ #define AppPoolsDetails_c \ _block_size_ 112 _number_of_blocks_ 6 _eol_ \ _block_size_ 256 _number_of_blocks_ 3 _eol_ \ _block_size_ 280 _number_of_blocks_ 2 _eol_ \ _block_size_ 432 _number_of_blocks_ 1 _eol_‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍   Please let us know any question regarding this topic.
查看全文
The FRDM-KW36 comes with the OpenSDA circuit which allows users to program and debug the evaluation board. There are different solutions to support such OpenSDA circuits: 1. The J-Link (SEGGER) firmware.  2. The CMSIS-DAP (mbed) firmware. The FRDM-KW36 comes pre-programmed with the CMSIS-DAP firmware. However, if you want to update the firmware version, you need to perform the next steps.  Press and hold the Reset button (SW1 push button in the board).  Unplug and plug the FRDM-KW36 again to the PC.  The board will be enumerated as "DAPLINKBOOT" device. Drag and drop the binary file to update the OpenSDA firmware.  If the J-Link version is programmed, the board will be enumerated as "FRDM-KW36J". On the other hand, if the CMSIS-DAP version is programmed, the board will be enumerated as "FRDM-KW36". The binary for the J-link version can be downloaded from the next link: SEGGER - The Embedded Experts - Downloads - J-Link / J-Trace  The binary for the CMSIS-DAP version can be found in the next link: OpenSDA Serial and Debug Adapter|NXP    Hope this helps... 
查看全文
Introduction This document guides to load a new software image in a KW41 device through Over The Air Programming bootloader. Also, are explained the details of how to set up the client software to change the storage method of the image. Software Requirements IAR Embedded Workbench IDE or MCUXpresso IDE Download both, SDK FRDM-KW41Z and SDK USB-KW41Z. Hardware Requirements FRDM-KW41Z board OTAP Memory Management During the Update Process The KW41 has a 512KB Program Flash with a flash address range from 0x0000_0000 to 0x0007_FFFF.     The OTAP application splits the flash into two independent parts, the OTAP Bootloader, and the OTAP Client. The OTAP Bootloader verifies if there is a new image available at the OTAP Client to reprogram the device. The OTAP Client software provides the Bluetooth LE custom service needed to communicate the OTAP Client device with the OTAP Server that contains the new image file (The OTAP Server device could be another FRDM-KW41Z connected to a PC with Test Tool or a Smartphone with IoT Toolbox app). Therefore, the OTAP Client device needs to be programmed twice, first with the OTAP Bootloader, then with the Bluetooth LE application supporting OTAP Client. The mechanism created to have two different software coexisting in the same device is storing each one in different memory regions. This functionality is implemented by the linker file. In the KW41 device, the bootloader has reserved a 16 KB slot of memory from 0x0000_0000 to 0x0003_FFFF, thus the left memory is reserved among other things, by the OTAP Client demo. To create a new image file for the client device, the developer needs to specify to the linker file that the code will be built with an offset of 16 KB since the first addresses must be reserved for the OTAP Bootloader. In connection state, the OTAP server sends the image packets (known as chunks) to the OTAP Client device via Bluetooth LE. The OTAP Client device can store these chunks, in first instance, at the external SPI flash or the On-Chip Flash. The destination of the code is selectable in the OTAP Client software. When the connection has finished and all chunks were sent from the OTAP Server to the OTAP Client device, the OTAP Client software writes information, such as the source of the image update (external flash or internal flash) in a portion of memory known as Bootloader Flags and then resets the MCU to execute the OTAP Bootloader code. The OTAP Bootloader reads the Bootloader Flags to get the information needed to program the device and triggers a commando to reprogram the MCU with the new application. Due to the new application was built with an offset of 16 KB, the OTAP Bootloader programs the device starting from the 0x0000_4000 address and the OTAP Client application is overwritten by the new image, therefore, after the device has been reprogrammed through this method, cannot be programmed a second time as same. Finally, the OTAP Bootloader triggers a command to start the execution of the new code automatically.     Preparing the Software to Test the OTAP Client for KW41Z Device Using IAR Embedded Workbench Program the OTAP Bootloader on the FRDM-KW41Z. Program the OTAP Bootloader software from the project included in the SDK FRDM-KW41Z at the following path, or you can simply drag and drop the pre-built binary from the following path.           OTAP Bootloader Project:          <SDK_2.2.0_FRDM-KW41Z_download_path>\boards\frdmkw41z\wireless_examples\framework\bootloader_otap\bm\iar\bootloader_otap_bm.eww            OTAP Bootloader pre-built binary:            <SDK_2.2.0_FRDM-KW41Z_download_path>\tools\wireless\binaries\bootloader_otap_frdmkw41z.bin   Open the OTAP Client project included in the SDK FRDM-KW41Z located in the following path.          <SDK_2.2.0_FRDM-KW41Z_download_path>\boards\frdmkw41z\wireless_examples\bluetooth\otap_client_att\freertos\iar\otap_client_att_freertos.eww   Customize the OTAP Client software to select the storage method. Locate the app_preinclude.h header file inside the source folder at the workspace. To select the External Flash storage method, set the "gEepromType_d" define to "gEepromDevice_AT45DB041E_c"                      To select the Internal Flash storage method, set the "gEepromType_d" define to "gEepromDevice_InternalFlash_c"   Configure the linker flags. Open the project options window (Alt + F7). In "Linker->Config" window, locate the "Configuration file symbol definitions" pane. To select the External Flash storage method, remove the "gUseInternalStorageLink_d=1" linker flag To select the Internal Flash storage method, add the "gUseInternalStorageLink_d=1" linker flag     Load the OTAP Client software on the FRDM-KW41Z board (Ctrl + D). Stop the debug session (Ctrl + Shift + D). The default linker configurations of the project allow the OTAP Client application to be stored with the proper memory offset.   Preparing the Software to Test the OTAP Client for KW41Z Device Using MCUXpresso IDE Program the OTAP Bootloader on the FRDM-KW41Z. Program the OTAP Bootloader software from the project included in the SDK FRDM-KW41Z at the following path, or you can simply drag and drop the pre-built binary from the following path.           OTAP Bootloader Project:          wireless_examples->framework->bootloader_otap->bm            OTAP Bootloader pre-built binary:            <SDK_2.2.0_FRDM-KW41Z_download_path>\tools\wireless\binaries\bootloader_otap_frdmkw41z.bin   Click on "Import SDK examples(s)" option in the "Quickstart Panel" view. Click twice on the frdmkw41z icon.     Open the OTAP Client project included in the SDK FRDM-KW41Z located in the following path.wireless_examples->bluetooth->otap_client_att->freertos     Customize the OTAP Client software to select the storage method. Locate the app_preinclude.h header file inside the source folder at the workspace. To select the External Flash storage method, set the "gEepromType_d" define to "gEepromDevice_AT45DB041E_c"                      To select the Internal Flash storage method, set the "gEepromType_d" define to "gEepromDevice_InternalFlash_c"   Configure the linker file. To select the External Flash storage method, are not required any changes in the project from this point. You can skip this step. To select the Internal Flash storage method, search the linker file located in the SDK USB-KW41Z at the following path and replace instead of the default linker file at the source folder in the OTAP Client project. You can copy (Ctrl + C) the linker file from SDK USB-KW41Z and paste (Ctrl + V) on the workspace directly. A warning message will be displayed, select "Overwrite".           Linker file at the SDK USB-KW41Z:        <SDK_2.2.0_USB-KW41Z_download_path>\boards\usbkw41z_kw41z\wireless_examples\bluetooth\otap_client_att\freertos\MKW41Z512xxx4_connectivity.ld     Save the changes in the project. Select "Debug" in the "Quickstart Panel". Once the project is already loaded on the device, stop the debug session.   Creating an S-Record Image File for FRDM-KW41Z OTAP Client in IAR Embedded Workbench Open the connectivity project that you want to program using the OTAP Bootloader from your SDK FRDM-KW41Z. This example will make use of the glucose sensor project, this is located at the following path. <SDK_2.2.0_FRDM-KW41Z_download_path>\boards\frdmkw41z\wireless_examples\bluetooth\glucose_sensor\freertos\iar\glucose_sensor_freertos.eww   Open the project options window (Alt+F7). In Linker->Config window, add the following linker flag in the “Configuration file symbol definitions” textbox.         gUseBootloaderLink_d=1     Go to the “Output Converter” window. Deselect the “Override default" checkbox, expand the “Output format” combo box and select Motorola S-records format. Click the OK button.     Rebuild the project. Search the S-Record file (.srec) in the following path.<SDK_2.2.0_FRDM-KW41Z_download_path>\boards\frdmkw41z\wireless_examples\bluetooth\glucose_sensor\freertos\iar\debug   Creating an S-Record Image File for FRDM-KW41Z OTAP Client in MCUXpresso IDE Open the connectivity project that you want to program using the OTAP Bootloader from MCUXpresso IDE. This example will make use of the glucose sensor project, this is located at the following path.        wireless_examples->bluetooth->glucose_sensor->freertos   Search the linker file located in the SDK FRDM-KW41Z at the path below and replace instead of the default linker file at the source folder in the Glucose Sensor project. You can copy (Ctrl + C) the linker file from SDK FRDM-KW41Z and paste (Ctrl + V) on the workspace directly. A warning message will be displayed, select "Overwrite".          Linker file at the SDK FRDM-KW41Z:        <SDK_2.2.0_FRDM-KW41Z_download_path>\boards\frdmkw41z\wireless_examples\bluetooth\otap_client_att\freertos\MKW41Z512xxx4_connectivity.ld     Open the new "MKW41Z512xxx4_connectivity.ld" linker file. Locate the section placement of the figure below and remove the "FILL" and the "BYTE" statements.         Build the project. Deploy the “Binaries” icon in the workspace. Click the right mouse button on the “.axf” file. Select the “Binary Utilities/Create S-Record” option. The S-Record file will be saved at “Debug” folder in the workspace with “.s19” extension.     Testing OTAP Client Demo Using IoT Toolbox App Save the S-Record file created with the steps in the last section in your smartphone at a known location. Open the IoT Toolbox App and select OTAP demo. Press “SCAN” to start scanning for a suitable advertiser. Press the “SW4” button on the FRDM-KW41Z board to start advertising. Create a connection with the found device. Press “Open” and search the S-Record file. Press “Upload” to start the transfer. Once the transfer is complete, wait a few seconds until the bootloader has finished programming the new image. The new application will start automatically. 
查看全文
General summary MCUBOOT, fsci_bootloader and otap_bootloader are 3 different bootloader applications that can be used depending on the use case. The MCU Flashloader is a separate implementation but it's also mentioned to avoid misunderstanding.   MCUBOOT The MCU bootloader provides support for multiple communication protocols (UART, SPI, I2C, CAN) and multiple applications to interface with it. Summary: - It's a configurable flash programming utility that operates over a serial connection on several Kinetis MCUs. - Host-side command line (blhost) and GUI tools are available to communicate with the bootloader.  -  By default, application starts at address 0xa000. - MCU Bootloader|NXP website - MCU Bootloader Reference Manual - MCU Bootloader Demo Application User's Guide   fsci_bootloader Framework Serial Connectivity Interface (FSCI) is an NXP propietary protocol that allows interfacing the Kinetis protocol stack with a host system or PC tool using a serial communication interface. The FSCI bootloader enables the FSCI module to communicate with the PC and transfer the image using the FSCI protocol. Summary: - It relies on the FSCI protocol to transfer the binary from a PC connected via UART, using a python and C applications. - To enter into bootloader mode (in FRDM-KW41Z), hold SW1 (Reset) and press SW4, then release SW1 first and SW4 second. Please refer to demo user's guide to get the specific steps for your platform. - By default, application starts at 0x4000. - FSCI Bootloader Manual   otap_bootloader The Connectivity SDK contains Over-the-Air firmware upgrade examples. The OTAP bootloader loads an image obtained from wireless communication, the OTAP bootloader only enters after an image was successfully transferred to the client device (internal or external flash). Summary: - It's used by over the air programmed devices. - The bootloader mode only enters if a flag is set after reset triggered by a successful reception of an image over the air. - By default, application starts at 0x4000. - Kinetis Thread Stack Over-the-Air (OTA) Firmware Update User’s Guide   mcu_flashloader The MCU flashloader is a specific implementation of the MCU bootloader. For the flashloader implementation, the MCU bootloader command interface is packaged as an executable that is loaded from flash and executed from RAM. This configuration allows the user application to be placed at the beginning of the on-chip flash where it is automatically launched upon boot from flash. Using the MCU flashloader to program a user application to the beginning of the flash makes this implementation of the bootloader a one-time programming aid. The MCU flashloader doesn't allow to jump to a different section after a timeout or button press like the other bootloaders, it's main purpose is to flash an application without the need of an external debugger, mainly used for factory programming. Summary: - It is pre-programmed into many Kinetis flash devices during manufacturing and enables flash programming without the need for a debugger. - After the user application is programmed into flash memory, the Kinetis flashloader is no longer available. - Documentation: Getting Started with the MCU Flashloader   You can select from the MCU Bootloader, FSCI_Bootloader and OTAP Bootloader, depending on your needs. JC
查看全文
Wireless communication systems require several different components or parts to achieve reliable systems. Components like the antenna, radio and XTAL are all key elements in wireless communication. Here however, the XTAL will be discussed. In the Kinetis W series, for example, the XTAL used for wireless operation is usually the oscillator also used as a core clock. Now, while this external oscillator is connected to the MCU, it is also connected to an internal programmable capacitor bank. What is the purpose of these capacitor banks? To allow frequency trimming. And why would you want to trim the frequency provided by this oscillator? Well, to properly adjust the central frequency to where it should be operating. This option exists because not every design is going to be the same: not the same PCB, not the same components, not the same manufacturing process. Thus, having the option to adjust the frequency provided by the external oscillator allows to any possible device to operate under the same conditions is essential. Let’s say your design is using a 32 MHz external oscillator, but because of the conditions of your whole design, the operating frequency ends up being slightly different. Now, if this design transmits over the air through 802.15.4, there could be some consequences to this slight shift in frequency. This capture shows a transmission made without being centered in the desired channel. This signal should be centered exactly on 2405 MHz, as specified by IEEE 802.15.4 channel 11. As you may see, in this case the frequency is actually centered on 2405.0259 MHz. Trimming these capacitors to change the frequency obtained from the oscillator can help to adjust error. In this case, the frequency was adjusted so that it was centered in the central frequency of the desired channel, to prevent any possible mistakes while transmitting to other devices. Once the XTAL is trimmed, the signal is effectively centered on 802.15.4 channel 11's frequency, 2405 MHz. Both transmit and receive are affected by incorrect frequency trim. Receiver performance is degraded when either (or both) of the transmitting or receiving stations have a frequency offset. And if both transmitting and receiving stations have frequency offsets in opposite directions the result is the receiver experiences the sum of the frequency offsets. Now, when trimming the frequency of a design, there are two possibilities: That the board layout design, board manufacturing and component selection have repeatable values of resistance, capacitance and inductance, resulting in a stable XTAL trim – The components and manufacturing process of the board are reliable enough, allowing you to characterize the XTAL trim during the system development and then use it every board during production. That the design and component selection do not result in a stable XTAL trim – If there is considerable variation between different boards of the same design or components used in the board manufacturing, you would need to implement a XTAL trim procedure during the production process, and somehow program that trim value into the device's NVM. For evaluation purposes, a manual adjustment could be done to a single device, modifying the corresponding XTAL trim register, and then including said adjustment in the evaluation application. The two posts linked explain how to modify and use the SMAC Connectivity Test demo to find the proper XTAL trim for KW40Z and KW41Z.
查看全文
This document is a supplement for USB MSC device bootloader revision for FRDM-KL25Z (IAR) written by Kai Liu and describes the bootloader support for FRDM-K64F. FTFE support, board specific and MCU specific code was added to the initial software. This porting work was done for connectivity purposes but it can be used as support for FRDM-K64F board. Please refer to USB-KW24D512  MSD Bootloader to find out how to use this bootloader, binary files upload and other restrictions. The bootloader has conditional jump to user application. The condition is the state of the SW2 button (PTC6). If the button is pressed (PTC6 grounded) during reset, the bootloader sequence will start, installing BOOTLOADER drive. Else if the button is released during reset, the SP and PC will be updated from address 0xC000. This means, the user application has to be designed so as to have 0xC000 application start address. If a valid SP and PC value is found at address 0xC000, the user application is launched. The bootloader application is located in the flash memory of the MK64FN1M0VLL12 microcontroller, from address 0x0000 to 0xBFFF, so the user application should not access this memory region. The bootloader software was tested under Microsoft Windows 10, Microsoft Windows 8, Microsoft Windows 7 and Ubuntu 14.04 operating systems. Attached files: USB_MSD_Bootloader.bin – boolader binary file for FRDM-K64; Pflash_1024KB_0xC000.icf – IAR linker file for user application development; Demos.7z - user application demo S record files for FRDM-K64F (got from Kinetis SDK demo list).
查看全文
Bluetooth Low Energy offers the ability to broadcast data in format of non-connectable advertising packets while not being in a connection. This GAP Advertisement is widely known as a beacon and there are currently different beacon formats on the market.   This guide will help you to create your own beacon scanner to detect from which type of device is the beacon received from. This guide it’s based on the frdmkw41z_wireless_examples_bluetooth_temperature_collector_freertos  demo in MCUXpresso  The first thing we will do it’s to disable the low power to make the development easier in the app_preinclude.h /* Enable/Disable PowerDown functionality in PwrLib */ #define cPWR_UsePowerDownMode 0‍‍‍‍‍‍   The following changes will be all performed in the temperature_collector.c file We will disable the timer so it keeps scanning the packets received   /* Start advertising timer TMR_StartLowPowerTimer(mAppTimerId, gTmrLowPowerSecondTimer_c, TmrSeconds(gScanningTime_c), ScanningTimeoutTimerCallback, NULL); */‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍   Then we will define some of the data we want to use as a reference. static uint8_t NXPAd[3] = { /* Company Identifier*/ mAdvCompanyId, /* Beacon Identifier */ 0xBC }; ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍   static uint8_t iBeaconAd[2] = { 0x4C, 0x00 };‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ static uint8_t EddyStoneUIDAd2[3] = { /* ID */ 0xAA, 0xFE, /* Frame Type */ 0x00 }; ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍     static const uint8_t EddyStoneURLAd2[3] = { /* ID */ 0xAA, 0xFE, /* Frame Type */ 0x10 };‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍     static const uint8_t EddyStoneTLMAd2[3] = { /* ID */ 0xAA, 0xFE, /* Frame Type */ 0x20 };‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍   Once we have those definitions of the beacon structure of each of the types wanted we will change the function static bool_t CheckScanEvent(gapScannedDevice_t* pData) static bool_t CheckScanEvent(gapScannedDevice_t* pData) { uint8_t index = 0; bool_t foundMatch = FALSE; bool_t EddyfoundMatch = FALSE; while (index < pData->dataLength) { gapAdStructure_t adElement; adElement.length = pData->data[index]; adElement.adType = (gapAdType_t)pData->data[index + 1]; adElement.aData = &pData->data[index + 2]; /*DESIRED BEACON SCANNER PARSER CODE */ /* Move on to the next AD elemnt type */ index += adElement.length + sizeof(uint8_t); } if (foundMatch) { SHELL_NEWLINE(); shell_write("\r\Address : "); shell_writeHex(pData->aAddress, 6); } return foundMatch; }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍   As you can see, there is a comment in the function that mentions the need to add the scanner parser code, depending on the beacon you want to see  will be the code to use there  NXP if (FLib_MemCmp(NXPAD, (adElement.aData), 2)) { shell_write("\r\nFound NXP device!"); SHELL_NEWLINE(); shell_write("\r\nData Received: "); shell_writeHex(adElement.aData, adElement.length); foundMatch=TRUE; }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍   iBeacon if (FLib_MemCmp(iBeaconAd, (adElement.aData), 2)) { shell_write("\r\nFound iBeacon device!"); SHELL_NEWLINE(); shell_write("\r\nData Received: "); shell_writeHex(adElement.aData, adElement.length); foundMatch=TRUE; }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Eddystone if (FLib_MemCmp(EddyStoneUIDAd1, (adElement.aData), 2)) { shell_write("\r\nFound EddyStone device!"); if (!EddyfoundMatch) { EddyfoundMatch=TRUE; } else{ if(TRUE==EddyfoundMatch && FLib_MemCmp(EddyStoneUIDAd2, (adElement.aData), 3)) { SHELL_NEWLINE(); shell_write("\r\n[UID type] Data Received: "); shell_writeHex(adElement.aData, adElement.length); foundMatch=TRUE; EddyfoundMatch=FALSE; } else if(TRUE==EddyfoundMatch && FLib_MemCmp(EddyStoneURLAd2, (adElement.aData), 3)) { SHELL_NEWLINE(); shell_write("\r\n[URL type] Data Received: "); hell_writeHex(adElement.aData, adElement.length); foundMatch=TRUE; EddyfoundMatch=FALSE; } else if(TRUE==EddyfoundMatch && FLib_MemCmp(EddyStoneTLMAd2, (adElement.aData), 3)) { SHELL_NEWLINE(); shell_write("\r\n[TLM type] Data Received: "); shell_writeHex(adElement.aData, adElement.length); foundMatch=TRUE; EddyfoundMatch=FALSE; } else { EddyfoundMatch=TRUE; } } }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍
查看全文
       The article will describe how to configure A2DP audio application Based On NXP platform and WIFI/BT chipset step by step. Users can easily make her A2DP audio based on NXP WIFI module work normally by following steps in the article. Environment for the validation Hardware Platform        i.MX8MN-EVK Software Kernel version: L5.4.70_2.3.0 rootfs : imx-image-multimedia WiFi module        AW-CM358SM: NXP 88W8987 chipset   For more detailed information, see attachment, please!   NXP CAS-TIC wireless MCU team Weidong Sun    
查看全文
I´m going to explain how configure the RTC_CLKOUT pin and the different outputs that you can get with the KW40Z board. First it must be clear that the next configuration are based to use any demo of the KW40Z_Connectivity_Software_1.0.1 and also must to use the IAR Embedded Workbench. Now that you have all the software installed follow the next instructions. Configure the pin In the Reference Manual you will realize that each pin has different ways to configure it, in our case the pin that we are going to use is the PTB3 with a MUX = 7. The mux 7 is the RTC_CLKOUT. Figure 1. PTB3 mux configuration The KSDK have many functions that initializes the ports and the different peripherals. The configure_rtc_pins() function initialize the RTC_CLKOUT pin, you can find it in the pin_mux.h file. You must add the two functions in the hardware_init() function, that is declared in hardware_init.c file. The hardware_init() function must be like show next: void hardware_init(void) {      ...      ...      NV_ReadHWParameters(&gHardwareParameters); configure_rtc_pins(0); } Enable the RTC module. Now that the pin is already configure, you have to initialize the RTC module and the 32 KHz oscillator. You must understand that the RTC module can work with different clock sources (LPO,EXTAL_32K and OSC32KCLK) and it can be reflected through the RTC_CLKOUT pin. The register that change the clock source is the SIM_SOPT1 with OSC32KOUT(17-16) and OSC32KSEL(19-18) these are the names of the register bits. The OSC32KOUT(17-16) enable/disable the output of ERCLK32K on the selected pin in our case is the PTB3. You can configure with two options. 00     ERCLK32K is not output. 01     ERCLK32K is output on PTB3. The OSC32KSEL(19-18) selects the output clock, they have 3 option like show in the next image. Figure 2. Mux of the register SIM_SOPT1 The follow table show the different outputs that you can get in the RTC_CLKOUT pin, you only have to modify the OSC32KOUT and OSC32KSEL in the register SIM_SOPT1. Figure 3. Output of RTC_CLKOUT pin. Like the configuration of the pin, KSDK have function that initialize the RTC module and the 32 KHz oscillator. The RTC_DRV_Init(0) function initialize the RTC module and is declared in fsl_rtc_driver.h file, the BOARD_InitRtcOsc() function enable the RTC oscillator and is in the board.h file, the RTC_HAL_EnableCounter() enable the TCE(Timer Counter Enable) that is in the fsl_rtc_hal.h file and finally the SIM_SOPT1_OSC32KOUT() enable/disable the ERCLK32K for the RTC_CLKOUT(PTB3) and SIM_SOPT1_OSC32KSEL() selects the output clock. To enable the RTC module copy the next code: RTC_Type *rtcBase = g_rtcBase[0];//The RTC base address BOARD_InitRtcOsc(); RTC_DRV_Init(0); RTC_HAL_EnableCounter(rtcBase, true); SIM_SOPT1 = SIM_SOPT1_OSC32KOUT(0)|SIM_SOPT1_OSC32KSEL(0);      //Your RTC_CLKOUT is 1Hz with this configuration NOTE: Don’t forget to add the header necessary in the file that you are using. Enjoy it! :smileygrin:
查看全文
This document describes how to add additional endpoints to the Router application in the AN12061-MKW41Z-AN-Zigbee-3-0-Base-Device Application Note.   The Router application's main endpoint acts as a light controlled by the On/Off cluster acting as a Server. The steps below describe how to add two new endpoints with On/Off clusters acting as clients.   Note that these changes only go as far as making the new endpoints discoverable, no functionality has been added to read inputs and transmit commands from the new endpoints. Router/app_zcl_cfg.h The first step is to add the new endpoints (Switch1, Switch2) into ZCL configuration file. /* Endpoints */ #define ROUTER_ZDO_ENDPOINT         (0) #define ROUTER_APPLICATION_ENDPOINT (1) #define ROUTER_SWITCH1_ENDPOINT     (2) #define ROUTER_SWITCH2_ENDPOINT     (3) Router/app_zps_cfg.h The second step is to update the ZigBee Configuration file to increase the simple descriptor table size from 2 to 4, as it is the number of application endpoints (3 in our case) + 1 (ZDO endpoint).  : /*****************************************************************************/ /* ZPS AF Layer Configuration Parameters */ /*****************************************************************************/ #define AF_SIMPLE_DESCRIPTOR_TABLE_SIZE 4 Router/app_zcl_globals.c The third step is to update the ZigBee cluster Configuration file to add the new endpoints (Switch1, Switch2) and their clusters to the Router application. For that one need to change the Configured endpoint from 1 to 3 and also the Endpoint Map list present as below: PUBLIC uint8 u8MaxZpsConfigEp = 3; PUBLIC uint8 au8EpMapPresent[3] = { ROUTER_APPLICATION_ENDPOINT,ROUTER_SWITCH1_ENDPOINT,ROUTER_SWITCH2_ENDPOINT }; The Switch 1 and Switch 2 contains Basic Cluster (0x0000) Server and Client, Identify Cluster (0x0003) Server and Client, OnOff Cluster (0x0006) Client, Group Cluster (0x004) Client. The clusters are added to the Input cluster list (Server side) and output cluster list (Client side) but made discoverable using DiscFlag only for the cluster list which is enabled. So, assuming you need to add OnOff cluster client, you would need to use add the cluster id (0x0006 for OnOff) into input cluster list (Server side of cluster) and output cluster list (Client side of the cluster) and make it discoverable for output cluster list as it is a client cluster. PRIVATE const uint16 s_au16Endpoint2InputClusterList[5] = { HA_BASIC_CLUSTER_ID, HA_GROUPS_CLUSTER_ID, HA_IDENTIFY_CLUSTER_ID,\ HA_ONOFF_CLUSTER_ID, HA_DEFAULT_CLUSTER_ID, }; PRIVATE const PDUM_thAPdu s_ahEndpoint2InputClusterAPdus[5] = { apduZCL, apduZCL, apduZCL, apduZCL, apduZCL, }; PRIVATE uint8 s_au8Endpoint2InputClusterDiscFlags[1] = { 0x05 }; PRIVATE const uint16 s_au16Endpoint2OutputClusterList[4] = { HA_BASIC_CLUSTER_ID, HA_GROUPS_CLUSTER_ID, HA_IDENTIFY_CLUSTER_ID,\ HA_ONOFF_CLUSTER_ID, }; PRIVATE uint8 s_au8Endpoint2OutputClusterDiscFlags[1] = { 0x0f }; PRIVATE const uint16 s_au16Endpoint3InputClusterList[5] = { HA_BASIC_CLUSTER_ID, HA_GROUPS_CLUSTER_ID, HA_IDENTIFY_CLUSTER_ID,\ HA_ONOFF_CLUSTER_ID, HA_DEFAULT_CLUSTER_ID, }; PRIVATE const PDUM_thAPdu s_ahEndpoint3InputClusterAPdus[5] = { apduZCL, apduZCL, apduZCL, apduZCL, apduZCL, }; PRIVATE uint8 s_au8Endpoint3InputClusterDiscFlags[1] = { 0x05 }; PRIVATE const uint16 s_au16Endpoint3OutputClusterList[4] = { HA_BASIC_CLUSTER_ID, HA_GROUPS_CLUSTER_ID, HA_IDENTIFY_CLUSTER_ID,\ HA_ONOFF_CLUSTER_ID, }; PRIVATE uint8 s_au8Endpoint3OutputClusterDiscFlags[1] = { 0x0f }; Now add these newly added endpoints as part of Simple Descriptor structure and initialize the structure (see the declaration of zps_tsAplAfSimpleDescCont and ZPS_tsAplAfSimpleDescriptor structures to understand how to correctly fill the various parameters) correctly as below : PUBLIC zps_tsAplAfSimpleDescCont s_asSimpleDescConts[AF_SIMPLE_DESCRIPTOR_TABLE_SIZE] = { {    {       0x0000,       0,       0,       0,       84,       84,       s_au16Endpoint0InputClusterList,       s_au16Endpoint0OutputClusterList,       s_au8Endpoint0InputClusterDiscFlags,       s_au8Endpoint0OutputClusterDiscFlags,    },    s_ahEndpoint0InputClusterAPdus,    1 }, {    {       0x0104,       0,       1,       1,       5,       4,       s_au16Endpoint1InputClusterList,       s_au16Endpoint1OutputClusterList,       s_au8Endpoint1InputClusterDiscFlags,       s_au8Endpoint1OutputClusterDiscFlags,    },    s_ahEndpoint1InputClusterAPdus,    1 }, {    {       0x0104,       0,       1,       2,       5,       4,       s_au16Endpoint2InputClusterList,       s_au16Endpoint2OutputClusterList,       s_au8Endpoint2InputClusterDiscFlags,       s_au8Endpoint2OutputClusterDiscFlags,     },     s_ahEndpoint2InputClusterAPdus,    1 }, {    {       0x0104,       0,       1,       3,       5,       4,       s_au16Endpoint3InputClusterList,       s_au16Endpoint3OutputClusterList,       s_au8Endpoint3InputClusterDiscFlags,       s_au8Endpoint3OutputClusterDiscFlags,    },    s_ahEndpoint3InputClusterAPdus,    1 }, }; Router/zcl_options.h This file is used to set the options used by the ZCL.   Number of Endpoints The number of endpoints is increased from 1 to 3: /* Number of endpoints supported by this device */ #define ZCL_NUMBER_OF_ENDPOINTS                              3   Enable Client Clusters The client cluster functionality for the new endpoints is enabled: /****************************************************************************/ /*                             Enable Cluster                               */ /*                                                                          */ /* Add the following #define's to your zcl_options.h file to enable         */ /* cluster and their client or server instances                             */ /****************************************************************************/ #define CLD_BASIC #define BASIC_SERVER #define BASIC_CLIENT #define CLD_IDENTIFY #define IDENTIFY_SERVER #define IDENTIFY_CLIENT #define CLD_GROUPS #define GROUPS_SERVER #define GROUPS_CLIENT #define CLD_ONOFF #define ONOFF_SERVER #define ONOFF_CLIENT   Router/app_zcl_task.c Base Device Data Structures The structures that store data for the new Base Devices associated with the new endpoints are created: /****************************************************************************/ /***        Exported Variables                                            ***/ /****************************************************************************/ tsZHA_BaseDevice sBaseDevice; tsZHA_BaseDevice sBaseDeviceSwitch1; tsZHA_BaseDevice sBaseDeviceSwitch2;   Register Base Device Endpoints - APP_ZCL_vInitialise() The two new Base Devices and their endpoints are registered with the stack to make them available: if (eZCL_Status != E_ZCL_SUCCESS) {           DBG_vPrintf(TRACE_ZCL, "Error: eZHA_RegisterBaseDeviceEndPoint(Light): %02x\r\n", eZCL_Status); } /* Register Switch1 EndPoint */ eZCL_Status =  eZHA_RegisterBaseDeviceEndPoint(ROUTER_SWITCH1_ENDPOINT,                                                           &APP_ZCL_cbEndpointCallback,                                                           &sBaseDeviceSwitch1); if (eZCL_Status != E_ZCL_SUCCESS) {           DBG_vPrintf(TRACE_ZCL, "Error: eZHA_RegisterBaseDeviceEndPoint(Switch1): %02x\r\n", eZCL_Status); } /* Register Switch2 EndPoint */ eZCL_Status =  eZHA_RegisterBaseDeviceEndPoint(ROUTER_SWITCH2_ENDPOINT,                                                           &APP_ZCL_cbEndpointCallback,                                                           &sBaseDeviceSwitch2); if (eZCL_Status != E_ZCL_SUCCESS) {           DBG_vPrintf(TRACE_ZCL, "Error: eZHA_RegisterBaseDeviceEndPoint(Switch2): %02x\r\n", eZCL_Status); }   Factory Reset Functionality - vHandleClusterCustomCommands() The two new Base Devices are factory reset by re-registering them when the Reset To Factory Defaults command is received by the Basic cluster server: case GENERAL_CLUSTER_ID_BASIC: {      tsCLD_BasicCallBackMessage *psCallBackMessage = (tsCLD_BasicCallBackMessage*)psEvent->uMessage.sClusterCustomMessage.pvCustomData;      if (psCallBackMessage->u8CommandId == E_CLD_BASIC_CMD_RESET_TO_FACTORY_DEFAULTS )      {           DBG_vPrintf(TRACE_ZCL, "Basic Factory Reset Received\n");           FLib_MemSet(&sBaseDevice,0,sizeof(tsZHA_BaseDevice));           APP_vZCL_DeviceSpecific_Init();           eZHA_RegisterBaseDeviceEndPoint(ROUTER_APPLICATION_ENDPOINT,                                                   &APP_ZCL_cbEndpointCallback,                                                   &sBaseDevice);           eZHA_RegisterBaseDeviceEndPoint(ROUTER_SWITCH1_ENDPOINT,                                                   &APP_ZCL_cbEndpointCallback,                                                   &sBaseDeviceSwitch1);           eZHA_RegisterBaseDeviceEndPoint(ROUTER_SWITCH2_ENDPOINT,                                                   &APP_ZCL_cbEndpointCallback,                                                   &sBaseDeviceSwitch2);      } } break;   Basic Server Cluster Data Initialisation - APP_vZCL_DeviceSpecific_Init() The default attribute values for the Basic clusters are initialized: sBaseDevice.sOnOffServerCluster.bOnOff = FALSE; FLib_MemCpy(sBaseDevice.sBasicServerCluster.au8ManufacturerName, "NXP", CLD_BAS_MANUF_NAME_SIZE); FLib_MemCpy(sBaseDevice.sBasicServerCluster.au8ModelIdentifier, "BDB-Router", CLD_BAS_MODEL_ID_SIZE); FLib_MemCpy(sBaseDevice.sBasicServerCluster.au8DateCode, "20150212", CLD_BAS_DATE_SIZE); FLib_MemCpy(sBaseDevice.sBasicServerCluster.au8SWBuildID, "1000-0001", CLD_BAS_SW_BUILD_SIZE); sBaseDeviceSwitch1.sOnOffServerCluster.bOnOff = FALSE; FLib_MemCpy(sBaseDeviceSwitch1.sBasicServerCluster.au8ManufacturerName, "NXP", CLD_BAS_MANUF_NAME_SIZE); FLib_MemCpy(sBaseDeviceSwitch1.sBasicServerCluster.au8ModelIdentifier, "BDB-Sw1", CLD_BAS_MODEL_ID_SIZE); FLib_MemCpy(sBaseDeviceSwitch1.sBasicServerCluster.au8DateCode, "20170310", CLD_BAS_DATE_SIZE); FLib_MemCpy(sBaseDeviceSwitch1.sBasicServerCluster.au8SWBuildID, "1000-0001", CLD_BAS_SW_BUILD_SIZE); sBaseDeviceSwitch2.sOnOffServerCluster.bOnOff = FALSE; FLib_MemCpy(sBaseDeviceSwitch2.sBasicServerCluster.au8ManufacturerName, "NXP", CLD_BAS_MANUF_NAME_SIZE); FLib_MemCpy(sBaseDeviceSwitch2.sBasicServerCluster.au8ModelIdentifier, "BDB-Sw2", CLD_BAS_MODEL_ID_SIZE); FLib_MemCpy(sBaseDeviceSwitch2.sBasicServerCluster.au8DateCode, "20170310", CLD_BAS_DATE_SIZE); FLib_MemCpy(sBaseDeviceSwitch2.sBasicServerCluster.au8SWBuildID, "1000-0001", CLD_BAS_SW_BUILD_SIZE);   Router/app_zcl_task.h The Base Device Data structures are made available to other modules: /****************************************************************************/ /***        Exported Variables                                            ***/ /****************************************************************************/ extern tsZHA_BaseDevice sBaseDevice; extern tsZHA_BaseDevice sBaseDeviceSwitch1; extern tsZHA_BaseDevice sBaseDeviceSwitch2;   Router/app_router_node.c Enable ZCL Event Handler - vAppHandleAfEvent() Data messages addressed to the two new endpoints are passed to the ZCL for processing: if (psZpsAfEvent->u8EndPoint == ROUTER_APPLICATION_ENDPOINT ||  psZpsAfEvent->u8EndPoint == ROUTER_SWITCH1_ENDPOINT ||  psZpsAfEvent->u8EndPoint == ROUTER_SWITCH2_ENDPOINT) {      DBG_vPrintf(TRACE_APP, "Pass to ZCL\n");      if ((psZpsAfEvent->sStackEvent.eType == ZPS_EVENT_APS_DATA_INDICATION) ||           (psZpsAfEvent->sStackEvent.eType == ZPS_EVENT_APS_INTERPAN_DATA_INDICATION))      {           APP_ZCL_vEventHandler( &psZpsAfEvent->sStackEvent);       } }
查看全文