无线连接知识库

取消
显示结果 
显示  仅  | 搜索替代 
您的意思是: 

Wireless Connectivity Knowledge Base

讨论

排序依据:
As documented in the MCX W23 [ERRATA] for WLCSP packaged devices, Tx modulation quality can potentially be violated on 2 data channels
查看全文
In modern embedded systems, precise and reliable clocking is fundamental to the correct operation of digital peripherals. Microcontrollers like NXP’s KW45 and MCXW71 rely on internal oscillators to provide timing references for peripherals such as UART, SPI, timers, and ADCs. One such oscillator is the 6 MHz Free Running Oscillator (FRO6M), which is commonly used as a default clock source. This article provides a comprehensive guide to: Selecting and configuring alternative clock sources Choosing an alternative clock source The KW45/MCXW71 microcontroller offers several alternatives, including the Free Running Osilator 192Mhz (FRO192), the RF_OSC , and external crystal oscillators. Each option has its own advantages: FRO192 is stable and available, and external oscillators provide long-term accuracy. The choice of clock source should be based on the peripheral’s timing requirements, power constraints, and the availability of the clock in the current operating mode. Reconfiguring Peripheral Clock Sources Reconfiguring a peripheral’s clock source in KW45 is straightforward using the SDK’s clock management APIs. The function CLOCK_SetIpSrc() allows developers to assign a new clock source to a specific peripheral. Example on changing a UART clocking from FRO6M to other clocksource. UART peripheral connected to FRO6M   uint32_t uartClkSrcFreq = BOARD_DEBUG_UART_CLK_FREQ; CLOCK_SetIpSrc(kCLOCK_Lpuart1, kCLOCK_IpSrcFro6M); DbgConsole_Init(BOARD_DEBUG_UART_INSTANCE, BOARD_DEBUG_UART_BAUDRATE, BOARD_DEBUG_UART_TYPE, uartClkSrcFreq);   For example, to switch a UART from FRO6M to FRO-192M, the following code can be used: //Replace kCLOCK_Lpuart1 for your peripheral for clicking CLOCK_SetIpSrc(kCLOCK_Lpuart1, kCLOCK_IpSrcFro192M); Also in the example above we would have to set the  uint32_t uartClkSrcFreq  variable to the correct freq value corresponding to the FRO192M as it is being used as clock source, but the same logic applies to any other clock source for the peripheral.   Other clocking changes for modules can be done as shown in this examples: //Change clock source for LPIT 0 module from 6M FRO to other clocksources /* Iniital source for the LPIT module */ CLOCK_SetIpSrc(kCLOCK_Lpit0, kCLOCK_IpSrcFro6M); /* Set the new source for the LPIT 0 module */ CLOCK_SetIpSrc(kCLOCK_Lpit0, kCLOCK_IpSrcFro192M); /* Set the corresponding divider for application, need to be decided by developer*/ CLOCK_SetIpSrcDiv(kCLOCK_Lpit0, 15U); /* Set the source for the TPM 0 module */ CLOCK_SetIpSrc(kCLOCK_Tpm0, kCLOCK_IpSrcFro6M); /* Set the source for the TPM 0 module */ CLOCK_SetIpSrc(kCLOCK_Tpm0, kCLOCK_IpSrcFro192M); /* Set the corresponding divider for application, need to be decided by developer*/ CLOCK_SetIpSrcDiv(kCLOCK_Tpm0, 3U); //Change clock source for Luart 1 module from 6M FRO to other clocksources CLOCK_SetIpSrc(kCLOCK_Lpuart1, kCLOCK_IpSrcFro6M); /* Set the source for the Lpuart 1 module */ CLOCK_SetIpSrc(kCLOCK_Lpuart1, kCLOCK_IpSrcFro192M); uartClkSrcFreq = CLOCK_GetIpFreq(kCLOCK_Lpuart1); DbgConsole_Init(BOARD_DEBUG_UART_INSTANCE, BOARD_DEBUG_UART_BAUDRATE, BOARD_DEBUG_UART_TYPE, uartClkSrcFreq); After changing the clock source, it is important to reinitialize the peripheral to ensure that timing parameters such as baud rate, prescaler, or sampling intervals are correctly recalculated. This step ensures that the peripheral operates reliably with the new clock configuration. Those were some examples on changing clock sources for some peripherals, but the same logic can be applied to any other module or peripheral, those examples were taken from SDK 2.16.00 as an example on how a module configured with a clock source can be switched to another.
查看全文
The customer submitted a case through DFAE to seek support from NXP. They designed the product using PN5180, and according to feedback, about 10% of the boards could not read the card. The specific manifestation of the problem is: after the host issues the RF_ON command, RF field seems cannot be turned on and then fails to detect the card. Therefore, it can be seen that the problem should be on TX, not RX. The customer's device does not enable DPC and LPCD.
查看全文
NXP wireless solutions build upon decades of Wi-Fi, Bluetooth®, multiprotocol silicon, software and system design expertise, including 802.15.4 in the latest tri-radio architectures. NXP is committed to driving large-scale deployment across multiple markets by a broad array of power- and cost-optimized Wi-Fi, Bluetooth and 802.15.4 transceivers, enabling products with advanced Wi-Fi and multiradio capabilities including Wi-Fi 4, Wi-Fi 5 and Wi-Fi 6 chips.   Market Product Wi-Fi Spec Wi-Fi Support Summary  IoT IW623 802.11ax (Wi-Fi 6E) 2x2 Tri-band (2.4G/5/7 GHz) + 1x1 Single Band (2.4 GHz) supports Wi-Fi 6E, with a high-performance 2x2 tri-band module for fast and flexible connectivity, plus an extra 1x1 2.4 GHz module likely for compatibility or low-power tasks IoT IW693 802.11ax (Wi-Fi 6/6E) CDW 2x2 Dual Band (5-7 GHz) + 1x1 Single Band (2.4 GHz) High-speed, low-latency connectivity on modern bands (5 and 6 GHz). Compatibility with older devices via 2.4 GHz A 2x2 MIMO setup for better performance, plus a 1x1 fallback for basic connections IoT IW610 802.11ax (Wi-Fi 6) 1x1 DB (2.4/5 GHz)   IoT IW612 802.11ax (Wi-Fi 6) 1x1 DB (2.4/5 GHz)   IoT IW611 802.11ax (Wi-Fi 6) 1x1 DB (2.4/5 GHz)   IoT IW620 802.11ax (Wi-Fi 6) 2x2 DB (2.4/5 GHz)   IoT IW416 802.11n (Wi-Fi 4) 1x1 DB (2.4/5 GHz)       Markets Product Wi-Fi Spec Wi-Fi Support Summary Wireless MCU Hostless RW612 802.11ax (Wi-Fi 6) 1x1 DB (2.4/5 GHz) supports Wi-Fi 6, has a single antenna (1x1), and can connect to both 2.4 GHz and 5 GHz networks. Wireless MCU Hostless RW610 802.11ax (Wi-Fi 6) 1x1 DB (2.4/5 GHz) supports Wi-Fi 6, has a single antenna (1x1), and can connect to both 2.4 GHz and 5 GHz networks.   Markets Product Wi-Fi Spec Wi-Fi Support Automotive AW692 802.11ax (Wi-Fi 6) 2x2 + 1x1 CDW DB (2.4/5GHz + 2.4Ghz) Automotive AW693 802.11ax (Wi-Fi 6E) 2x2 + 1x1 CDW TB (2.4/5/6Ghz + 2.4Ghz) Automotive AW611 802.11ax (Wi-Fi 6) 1x1 DB (2.4/5 GHz) Automotive AW690 802.11ax (Wi-Fi 6) 1x1 CDW DB (2.4/5 GHz)   Wireless Module Partners Leading wireless connectivity solution providers offer NXP wireless modules in their wireless connectivity solutions. Module manufacturers develop Wi-Fi modules using NXP’s broad portfolio of Wi-Fi chips (system-on-chip (SoC)), including Wi-Fi 6 chips, Wi-Fi and Bluetooth® combo integrated circuits (ICs) and tri-radio SoCs with 802.15.4. NXP enables a broad range of wireless applications with an ecosystem of wireless module partners.   Why Use a Module Vendor? Accelerate time-to-market Avoid the complexity of RF design and testing Ensure regulatory compliance more easily (e.g. FCC, CE, ISED) Focus on the host product’s functionality while relying on the vendor for wireless performance   Useful Links Wi-Fi Basic concepts: This post provides information about the different terms used in Wi-Fi, 802.11 standards and the three types of 802.11 MAC frames. Wi-Fi Security Concepts: This post covers the security and authentication processes  Wi-Fi Connection/Disconnection process: In 802.11 standards, the connection procedure includes three major steps that shall be performed to make the device part of the Wi-Fi network and communicate in the network. Wi-Fi Software Drivers Locations: NXP Recommends using Wi-Fi source code drivers WiFi_BT_Integretation-(Linux_BSP_compilation_for_iMX_platform): This article describes how to compile the Linux BSP of the i.MX platform under ubuntu 18.04, 20.04 LTS and debian-10. This is a necessary step to integrate WIFI/BT to the I.MX platform. See the attachment for detailed steps. Enabling i.MX8MP-EVK uSDHC1 M.2 for Wi-Fi on Android-11.0.0_2.6.0: Detailed steps on enabling usdhc1 NXP Wi-Fi and Bluetooth Product:  The article will introduce how to build Wi-Fi Mass Market Driver Wi-Fi Firmware Automatic Recovery on RW61x: This article introduces the Wi-Fi automatic recovery feature as well as how to enable and verify it on RW61x SDK. Access Point Wi-Fi configuration on i.MX8 Family: This guide explains how to achieve that, using the i.MX8M Plus EVK (8MP) as the AP device and the i.MX8M Mini EVK (8MM) as the connected device. How to connect to a Wi-Fi network on i.MX8MP: this article guides you step by step how to connect to a Wi-Fi network NXP Wi-Fi/Bluetooth firmware on the i.MX8M series: steps to replace Wi-Fi/Bluetooth firmware on the i.MX8M series on Linux Enabling Wi-Fi on Zephyr projects with the FRDM-RW612: In this guide, we'll modify the mqtt_publisher example—originally designed for Ethernet—to work with Wi-Fi instead Training FRDM-iMX91 connectivity Wi-Fi Basic Hands-on FRDM-iMX91 connectivity Wi-Fi Bluetooth LE and OT COEX RW612/MCXW71 - Wi-Fi and thread border router Training FRDM-RW612 Getting Started, Wi-Fi CLI on VScode Community Support If you have questions regarding this training, please leave your comments in our Wireless MCU Community! here 
查看全文
See the necessary steps to enable additional SDK components for a project when using GitHub SDK and Kconfig/CMake.
查看全文
KW43 uses dual Arm Core ‘CM33’ and supports multiple interfaces and security features. One instance of the Arm core is used for System use and other one is for Radio/Wireless applications and shared single 1.5MB FLASH for program execution. Pin-to-pin compatibility with KW47/KW45: Please refer to the sildes attached below for the pin-to-pin compatibility, thanks.  
查看全文
The slides were prepared for European School of Antennas at Carlos III University in Madrid. The contents: - About NXP and wireless controllers - About channel sounding and NXP solutions - Design of CS antennas and functional tests - CS antenna arrays and CS localization
查看全文
Matter is the industry-unifying standard from the Connectivity Standards Alliance that is delivering reliable, secure and interoperable connectivity for smart home devices, ensuring that they will work seamlessly together, today and tomorrow. From connectivity to security, processing and software, NXP offers complete end-to-end solutions for accelerating the development of Matter-enabled devices and is focused on helping our customers overcome the complexity and challenges that come with developing around this game-changing technology.   Getting Started Our investment in Matter starts with easing the development experience for adopting Matter in existing or new designs. With the breadth and scale of our portfolios, we scale to the system level to enable the autonomous edge - bringing intelligence to the edge. This approach provides developers with integrated platforms for the processing, connectivity and security requirements to go from prototype to production faster.   Matter Open-Source Protocol Compatible Products    Matter (previously known as Project CHIP) is a single, unified, application-layer connectivity standard designed to enable developers to connect and build reliable, secure IoT ecosystems and increase compatibility among Smart Home and Building devices. Backed by major brands and developed through collaboration within the Connectivity Standards Alliance (previously known as the Zigbee Alliance), Matter is an open-source royalty-free connectivity standard built with market-proven technologies using Internet Protocol (IP) and compatible with Thread and Wi-Fi network transports.   Useful Links   Getting Started with MCUXpresso for VS Code: Matter on Windows (24.12.71) MCUXpresso extension for VS Code v24.12.71 integrates the Matter toolchain for development on Windows, macOS and Linux.    Understanding Matter Terminology   Matter Is What's Cooking and NXP Has All the Right Ingredients     Matter GitHub Links    Releases Matter 
查看全文
This article shares 2 step by step methods to create P2P connections between 2 IW612 modules. One is not setting pin code, another is setting pin code. And also shares local test results and printed logs for your reference. The basic environment: Hardware: 2 IW612 modules(Murata LBES5PL2EL) + I.MX93-EVK Software: Linux 6.12.20 Wi-Fi Driver and FW version = SDIW612---w9177o-V1, SDIO, FP99, 18.99.3.p25.7-MM6X18537.p9-GPL-(FP92) As a reference, you can also test on other NXP's Wi-Fi products based on Linux OS.   Best regards, Christine.
查看全文