ワイヤレス接続に関するナレッジベース

キャンセル
次の結果を表示 
表示  限定  | 次の代わりに検索 
もしかして: 

Wireless Connectivity Knowledge Base

ディスカッション

ソート順:
Introduction Over The Air Programming (OTAP) is a Bluetooth LE custom NXP's service that provides a solution to upgrade the software running in the microcontroller. This document guides to load a new software image in a KW38 device through (Over The Air Programming) OTAP Bluetooth LE service. Software Requirements MCUXpresso IDE or IAR Embedded Workbench IDE. FRDM-KW38 SDK. IoT Toolbox App, available for Android and iOS. You can also download the APK of the IoT Toolbox App from this post: IoT Toolbox for Android  Hardware Requirements FRDM-KW38 board. A smartphone with IoT Toolbox App. KW38 Flash Memory Used by the OTAP Client Software During the Update Process By default, the 512KB KW38 flash memory is partitioned into: One 256KB Program Flash array (P-Flash) divided into 2KB sectors with a flash address range from 0x0000_0000 to 0x0003_FFFF. One 256KB FlexNVM array divided into 2KB sectors with address range from 0x1000_0000 to 0x1003_FFFF. Alias memory with address range from 0x0004_0000 to 0x0007_FFFF. Writes or reads at the Alias memory modifies or returns the FlexNVM content, respectively. In other words, Alias memory is another way to refer to FlexNVM memory using different addresses. The following statements simplify how does the OTAP service work:   The OTAP application consists of two independent parts, OTAP bootloader, and OTAP client. The OTAP bootloader verifies if there is a new image available in the OTAP client to reprogram the device. The OTAP client software, on the other hand, provides the Bluetooth LE custom service needed to communicate the OTAP client device (device to be reprogrammed) with the OTAP server device (device that contains the image to reprogram the OTAP client device). Therefore, to prepare the software for the first time, the OTAP client device needs to be programmed twice, first with the OTAP bootloader, and then with the OTAP client software. The mechanism created to have two different software coexisting in the same device is storing each one in different memory regions. This is achieved by indicating to the linker file different memory regions on each individual software. For the KW38 device, the OTAP bootloader has reserved an 8KB slot from 0x0000_0000 to 0x0000_1FFF, thus the rest of the memory is reserved, among other things, by the OTAP client software.     When generating the new image file for the OTAP client device, we need to specify to the linker file that the code will be placed with an offset of 8KB (as the OTAP client software does), since these address range must be preserved to do not overwrite the OTAP bootloader. The new application should also contain the bootloader flags at the corresponding address to work properly (later we will return to this point).     While OTAP client and OTAP server devices are connected, and the download is in progress, the OTAP server device sends the image packets (known as chunks) to the OTAP client device via Bluetooth LE. The OTAP client device can store these chunks, in the external SPI flash (which is already populated on the FRDM-KW38) or in the on-chip FlexNVM region. The destination for these chunks is selectable in the OTAP client software (This post will give the instructions to modify the destination).     When the transfer of the image has finished, and all chunks were sent from the OTAP server device to the OTAP client device, the OTAP client software writes information such as the source of the software update (either external flash or FlexNVM) in a portion of memory known as bootloader flags. Then the OTAP client performs a software reset on the MCU to execute the OTAP bootloader code. Then, the OTAP bootloader code reads the bootloader flags to get the information needed to reprogram the device with the new application. See the following flow diagram which explains the flow of both applications.   Because the new application was built with an offset of 8KB, the OTAP bootloader programs the device starting from the 0x0000_2000 address, so, in consequence, the OTAP client application is overwritten by the new image. Then, the OTAP bootloader moves the flow of the application to start the execution of the new code.     In practice, the boundary between the OTAP client software and the software update when FlexNVM storage is enabled described in statement 3 is not placed exactly in the boundary of the P-Flash and FlexNVM memory regions, moreover, these values might change depending on your linker settings. To know where is located the boundary, you should inspect the effective memory addressing in your project.        Configuring and Programming OTAP Client Software in IAR Embedded Workbench IDE As mentioned in the last section, to complete the software for OTAP implementation, there are required two software programmed in your FRDM-KW38, OTAP bootloader and OTAP client. This section guides you to program and configure the settings to choose between external or internal storage using the IAR Embedded Workbench IDE. 1- The first step is to program the OTAP bootloader in your KW38. Unzip your SDK and then locate the OTAP bootloader software in the following path: <KW38_SDK>\boards\frdmkw38\wireless_examples\framework\bootloader_otap\bm\iar\bootloader_otap.eww 2- Program the OTAP bootloader project on your board by clicking on the "Download and Debug" icon (Ctrl + D) . Once the KW38 was programmed and the debug session begun, abort the session (Ctrl + Caps Lock + D)  to stop the MCU safely. 3- At this point, you have programmed the OTAP bootloader in your KW38. The next is to program and configure the OTAP client software. Locate the OTAP client software at the following path: Freertos project version: <KW38_SDK>\boards\frdmkw38\wireless_examples\bluetooth\otac_att\freertos\iar\otap_client_att_freertos.eww Baremetal project version: <KW38_SDK>\boards\frdmkw38\wireless_examples\bluetooth\otac_att\bm\iar\otap_client_att_bm.eww 4- Then, configure the OTAP client to select external or internal storage. To select the external storage, follow the next steps (this is the default configuration in the SDK project): 4.1- Locate the "app_preinclude.h" header file in the source folder of your workspace. Search the "gEepromType_d" define and set its value to "gEepromDevice_AT45DB041E_c". /* Specifies the type of EEPROM available on the target board */ #define gEepromType_d gEepromDevice_AT45DB041E_c 4.2- Open the project options window (Alt + F7). Go to Linker->Config window and set "gUseInternalStorageLink_d=0".   To select the internal storage, follow the next steps: 4.1- Locate the "app_preinclude.h" header file in the source folder of your workspace. Search the "gEepromType_d" define and set its value to "gEepromDevice_InternalFlash_c". /* Specifies the type of EEPROM available on the target board */ #define gEepromType_d gEepromDevice_InternalFlash_c 4.2- Open the project options window (Alt + F7). Go to Linker->Config window and set "gUseInternalStorageLink_d=1".   5- Once you have configured the storage settings, save the changes in the project. Then program the software on your board by clicking on the "Download and Debug" icon (Ctrl + D)  . Once the KW38 was programmed and the debug session began, abort the session (Ctrl + Caps Lock + D)  to stop the MCU safely. Creating an SREC Image to Update the Software in OTAP Client in IAR Embedded Workbench IDE This section shows how to create an image compatible with OTAP to reprogram the KW38 OTAP Client using as a starting point, our wireless examples with IAR Embedded Workbench IDE. 1- Select any example from your SDK package in the Bluetooth folder and open it using the IAR IDE. Bluetooth examples are located in the following path: <KW38_SDK>\boards\frdmkw38\wireless_examples\bluetooth  In this example, we will use the glucose sensor project: <KW38_SDK>\boards\frdmkw38\wireless_examples\bluetooth\glucose_s\freertos\iar\glucose_sensor_freertos.eww 2- Open the project options window in IAR (Alt + F7). In Linker->Config window, edit the options to include the "gUseBootloaderLink_d=1" flag and update the "gEraseNVMLink_d=0" flag. When the gUseBootlaoderLink_d flag is true, it indicates to the linker file that the image must be addressed after the first flash sector, to do not overwrite the OTAP Bootloader software (as we stated previously). On the other hand, the gEraseNVMLink_d symbol is used to fill with a 0xFF pattern the unused NVM flash memory region. Disabling this flag, our software image will not contain this pattern, in consequence, the image reduces its total size and it improves the speed of the OTAP download and memory usage. 3- Go to "Output Converter" window. Deselect the "Override default" checkbox, then expand the "Output format" combo box and select "Motorola S-records" format. Click the "OK" button to finish. 4- Build the project. 5- Locate the S-Record file (.srec) in the following path, and save it to a known location on your smartphone. <KW38_SDK>\boards\frdmkw38\wireless_examples\bluetooth\glucose_s\freertos\iar\debug\glucose_sensor_freertos.srec Configuring and Programming OTAP Client Software in MCUXpresso IDE As mentioned in a previous section, to complete the software for OTAP implementation, there are required two software programmed in your FRDM-KW38, OTAP bootloader and OTAP client. This section guides you to program and configure the settings to choose between external or internal storage using the MCUXpresso IDE. 1- Open MCUXpresso IDE. Click on "Import SDK example(s)" in the "Quickstart Panel". 2- Select the FRDM-KW38 icon and click "Next >". 3- Import the OTAP bootloader project. It is located in "wireless_examples -> framework -> bootloader_otap -> bm -> bootloader_otap". Click on the "Finish" button. 4- Program the OTAP bootloader project on your board by clicking on the "Debug" icon  . Once the KW38 was programmed and the debug session begun, abort the session  (Ctrl + F2) to stop the MCU safely. 5- Repeat steps 1 to 3 to import the OTAP client software on MCUXpresso IDE. It is located at "wireless_examples -> bluetooth -> otac_att -> freertos -> otap_client_att_freertos" for freertos version, or "wireless_examples -> bluetooth -> otac_att -> bm -> otap_client_bm_freertos" if you prefer baremetal instead. 6- Then, configure the OTAP client to select external or internal storage. To select the external storage, follow the next steps (this is the default configuration in the SDK project): 6.1- Locate the "app_preinclude.h" file under the source folder in your workspace. Search the "gEepromType_d" define and set its value to "gEepromDevice_AT45DB041E_c". /* Specifies the type of EEPROM available on the target board */ #define gEepromType_d gEepromDevice_AT45DB041E_c 6.2- Navigate to "Project -> Properties -> C/C++ Build -> MCU settings -> Memory details". Edit the Flash fields as shown in the figure below, and leave intact the RAM. To select the internal storage, follow the next steps: 6.1- Locate the "app_preinclude.h" file under the source folder in your workspace. Search the "gEepromType_d" define and set its value to "gEepromDevice_InternalFlash_c". /* Specifies the type of EEPROM available on the target board */ #define gEepromType_d gEepromDevice_InternalFlash_c 6.2- Navigate to "Project -> Properties -> C/C++ Build -> MCU settings -> Memory details". Edit the Flash fields as shown in the figure below, and leave intact the RAM. 7- Once you have configured the storage settings, save the changes in the project. Then program the software on your board by clicking on the "Debug" icon  . Once the KW38 was programmed and the debug session begun, abort the session  (Ctrl + F2) to stop the MCU safely. Creating an SREC Image to Update the Software in OTAP Client in MCUXpresso IDE This section shows how to create an image compatible with OTAP to reprogram the KW38 OTAP Client using as a starting point, our wireless examples with MCUXpresso IDE. 1- Import any example from your SDK package in the Bluetooth folder as explained previously. Bluetooth examples are located in "wireless_examples -> bluetooth" folder in the SDK Import Wizard. This example will make use of the glucose sensor project in "wireless_examples -> bluetooth -> glucose_s -> freertos -> glucose_sensor_freertos". See the picture below. 2- Navigate to "Project -> Properties -> C/C++ Build -> MCU settings -> Memory details". Edit the Flash fields as shown in the figure below, and leave intact the RAM. The last fields indicate to the linker file that the image must be addressed after the first flash sector, to do not overwrite the OTAP bootloader software, as we stated in the introduction of this post. 3- Unzip your KW38 SDK package. Drag and drop the "main_text_section.ldt" linker script from the following path to the "linkscripts" folder on your workspace. The result must be similar as shown in the following figure. <KW38_SDK>\middleware\wireless\framework\Common\devices\MKW38A4\mcux\linkscript_bootloader\main_text_section.ldt 4- Open the "end_text.ldt" linker script file located in the linkscripts folder in MCUXpresso IDE. Locate the section shown in the following figure and remove "FILL" and "BYTE" statements. BYTE and FILL lines are used to fill with a 0xFF pattern the unused NVM flash memory region. Removing this code, our software image will not contain this pattern, in consequence, the image reduces its total size and it improves the speed of the OTAP download and memory usage. 5- Open the "app_preinclude.h" file, and define "gEepromType_d" as internal storage. This is a dummy definition needed to place the bootloader flags in the proper address, so this will not affect the storage method chosen before when you programmed the OTAP client and the OTAP bootloader software in your MCU. /* Specifies the type of EEPROM available on the target board */ #define gEepromType_d gEepromDevice_InternalFlash_c 6-  Include in your project, the "OtaSupport" folder and its files in the "framework" folder of your project. Include as well the "External" folder and its files in the "framework -> Flash" folder of your project. "OtaSupport" and "External" folders can be found in your SDK. You can easily drag those folders from your SDK download path and drop it into your workspace in MCUXpresso to include them. "OtaSupport" and "External" folders are located at: OtaSupport <KW38_SDK>middleware\wireless\framework\OtaSupport External <KW38_SDK>middleware\wireless\framework\Flash\External The result must look like the following picture:  7- Go to "Project -> Properties -> C/C++ Build -> Settings -> Tool Settings -> MCU C Compiler -> Includes". Click on the icon next to "Include paths" (See the picture below). A new window will be displayed, then click on the "Workspace" button. 8- Deploy the directory of the project in the "Folder selection" window, and select "framework -> Flash -> External -> interface" and "framework -> OtaSupport -> interface" folders. Click the "OK" button to save the changes. 9- Ensure that "OtaSupport" and "External" folders were imported in the "Include paths" window. Then save the changes by clicking on the "Apply and Close" button. 10- Save and build the project by clicking this icon  . Then, deploy the "Binaries" icon in your project. Click the right mouse button on the ".axf" file and select the "Binary Utilities -> Create S-Record" option. The S-Record file generated will be saved in the Debug folder in your workspace with ".s19" extension. Save the S-Record file in a known location on your smartphone.    Testing the OTAP Client with IoT Toolbox App This section explains how to test the OTAP client software using the IoT Toolbox App. 1- Open the IoT Toolbox App on your smartphone. Select OTAP and click "SCAN" to start scanning for a suitable OTAP Client device.  2- Press the ADV button (SW2) on your FRDM-KW38 board to start advertising. 3- Once your smartphone has found the FRDM-KW38 board, it will be identified as "NXP_OTAA". Connect your smartphone with this device. Then a new window will be displayed on your smartphone.  4- Click the "Open" button and search for the SREC software update. 5- Click "Upload" to start the transfer. Wait while the download is completed. A confirmation message will be displayed after a successful update.  6- Wait a few seconds until the software update was programmed on your MCU. The new code will start automatically.   Please let me know any questions about this topic.
記事全体を表示
This document describes how to add additional cluster to the Router application in the JN-AN-1217 ZigBee 3.0 Base Device Application Note. The Router application's main endpoint contains Basic, Groups, Identify and OnOff server. The steps below describe how to add two clusters to Router: Temperature Measurement server and OnOff client. Note that these changes only go as far as making the new clusters added and discoverable, no functionality has been added to these clusters.  Common/Source/app.zpscfg The first step is to update the ZigBee PRO Stack Configuration file to add the new clusters (OnOff Client, Temperature Measurement Server) to the Router application endpoint. The HA profile already contains few clusters but Temperature Measurement cluster was added:   The OnOff client was already present in Router endpoint but the Temperature Measurement cluster was then added into Router application endpoint:   Router/Build/Makefile For cluster belonging to General domain, the cluster code is automatically build and linked but for other domains, the compiling and linking needs to be enabled. As Temperature Measurement belongs to Measurement and Sensing domain, enable the cluster code in Makefile: Router/Source/zcl_options.h This file is used to set the options used by the ZCL. Enable Clusters The cluster functionality for the router endpoint was enabled:   Enable any optional Attributes and Commands for the clusters  Add the cluster creation and initialization into ZigBee Base device definitions The cluster functionality for some of the clusters is already present on ZigBee Base Device. For Temperature Measurement cluster the functionality was added into ZigBee Base Device. <Path to JN-SW-4x70 SDK>/ Components/ZCL/Devices/ZHA/Generic/Include/base_device.h The first step was including the Temperature Measurement header files into base device header file as shown below:   The second step was adding cluster instance into base device Instance as shown below: The next step was to define the cluster into the base device structure as below: <Path to JN-SW-4x70 SDK>/ Components/ZCL/Devices/ZHA/Generic/Include/base_device.c The cluster create function for Temperature Measurement cluster for server was called in ZigBee base device registration function:   Router/Source/app_zcl_task.c Temperature Measurement Server Cluster Data Initialization - APP_vZCL_DeviceSpecific_Init() The default attribute values for the Temperature Measurement clusters are initialized:
記事全体を表示
This guide explains how to configure Wi-Fi as Access Point using the i.MX8M Plus EVK (8MP) as the AP device and the i.MX8M Mini EVK (8MM) as the connected device.
記事全体を表示
I got a question related to best practices to configure a GPIO if the pin is not used. To make it short, the recommendation is to leave the GPIO floating on the PCB and leave the GPIO in its "Default" state as shown in the Signal Multiplexing table in the Reference Manual. The Default state is either “Disabled” or an analog function.   Some Kinetis devices have analog only pins (PGAx/ADCx) while most have GPIO pins with analog functions (PTx/ADCx) or digital GPIO pins   Unused pins, whether analog only or GPIO, should be left floating. Analog only pins do not have input buffers that will cause shoot-through currents when the input floats. GPIO pins with analog functions default to analog functions, which disables the digital input buffer – no shoot-through current.   The digital GPIO pins default to "Disabled", which disables the input buffers - no shoot-through currents with floating inputs.   Finally, unused pins shall not be tied to VDD or VSS. Hence, when designing your board and there are some unused pins, leave them floating on the PCB and then make sure that the software leaves the GPIO in its Default state in the MUX register. 
記事全体を表示
I was investigating about how to create a current profile and I found interesting information I would like to share with the community. So, I decided to create an example to accomplish this task using BLE stack included in the MKW40Z Connectivity Software package. The demo to create is an Humidity Collector which make use of the Humidity custom profile and is based on the Temperature Collector demonstration application. The first thing to know is that the Generic Attribute Profile (GATT) establishes in detail how to exchange all profile and user data over a BLE connection. GATT deals only with actual data transfer procedures and formats. All standard BLE profiles are based on GATT and must comply with it to operate correctly. This makes GATT a key section of the BLE specification, because every single item of data relevant to applications and users must be formatted, packed, and sent according to the rules.                                      GATT defines two roles: Server and Client. The GATT server stores the data transported over the Attribute Protocol (ATT) and accepts Attribute Protocol requests, commands and confirmations from the GATT client. The GATT client accesses data on the remote GATT server via read, write, notify, or indicate operations. Notify and indicate operations are enabled by the client but initiated by the server, providing a way to push data to the client. Notifications are unacknowledged, while indications are acknowledged. Notifications are therefore faster, but less reliable. Figure 1. GATT Client-Server      GATT Database establishes a hierarchy to organize attributes. These are the Profile, Service, Characteristic and Descriptor. Profiles are high level definitions that define how services can be used to enable an application and Services are collections of characteristics. Descriptors defined attributes that describe a characteristic value. To define a GATT Database several macros are provided by the GATT_DB API in the Freescale BLE Stack, which is part KW40Z Connectivity Software package. Figure 2. GATT database      To know if the Profile or service is already defined in the specification, you have to look for in Bluetooth SIG profiles and check in the ble_sig_defines.h file if this is already declared in the code. In our case, the service is not declared, but the characteristic of the humidity is declared in the specification. Then, we need to check if the characteristic is already included in ble_sig_defines.h. Since, the characteristic is not included, we need to define it as shown next: /*! Humidity Charactristic UUID */ #define gBleSig_Humidity_d                      0x2A6F      The Humidity Collector is going to have the GATT client; this is the device that will receive all information from  the GATT server. Demo provided in this post works like the Temperature Collector. When the Collector enables the notifications from the sensor, received notifications will be printed in the serial terminal. In order to create the demo we need to define or develop a service that has to be the same as in the GATT Server, this is declared in the gatt_uuid128.h.If the new service is not the same, they will never be able to communicate each other. All macros function or structures in BLE stack of KW40Z Connectivity Software have a common template. Hence, we need to define this service in the gatt_uuid128.h as shown next: /* Humidity */ UUID128(uuid_service_humidity, 0xfe ,0x34 ,0x9b ,0x5f ,0x80 ,0x00 ,0x00 ,0x80 ,0x00 ,0x10 ,0x00 ,0x02 ,0x00 ,0xfa ,0x10 ,0x10)      During the scanning process is when the client is going to connect with the Server. Hence, function CheckScanEvent can help us to ensure that peer device or server device support the specified service, in this case, it will be the humidity service we just created in the previous step. Then, CheckScanEvent needs to check which device is on advertising mode and with MatchDataInAdvElementList to verify if it is the same uuid_service_humidity, if the service is not in the list, client is not going to connect. CheckScanEvent function should look as shown next: static bool_t CheckScanEvent(gapScannedDevice_t* pData) { uint8_t index = 0; uint8_t name[10]; uint8_t nameLength; bool_t foundMatch = FALSE; while (index < pData->dataLength) {         gapAdStructure_t adElement;                 adElement.length = pData->data[index];         adElement.adType = (gapAdType_t)pData->data[index + 1];         adElement.aData = &pData->data[index + 2];          /* Search for Humidity Custom Service */         if ((adElement.adType == gAdIncomplete128bitServiceList_c) ||           (adElement.adType == gAdComplete128bitServiceList_c))         {             foundMatch = MatchDataInAdvElementList(&adElement, &uuid_service_humidity, 16);         }                 if ((adElement.adType == gAdShortenedLocalName_c) ||           (adElement.adType == gAdCompleteLocalName_c))         {             nameLength = MIN(adElement.length, 10);             FLib_MemCpy(name, adElement.aData, nameLength);         }                 /* Move on to the next AD elemnt type */         index += adElement.length + sizeof(uint8_t); } if (foundMatch) {         /* UI */         shell_write("\r\nFound device: \r\n");         shell_writeN((char*)name, nameLength-1);         SHELL_NEWLINE();         shell_writeHex(pData->aAddress, 6); } return foundMatch; } The humidity_interface.h file should define the client structure and the server structure. For this demo, we only need the client structure, however, both are defined for reference. The Client Structure has all the data of the Humidity Service, in this case is a Service, characteristic, descriptor and CCCD handle and the format of the value. /*! Humidity Client - Configuration */ typedef struct humcConfig_tag { uint16_t    hService; uint16_t    hHumidity; uint16_t    hHumCccd; uint16_t    hHumDesc; gattDbCharPresFormat_t  humFormat; } humcConfig_t; The next configuration structure is for the Server; in this case we don’t need it. /*! Humidity Service - Configuration */ typedef struct humsConfig_tag { uint16_t    serviceHandle; int16_t     initialHumidity;        } humsConfig_t;     Now that the Client Structure is declared, go to the app.c and modify some functions. There are functions that help to store all the data of the humidity service. In our case they are 3 functions for the service, characteristic and descriptor. You have to be sure that the service that you create and the characteristics of humidity are in the functions. The Handle of each data is stored in the structure of the client. The three functions that need to be modify are the next: BleApp_StoreServiceHandles() stores handles for the specified service and characteristic. static void BleApp_StoreServiceHandles (     gattService_t   *pService ) {     uint8_t i;           if ((pService->uuidType == gBleUuidType128_c) &&         FLib_MemCmp(pService->uuid.uuid128, uuid_service_humidity, 16))     {         /* Found Humidity Service */         mPeerInformation.customInfo.humClientConfig.hService = pService->startHandle;                 for (i = 0; i < pService->cNumCharacteristics; i++)         {             if ((pService->aCharacteristics[i].value.uuidType == gBleUuidType16_c) &&                 (pService->aCharacteristics[i].value.uuid.uuid16 == gBleSig_Humidity_d))             {                 /* Found Humidity Char */                 mPeerInformation.customInfo.humClientConfig.hHumidity = pService->aCharacteristics[i].value.handle;             }         }     } } BleApp_StoreCharHandles() handles the descriptors. static void BleApp_StoreCharHandles (     gattCharacteristic_t   *pChar ) {     uint8_t i;         if ((pChar->value.uuidType == gBleUuidType16_c) &&         (pChar->value.uuid.uuid16 == gBleSig_Humidity_d))     {            for (i = 0; i < pChar->cNumDescriptors; i++)         {             if (pChar->aDescriptors[i].uuidType == gBleUuidType16_c)             {                 switch (pChar->aDescriptors[i].uuid.uuid16)                 {                     case gBleSig_CharPresFormatDescriptor_d:                     {                         mPeerInformation.customInfo.humClientConfig.hHumDesc = pChar->aDescriptors[i].handle;                         break;                     }                     case gBleSig_CCCD_d:                     {                         mPeerInformation.customInfo.humClientConfig.hHumCccd = pChar->aDescriptors[i].handle;                         break;                     }                     default:                         break;                 }             }         }     } } BleApp_StoreDescValues() stores the format of the value. static void BleApp_StoreDescValues (     gattAttribute_t     *pDesc ) {     if (pDesc->handle == mPeerInformation.customInfo.humClientConfig.hHumDesc)     {         /* Store Humidity format*/         FLib_MemCpy(&mPeerInformation.customInfo.humClientConfig.humFormat,                     pDesc->paValue,                     pDesc->valueLength);     }   }      After we store all the data of the Humidity Service, we need to check the notification callback. Every time the Client receives a notification with the BleApp_GattNotificationCallback(),  call the BleApp_PrintHumidity() function and check the Format Value; in this case is 0x27AD  that mean percentage and also have to be the same on the GATT server. static void BleApp_GattNotificationCallback (     deviceId_t serverDeviceId,     uint16_t characteristicValueHandle,     uint8_t* aValue,     uint16_t valueLength ) { /*Compare if the characteristics handle Server is the same of the GATT Server*/     if (characteristicValueHandle == mPeerInformation.customInfo.humClientConfig.hHumidity)     {            BleApp_PrintTemperature(*(uint16_t*)aValue);     }  } BleApp_PrintHumidity() print the value of the Humidity, but first check if the format value is the same. static void BleApp_PrintHumidity (     uint16_t humidity ) {     shell_write("Humidity: ");     shell_writeDec(humidity);      /*If the format value is the same, print the value*/     if (mPeerInformation.customInfo.humClientConfig.humFormat.unitUuid16 == 0x27AD)     {         shell_write(" %\r\n");     }     else     {         shell_write("\r\n");     } } Step to include the file to the demo. 1. Create a clone of the Temperature_Collector with the name of Humidity_Collector 2. Unzip the Humidity_Collector.zip file attached to this post. 3. Save the humidity folder in the fallowing path: <kw40zConnSoft_install_dir>\ConnSw\bluetooth\profiles . 4. Replaces the common folder in the next path: <kw40zConnSoft_install_dir>\ConnSw\examples\bluetooth\humidity_sensor\common . Once you already save the folders in the corresponding path you must to indicate in the demo where they are and drag the file in the humidity folder to the workspace. For test the demo fallow the next steps: Compile the project and run. Press SW1 for the advertising/scanning mode, and wait to connect it. Once the connection finish, press the SW1 of the Humidity Sensor board to get and print the data. Enjoy the demo! NOTE: This demo works with the Humidity Sensor demo. This means that you need one board programmed with the Humidity Sensor application and a second board with the Humidity Collector explained in this post. Figure 3. Example of the Humidity Collector using the Humidity Sensor.
記事全体を表示
Bluetooth® Low-Energy (BLE) RF PHY tests can be done by using the Direct Test Mode (DTM).  This document will help as a guide to perform the test using a device from the KW family.     Direct Test Mode Direct Test Mode (DTM) is used to control the Device Under Test (DUT) and provides a report with the results from the tests performed by the Tester.   There are two ways to perform those tests:   HCI Through a 2-wire UART interface   The packet format from the DTM is different from the HCI commands.   For further information of the commands and this type of tests, please refer to the Bluetooth Core Specifications, Vol 6, Part F: Direct Test Mode   Software This guide will use the KW41Z as example, but the same changes must be applicable for the rest of the devices Download and install the software SDK of the device to use by following the getting started in the device page. In this case the SDK of the KW41Z will be downloaded from the MCUXpresso Builder. Setup for DTM using HCI Import the hci_black_box example to the IDE according to the getting started of the device.   Download and open the latest version of the Test Tool available in the page of the device under Lab & Test Software in the Software and Tools Tab. Open the Command console of the board, please be sure that you have the correct baud rate set for the example (Default: 115200) Select one of the available commands to either start or finish tests    Setup for DTM using DTM pins You can choose from any example available while making sure that the pins chosen for DTM  are not occupied or used. Import the beacon example to the IDE according to the getting started of the device.   The DTM pins behave as a UART interface; in order to enable them in our KW devices there is the need to follow the next steps Look at the Reference manual of the device and locate the pins that support the DTM_TX and the DTM_RX. In this case, we will select the PTB1 and PTB2.  Set the ALT_MUX of the pin in the code to work as DTM   PORT_SetPinMux(PORTB, PIN1_IDX, kPORT_MuxAlt2);            /* PORTB1 (pin 17) is configured as DTM_RX */   PORT_SetPinMux(PORTB, PIN2_IDX, kPORT_MuxAlt3);            /* PORTB2 (pin 18) is configured as DTM_TX */‍‍‍‍‍‍‍‍‍‍ Configure the baud rate of the DTM pins, this can be achieved by writing to the DTM_2WIRE_CONFIG register. This register is not available in the header file by default, so there is the need to create a pointer to such address. To verify this data, you can check the chapter 45.2.3.1.4 Test and Debug Registers Descriptions for the Bluetooth Link Layer of the reference manual. #define DTM_2WIRE_CONFIG                0x580 #define BTLE_RF_DTM_2WIRE_CONFIG        (*(volatile uint16_t *) (BTLE_RF_BASE+DTM_2WIRE_CONFIG)) BTLE_RF_DTM_2WIRE_CONFIG = 0x0042;  /*Configure DTM pins baud rate of 115200*/‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍
記事全体を表示
802.15.4 wireless sniffers like the USB-KW41Z are capable of capturing over-the-air traffic. The captured packets are passed to a network protocol decoder like Wireshark over a network interface tunnel built by the Kinetis Protocol Analyzer.   Hardware  One USB-KW41Z preloaded with sniffer firmware ( instructions found at www.nxp.com/usb-kw41z )  Software Download & Install Thread Wireshark from wireshark.org which is an open-source network protocol analyzer capable of debugging over the air communication between Thread devices. Kinetis Protocol Analyzer is a software that provides a bridge between the USB-KW41 and Wireshark.  Wireshark Configuration  Open Wireshark from the Program Files Click Edit and select Preferences  Click Protocols to expand a list of protocols Select IEEE 802.15.4, click the Decryption Keys Edit... button Create a new key entry by pressing the plus button, then set the following values and click OK       Decryption key = 00112233445566778899aabbccddeeff      Decryption key index = 1      Key hash = Thread hash Find CoAP and configure it with CoAP UDP port number = 5683 Click Thread and select Decode CoAP for Thread  with Thread sequence counter = 00000000 as shown below At the 6LoWPAN preferences, add the Context 0 value of fd00:0db8::/64 Click OK and close Wireshark Configure Kinetis Protocol Analyzer  Connect the USB-KW41Z to one of the USB ports on your computer Open the device manager and look for the device connected port Open the "Kinetis Protocol Analyzer Adapter" program Make sure, you have a USB-KW41Z connected to your PC when opening the program because the Kinetis Protocol Adapter will start looking for kinetis sniffer hardware. Once the USB-KW41Z is detected, the previously identify COM port will be displayed Select the desired IEEE 802.15.4 channel to scan in the Kinetis Protocol Analyzer window. This guide selects channel 12 as an example  Click on the Wireshark icon to open Wireshark Network Protocol Analyzer An error may appear while opening Wireshark, click OK and continue Wireshark Sniffing Wireshark Network Analyzer will be opened. On the "Capture" option of the main window, select the Local Area Connection that was created by the Kinetis Protocol Analyzer, in this example, Kinetis Protocol Analyzer created "Local Area Connection 2", then click "Start" button. USB-KW41Z will start to sniff and upcoming data will be displayed in the "Capture" window of the Wireshark Network Protocol Analyzer.
記事全体を表示
A network is basically a set of devices connected to one another and communicating using wired or wireless mediums. There are several standard network frameworks defined for wired and wireless communication by IEEE. This post provides information about the IEEE 802 standard and network modes.   802 Standard The 802 standard is a family of IEEE standards dealing with local and metropolitan area networks. The protocol specified in the 802 standard covers lower two layers of the OSI model that are Physical and Data Link layers. In the 802 standard, the Data link layer (Layer 2 of the OSI model) has been divided into two parts Logical Link Control (LLC) and Media Access Control (MAC) as shown in figure below.   Figure 1. Layer architecture   The active 802 standards are listed below.   Table 1. 802 standards description Standard Name Description 802.1 Internetworking It ensures the management of the Local Area Network (LAN) / Metropolitan Area Network (MAN) network and monitors network capabilities. MAC bridging, data encryption/encoding, and network traffic management services are also provided. 802.3 Ethernet Ethernet based technology that is primarily used for LAN, it can also be used for MAN and Wide Area Network (WAN).     802.3 defines the Physical and MAC sublayer of the Data Link layer that is used in wired networks. Uses Carrier Sense Multiple Access with Collision Detection (CSMA/CD) for collision detection. Data rates can be from 10Mbps to 10Gbps. 802.11 WLAN, Wi-Fi Wireless LAN uses high radio frequencies instead of cables to connect the devices in the network. Portability and setup cost is cheaper compared to wired networks but speed and security are better in wired communication. It uses Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) for collision avoidance. 802.15 WPAN This covers various protocol definitions for the personal area network like Bluetooth, ZigBee & sensors networks.   WLAN and Wi-Fi Introduction Wireless Local Area Network (WLAN) or Wireless LAN, is a network that links two or more devices using wireless communication to form a local area network within a limited area such as a home, campus, and office building. A WLAN can be built on various wireless technologies i.e. Wi-Fi, Infrared. Wi-Fi is a type of WLAN that follows IEEE 802.11 standards and one of the most commonly used WLAN today. Wi-Fi as a name for the standard is a trademark of the Wi-Fi Alliance. Wi-Fi or WLAN networks use radio waves to exchange information between devices. These radio waves are transmitted on specific frequencies - 2.4 GHz and 5 GHz, depending on the 802.11 standard (IEEE 802.11a/b/g/n/ac/ax) that the device uses. A Wi-Fi connection is established using a wireless adapter to create hotspots – areas in the vicinity of a wireless router that is connected to the network and allow users to access internet services. All Wi-Fi versions uses license free bands (ISM bands) across the globe.   Network Modes Ad-Hoc Mode In this mode wireless nodes communicate to peer nodes directly. It does not use Access Point (AP) instead it uses Mesh topology. It is also called peer to peer mode. An ad-hoc wireless network is more cost-effective than its alternative, since it does not require the installation of an AP to operate. In addition, it also needs less time to set up. Figure 2. Ad-Hoc mode   Infrastructure Mode In this mode, devices can communicate with each other first going through AP. In infrastructure mode, the wireless devices can communicate with each other or can communicate with a wired network as it’s communicating through AP. This mode is the most commonly used network mode. Compared to Ad-Hoc wireless networks, infrastructure mode offers the advantages of scale, centralized security management, and improved reach. Infrastructure mode has half throughput compared to Ad-Hoc mode.   Figure 3. Infrastructure mode   Repeater Mode When two wireless host devices have to be connected and the distance between them is long for the direct connection or obstruction is present, at that time repeater mode is used to bridge the gap. Repeater operates at the physical layer of the OSI model. As a Wireless Repeater, an AP node extends the range of the wireless network by repeating the wireless signal of the remote AP. The Ethernet MAC address of the remote AP is required for the AP to act as a wireless range extender. The repeater mode has certain drawbacks. Throughput is reduced by at least 50% as wireless interference is at least doubled. The bandwidth of any device connected to it is halved. This is due to the repeater receiving the signal, processing it, and then rebroadcasting it in both directions, from the router to the device and vice versa. The Repeater must be kept in the range of AP, but not too close to the AP. Distance between AP and repeater depends on the range of the AP and repeater should be kept in such a way that maximum possible area coverage can be achieved.   Figure 4. Repeater mode   Bridge Mode Bridge connects two or more networks to each other. It operates on the Data link layer of the OSI Model. Bridge mode allows the AP to communicate with another AP capable of point-to-point bridging. An example of this is connecting two buildings through a wireless connection.   Figure 5. Bridge mode
記事全体を表示
The “BeyondStudio for NXP” Integrated Development Environment (IDE) provides a platform for the development of wireless network applications to be run on NXP’s JN516x family of wireless microcontrollers. For more details and installation guide.  JN-UG-3098 (BeyondStudio for NXP Installation and User Guide). This document explains the common issues that the user will face when trying to develop a new application using BeyondStudio IDE.   First of all, be sure that you are working with the latest SDK version and application note.    Import Problems After you import some application note that you want to take as reference. 2.2 Importing a Project. BeyondStudio for NXP Installation and User Guide.     1. Wrong Path A  common issue is a user uses another path for the installation of the SDK than the default one (C:\nxp\bstudio_nxp\workspace). When trying to find the Makefile ("SDK/JN-SW-4168/Stack/Common/Build/config.mk"), the IDE uses a relative path, for that reason it assumes that the file is in the correct directory. As the path was changed, the file can’t be found.   2.Project Directory After you select the Application Note (AN) you want to import remember that there will be an option for the JN517x as most of the projects are compatible between them (Zigbee 3.0, ZigBee Link Light). Nonetheless, BeyondStudio is not compatible with the JN517x.  While importing the project you only must select the JN516x project and none of the options must not be selected.     Linking Errors Open a source file (.c) or a header file (.h),  you will notice that the IDE shows a lot of errors even though the project has not been compiled yet. The errors you are seeing is Eclipse not being able to resolve various variables and functions within the SDK. You might see some errors like: Symbol “xxx” could not be resolved for example. After starting the compilation process, look at the console log and notice that the bin file is being generated correctly. Do not try to add another file in the path and Symbols trying to avoid all those errors; the IDE will look for the includes that the project needs. If you used the default path location, it will not have any problem with the compilation. The OS_Gen, ZPS_Gen, and PDUM_Gen, for example, are all files automatically generated based on the configuration files, performing a clean will remove those files but will be created again after a new compilation. File app.zpscfg Problems Encountered The next error will appear if the Zigbee Plug-in is not installed. Follow the installation procedure for the plug-ins 1.2.3 Installing the ZigBee Plug-ins BeyondStudio for NXP Installation and User Guide. Look at the installation folder that is included in the SDK. C:\NXP\bstudio_nxp\sdk\JN-SW-41xx\Tools\Eclipse_plugins\com.nxp.sdk.update_site For a better reference the ZPS Configuration Editor provides a convenient way to set ZigBee network parameters ZigBee PRO Stack User Guide I hope it helps. Regards, Mario
記事全体を表示
This guide will show a way to set up and enable an I2C Serial Interface to send a string of data instances using one of the Wireless Bluetooth SDK examples and the Serial Manager API.
記事全体を表示
Introduction When a Bluetooth LE Central and Peripheral devices are in connection, data within the payload can be encrypted. Encryption of the channel can be achieved through pairing with others. Once the communication has been encrypted, the Bluetooth LE devices could distribute the keys to save it for future connections. The last is better known as bonding. When two Bluetooth LE devices are bonded, in a future connection, they do not need to exchange the keys since they already know the shared secret, thus, they can encrypt the channel directly, saving time and power. However, if an attacker is listening to the first time that both (Central and Peripheral) Bluetooth LE devices enter into a connection state, the security of the link could be vulnerated, since the attacker could decipher the original message. Fortunately, Out Of Band (OOB) provides the ability (obviously, if both devices support it) to share the keys on an unknown medium for an attacker listening Bluetooth LE (for instance, NFC, SPI, UART, CAN, etc), increasing the security of the communication. This document explains how to enable OOB pairing on Bluetooth LE connectivity examples, basing on FRDM-KW36 SDK HID Host and HID Device examples.   Dedicated Macros and APIs for OOB Pairing The connectivity software stack contains macros and APIs that developers should implement to interact with the host stack and handle the events necessary for OOB. The following sections explain the main macros, variables, and APIs that manage OOB in our software.   Definitions and Variables gAppUsePairing_d It is used to enable or disable pairing to encrypt the link. Values Result 0 Pairing Disabled 1 Pairing Enabled   gAppUseBonding_d It is used to enable or disable bonding to request and save the keys for future connections. Values Result 0 Bonding Disabled 1 Bonding Enabled   gBleLeScOobHasMitmProtection_c This flag must be set if the application requires Man In the Middle protection, in other words, if the link must be authenticated. You can determine whether your software needs to set or clear this flag from the GAP Security Mode and Level. Red instances of the following table indicate that gBleLeScOobHasMitmProtection_c must be set to 1.   gPairingParameters This struct contains the pairing request or the pairing response (depending on the device's GAP role) payload. To enable and configure OOB pairing, oobAvailable field of the struct must be set to 1.   APIs bleResult_t Gap_ProvideOob (deviceId_t deviceId, uint8_t* aOob) This API must be implemented in response of gConnEvtOobRequest_c event in BleConnManager_GapPeripheralEvent or BleConnManager_GapCentralEvent functions (depending of the GAP role). This event only will be triggered if OOB is enabled and LE Legacy pairing is used. The gConnEvtOobRequest_c event occurs when the stack request the OOB data received from the peer device just after the gConnEvtPairingRequest_c or gConnEvtPairingResponse_c (depending of the GAP role). This API is valid only for LE Legacy pairing. Name of the Parameter Input/Output Description deviceId Input ID of the peer device aOob Input Pointer to OOB data previously received from the peer.   bleResult_t Gap_LeScGetLocalOobData (void) This API must be implemented either in response of gConnEvtPairingRequest_c or gConnEvtPairingResponse_c events  in BleConnManager_GapPeripheralEvent or BleConnManager_GapCentralEvent functions (depending of the GAP role) to get the local OOB data generated from the controller and in response of gLeScPublicKeyRegenerated_c event at BleConnManager_GenericEvent. Each time that Gap_LeScGetLocalOobData is executed in the application to obtain the OOB data, it triggers the gLeScLocalOobData_c generic event to inform that OOB data must be read from pGenericEvent->eventData.localOobData to send it to the peer device. This API is valid only for LE Secure Connections pairing.   bleResult_t Gap_LeScSetPeerOobData (deviceId_t deviceId, gapLeScOobData_t* pPeerOobData) This API must be implemented in response of gConnEvtLeScOobDataRequest_c event in BleConnManager_GapPeripheralEvent or BleConnManager_GapCentralEvent functions(depending of the GAP role). This event occurs when the stack requires the OOB data previously recieved from the peer. This API is valid only for LE Secure Connections pairing. Name of the Parameter Input/Output Description deviceId Input ID of the peer device aOob Input Pointer to gapLeScOobData_t struct that contains the OOB data received from the peer.   Enabling OOB on KW36 Bluetooth LE Peripheral Device The following example is based on the HID Device software included in the FRDM-KW36 SDK. It explains the minimum code needed to enable OOB. In the following sections, brown color indicates that such definition or API takes part in the stack and violet color indicates that such definition does not take part in the stack and its use is only for explanation purposes in this document.   Changes in app_preinclude.h file The app_preinclude.h header file contains definitions for the management of the application. To enable OOB pairing, you must ensure that gAppUseBonding_d and gAppUsePairing_d are set to 1. You can also set the value of the gBleLeScOobHasMitmProtection_c in this file, depending on the security mode and level needed in your application.  This example makes use of two custom definitions: gAppUseOob_d and gAppUseSecureConnections_d. Such definitions are used to explain how to enable/disable OOB and, if OOB is enabled, how to switch between LE Secure Connections pairing or LE Legacy paring.   /*! Enable/disable use of bonding capability */ #define gAppUseBonding_d 1 /*! Enable/disable use of pairing procedure */ #define gAppUsePairing_d 1 /*! Enable/disable use of privacy */ #define gAppUsePrivacy_d 0 #define gPasskeyValue_c 999999 /*! Enable/disable use of OOB pairing */ #define gAppUseOob_d 1 /*! Enable MITM protection when using OOB pairing */ #if (gAppUseOob_d) #define gBleLeScOobHasMitmProtection_c TRUE #endif /*! Enable/disable Secure Connections */ #define gAppUseSecureConnections_d 1‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍   Using the code above, you can enable or disable OOB using gAppUseOob_d, also you can decide whether to use LE Secure Connections (gAppUseSecureConnections_d = 1) or LE Legacy (gAppUseSecureConnections_d = 0)     Changes in app_config.c file The following portion fo code depicts how to fill gPairingParameters struct depending on which pairing method is used by the application.   /* SMP Data */ gapPairingParameters_t gPairingParameters = { .withBonding = (bool_t)gAppUseBonding_d, /* If Secure Connections pairing is supported, then set Security Mode 1 Level 4 */ /* If Legacy pairing is supported, then set Security Mode 1 Level 3 */ #if (gAppUseSecureConnections_d) .securityModeAndLevel = gSecurityMode_1_Level_4_c, #else .securityModeAndLevel = gSecurityMode_1_Level_3_c, #endif .maxEncryptionKeySize = mcEncryptionKeySize_c, .localIoCapabilities = gIoKeyboardDisplay_c, /* OOB Available enabled when app_preinclude.h file gAppUseOob_d macro is true */ .oobAvailable = (bool_t)gAppUseOob_d, #if (gAppUseSecureConnections_d) .centralKeys = (gapSmpKeyFlags_t) (gIrk_c), .peripheralKeys = (gapSmpKeyFlags_t) (gIrk_c), #else .centralKeys = (gapSmpKeyFlags_t) (gLtk_c | gIrk_c), .peripheralKeys = (gapSmpKeyFlags_t) (gLtk_c | gIrk_c), #endif /* Secure Connections enabled when app_preinclude.h file gAppUseSecureConnections_d macro is true */ .leSecureConnectionSupported = (bool_t)gAppUseSecureConnections_d, .useKeypressNotifications = FALSE, };‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍   Additionally, the serviceSecurity struct registers which are the security mode and level of each Bluetooth LE service, so if Secure Connections is selected (gAppUseSecureConnections_d = 1), mode = 1 level = 4.   static const gapServiceSecurityRequirements_t serviceSecurity[3] = { { .requirements = { #if (gAppUseSecureConnections_d) .securityModeLevel = gSecurityMode_1_Level_4_c, #else .securityModeLevel = gSecurityMode_1_Level_3_c, #endif .authorization = FALSE, .minimumEncryptionKeySize = gDefaultEncryptionKeySize_d }, .serviceHandle = (uint16_t)service_hid }, { .requirements = { #if (gAppUseSecureConnections_d) .securityModeLevel = gSecurityMode_1_Level_4_c, #else .securityModeLevel = gSecurityMode_1_Level_3_c, #endif .authorization = FALSE, .minimumEncryptionKeySize = gDefaultEncryptionKeySize_d }, .serviceHandle = (uint16_t)service_battery }, { .requirements = { #if (gAppUseSecureConnections_d) .securityModeLevel = gSecurityMode_1_Level_4_c, #else .securityModeLevel = gSecurityMode_1_Level_3_c, #endif .authorization = FALSE, .minimumEncryptionKeySize = gDefaultEncryptionKeySize_d }, .serviceHandle = (uint16_t)service_device_info } };‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍     Changes in ble_conn_manager.c file LE Legacy Pairing If your application will use LE Legacy Pairing, then you have to implement Gap_ProvideOob in response to the gConnEvtOobRequest_c event at the BleConnManager_GapPeripheralEvent function. In this example, gOobReceivedTKDataFromPeer is an array that stores the data previously received OOB from the peer device (using SPI, UART, I2C, etc), therefore, the procedure to fill this array with the data received from the peer depends entirely on your application. Notice that gOobReceivedTKDataFromPeer must contain the data received from the peer before to execute Gap_ProvideOob.   static uint8_t gOobReceivedTKDataFromPeer[16]; void BleConnManager_GapPeripheralEvent(deviceId_t peerDeviceId, gapConnectionEvent_t* pConnectionEvent) { switch (pConnectionEvent->eventType) { case gConnEvtConnected_c: { ... ... ... } break; ... ... ... #if (gAppUseOob_d && !gAppUseSecureConnections_d) case gConnEvtOobRequest_c: { /* The stack has requested the LE Legacy OOB data*/ (void)Gap_ProvideOob(peerDeviceId, &gOobReceivedTKDataFromPeer[0]); } break; #endif ... ... ... } }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍     LE Secure Connections Pairing When using Secure Connections Pairing, the application must handle two events at the BleConnManager_GapPeripheralEvent function. In gConnEvtPairingRequest_c event, you must implement Gap_LeScGetLocalOobData API to generate the local (r, Cr) values. The gConnEvtLeScOobDataRequest_c event indicates that the application is requesting the (r, Cr) values previously received OOB from the peer device (using SPI, UART, I2C, etc). Such values are contained into gOobReceivedRandomValueFromPeer and gOobReceivedConfirmValueFromPeer buffers. You must implement Gap_LeScSetPeerOobData in response to gConnEvtLeScOobDataRequest_c, This function has two parameters, the device ID of the peer and a pointer to a gapLeScOobData_t type struct. This struct is filled with the data contained in gOobReceivedRandomValueFromPeer and gOobReceivedConfirmValueFromPeer buffers.   gapLeScOobData_t gPeerOobData; static uint8_t gOobReceivedRandomValueFromPeer[gSmpLeScRandomValueSize_c]; /*!< LE SC OOB r (Random value) */ static uint8_t gOobReceivedConfirmValueFromPeer[gSmpLeScRandomConfirmValueSize_c]; /*!< LE SC OOB Cr (Random Confirm value) */ void BleConnManager_GapPeripheralEvent(deviceId_t peerDeviceId, gapConnectionEvent_t* pConnectionEvent) { switch (pConnectionEvent->eventType) { case gConnEvtConnected_c: { ... ... ... } break; case gConnEvtPairingRequest_c: { #if (defined(gAppUsePairing_d) && (gAppUsePairing_d == 1U)) gPairingParameters.centralKeys = pConnectionEvent->eventData.pairingEvent.centralKeys; (void)Gap_AcceptPairingRequest(peerDeviceId, &gPairingParameters); #if (gAppUseOob_d && gAppUseSecureConnections_d) /* The central has requested pairing, get local LE Secure Connections OOB data */ (void)Gap_LeScGetLocalOobData(); #endif #else (void)Gap_RejectPairing(peerDeviceId, gPairingNotSupported_c); #endif } break; ... ... ... #if (gAppUseOob_d && gAppUseSecureConnections_d) case gConnEvtLeScOobDataRequest_c: { /* The stack has requested the peer LE Secure Connections OOB data. Fill the gPeerOobData struct and provide it to the stack */ FLib_MemCpy(gPeerOobData.randomValue, &gOobReceivedRandomValueFromPeer[0], gSmpLeScRandomValueSize_c); FLib_MemCpy(gPeerOobData.confirmValue, &gOobReceivedConfirmValueFromPeer[0], gSmpLeScRandomConfirmValueSize_c); Gap_LeScSetPeerOobData(peerDeviceId, &gPeerOobData); } break; #endif ... ... ... } }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍   The gLeScPublicKeyRegenerated_c event in the BleConnManager_GenericEvent function must be handled using the Gap_LeScGetLocalOobData API as depicted below. Each time that Gap_LeScGetLocalOobData is executed by the software, it generates, asynchronously, the gLeScLocalOobData_c event (also handled in the BleConnManager_GenericEvent function) indicating that the local (r, Cr) values were successfully generated and you can read them using the pGenericEvent->eventData.localOobData pointer to send it OOB to the peer device. In this example, Oob_SendLocalRandomValueToPeer and Oob_SendLocalConfirmValueToPeer  are custom synchronous functions that demonstrate how you can implement a custom API that sends the local (r, Cr) read from pGenericEvent->eventData.localOobData pointer to the peer device using other protocols (SPI, UART, I2C, etc).   void BleConnManager_GenericEvent(gapGenericEvent_t* pGenericEvent) { switch (pGenericEvent->eventType) { case gInitializationComplete_c: { ... ... ... } break; ... ... ... #if (defined(gAppUsePairing_d) && (gAppUsePairing_d == 1U)) case gLeScPublicKeyRegenerated_c: { /* Key pair regenerated -> reset pairing counters */ mFailedPairings = mSuccessfulPairings = 0; /* Local Secure Connections OOB data must be refreshed whenever this event occurs */ #if (gAppUseOob_d && gAppUseSecureConnections_d) (void)Gap_LeScGetLocalOobData(); #endif } break; #endif ... ... ... #if (gAppUseOob_d && gAppUseSecureConnections_d) case gLeScLocalOobData_c: { /* Get the local Secure Connections OOB data and send to the peer */ Oob_SendLocalRandomValueToPeer((uint8_t*)pGenericEvent->eventData.localOobData.randomValue); Oob_SendLocalConfirmValueToPeer((uint8_t*)pGenericEvent->eventData.localOobData.confirmValue); } break; #endif ... ... ... } }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍     Enabling OOB on KW36 Bluetooth LE Central Device The following example is based on the HID Host software included in the FRDM-KW36 SDK. It explains the minimum code needed to enable OOB. In the following sections, brown color indicates that such definition or API takes part in the stack and violet color indicates that such definition does not take part in the stack and its use is only for explanation purposes in this document.   Changes in app_preinclude.h file The app_preinclude.h header file contains definitions for the management of the application. To enable OOB pairing, you must ensure that gAppUseBonding_d and gAppUsePairing_d are set to 1. You can also set the value of the gBleLeScOobHasMitmProtection_c in this file, depending on the security mode and level needed in your application.  This example makes use of two custom definitions: gAppUseOob_d and gAppUseSecureConnections_d. Such definitions are used to explain how to enable/disable OOB and, if OOB is enabled, how to switch between LE Secure Connections pairing or LE Legacy paring.   /*! Enable/disable use of bonding capability */ #define gAppUseBonding_d 1 /*! Enable/disable use of pairing procedure */ #define gAppUsePairing_d 1 /*! Enable/disable use of privacy */ #define gAppUsePrivacy_d 0 #define gPasskeyValue_c 999999 /*! Enable/disable use of OOB pairing */ #define gAppUseOob_d 1 /*! Enable MITM protection when using OOB pairing */ #if (gAppUseOob_d) #define gBleLeScOobHasMitmProtection_c TRUE #endif /*! Enable/disable Secure Connections */ #define gAppUseSecureConnections_d 1‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍   Using the code above, you can enable or disable OOB using gAppUseOob_d, also you can decide whether to use LE Secure Connections (gAppUseSecureConnections_d = 1) or LE Legacy (gAppUseSecureConnections_d = 0)     Changes in app_config.c file The following portion fo code depicts how to fill gPairingParameters struct depending on which pairing method is used by the application.   /* SMP Data */ gapPairingParameters_t gPairingParameters = { .withBonding = (bool_t)gAppUseBonding_d, /* If Secure Connections pairing is supported, then set Security Mode 1 Level 4 */ /* If Legacy pairing is supported, then set Security Mode 1 Level 3 */ #if (gAppUseSecureConnections_d) .securityModeAndLevel = gSecurityMode_1_Level_4_c, #else .securityModeAndLevel = gSecurityMode_1_Level_3_c, #endif .maxEncryptionKeySize = mcEncryptionKeySize_c, .localIoCapabilities = gIoKeyboardDisplay_c, /* OOB Available enabled when app_preinclude.h file gAppUseOob_d macro is true */ .oobAvailable = (bool_t)gAppUseOob_d, #if (gAppUseSecureConnections_d) .centralKeys = (gapSmpKeyFlags_t) (gIrk_c), .peripheralKeys = (gapSmpKeyFlags_t) (gIrk_c), #else .centralKeys = (gapSmpKeyFlags_t) (gLtk_c | gIrk_c), .peripheralKeys = (gapSmpKeyFlags_t) (gLtk_c | gIrk_c), #endif /* Secure Connections enabled when app_preinclude.h file gAppUseSecureConnections_d macro is true */ .leSecureConnectionSupported = (bool_t)gAppUseSecureConnections_d, .useKeypressNotifications = FALSE, };‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍     Changes in ble_conn_manager.c file LE Legacy Pairing If your application will use LE Legacy Pairing, then you have to implement Gap_ProvideOob in response to the gConnEvtOobRequest_c event at the BleConnManager_GapCentralEvent function. In this example, gOobOwnTKData is an array that stores the TK data which will be sent OOB to the peer device (using SPI, UART, I2C, etc)  and, at the same time, is the TK data that will be provided to the stack using Gap_ProvideOob. This data must be common on both Central and Peripheral devices, so the procedure to share the TK depends entirely on your application. Oob_SendLocalTKValueToPeer is a custom synchronous function that demonstrates how you can implement a custom API that sends the local TK to the peer device using other protocols (SPI, UART, I2C, etc).   static uint8_t gOobOwnTKData[16] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F}; void BleConnManager_GapCentralEvent(deviceId_t peerDeviceId, gapConnectionEvent_t* pConnectionEvent) { switch (pConnectionEvent->eventType) { case gConnEvtConnected_c: { ... ... ... } break; ... ... ... case gConnEvtPairingResponse_c: { /* Send Legacy OOB data to the peer */ #if (gAppUseOob_d & !gAppUseSecureConnections_d) Oob_SendLocalTKValueToPeer(&gOobOwnTKData[0]); #endif } break; ... ... ... #if (gAppUseOob_d && !gAppUseSecureConnections_d) case gConnEvtOobRequest_c: { /* The stack has requested the LE Legacy OOB data*/ (void)Gap_ProvideOob(peerDeviceId, &gOobOwnTKData[0]); } break; #endif‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ ... ... ... } }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍     LE Secure Connections Pairing When using Secure Connections Pairing, the application must handle two events at the BleConnManager_GapCentralEvent function. In gConnEvtPairingResponse_c event, you must implement Gap_LeScGetLocalOobData API to generate the local (r, Cr) values. The gConnEvtLeScOobDataRequest_c event indicates that the application is requesting the (r, Cr) values previously received OOB from the peer device (using SPI, UART, I2C, etc). Such values are contained into gOobReceivedRandomValueFromPeer and gOobReceivedConfirmValueFromPeer buffers. You must implement Gap_LeScSetPeerOobData in response to gConnEvtLeScOobDataRequest_c, This function has two parameters, the device ID of the peer and a pointer to a gapLeScOobData_t type struct. This struct is filled with the data contained in gOobReceivedRandomValueFromPeer and gOobReceivedConfirmValueFromPeer buffers.   gapLeScOobData_t gPeerOobData; static uint8_t gOobReceivedRandomValueFromPeer[gSmpLeScRandomValueSize_c]; /*!< LE SC OOB r (Random value) */ static uint8_t gOobReceivedConfirmValueFromPeer[gSmpLeScRandomConfirmValueSize_c]; /*!< LE SC OOB Cr (Random Confirm value) */ void BleConnManager_GapCentralEvent(deviceId_t peerDeviceId, gapConnectionEvent_t* pConnectionEvent) { switch (pConnectionEvent->eventType) { case gConnEvtConnected_c: { ... ... ... } break; ... ... ... case gConnEvtPairingResponse_c: { /* The peripheral has acepted pairing, get local LE Secure Connections OOB data */ #if (gAppUseOob_d && gAppUseSecureConnections_d) (void)Gap_LeScGetLocalOobData(); #endif } break; ... ... ... #if (gAppUseOob_d && gAppUseSecureConnections_d) case gConnEvtLeScOobDataRequest_c: { /* The stack has requested the peer LE Secure Connections OOB data. Fill the gPeerOobData struct and provide it to the stack */ FLib_MemCpy(gPeerOobData.randomValue, &gOobReceivedRandomValueFromPeer[0], gSmpLeScRandomValueSize_c); FLib_MemCpy(gPeerOobData.confirmValue, &gOobReceivedConfirmValueFromPeer[0], gSmpLeScRandomConfirmValueSize_c); Gap_LeScSetPeerOobData(peerDeviceId, &gPeerOobData); } break; #endif ... ... ... } }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍   The gLeScPublicKeyRegenerated_c event in the BleConnManager_GenericEvent function must be handled using the Gap_LeScGetLocalOobData API as depicted below. Each time that Gap_LeScGetLocalOobData is executed by the software, it generates, asynchronously, the gLeScLocalOobData_c event (also handled in the BleConnManager_GenericEvent function) indicating that the local (r, Cr) values were successfully generated and you can read them using the pGenericEvent->eventData.localOobData pointer to send it OOB to the peer device. In this example, Oob_SendLocalRandomValueToPeer and Oob_SendLocalConfirmValueToPeer  are custom synchronous functions that demonstrate how you can implement a custom API that sends the local (r, Cr) read from pGenericEvent->eventData.localOobData pointer to the peer device using other protocols (SPI, UART, I2C, etc).   void BleConnManager_GenericEvent(gapGenericEvent_t* pGenericEvent) { switch (pGenericEvent->eventType) { case gInitializationComplete_c: { ... ... ... } break; ... ... ... #if (defined(gAppUsePairing_d) && (gAppUsePairing_d == 1U)) case gLeScPublicKeyRegenerated_c: { /* Key pair regenerated -> reset pairing counters */ mFailedPairings = mSuccessfulPairings = 0; /* Local LE Secure Connections OOB data must be refreshed whenever this event occurs */ #if (gAppUseOob_d && gAppUseSecureConnections_d) (void)Gap_LeScGetLocalOobData(); #endif } break; #endif ... ... ... #if (gAppUseOob_d && gAppUseSecureConnections_d) case gLeScLocalOobData_c: { /* Get the local LE Secure Connections OOB data and send to the peer */ Oob_SendLocalRandomValueToPeer((uint8_t*)pGenericEvent->eventData.localOobData.randomValue); Oob_SendLocalConfirmValueToPeer((uint8_t*)pGenericEvent->eventData.localOobData.confirmValue); } break; #endif ... ... ... } }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍     Simplified Flow Diagram of OOB Central and Peripheral Events LE Legacy Pairing The following figure shows a simplified flow diagram of the LE Legacy OOB pairing example in this document. The LE Central device is the one that contains the OOB TK data that will be shared OOB using the custom Oob_SendLocalTKValueToPeer function. It must be implemented at the gConnEvtPairingResponse_c event to ensure that both devices know the OOB TK before to execute Gap_ProvideOob since this function requests this data. If the OOB data is correct on both sides, the pairing procedure ends, and it is noticed through gConnEvtPairingComplete_c. LE Secure Connections Pairing The following figure shows a simplified flow diagram of the LE Secure Connections OOB pairing example in this document. After both devices enter in connection, the data that will be shared OOB using the custom Oob_SendLocalRandomValueToPeer and Oob_SendLocalConfirmValueToPeer  functions is yielded by Gap_LeScGetLocalOobData on both sides. The last one must be implemented at gConnEvtPairingResponse_c and gConnEvtPairingRequest_c events to ensure that both devices know the Peripheral and Central (r, Cr) OOB data before to execute Gap_LeScSetPeerOobData since this function requests this data. If the OOB data is correct on both sides, the pairing procedure ends, and it is noticed through gConnEvtPairingComplete_c. This is how OOB pairing can be implemented in your project. I hope this document will be useful to you. Please, let us know any questions or comments. 
記事全体を表示
The document discusses how to enable MAYA_160(IW416) bluetooth on i.MX8MM UART2. 1. Hardware connections 2. how to change device tree 3. compiling mass market driver and getting firmware 4. starting bluetooth and setting bandrate to be 3Mbps More detailed information, see attachment, please!   NXP global CAS connectivity team weidong sun 12-29-2021
記事全体を表示
The border router device provides connectivity of the nodes in the Thread network with the possibility to connect to the networks as the www. Requirements Hardware K32W/JN5189 DK6 Board Udoo Neo Ethernet Cable Software MCUXpresso IDE v11.4.1 o newer. SDK 2.6.4. https://mcuxpresso.nxp.com/en/dashboard DK6 Production Flash Programmer Tool udoo_neo_os_nxp.img Docker Image Software Set up 1. Flash udoo_neo_os_nxp.img on an SD card using a tool. You could use any tool to flash the image, make sure that the SD card is correctly formatted. 2. Flash the ot-rcp.bin file on the USB Dongle(K32W/JN5189),  included in the SDK. \K32W061DK6\middleware\wireless\openthread\openthread\output\k32w061\bin DK6Programmer.exe -V5 -s COM2 -p ot-rcp.bin Running OpenThread BorderRouter You have connected your Udoo Neo board to an Ethernet cable, just open a new terminal to be sure that you have a connection. You could type the ping 8.8.8.8 command. If you do not have the IPV4, you could access connection your board to your computer and use the USB IP. After that, you could open a browser and enter to the Udoo Neo page using the USB IP. You could use the different address for creating a SSH connection.   Install Docker Copy the Docker image and Bash scripts to the Udoo Board; Install docker; curl -sSl https://get.docker.com | sh; The command will take some time   Verify the Docker images was successfully loaded Launch a Docker container   In this case, the UDOO NEO Extended doesn't have an Ethernet port, so, there is a USB converter to Ethernet. The OpenThread Example requires an IPV6 address sudo ./run_br_container.sh; Note: You have to have Ethernet Connection because the OpenThread requires IPV6. Be sure that the file has the execute permissions. The image below shows the process of the container. You cannot use this terminal, as this is a running Docker instance. It will output logs from the wpantund while it’s running.   Open a new terminal and look at for the container ID     After that, open a browser and search the IPV4 of your UDOO Neo, and you will find an OpenThread web page.     On the left side, select the option form, and a new page will be displayed for the network creation. Then you can ask for the wpanctl status, it will show all the Thread information, the address, the channel of the network, etc. sudo wpanctl status sudo wpanctl getprop Thread:OnMeshPrefixes Node A In the same UDOO terminal, start the border router internal commissioner and allow that a Thread node with the preshared key could join in this network. sudo wpanctl commissioner start; sudo wpanctl commissioner joiner-add “*” 120 J01NME; Node B Flash another JN5189/K32W using the REED example and type the next command for enabling and join to a Thread Network. \K32W061DK6\boards\k32w061dk6\wireless_examples\openthread\reed ifconfig up joiner start J01NME After the joining process is complete, type the next command to attach to the border router. thread start Look at the image below, you will notice the Node B Commands.   Ping the external internet 64:ff9b::808:808 to be sure that you have access to the internet.   For a better reference please look at the OpenThread Demo Applications User Guide included in your SDK documentation. "\K32W061DK6\docs\wireless\OpenThread" 11 Chapter Running Border Router Application Scenarios   Regards, Mario    
記事全体を表示
Thread is a secure, wireless, simplified IPv6-based mesh networking protocol developed by industry leading technology companies, including Freescale, for connecting devices to each other, to the internet and to the cloud. Before starting a Thread Network implementation, users should be familiar with some concepts and how they are related to Thread protocol. IPv6 Addressing Devices in the Thread stack support IPv6 addressing IPv6 addresses are 128-bit identifiers (IPv4 is only 32-bit) for interfaces and sets of interfaces.  Thread supports the following types of addresses: Unicast:  An identifier for a single interface.  A packet sent to a unicast address is delivered to the interface identified by that address. Multicast: An identifier for a set of interfaces (typically belonging to different nodes).  A packet sent to a multicast address is delivered to all interfaces identified by that address. NOTES There are no broadcast addresses in IPv6, their function being superseded by multicast addresses. Each device joining the Thread Network is also assigned a 16-bit short address as specified in IEEE 802.15.4. 6LoWPAN All Thread devices use 6LoWPAN 6LoWPAN stands for “IPv6 over Low Power Wireless Personal Networks”. 6LoWPAN is a set of standards defined by the Internet Engineering Task Force (IETF), which enables the efficient use of IPv6 over low-power, low-rate wireless networks on simple embedded devices through an adaptation layer and the optimization of related protocols. Its main goal is to send/receive IPv6 packets over 802.15.4 links. Next figure compares IP and 6LoWPAN protocol stacks: The following concepts would explain the transport layer. ICMP Thread devices support the ICMPv6 (Internet Control Message Protocol version 6) protocol and ICMPv6 error messages, as well as the echo request and echo reply messages. The Internet Control Message Protocol (ICMP) is an error reporting and diagnostic utility and is considered a required part of any IP implementation. ICMPs are used by routers, intermediary devices, or hosts to communicate updates or error information to other routers, intermediary devices, or hosts. For instance, ICMPv6 is used by IPv6 nodes to report errors encountered in processing packets, and to perform other internet-layer functions, such as diagnostics. ICMP differs from transport protocols such as TCP and UDP in that it is not typically used to exchange data between systems, nor is it regularly employed by end-user network applications.  The ICMPv6 messages have the following general format: The type field indicates the type of the message.  Its value determines the format of the remaining data. The code field depends on the message type.  It is used to create an additional level of message granularity. The checksum field is used to detect data corruption in the ICMPv6 message and parts of the IPv6 header. ICMPv6 messages are grouped into two classes: error messages and informational messages.  Error messages are identified as such by a zero in the high-order bit of their message Type field values.  Thus,   error messages have message types from 0 to 127; informational messages have message types from 128 to 255. UDP The Thread stack supports UDP for messaging between devices. This User Datagram Protocol  (UDP)  is defined  to  make available  a datagram   mode of  packet-switched   computer communication  in  the environment  of an  interconnected  set  of  computer  networks, assuming that the Internet  Protocol (IP) is used as the underlying protocol. With UDP, applications can send data messages to other hosts on an IP network without prior communications to set up special transmission channels or data paths. UDP is suitable for purposes where error checking and correction is either not necessary or is performed in the application, avoiding the overhead of such processing at the network interface level. The UDP format is as follows: Source Port is an optional field, when meaningful, it indicates the port of the sending  process,  and may be assumed  to be the port  to which a reply should be addressed  in the absence of any other information.  If not used, a value of zero is inserted. Destination Port has a meaning within the context of a particular internet destination address. Length is the length in octets of this user datagram including this header and the data.   (This means the minimum value of the length is eight.) Checksum is the 16-bit one's complement of the one's complement sum of a pseudo header of information from the IP header, the UDP header, and the data, padded  with zero octets at the end (if  necessary)  to  make  a multiple of two octets. References White papers available at http://threadgroup.org/ “6LoWPAN: The Wireless Embedded Internet” by Zach Shelby and Carsten Bromann RFC 4291, RFC 4944, RFC 4443 and RFC 768 from https://www.ietf.org
記事全体を表示
FRDM-KW36 Software Development Kit (SDK) includes drivers and examples of FlexCAN module for KW36 which can be easily configured for a custom communication. For example, if user want to change the default baud rate from FlexCAN driver demo examples then the only needed change is the default value on "config->baudRate" and "config->baudRateFD" from "FLEXCAN_GetDefaultConfig" function (See Figure 1). Segments within a bit time will be automatically configured to obtain the desired baud rate. By default, demos are configured to work with CAN FD communication. Figure 1. FRDM-KW36's default baudrate from flexcan_interrupt_transfer driver example Even so, there are cases where segments within a bit time are not well configured and it's necessary that user configure segments manually. An example occurs by setting the maximum FD baud rate "3.2MHz" using the 32MHz xtal or "2.6MHz" using a 26MHz xtal where demo reports an error. See Figure 2. Figure 2. Error by setting maximum baud rate When this error occurs, the fix is on setting the timing config parameters correctly by including the definition of SET_CAN_QUANTUM on application source file (see Figure 3) and then declare and initialize the timing config parameters shown in Figure 4. Figure 3. SET_CAN_QUANTUM define Figure 4. Custom timing config parameters For this example we are going to show how to calculate timing config parameters in an scenario where a CAN FD communication is used with baud rate of 500kHz on nominal phase and 3.2MHz on FD phase. See Figure 5.  To do it, we need to calculate Time Quanta and value of segments within the bit time.    Figure 5. Custom CAN FD baudrate KW36 Reference Manual in chapter "37.4.8.7 Protocol timing" shows the segments within a bit time for CAN nominal phase configured in "CAN_CTRL1" register (see Figure 6), and segments for FD phase configured in CAN_FDCBT register (see Figure 7). Figure 6. Segment within a bit time for CAN nominal phase Figure 7. Segment within a bit time for CAN FD phase Before calculating the value of segments, first we need to calculate the Time Quanta which is the atomic number of time handled by the CAN engine. The formula to calculate Time Quanta is shown in Figure 8 taken from KW36 Reference Manual. Figure 8. Time Quanta Formula CANCLK can be selected by CLKSRC bits on CAN_CTRL1 register as shown in Figure 9, where the options are Peripheral clock=20MHz or Oscillator clock (16MHz if using 32MHz xtal or 13MHz if using 26MHz xtal). The recomiendation is to use the Oscillator clock due to peripheral clock can have jitter that affect communication.  Figure 9. CAN clocks To select the Oscillator clock, search for flexcanConfig.clkSrc definition and set it to kFLEXCAN_ClkSrcOsc as shown in Figure 10. Figure 10. CANCLK selection Next step is selecting the PRESDIV value for nominal phase and FPRESDIV for FD phase. You have to select the right value to achieve the TQ needed to obtain the configured baudrate. For this example, let's set FPRESDIV value to 0 and PRESDIV value to 3. TQ calculation for nominal phase: TQ = (PRESDIV + 1) / CANCLK = (3 + 1) / 16000000 = 0.00000025 TQ calculation for FD phase: TQ = (FPRESDIV + 1) / CANCLK = (0 + 1) / 16000000 = 0.0000000625 The bit rate, which defines the rate of CAN message is given by formula shown in Figure 11 taken from KW36 Reference Manual. Figure 11. CAN Bit Time and Bit Rate Formulas With this info and with our TQ calculated, we can deduce that we need: For Nominal phase: 8 = Number of Time Quanta in 1 bit time For FD phase: 5 = Number of Time Quanta in 1 bit time Now, let's define the value of segments. For nominal phase: Bit Time =  (number of Tq in 1 bit time) x Tq CAN Bit Time = (1 + (PROPSEG + PSEG1 + 2) + (PSEG2 + 1) ) x Tq CAN Bit Time = (1 + (1 + 2  + 2) + (1 + 1) ) x Tq = 8 x 0.00000025 =  Baud rate = 1/ CAN Bit Time = 500KHz For FD phase: CAN Bit Time = (number of Tq in 1 bit time) x Tq CAN Bit Time = (1 + (FPROPSEG + FPSEG1 + 1) + (FPSEG2 + 1) ) x Tq CAN Bit Time = (1 + (0 + 1 + 1) + (1 + 1) ) x Tq = 5 x Tq =  0.0000003125 Bit Rate = 1/CAN Bit Time = 1 / 0.0000003125 =  3.2MHz To finish, just update the calculated values on your firmware on flexcanConfig.timingConfig structure.  Notes: FRDM-KW36 Software Development Kit (SDK) can be downloaded from MCUXpresso webpage. FlexCAN driver examples are located in path: "SDK_2.2.0_FRDM-KW36\boards\frdmkw36\driver_examples" from your downloaded FRDM-KW36 SDK. Take in consideration that not all the baud rates are achievables and will depend on the flexcan clock and segment values used.
記事全体を表示
Please, find the important link to build a PCB using a KW38 and all concerning the radio performances, low power and radio certification (CE/FCC/IC). Your first task before to send any inquiry to NXP support is to fill the KW38 Design In CHECK LIST available in this ticket.   KW38 product NXP web page: KW39/38/37 32-bit Bluetooth 5.0 Long-Range MCUs|NXP | NXP Semiconductors   FRDM-KW38 getting started NXP web page Getting Started with the FRDM-KW38 | NXP Semiconductors   HW: FRDM-KW38 User Guide: FRDM-KW38 Freedom Development Board User’s Guide (nxp.com.cn) Hardware design consideration: Hardware Design Considerations for MKW39A/38A/37A/38Z/37Z Bluetooth LE Devices (nxp.com) Minimum BoM: KW37_38_39 Minimum BoM Presentation.pdf - NXP Community DCDC management guide : MKW4xZ/3xZ/3xA/2xZ DC-DC Power Management (nxp.com)          Migration guide: KW36 to KW38: Migration Guide from MKW36A512xxx4 to MKW38A512xxx4 (nxp.com)          Design-In check list: attached excel file         Configuration for Unused Pins/GPIOs on Kinetis Radio: RF report: https://www.nxp.com.cn/docs/en/application-note/AN12517.pdf Annex: MIIT (China) sharpened Homologation on FRDM-KW38 &... - NXP Community          Radio co-existance: FRDM-KW38 Co-existence with RF System Evaluation Report for Bluetooth® Low Energy Application (nxp.com) Low Power Consumption: https://www.nxp.com/docs/en/application-note/AN12459.pdf Distance performances: KW37_38_39_Bluetooth LE Range Performance.pdf - NXP Community Antenna: https://www.nxp.com/docs/en/application-note/AN2731.pdf          Generic FSK Link Layer Quick Start: Connectivity test SW user guide in attached pdf file          Binary file attached: Connectivity test frdmkw38.bin          Return loss (S11) measurement: attached file          Loadpull: attached file Low Power:          Low power estimator tool link: https://community.nxp.com/t5/Connectivity-Support-QN-JN-KW/BLE-power-profile-calculator-v0p3-xlsx/ta-p/1107083 SW tools:          IoT Tool box          Connectivity test tool for connectivity products KW39/38/37 32-bit Bluetooth 5.0 Long-Range MCUs|NXP | NXP Semiconductors          DTM: How to use the HCI_bb on Kinetis family products a... - NXP Community https://community.nxp.com/t5/Wireless-Connectivity-Knowledge/BLE-HCI-Application-to-set-transmitter-receiver-test-commands/ta-p/1126093 Certification:          Zip attached file and the community link: KW39 KW38 KW37 Radio certification documents - NXP Community
記事全体を表示
The High Power board design files can be found on the JN5189 product webpage, in the JN-RD-6054-JN5189 Design Files. More precisely, the reference manual and the design files are attached to this article (OM15072-2_MOD_EXT_AMP_QFN40_PCB2467-2.0.zip and JN-RM-2078-JN5189-Module-Development_1V4.pdf) Some guidance is available here. The RF performances are presented in the attached test report (powerpoint file). The FCC/IC Certificates or Declarations of conformity are in the article "Certificates/Declarations of conformity (nxp community)".  
記事全体を表示
Introduction HCI Application is a Host Controller Interface application which provides a serial communication to interface with the KW40/KW41/KW35/KW36/QN9080 BLE radio part. It enables the user to have a way to control the radio through serial commands. The format of the HCI Command Packet it’s composed of the following parts:     Each command is assigned a 2 byte Opcode which it’s divided into two fields, called the OpCode Group Field (OGF) and OpCode Command Field (OCF). The OGF uses the upper 6 bits of the Opcode, while the OCF corresponds to the remaining 10 bits. The OGF of 0x3F is reserved for vendor-specific debug commands. The organization of the opcodes allows additional information to be inferred without fully decoding the entire Opcode. For further information regarding this topic, please check the BLUETOOTH SPECIFICATION Version 5.0 | Vol 2, Part E, 5.4 EXCHANGE OF HCI-SPECIFIC INFORMATION.   Adding HCI Custom Commands Example This document will guide you through the implementation of custom HCI commands in the KW36. For this example, we will include the following set of custom commands: 01 50 FC 00 – This command is to send a continuous unmodulated wave using a defined channel and output power (default: frequency 2.402GHz and PA_POWER register set to 0x3E).  01 4F FC 00 – This command is to stop the continuous unmodulated wave and configure the radio in Bluetooth LE mode again. This way you can continue sending adopted HCI commands. 01 00 FC 00 – Set the Channel 0 Freq 2402 MHz 01 01 FC 00 – Set the Channel 19 Freq 2440 MHz 01 02 FC 00 – Set the Channel 39 Freq 2480 MHz 01 10 FC 00 – Set the PA_POWER 1 01 11 FC 00 – Set the PA_POWER 32 01 12 FC 00 – Set the PA_POWER 62 The changes described in the following sections were based on the HCI Black Box SDK example (it is located at wireless_examples -> bluetooth -> hci_bb)   Changes in hci_transport.h The "hci_transport.h" file is located at bluetooth->hci_transport->interface folder. Include the following macros in ''Public constants and macros" #define gHciCustomCommandOpcodeUpper (0xFC50) #define gHciCustomCommandOpcodeLower (0xFC00) #define gHciInCustomVendorCommandsRange(x) (((x) <= gHciCustomCommandOpcodeUpper) && \ ((x) >= gHciCustomCommandOpcodeLower))‍‍‍‍‍‍‍‍ Declare a function to install the custom command as follows: void Hcit_InstallCustomCommandHandler(hciTransportInterface_t mCustomInterfaceHandler);‍   Changes in hcit_serial_interface.c The "hci_transport.h" file is located at bluetooth->hci_transport->source folder. Add the following in "Private memory declarations" static hciTransportInterface_t mCustomTransportInterface = NULL;‍ Modify the Hcit_SendMessage function as follows: static inline void Hcit_SendMessage(void) { uint16_t opcode = 0; /* verify if this is an event packet */ if(mHcitData.pktHeader.packetTypeMarker == gHciEventPacket_c) { /* verify if this is a command complete event */ if(mHcitData.pPacket->raw[0] == gHciCommandCompleteEvent_c) { /* extract the first opcode to verify if it is a custom command */ opcode = mHcitData.pPacket->raw[3] | (mHcitData.pPacket->raw[4] << 8); } } /* verify if command packet */ else if(mHcitData.pktHeader.packetTypeMarker == gHciCommandPacket_c) { /* extract opcode */ opcode = mHcitData.pPacket->raw[0] | (mHcitData.pPacket->raw[1] << 8); } if(gHciInCustomVendorCommandsRange(opcode)) { if(mCustomTransportInterface) { mCustomTransportInterface( mHcitData.pktHeader.packetTypeMarker, mHcitData.pPacket, mHcitData.bytesReceived); } } else { /* Send the message to HCI */ (void)mTransportInterface(mHcitData.pktHeader.packetTypeMarker, mHcitData.pPacket, mHcitData.bytesReceived); } mHcitData.pPacket = NULL; mPacketDetectStep = mDetectMarker_c; }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Develop the function to install the custom command as follows:   void Hcit_InstallCustomCommandHandler(hciTransportInterface_t mCustomInterfaceHandler) { OSA_InterruptDisable(); mCustomTransportInterface = mCustomInterfaceHandler; OSA_InterruptEnable(); }‍‍‍‍‍‍   Changes in hci_black_box.c This is the main application file, and it is located at source folder. Include the following files to support our HCI custom commands #include "hci_transport.h" #include "fsl_xcvr.h"‍‍ Define the following macros which represent the opcode for each custom command #define CUSTOM_HCI_CW_ON (0xFC50) #define CUSTOM_HCI_CW_OFF (0xFC4F) #define CUSTOM_HCI_CW_SET_CHN_0 (0xFC00) /*Channel 0 Freq 2402 MHz*/ #define CUSTOM_HCI_CW_SET_CHN_19 (0xFC01) /*Channel 19 Freq 2440 MHz*/ #define CUSTOM_HCI_CW_SET_CHN_39 (0xFC02) /*Channel 39 Freq 2480 MHz*/ #define CUSTOM_HCI_CW_SET_PA_PWR_1 (0xFC10) /*PA_POWER 1 */ #define CUSTOM_HCI_CW_SET_PA_PWR_32 (0xFC11) /*PA_POWER 32 */ #define CUSTOM_HCI_CW_SET_PA_PWR_62 (0xFC12) /*PA_POWER 62 */ #define CUSTOM_HCI_CW_EVENT_SIZE (0x04) #define CUSTOM_HCI_EVENT_SUCCESS (0x00) #define CUSTOM_HCI_EVENT_FAIL (0x01)‍‍‍‍‍‍‍‍‍‍‍ Add the following application variables static uint16_t channelCC = 2402; static uint8_t powerCC = 0x3E; uint8_t eventPacket[6] = {gHciCommandCompleteEvent_c, CUSTOM_HCI_CW_EVENT_SIZE, 1, 0, 0, 0 };‍‍‍‍‍‍ Declare the handler for our custom commands bleResult_t BleApp_CustomCommandsHandle(hciPacketType_t packetType, void* pPacket, uint16_t packetSize);‍ Find the "main_task" function, and register the handler for the custom commands through "Hcit_InstallCustomCommandHandler" function. You can include it just after BleApp_Init(); /* Initialize peripheral drivers specific to the application */ BleApp_Init(); /* Register the callback for the custom commands */ Hcit_InstallCustomCommandHandler((hciTransportInterface_t)&BleApp_CustomCommandsHandle); /* Create application event */ mAppEvent = OSA_EventCreate(TRUE); if( NULL == mAppEvent ) { panic(0,0,0,0); return; }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Develop the handler of our custom commands as follows: bleResult_t BleApp_CustomCommandsHandle(hciPacketType_t packetType, void* pPacket, uint16_t packetSize) { uint16_t opcode = 0; if(gHciCommandPacket_c == packetType) { opcode = ((uint8_t*)pPacket)[0] | (((uint8_t*)pPacket)[1] << 8); switch(opcode) { /*@CC: Set Channel */ case CUSTOM_HCI_CW_SET_CHN_0: /*@CC: Set Channel 0 Freq 2402 MHz */ channelCC=2402; break; case CUSTOM_HCI_CW_SET_CHN_19: /*@CC: Channel 19 Freq 2440 MHz*/ channelCC=2440; break; case CUSTOM_HCI_CW_SET_CHN_39: /*@CC: Channel 39 Freq 2480 MHz */ channelCC=2480; break; /*@CC: Set PA_POWER */ case CUSTOM_HCI_CW_SET_PA_PWR_1: /*@CC: Set PA_POWER 1 */ powerCC=0x01; break; case CUSTOM_HCI_CW_SET_PA_PWR_32: /*@CC: Set PA_POWER 32 */ powerCC=0x20; break; case CUSTOM_HCI_CW_SET_PA_PWR_62: /*@CC: Set PA_POWER 62 */ powerCC=0x3E; break; /*@CC: Generate a Continuous Unmodulated Signal ON / OFF */ case CUSTOM_HCI_CW_ON: /*@CC: Generate a Continuous Unmodulated Signal when pressing SW3 */ XCVR_DftTxCW(channelCC, 6); XCVR_ForcePAPower(powerCC); break; case CUSTOM_HCI_CW_OFF: /*@CC: Turn OFF the transmitter */ XCVR_ForceTxWd(); /* Initialize the PHY as BLE */ XCVR_Init(BLE_MODE, DR_1MBPS); break; default: eventPacket[5] = CUSTOM_HCI_EVENT_FAIL; break; } eventPacket[3] = (uint8_t)opcode; eventPacket[4] = (uint8_t)(opcode >> 8); eventPacket[5] = CUSTOM_HCI_EVENT_SUCCESS; Hcit_SendPacket(gHciEventPacket_c, eventPacket, sizeof(eventPacket)); } else { return gBleUnexpectedError_c; } return gBleSuccess_c; }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍   Testing Custom HCI Commands Using NXP Test Tool 12 To test HCI Black Box software, we need to install NXP Test Tool 12, from the NXP Semiconductors | Automotive, Security, IoT official web site. Once you have installed Test Tool, attach the FRDM-KW36 board to your PC and open the serial port enumerated in the start page clicking twice on the icon. Then, select "Raw Data" checkbox and type any of our custom commands, for instance, "01 01 FC 00" (Set the Channel 19 Freq 2440 MHz). Shift out the command clicking on the "Send Raw..." button. You will see the HCI Tx and Rx in the right upper corner of your screen
記事全体を表示
This document describes how to update and sniff Bluetooth LE wireless applications on the USB-KW41 Programming the USB-KW41 as sniffer   It was noticed that there are some issues trying to follow a Bluetooth LE connection, even if the sniffer catches the connection request. These issues have been fixed in the latest binary file which can be found in the Test Tool for Connectivity Products 12.8.0.0 or newest.   After the Test Tool Installation, you’ll find the sniffer binary file at the following path. C:\NXP\Test Tool 12.8.1.0\images\KW41_802.15.4_SnifferOnUSB.bin   Programming Process. 1. Connect the USB-KW41Z to your PC, and it will be enumerated as Mass Storage Device 2. Drag and drop the "KW41_802.15.4_SnifferOnUSB.bin" included in Test tool for Connectivity Products.    "C:\NXP\Test Tool 12.8.0.0\images\KW41_802.15.4_SnifferOnUSB.bin"   3. Unplug the device and hold the RESET button of the USB-KW41Z, plug to your PC and the K22 will enter in bootloader mode. 4. Drag and drop the "sniffer_usbkw41z_k22f_0x8000.bin" included in Test tool for Connectivity Products.    "C:\NXP\Test Tool 12.8.5.9\images\sniffer_usbkw41z_k22f_0x8000.bin"   5. Then, unplug and plug the USB-KW41Z to your PC.                                                                                                          Note: If the USB-KW41 is not enumerated as Mass Storage Device, please look at the next thread https://community.nxp.com/thread/444708   General Recommendations   Software Tools  Kinetis Protocol Analyzer Wireshark version (2.4.8) Hardware Tools 1 USB-KW41 (updated with KW41_802.15.4_SnifferOnUSB.bin from Test Tool 12.8 or later)   The Kinetis Protocol Analyzer provides the ability to monitor the Bluetooth LE Advertisement Channels. It listens to all the activity and follows the connection when capturing a Connection Request.   Bluetooth LE Peripheral device transmits packets on the 3 advertising channels one after the other, so the USB-KW41 will listen to the 3 channels one by one and could or not catch the connection request.   Common use case The USB-KW41 will follow the Bluetooth LE connection if the connection request happens on the same channel that It is listening. If is listening to a different channel when the connection request is sent, it won't be able to follow it.   A Simple recommendation is the Bluetooth LE Peripheral should be set up to send the adv packets only to one channel and the sniffer just capturing on the same channel.   Improvement Use 3 USB-KW41, each of them will be dedicated to one channel and will catch the connection request.   Configure Kinetis Protocol Analyzer and Wireshark Network Analyzer   Note: For better results, address filter can be activated. When you are capturing all the packets in the air, you will notice 3 adv packets. Each packet will show the adv channel that is getting the adv frame.       One of the three sniffers will capture the Connection Request. In this case, it happens on channel 38.       You will be able to follow the connection, see all the data exchange.   For a better reference, you can look at the USB-KW41 Getting Started     Hope it helps   Regards, Mario
記事全体を表示
What you need: USB-KW40Z boards (at least 3 recommended) Kinetis KW40Z Connectivity Software Kinetis Protocol Analyzer Adapter Wireshark Consult the USB-KW40Z getting started guide for an in depth tutorial on how to program the boards with the sniffer software and how to install and use the Kinetis Protocol Analyzer Adapter and Wireshark. For best performance at least 3 boards are needed to continuously monitor all 3 BLE advertising channels: 37, 38 and 39. If you have more then it’s even better. Having less than 3 sniffer boards will lead to the BLE sniffer setup missing some advertising packets and connection events. If only 1 or 2 boards are present they will have to jump between the 3 advertising channels. After the initial setup is complete make sure the boards are plugged into USB ports and then start the Kinetis Protocol Analyzer Adapter software. Immediately after the application is started it will start looking for the sniffers: After the sniffers are detected the application window should look like the screenshot below. There should be a separate row shown for each sniffer board which is plugged in (3 in the example below – COM32, COM34, and COM33). Set each sniffer on a different advertising channel and (37, 38 and 39) and if you’re looking to sniff a specific device enable the Address Filter checkbox and enter the device’s address in the adjacent field as shown in the screenshot below. Use the same device address for all sniffer devices. Press the “shark fin” button in the upper right of the window to start Wireshark. After Wireshark starts select the PCAP IF shown in the Kinetis Protocol Analyzer Adapter window and start capturing packets. Local Area Connection 2 is the PCAP IF in the example. Wireshark will start showing the captured packets and the sniffers will catch Connection Request packets sent to the target device on any of the advertising channels. Useful tip: You can use the btle.advertising_header.length != 0 or btle.data_header.length != 0 filter in Wireshark to filter out empty BLE packets.
記事全体を表示