NFCナレッジベース

キャンセル
次の結果を表示 
表示  限定  | 次の代わりに検索 
もしかして: 

NFC Knowledge Base

ディスカッション

ソート順:
DISCLAIMER APPLICABLE TO THIS DOCUMENT CONTENTS: This post contains a guide of how to use i.MXRT1050 demoboard with other NXP demoboards to demonstrate Secure access to industrial IOT, using NFC, embedded secure element and MCU (see picture below). A ready to use package including preparation of a secure element, and of a MIFARE DESFire EV2 card can be used as 3-step authentication example using symmetric AES keys; a session key will be generated inside SE050 which will be exported to i.MXRT1050 which will handle contactless communication thru CLRC663 plus frontend. This document is structured as follows: Hardware Requirements: Following hardware is required to run the project: i.MXRT1050 EVKB development board plus referred TFT LCD Display BLE-NFC-V2 arduino-friendly board. OM-SE050ARD, embedded secure element arduino-friendly R3 board.   1. Overview of i.MXRT1050 EVKB: The i.MXRT1050 EVKB development board provides the ideal platform for evaluation of and development with the i.MX RT1050 crossover processor, featuring NXP’s advanced implementation of the Arm ® Cortex ® -M7 core. The i.MX RT1050 EVK is a 4-layer through-hole USB-powered PCB. The board includes a high performance onboard debug probe, audio subsystem and accelerometer, with several options for adding off-the-shelf add-on boards for networking, sensors, display and other interfaces. This core operates at speeds up to 600 MHz to provide high CPU performance and best real-time response. Support for Amazon FreeRTOS ™ available within the MCUXpresso SDK.The i.MX RT1050 EVK board is now supported by Arm ® Mbed ™ OS and Zephyr ™ OS, both open source embedded operating systems for developing the Internet of Things. i.MXRT1050 EVKB board supported devices Processors and Microcontrollers i.MX RT Series i.MX-RT1050 : i.MX RT1050 Crossover Processor with Arm ® Cortex ® -M7 core Sensors 6-Axis FXOS8700CQ : Digital Motion Sensor - 3D Accelerometer (±2g/±4g/±8g) + 3D Magnetometer Interfaces USB PD-PHY and CC-Logic PTN5110 : USB PD TCPC PHY IC Power Management Load Switches NX3P190UK : Logic controlled high-side power switch NX5P3090UK : USB PD and type C current-limited power switch The i.MXRT1050 EVKB is fully supported by the MCUXpresso suite of tools, which provides device drivers, middleware and examples to allow rapid development, plus configuration tools and an optional free IDE. MCUXpresso software is compatible with tools from popular tool vendors such as Arm and IAR, and the i.MXRT1050 EVKB may also be used with the popular debug probes available from SEGGER and P&E Micro.   As final touch to this demonstrator, one LCD display will be added in order to show "access control" check result when approaching a MIFARE DESFire EV2 card to the Reader antenna, without the use of a computer console.Connection between i.MXRT1050 EVKB board and LCD Display requires attachment of two flat cables, one for touch-screeen functionality and the other for controlling Display itself.   Click here to order Touchscreen LCD Display thru buy direct:                                          P/N: RK043FN02H-CT 12NC:935358709598   2. BLE-NFC-V2: It is easier to use the BLE-NFC-V2 board due to four Arduino compliant male connectors. Current version has only double row-male connectors which imposes that BLE-NFC-V2 board will be the last board stacked on top of other arduino boards. The following figure shows the pin mapping between the two boards.   Pin Function i.MXRT1050  (Arduino connector # - Pin #) CLRC663 plus NFC BLE V2 (Arduino connector # - Pin #) MOSI J24-5 MOSI J10-P14 MISO J24-4 MISO J10-P12 SPI CLK J24-6 SCK J10-P10 SPI CS J24-3 SSEL J10-P16 RESET J22-6 CLRCL_NRST J12-P6 IRQ J22-5 IRQ J12-P8 IFSEL0 J24-7 GND IF0 Via R11 IFSEL1 J25-4 VCC IF1 Via R9 GND J25-6 GND GND J11-P11   Connections between i.MXRT1050 EVKB Board and NFC BLE V2   3 OM-SE050ARD: SE050 Arduino ® Compatible Development Kit The OM-SE050ARD is the flexible and easy-to-use development kit for the EdgeLock™ SE050 Plug & Trust product family. It can be used in various ways for example via the Arduino interface compatible to any board featuring an Arduino compatible header, including many i.MX, LPC and Kinetis ® boards, or via a direct I 2 C connection. This kit allows evaluation of the SE050 product family features and simplifies the development of secure IoT applications. More information can be found in the respective Application Note AN12395. Preparing hardware for "Secure Access to Industrial IOT demo" at i.MXRT1050 EVKB   Reworking i.MXRT1050 EVKB: It is necessary to short circuit 4 empty resistor pads: R278, R279, R280 and R281 – they connect SPI from i.MX1050 until Arduino SPI pads, which will be used by NFC BLE V2 board.   Reworking NFC-BLE V2 board: It is necessary to cut at least one male pin to avoid conflict with OM-SE050ARD board (better would be to cut first 2 pins):   Configuring OM-SE050ARD board jumpers:     Final HW configuration of these three boards altogether: Since NFC BLE V2 has only male connectors, OMSE050ARD board is first connected to i.MX1050 EVKB, then NFC BLE V2 is plugged on top of this latest pcb.       Running "Secure Access to Industrial IOT demo" at i.MXRT1050 EVKB:   If this is the first time you’re using i.MXRT1050 EVKB board, follow this link  i.MXRT1050 board overview . Make sure to install the SDK package for i.MXRT1050 EVKB which is required for the project below to run. Download the following zip package Access_RT_v_1_0_18092019.zip. This file is split in two parts and includes 3 functionalities in one MCUxpresso project: Preparation of MFDFEV2 card The touch screen display will offer three functionalities. By default, the first screen will be "Authenticate" functionality. When you choose the arrow to the right, you'll find TAB with word START, that you'll touch when you need to prepare a MIFARE DESFire EV2 card with suitable application and AES keys used for demonstrator. Just place a virgin card on top of Reader antenna, and press "START" button and check with Terminal on MCUxpresso to check sequence of actions to personalize one DESFire EV2 card. You may also use Teraterm to monitor the execution of DESFire card personalization, by inspecting the COM number used by i.MXRT1050 board.     Preparation of SE050 with proper keys    When you choose the arrow to the left once, you'll find TAB with word Authenticate; if you do it again, then you'll the word "START", which you will touch when you need to prepare a virgin OM-SE050ARD demoboardcard with suitable application and AES keys used for demonstrator. Just press "START" button and check with Terminal on MCUxpresso to check sequence of actions to personalize one SE050 board. You may also use Teraterm to monitor the execution of SE050 key provisioning, by inspecting the COM number used by i.MXRT1050 board. After steps 2.a and 2.b have been done to obtain preparation of one Secure element as well as preparation of one MIFARE DESFire EV2 card, then select using < and > keys the Default Display menu, containing word "Authenticate" : just place DESFire EV2 card on top of NFC antenna and press "Authenticate". If the DESFire EV2 card is the one you have personalized, you'll see a Locker icon that will show "Open locker" , that is "Access granted action". If you place other cards, "Locker icon"will stay closed, that is "Access denied". Again, use MCUxpresso Terminal or use Teraterm to monitor the execution of DESFire EV2 authentication steps with SE050 by inspecting the COM number used by i.MXRT1050 board. Available Resources: Application Note Secure Access to Industrial IoT: https://www.nxp.com/docs/en/application-note/AN12569.pdf  Quick start guide to integration of SE050 with i.MXRT1050 https://www.nxp.com/docs/en/application-note/AN12450.pdf i.MXRT1050 EVKB i.MX RT1050 Evaluation Kit | NXP  BLE-NFC-V2 https://www.nxp.com/products/identification-security/rfid/nfc-hf/nfc-readers/clrc663-iplus-i-and-qn902x-nfc-bluetooth-low-energy-solution-for-consumer-applications:BLE-NFC SE050: www.nxp.com/SE050 Porting guidelines of P&T MW to other non-NXP MCU's:  https://community.nxp.com/t5/Secure-Authentication/Does-the-EdgeLock-SE050-Plug-Trust-middleware-support-non-NXP/m-p/1686723#M1305  https://www.nxp.com/docs/en/application-note/AN12448.pdf  In the attachment area, you'll find:  one bundle zip file split in 2 files: Access RT...zip001.zip and ....zip001.zip. download both files, unzip them in one laptop directory, then you may re-zip them and import in MCUxpresso. They include draft of all three functionalities of secure access to industrial iot hands-on: DESFire EV2 card preparation, SE050 trust provisioning (with keys) and authentication of card with current installed SE050.
記事全体を表示
Introduction NTAG5 offers a powerful energy harvesting feature (up to 30mW). One useful application can be charging the supercapacitor which then might be used as the supply of customer MCU, Sensor, etc.   See the typical schematic below:  C1 and C1P are used for the impedance tuning. The antenna is typically tuned at 13.56 MHz-14MHz.  R1 is used to limit the charging current of the supercapacitor. Its value depends on the selected VOUT voltage, keep in mind that the maximum output current is 12.5 mA.  E.g. VOUT=2.4V, Icharging=10mA -> R1=240 Ohm Keep in mind, that if the charging current is too high and/or the amount of the received magnetic field is not high enough, the VOUT may drop.  D1 should be a low-drop diode e.g. RB520CS30L Used super cap: CPX3225A752D Antenna size  Generally, it is best to attempt to match the tag and the reader antenna geometries for maximum efficiency. A significant difference between the reader and tag antenna dimensions result in bad communication and energy harvesting performance because of the small coupling factor. As smartphone NFC antennas can have different dimensions. It might be challenging to design one NFC Tag antenna that will deliver the best performance for multiple smartphones.  The phone's NFC Antenna dimensions are typically between approximately 25 mm vs 20 mm (NFC Forum Poller Class 6) & 50 mm vs 30 mm (NFC Forum Poller Class 3). Note: But this might be different e.g., iPhones  So customers can consider the following form factors of NFC antennas for their Energy harvesting NTAG5 Link design:  For bigger designs (NFC Forum Listener Class 3):    For circle NFC Antenna ->Outer diameter is approx. 44 mm    For smaller designs (NFC Forum Listener Class 6):  For circle NFC Antenna ->Outer diameter is approx. 25 mm     Tomas Parizek  Customer Application Support 
記事全体を表示
this is a step by step guider to port PN7160 to Android 14 on i.MX 8M Nano board
記事全体を表示
SPIM module is one of the master interfaces provided by PN7462 , which is a 32-bit ARM Cortex-M0-based NFC microcontroller, and users may use this interface to connect with up to two SPI slave devices. The NFC reader library provides SPIM driver code in phHal/phhalSPIM, and users may directly use the following APIs in their application to implement simple SPI transaction, just like what is done  in the demo of "PN7462AU_ex_phExHif". While this demo has limitation with some SPI nor flash devices, which need a write-read operation in one NSS session, for example, the SPI nor flash device on OM27462 as below: Please note to solder R202 and connect it to 3V3 to make sure nHold pin has pull-up out of POR. The following is one of the command sets this device supports: This command contains 1 write(9F) followed by 3 read operations in one NSS session, but if you implement it with phhalSPIM_Transmit() and phhalSPIM_Receive() as below: status = phhalSPIM_Transmit(PH_EXHIF_HW_SPIM_SLAVE, PH_EXHIF_HW_SPIM_INIT_CRC, PH_EXHIF_HW_SPIM_APPEND_CRC, PH_EXHIF_HW_SPIM_CRC_INIT, 2, cmd_buf, PH_EXHIF_HW_SPIM_CRC_OFFSET);    status = phhalSPIM_Receive(PH_EXHIF_HW_SPIM_SLAVE, PH_EXHIF_HW_SPIM_INIT_CRC, PH_EXHIF_HW_SPIM_CRC_INIT, data_length, dst, PH_EXHIF_HW_SPIM_CRC_OFFSET);" You will have the following result: expected: NSS   \__________________________/ MOSI     CMD A7-A0 MISO                            DATA       actual:                         NSS   \____________||______________/ MOSI     CMD A7-A0 MISO                           DATA so the pulse between the write and read is the problem, and here we have to handle the NSS line manually, with the help of NSS_VAL and NSS_CONTROL bits in SPIM_CONFIG_REG. so the code should be like this:   Assert NSS   status = phhalSPIM_Transmit(PH_EXHIF_HW_SPIM_SLAVE, PH_EXHIF_HW_SPIM_INIT_CRC, PH_EXHIF_HW_SPIM_APPEND_CRC, PH_EXHIF_HW_SPIM_CRC_INIT, 2, cmd_buf, PH_EXHIF_HW_SPIM_CRC_OFFSET);    status = phhalSPIM_Receive(PH_EXHIF_HW_SPIM_SLAVE, PH_EXHIF_HW_SPIM_INIT_CRC, PH_EXHIF_HW_SPIM_CRC_INIT, data_length, dst, PH_EXHIF_HW_SPIM_CRC_OFFSET);"   De-assert NSS The NSS line assert and de-assert function can be implemented with register bit level APIs, just like below:             PH_REG_SET_BIT(SPIM_CONFIG_REG, NSS_VAL);//de-assert NSS             PH_REG_SET_BIT(SPIM_CONFIG_REG, NSS_CTRL);             PH_REG_CLEAR_BIT(SPIM_CONFIG_REG, NSS_VAL);//assert NSS Please also include the following header files in your application code. #include "ph_Reg.h" #include "PN7462AU/PN7462AU_spim.h" Please notice that phhalSPIM_Transmit() and phhalSPIM_Receive() are Rom based function, which clear NSS_CTRL bit by default. We can not change ROM API's behave but fortunately we have phhalSPIM_TransmitContinue() and phhalSPIM_ReceiveContinue() instead. so the final solution will be like below: Assert NSS   status = phhalSPIM_TransmitContinue(1, cmd_buf);    status = phhalSPIM_ReceiveContinue(3, dst);   De-assert NSS This doesn't mean phhalSPIM_Transmit() and phhalSPIM_Receive() are useless, because they can also help up to configure the SPI master interface, if you don't want to use register bit level API to initial the SPIM module manually. Please note to use 1 byte for write/read length to make these two functions work properly. so the whole pseudo code is like below: phhalSPIM_Init(PH_HW_SPIM_TIMEOUT) ; phhalSPIM_Configure(PH_HW_SPIM_SLAVE, PH_HW_SPIM_MSB_FIRST,                 \                                     PH_HW_SPIM_MODE, PH_HW_SPIM_BAUDRATE,  \                                     PH_HW_SPIM_NSSPULSE, PH_HW_SPIM_NSSPOL) ; status = phhalSPIM_Transmit(PH_EXHIF_HW_SPIM_SLAVE, PH_EXHIF_HW_SPIM_INIT_CRC, PH_EXHIF_HW_SPIM_APPEND_CRC, PH_EXHIF_HW_SPIM_CRC_INIT, 1, cmd_buf, PH_EXHIF_HW_SPIM_CRC_OFFSET);    status = phhalSPIM_Receive(PH_EXHIF_HW_SPIM_SLAVE, PH_EXHIF_HW_SPIM_INIT_CRC, PH_EXHIF_HW_SPIM_CRC_INIT, 1, dst, PH_EXHIF_HW_SPIM_CRC_OFFSET);" Assert NSS   status = phhalSPIM_TransmitContinue(1, cmd_buf);    status = phhalSPIM_ReceiveContinue(3, dst);   De-assert NSS The following steps show how to create a new project based on NFC reader library, please refer to https://www.nxp.com/docs/en/user-guide/UM10883.pdf  on how to import the NFC reader library. 1. Create a new project after importing the NFC reader library. 2. if you installed PN7462 support package, you will see this: 3. add a link to NFC reader lib: 4. add path and enable NFC reader lib in the project: 5. delete cr_startup.c and create the main code as well as the header file: 6. Build result: 7.Debug result: To fetch the ready demo, please submit a private ticket via the guide of https://community.nxp.com/docs/DOC-329745 . Hope that helps, Best regards, Kan
記事全体を表示
How to set the RF Settings can be found in -> https://www.nxp.com/docs/en/application-note/AN13218.pdf The list of the default values + values which shall not be changed is available in the attachment.  Tomas Parizek  Customer Application Support 
記事全体を表示
This post contains a step by step guide of how to use PN7150 with i.MX RT1060. This document is structured as follows: Overview of PN7150 PN7150 is a Plug-and-Play all-in-one NFC solution for easy integration into any OS environment like Linux and Android, reducing Bill of Material (BoM) size and cost. The embedded Arm® Cortex®-M0 microcontroller core is loaded with the integrated firmware, simplifying the implementation as all the NFC real-time constraints, protocols and the device discovery (polling loop) are processed internally. In few NCI commands, the host SW can configure the PN7150 to notify for card or peer detection and start communicating with them. It has the following salient features: Full NFC forum compliancy with small form factor antenna Embedded NFC firmware providing all NFC protocols as pre-integrated feature Direct connection to the main host or microcontroller, by I2C-bus physical and NCI protocol Ultra-low power consumption in polling loop mode Highly efficient integrated power management unit (PMU) allowing direct supply from a Battery Hardware Requirements      1. OM5578/PN7150ARD      2. i.MX RT1060 EVK Evaluation Board + usb micro cable        Using PN7150 with i.MX RT1060 Hardware Connections The hardware connections are simple. Both the EVKB-IMXRT1060 board and OM5578/PN7150ARD board have an Arduino interface. So, mount the PN7150ARD board with male Arduino connector onto the female Arduino connector of the EVKB-IMXRT1060 board.  Running the Demo If this is the first time you’re using EVK-MIMXRT1060 board, follow the getting started guide first: i.MX RT1060 Evaluation Kit | NXP . Make sure to install the SDK package for EVK-MIMXRT1060 board which is required for the project to run.   Download the ‘evkbimxrt1060_PN7150’ package which you will find attached to this post. Drag and drop the downloaded package to the “Project Explorer” tab of your MCUXpresso IDE workspace (If you don’t have MCUXpresso, it can be downloaded for free from here: https://www.nxp.com/support/developer-resources/software-development-tools/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE Now that the package has been imported to the MCUXpresso IDE (via drag and drop), click on Debug icon from the Quickstart panel to begin a debug session. Once the debug session has started, click on the run icon to run the code: After step 3, the project should be running now. The project contains basic discovery loop functionality. Here is how the output looks in the console tab on MCUXpresso: Bring any NFC card near the PN7150 board’s antenna and the output console will show the detection and type of the card. For example, in the picture below, we can see that type 4 card was detected: Available Resources AN11990 NXP-NCI MCUXpresso example document. (https://www.nxp.com/docs/en/application-note/AN11990.pdf) The example project explained in this project was ported to i.MX RT1060 using section 5.3 and 6 of the above mentioned document. PN7150 datasheet (https://www.nxp.com/docs/en/data-sheet/PN7150.pdf) PN7150 User Manual (https://www.nxp.com/docs/en/user-guide/UM10936.pdf) PN7150 NFC Controller SBC Kit User Manual  (https://www.nxp.com/docs/en/user-guide/UM10935.pdf)
記事全体を表示
Example sends Wi-Fi credentials from phone to IoT device, so it can join the Wi-Fi network.  Using: iOS and Android phone with NXP's TagWriter app PN7462 NFC Reader device on PNEV7462B eval board, part of kit OM27462CDK Host Card Emulation mode example based on NfcrdlibEx8_HCE_T4T example from NFC Reader Library Example will also print out other NDEF messages received.  NDEF formats include: Contacts / Business Cards URL link Wi-Fi network and credentials Bluetooth MAC address for pairing Email address Phone number Geo location Launch application on host OS Plain text SMS (sorry the audio is horrible)
記事全体を表示
This post contains step by step guide of how to use the NTAG I²C plus with LPC55S69. This is easy and straightforward to do, since the MCUXpresso SDK Builder tool has an option to add NTAG I²C plus example directly to SDK of LPC55S69. Hardware Needed: LPC55S69-EVK NTAG I²C plus explorer kit Follow the following simple steps to use NTAG I²C plus with LPC55S69: Download and install MCUXpresso IDE (if you don’t have it already). It can be download for free by clicking here: Next step is to use the MCUXpresso SDK Builder tool to build and download the SDK for LPC55S69. For this: Go to  the MCUXpresso SDK Builder website: https://mcuxpresso.nxp.com/en/select Select the LPC55S69 board and then click on ‘Build MCUXpresso SDK’ button: Click on ‘Add Software component’, then select the NTAG I2C component, click ‘Save changes’ and then download the SDK. Drag and drop the downloaded SDK to the installed SDK’s tab in the MCUXpresso IDE to install it. Click on the ‘Import SDK example(s)’ in the Quickstart Panel in the MCUXpresso IDE. Then select LPC55S69, ‘check the ntag_i2c_plus_example’ box and hit ‘Finish’. Connect the LPC55S69 and NTAG I²C plus boards together. Details of these connections can be found in the “readme.txt” file in the “doc” folder of the project: Finally click on debug in the Quickstart Panel to build the project, flash it to the MCU, and start debugging. This is how the output looks like in the Console tab of IDE: Bring any active nfc device (e.g. an NFC phone with NFC enabled) near the ntagi2c board. The program will detect it and consequently blink the LED as well as display a message on the console: Read the “readme.txt” file for more details regarding the project. Available Resources: BLE pairing with NFC on KW41 and NTAG I²C plus source code www.nxp.com/downloads/en/snippets-boot-code-headers-monitors/SW4223.zip NTAG I²C plus kit for Arduino pinout www.nxp.com/demoboard/OM23221ARD
記事全体を表示
     This document mainly describes how to use NanoNVA tool to do antenna tuning on OM29263ADK with CLEV663B/PN5180B board. Please refer to the application note AN12810(https://www.nxp.com/docs/en/application-note/AN12810.pdf) about the NanoVNA tool. And please refer the user manual UM11098 (https://www.nxp.com/docs/en/user-guide/UM11098.pdf) about OM29263ADK. After setting NanoVNA tool with reference to the above documents. Firstly, take the small antenna of OM29263ADK with CLEV663B as an example. The small antenna can be directly connected and used on the CLEV6630B。the antenna board can be directly connected to the CLEV6630B without any additional modification, after the original antenna had been removed (cut off).   The result of the antenna tuning with NanoVNA tool as the below:   Second, take the small antenna of OM29263ADK with PN5180B board as an example. Follow the UM11098 steps as the below: (a) the EMC filter cut off frequency must be adjusted, and (b) the DPC and related features should be disabled, since the antenna is asymmetrically tuned and the DPC is not used. (a) The original antenna uses a symmetrical tuning, which uses an EMC filter with L0 = 470nH and C0 = 253pF (220pF + 33pF). The inductor as well as the first part of the capacitance (220pF) are assembled on the main board. To operate the OM29263ADK antenna, the C0 (220pF) on the PNEV5180B must be replaced by a 68pF.   (b) The DPC and its related features should be disabled to operate an asymmetrical antenna.   If can’t get the card information please refer to the AN11740’s related steps to achieve a good sensitivity of RxP/RxN path. The result of the antenna tuning with NanoVNA tool as the below:   The whole process of the small antennas tuning of OM29263ADK with CLEV66B/PN5180 with NanoVNA is completed. PS: It is the similar with the steps for the large antennas tuning of OM29263ADK with CLEV66B/PN5180 with NanoVNA.  
記事全体を表示
The NXP-NCI example is based on NXP-NCI lib and LPCopen lib, and due to the good consistency, the porting is mainly focus on LPCopen lib switching.   Software setup download lpcopen package via http://www.nxp.com/assets/downloads/data/en/software/lpcopen_3_01_lpcxpresso_nxp_lpcxpresso_11u68.zip  download SW3241 via https://www.nxp.com/webapp/Download?colCode=SW3241&amp;appType=license&amp;location=null&fsrch=1&sr=3&pageNum=1&Parent_n…  import NXP-NCI_LPC11Uxx_example by LPCXpresso v8.1.4.   LPCopen porting remove *.h and *.c in the folder of LPC11Uxx/inc and LPC11Uxx/src. 2.import header files and c files from lpc_chip_11u6x/inc and lpc_chip_11u6x/src to LPC11Uxx/inc and LPC11Uxx/src 3. repeat step 2 , import source files and header files from lpc_board_nxp_lpcxpresso_11u68/inc and lpc_board_nxp_lpcxpresso_11u68/src to Drivers/inc and Drivers/src. 4.Change MCU settings 5.Change project settings. 6.compiling error fixes: 6.1 solution: replace with i2c_11u6x.h 6.2 solution: 6.3 solution: create a template project for LPC11U6x and import the source file of "cr_startup_lpc11u6x.c"   Porting Result   This porting guide is for LPC11U68 Xpresso v2 Rev C, and can also be used a reference when you try to port NXP-NCI examples to other lpcxpresso boards.   Please kindly refer to the attachment for details. Original Attachment has been moved to: NXP-NCI_LPC11Uxx_example.zip
記事全体を表示
A Quick Solution for link issue of "missing --end-group" when you use the latest MCUXpresso IDE to compile the NFC reader library projects.
記事全体を表示
Hello NFC community, The purpose of this document is to show the steps to port the Bluetooth pairing example for NTAG I²C Plus from KW41Z to KW36.  Setup For this, we will work with following boards: 1. Arduino NTAG I²C plus board (OM23221ARD) development kit. 2. KW36 Freedom board.  Download SDK as mentioned in chapter 2.1.3 of KW41Z User Manual and pay close attention to include NTAG I²C middleware. Now, repeat the same procedure above for FRDM KW36, this will be the SDK on which we will be making the modifications for the porting. NOTE: Unlike KW41Z, for KW36 there is no NTAG I²C plus middleware as shown in the image below: Save changes and build the SDK. NTAG I²C middleware will have to be imported from KW41Z's SDK in MCUXPresso. Install the SDK and import hid _device freertos example into the workspace: Copy ntag_i2c_plus_1.0.0 folder from KW41Z workspace to KW36's Open folder properties and uncheck Exclude resources from build, then apply and close. In board.c file add the following code below BOARD_DCDCInit()  /* Init DCDC module */ BOARD_DCDCInit(); #ifdef NTAG_I2C /* Init I2C pins for NTAG communication */ BOARD_InitI2C(); #endif // NTAG_I2C‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ In AppIMain.c add the following code in main_task before calling App_Thread()  #ifdef NTAG_I2C /* Initialize I2C for NTAG communication */ HAL_I2C_InitDevice(HAL_I2C_INIT_DEFAULT, I2C_MASTER_CLK_SRC, NTAG_I2C_MASTER_BASEADDR); SystemCoreClockUpdate(); /* Initialize the NTAG I2C components */ ntag_handle = NFC_InitDevice((NTAG_ID_T)0, NTAG_I2C_MASTER_BASEADDR); // HAL_ISR_RegisterCallback((ISR_SOURCE_T)0, ISR_LEVEL_LO, NULL, NULL); #endif // NTAG_I2C‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ In ApplMain.c add the following under Public memory declarations /************************************************************************************ ************************************************************************************* * Public memory declarations ************************************************************************************* ************************************************************************************/ ... #ifdef NTAG_I2C NFC_HANDLE_T ntag_handle; // NTAG handle #endif // NTAG_I2C‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Include new headers to the following: In ApplMain.c include the following  #ifdef NTAG_I2C /* NTAG middleware module */ #include "HAL_I2C_driver.h" //#include "HAL_I2C_kinetis_fsl.h" #include <app_ntag.h> #endif //NTAG_I2C‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ In hid_device.c include the following #ifdef NTAG_I2C /* NTAG handler */ #include <app_ntag.h> #endif // NTAG_I2C‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Copy app_ntag.c and app_ntag.h files from KW41Z  workspace to KW36's. The app_ntag.c source file contains sample functions for working with NDEF messages. Function NFC_MsgWrite() creates and writes the NDEF message in the Type-2 Tag format to the NTAG I2C chip through the ntag_i2c_plus middleware. The write algorithm is NFC-Forum compliance. Function NDEF_Pairing_Write() contains a procedure to create a BTSSP record via using the NDEF library. The same is performing function NDEF_Demo_Write() function. Here is shown how to create NDEF multi-record that contains several types of NDEF records. The app_ntag.h header file contains predefined blocks of constants (constant fields of data) that are written to the NTAG I2C chip by default during the communication which requires set the default content to the chip’s registers or erase the NTAG I2C chip user memory and registers of lock bytes. NOTE: Please change the I²C Master base address and I²C Master clock source from I2C1 to I2C0 as below in app_ntag.h: In hid_device.c make the implementation in BleApp_HandleKeys() as below. This is an extension for BLE pairing and writing NDEF messages to NTAG I²C. void BleApp_HandleKeys(key_event_t events) { #ifdef NTAG_I2C uint32_t timeout = NDEF_WRITE_TIMEOUT; // static uint8_t boApplStart = TRUE; switch (events) { case gKBD_EventPressPB1_c: // short press of SW4 { // if (boApplStart) // { /* first time startup */ BleApp_Start(); // boApplStart = FALSE; // } // boNDEFState = TRUE; // pairing via NDEF is allowed in case the apk. is running TurnOffLeds(); /* added to copy the pairing NDEF message to NTAG_I2C chip */ if (NDEF_Demo_Write()) { // report an error during creating and writing the NDEF message LED_RED_ON; } else { // indication of success by orange color on the RGB LED LED_RED_ON; LED_GREEN_ON; } /* Start advertising timer */ TMR_StartLowPowerTimer( mNDEFTimerId, gTmrLowPowerSecondTimer_c, TmrSeconds(timeout), NDEFTimerCallback, NULL); break; } case gKBD_EventPressPB2_c: // short press of SW3 { TurnOffLeds(); /* added to copy the pairing NDEF message to NTAG_I2C chip */ if (NDEF_Pairing_Write()) { // report an error during creating and writing the NDEF message LED_RED_ON; } else { // indication of success by green color on the RGB LED LED_GREEN_ON; } /* Start advertising timer */ TMR_StartLowPowerTimer( mNDEFTimerId, gTmrLowPowerSecondTimer_c, TmrSeconds(timeout), NDEFTimerCallback, NULL); break; } case gKBD_EventLongPB1_c: // long press of SW4 { if (mPeerDeviceId != gInvalidDeviceId_c) { Gap_Disconnect(mPeerDeviceId); boNDEFState = FALSE; } break; } case gKBD_EventLongPB2_c: // long press of SW3 { #if gAppUsePrivacy_d if( mAdvState.advOn ) { mAppPrivacyChangeReq = reqOff_c; /* Stop Advertising Timer*/ TMR_StopTimer(mAdvTimerId); Gap_StopAdvertising(); } else if( gBleSuccess_c == BleConnManager_DisablePrivacy() ) { TMR_StartLowPowerTimer(mPrivacyDisableTimerId, gTmrLowPowerSingleShotMillisTimer_c, TmrSeconds(mPrivacyDisableDurationSec_c), PrivacyEnableTimerCallback, NULL); } #endif break; } default: break; } #else // NTAG_I2C switch (events) { case gKBD_EventPressPB1_c: { BleApp_Start(); break; } case gKBD_EventPressPB2_c: { hidProtocolMode_t protocolMode; /* Toggle Protocol Mode */ Hid_GetProtocolMode(service_hid, &protocolMode); protocolMode = (protocolMode == gHid_BootProtocolMode_c)?gHid_ReportProtocolMode_c:gHid_BootProtocolMode_c; Hid_SetProtocolMode(service_hid, protocolMode); break; } case gKBD_EventLongPB1_c: { if (mPeerDeviceId != gInvalidDeviceId_c) Gap_Disconnect(mPeerDeviceId); break; } case gKBD_EventLongPB2_c: { #if gAppUsePrivacy_d if( mAdvState.advOn ) { mAppPrivacyChangeReq = reqOff_c; /* Stop Advertising Timer*/ TMR_StopTimer(mAdvTimerId); Gap_StopAdvertising(); } else if( gBleSuccess_c == BleConnManager_DisablePrivacy() ) { TMR_StartLowPowerTimer(mPrivacyDisableTimerId, gTmrLowPowerSingleShotMillisTimer_c, TmrSeconds(mPrivacyDisableDurationSec_c), PrivacyEnableTimerCallback, NULL); } #endif break; } default: break; } #endif //NTAG_I2C }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Add the declaration of the timer handler in Private memory declarations section of hid_device.c  /************************************************************************************ ************************************************************************************* * Private memory declarations ************************************************************************************* ************************************************************************************/ ... #ifdef NTAG_I2C static tmrTimerID_t mNDEFTimerId; static bool boNDEFState = FALSE; #endif‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Add the declaration of the timer callback function in Private functions prototypes of hid_device.c /************************************************************************************ ************************************************************************************* * Private functions prototypes ************************************************************************************* ************************************************************************************/ ... #ifdef NTAG_I2C static void NDEFTimerCallback(void *); #endif‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Allocate / Initialize the timer There are 3 timers used within the HID_device demo application. The NDEF timer is also necessary to allocate in the function BleApp_Config() in the hid_device.c file, at the same place as the common timers are allocated. Function TMR_AllocateTimer() returns timer ID value which is stored in the variable mNDEFTimerId. The timer ID allocation must be added behind the other timer as it is done at following C-code printout /* Allocate application timers */ mAdvTimerId = TMR_AllocateTimer(); mHidDemoTimerId = TMR_AllocateTimer(); mBatteryMeasurementTimerId = TMR_AllocateTimer(); #ifdef NTAG_I2C mNDEFTimerId = TMR_AllocateTimer(); #endif‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Add the timer callback function It is necessary to add the NDEFTimerCallback() function at the end of the hid_device.c file. If NDEF timer counter expires timer is stopped. Then RGB LED is switched off. There is the printout of the call back function at the following lines. #ifdef NTAG_I2C /*! ********************************************************************************* * \brief Handles timer callback for writing NDEF messages * * \param[in] pParam Calback parameters. ********************************************************************************** */ static void NDEFTimerCallback(void * pParam) { /* Stop Advertising Timer*/ TMR_StopTimer(mNDEFTimerId); /* switch off the LED indication */ TurnOffLeds(); } #endif // NTAG_I2C‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Note: Change the size for timer task  in app_preinclude.h file as follows: /* Defines Size for Timer Task*/ #ifdef NTAG_I2C #define gTmrTaskStackSize_c 1024 // changed for the NTAG integration #else #define gTmrTaskStackSize_c 500 #endif‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Security change The sample project for adding NTAG I2C middleware is hid_device and is described in chapter 3.1.1. This project requires to enter the password “999999” during the Bluetooth pairing. From this reason is necessary to decrease the security level to remove the password sequence. Security level is a part of the configuration and is set in the app_config.c file. In this file following parameter must be changed gSecurityMode_1_Level_3_c to the new parameter: gSecurityMode_1_Level_1_c Parameter gSecurityMode_1_Level_3_c is used on several places within the app_config.c file. Use the FIND function (short key is “CTRL+F”) of the IDE to find it and update. There are last two parameters of the gPairingParameters structure which are necessary to change. parameter: .securityModeAndLevel = gSecurityMode_1_Level_3_c, has to be changed to: .securityModeAndLevel = gSecurityMode_1_Level_1_c, parameter: .localIoCapabilities = gIoDisplayOnly_c, has to be changed to: .localIoCapabilities = gIoNone_c, parameter .leSecureConnectionSupported = TRUE, has to be changed to: .leSecureConnectionSupported = FALSE, Symbols Add the following symbols to project settings -> Preprocessor. The ones in red are for integration of ntag_i2c_plus middleware and the one in green is for adding the NDEF library, please see below: Include paths Please add the following includes in project settings. The ones in red are for NTAG I²C Plus middleware and the ones in green for the NDEF Library, please see below: With the previous setup it shall be able to run Bluetooth pairing example as for FRDM-KW41Z. Hope this  helps!
記事全体を表示
The NFC reader library is supporting multiple frontends. For a customer this might become a more difficult to use, if only the part for one of the frontend chips is needed. To enhance the readability and usability, you can remove the support for not used reader ICs by simply removing the folders below NxpRdLib/comps/phhalHw/src. For instance: if you only want to use the RC663, you could simply delete the folders Pn5180, Rc523. The result would be a library that only supports RC663. This short screen recording shows the steps to reduce the number of supported Frontends.
記事全体を表示
  Some customers are trying to update the user firmware on PN7642 through host interface and using “DownloadLibEx1” demo,  and they are using SFWUMaker to create .esfwu file from .bin followed the readme file but failed to do a firmware update. Here is a step-by-step guide to do it. I will use the SDK led blinky demo,  and generate an Esfwu file , and program it into PN7642 board with LPC5516 host.  Led blinky demo is in PN7642_MCUXpresso_SDK_02-15-00_PUB.  You can download it from PN7642 product page.  Single-Chip Solution with High-Performance NFC Reader, Customizable MCU and Security Toolbox | NXP Semiconductors Step 1: compile pnev7642fama_led_blinky demo Please make sure the flash size is 180KB.  By default,  the output flash size is 180KB with MCUXpresso IDE.     Step 2: Bin file generation The binary (.bin) file is not generated by default, we can do it manually by doing following: Build your target application Open the debug/release folder in MCUXpresso Right-click on the *.axf file Choose 'Binary Utilities' → 'Create binary' in the menu The .bin should appear   Step 3: Make an ESFWU file To convert a bin file to an ESFWU file, we can use the ESFWU Maker Utility (sw810311). It can be downloaded from PN7642 product page. It is a secure file, and you need to have an active NDA to get it.  To run this utility, the toml file is very important.  You need to change the output name and binary name according to your project ,  and  you need to use the correct aes_root_key. For other parameters, we left them unchanged.   3.1   change the output name and binary name   3.2 set the correct aes_root_key The application flashed via SWD is a bin file and NOT encrypted neither is it flashed with our bootloader. The .esfwu file via host interface is encrypted and flashed by our own bootloader.  The keys have to be valid, else the bootloader will not be able to decrypt the received file. Please make sure we are using the right keys to create the user application firmware.  This is crucial and without it, it won’t work anyways. The default keys are mentioned in the datasheet as transport keys. See below picture.  But it is highly recommended to provision your own keys!  Please have a look at the secure key mode application note for further information on that.        If you are not sure whether you have provisioned the root key or not, you can check the SKM state by running SKM demo. if the root key is provisioned, please use the provisioned root key.  From below picture, I can see that the app_root_key is  not provisioned, so I use the default transport key.     3.3  use the EsfwuMaker command to generate the Esfwu file.     After this command, we can get the esfwu file.       Step 4: Secure firmware download   We use the firmware download example to update the PN7642 firmware.  It is in the host software package, it  holds examples to be used with LPC55S16 and MCUXpresso, to interact with the PN7642. The LPC55S16 Host Software can be download from PN7642 product page. LPC55S16 Host Software Version 02.01.00 (nxp.com) To run the demo, we need to edit the firmware location.  In file DownloadLibEx1.c,  about line 60.       Please set the correct hardware settings as below.  we have to stack the PNEV7642A Rev-B development board on top of the LPC55S16-EVK board. Align Pin.1 of J36 of the PNEV7642A Rev-B development board with Pin.1 of J9 of the LPC55 board. The last 4 pins, 17 - 20, of J12 of the LPC board are not connected. As well as pin 1-4 of J10 stay unconnected, as below picture shows.       Run the firmware download Demo with LPC55s16,  see the log output below.  Choose option “6” to update your application firmware. The update may take a while.  At the end, a successful update is indicated by the prompt of “Successful firmware upload ”.         To verify it is successful, we can run this demo, please keep J65 open.  you will see the D7 (RED LED) blinky (0.5 HZ rate). If you need the pnev7642fama_led_blinky.esfwu, please let me know.    
記事全体を表示
There is a basic GUI for PN7160 RF Settings available.
記事全体を表示
Hardware: 1. i.MX6ULL EVK board   2. OM27160A1HN   Software: 1. Build the Yocto Linux BSP for i.MX6ULL EVK. Here are the steps: $ mkdir L6.6.36_2.1.0 $ cd L6.6.36_2.1.0 $ repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-scarthgap -m imx-6.6.36-2.1.0.xml $ repo sync   $ DISTRO=fsl-imx-xwayland MACHINE=imx6ull14x14evk source imx-setup-release.sh -b build-for-6ullevk $ bitbake core-image-full-cmdline   2. Add the nxpnfc driver to kernel After the BSP build succeed, the kernel source code is located here: L6.6.36_2.1.0/build-for-6ullevk/tmp/work/imx6ull14x14evk-poky-linux-gnueabi/linux-imx/6.6.36+git/git/   Clone the nxpnfc repository into the kernel directory, replacing existing implementation: $ cd L6.6.36_2.1.0/build-for-6ullevk/tmp/work/imx6ull14x14evk-poky-linux-gnueabi/linux-imx/6.6.36+git/git/ $ rm -rf drivers/nfc $ git clone https://github.com/NXPNFCLinux/nxpnfc.git drivers/nfc  This will end-up with the folder drivers/nfc containing the following files: • README.md: repository information • Makefile: driver heading makefile • Kconfig: driver configuration file • LICENSE: driver licensing terms • i2c_devicetree.txt: example of I²C device tree definition • spi_devicetree.txt: example of SPI device tree definition • nfc sub folder containing: – Makefile: – common.c: generic driver implementation – common.h: generic driver interface definition – i2c.c: I2C specific driver implementation – i2c.h: I2C specific driver interface definition – spi.c: SPI-specific driver implementation – spi.h: SPI-specific driver interface definition   Through kernel menuconfig procedure include the targeted driver to the build, as built-in (<*>): $ bitbake linux-imx -c menuconfig <*> NFC I2C Slave driver for NXP-NFCC       3. Connection between i.MX6ULL EVK and the PN7160 There are some pins on the Arduino header on the i.MX6ULL EVK board can be used to connect the PN7160 board. Below is the schematic of the Arduino headers on the i.MX6ULL EVK board. The two I2C2 pins can be used for I2C connection. The UART2_RX, UART2_TX and UART2_RTS can be changed to GPIO for connecting IRQ, VEN and DWL_REQ of PN7160, respectively. Below is the J1704 and J1703 on the EVK board.   Below is the schematic of Arduino interface on OM27160A1HN. There is a connector board (OM29110ARD-B). The OM27160A1HN is connecting on top of it. Below is the connectors board schematic. So, on the i.MX6ULL EVK board, we need I2C2 SDA and I2C2 SCL for I2C connections. And 3 GPIO pins for PN7160's IRQ, VEN and DWL_REQ. Here is the connection between i.MX6ULL EVK and OM29110ARD-B. OM29110ARD-B pin i.MX6ULL EVK pin I2C_SCL J2-1 I2C2_SCL J1704-10 I2C_SDA J2-2 I2C2_SDA J1704-9 GPIO_0 J2-10 GPIO1_21 J1703-1 GPIO_1 J4_1 GPIO1_20 J1703-2 GPIO_2 J4_2 GPIO1_25 J1703-3 3.3V J1-4 3.3V J1705-4 5V J1-5 5V J1705-5 GND J1-6 GND J1705-6      4. Modify the device tree file of i.MX6ull evk. The device tree file for i.MX6ULL evk is imx6ul-14x14-evk.dtsi. The location of the device tree file is here: L6.6.36_2.1.0/build-for-6ullevk/tmp/work/imx6ull14x14evk-poky-linux-gnueabi/linux-imx/6.6.36+git/git/arch/arm/boot/dts/nxp/imx/imx6ul-14x14-evk.dtsi   As we don't use the UART2, we disabled it. &uart2 { pinctrl-names = "default"; pinctrl-0 = <&pinctrl_uart2>; uart-has-rtscts; /* for DTE mode, add below change */ /* fsl,dte-mode; */ /* pinctrl-0 = <&pinctrl_uart2dte>; */ status = "disabled"; // <--- change the status to "disabled" bluetooth { compatible = "nxp,88w8987-bt"; }; };   Put the below nxpnfc under the &I2C2 node. nxpnfc: nxpnfc@28 { compatible = "nxp,nxpnfc"; reg = <0x28>; pinctrl-names = "default"; pinctrl-0 = <&pinctrl_nfcgpio>; nxp,nxpnfc-irq = <&gpio1 21 0>; nxp,nxpnfc-ven = <&gpio1 20 0>; nxp,nxpnfc-fw-dwnld = <&gpio1 25 0>; };   Like this: Add the gpios for nxpnfc. pinctrl_nfcgpio: nfcgpiogrp { fsl,pins = < MX6UL_PAD_UART2_RX_DATA__GPIO1_IO21 0xb0 //irq MX6UL_PAD_UART2_TX_DATA__GPIO1_IO20 0xb0 //ven MX6UL_PAD_UART3_RX_DATA__GPIO1_IO25 0xb0 //dwld req >; };     5. Re-compile the kernel and the whole image. $ bitbake linux-imx -c compile $ bitbake core-image-full-cmdline     6. Using UUU to program the image to the board. The built image is .wic.zst file. We need to program it to the board. It is located in the deploy folder below. L6.6.36_2.1.0/build-for-6ullevk/tmp/deploy/images/imx6ull14x14evk/core-image-full-cmdline-imx6ull14x14evk.rootfs-20241113103828.wic.zst   Download the UUU.exe from here: https://github.com/nxp-imx/mfgtools/releases   Download the Demo image for i.MX6ULL EVK from the Linux BSP web page.   Unzip the demo image file to a folder. And then copy the UUU.exe to the same demo image folder.   Connect the board to your PC using the USB cable. Switch the boot mode to "Serial Downloader mode"   On the PC side, run the below command to program the image to SD card on the i.MX6ULL EVK. uuu -b sd_all core-image-full-cmdline-imx6ull14x14evk.rootfs-20241112083235.wic.zst   Then switch the boot mode to "Internal Boot (Development)". Restart the board. Now, you can login as "root" and use the board. And you can see the nxpnfc driver is properly loaded.     7. Build the NFC Library and the nfcDemoApp in Yocto In the Yocto's sources directory, download the meta-nxp-nfc layer from https://github.com/NXPNFCLinux/meta-nxp-nfc     $ git clone https://github.com/NXPNFCLinux/meta-nxp-nfc.git  Then, the NFC library recipe is located in L6.6.36_2.1.0/sources/meta-nxp-nfc/recipes-nfc/nxp_nfc. Change the recipe nxp-nfc_git.bb as below: # Copyright (C) 2016 NXP Semiconductors DESCRIPTION = "Linux NFC stack for NCI based NXP NFC Controllers." LICENSE = "Apache-2.0" LIC_FILES_CHKSUM = "file://LICENSE.txt;md5=86d3f3a95c324c9479bd8986968f4327" SRC_URI = " \ git://github.com/NXPNFCLinux/linux_libnfc-nci.git;branch=NCI2.0_PN7160;protocol=https \ " SRCREV = "6bf9f42b94e267f6384043009bda84c11e7ebbaa" SRC_URI[sha256sum] = "47bdc27108fc8d66ce5d6c33f76b419cdef20c24b9e187ada8e689d1bd7f79c7" inherit autotools pkgconfig lib_package S = "${WORKDIR}/git"   Add the meta-nxp-nfc layer to the build definition. Updating file build_dir/conf/bblayers.conf with: BBLAYERS += " ${BSPDIR}/sources/meta-nxp-nfc"   Build meta-nxp-nfc layer:     $ bitbake nxp-nfc After build succeed, the library files and the nfcDemoApp are located in here : L6.6.36_2.1.0/build-for-6ullevk/tmp/work/cortexa7t2hf-neon-poky-linux-gnueabi/nxp-nfc/git/   Use the "scp" command to copy the files to the EVK board via the Network. If the folder is not exist on the EVK, please use "mkdir" to make the folder on the EVK first. Then use the "scp" command.  Here is the example: (**The IP address below should change to your EVK's IP address.) scp build/.libs/* root@10.192.246.136:/.libs/ scp image/etc/libnfc* root@10.192.246.136:/etc/   scp image/usr/lib/* root@10.192.246.136:/usr/lib     On the EVK board: root@imx6ull14x14evk:/# mkdir /usr/local root@imx6ull14x14evk:/# mkdir /usr/local/etc root@imx6ull14x14evk:/# cp /etc/libnfc-nci.conf /usr/local/etc   Now, you can run the nfcDemoApp on the i.MX6ULL EVK. root@imx6ull14x14evk:/# cd .libs/ root@imx6ull14x14evk:/.libs# ./nfcDemoApp poll       References: 1. i.MX Yocto Project User's guide 2. PN7160 Linux Porting Guide 3. MCIMX6ULL-EVK_DESIGNFILES 4. OM27160A1HN Hardware Design Files 5. OM29110 NFC’s SBC Interface Board Design Files 6. PN7150 NFC Controller on i.MX8M mini evk running Yocto
記事全体を表示
Hello NFC Community! This document demonstrates that multiple records can be also read from a Tag with TagXplorer. Please follow the steps below. Let's begin... Please make sure that you have written more than on record with NXP TagWriter app. For a more detailed explanation on this, please refer to the following document: Writing multiple NDEF text records with TagWrite app  The app can be found and downloaded from the Play Store: NFC TagWriter by NXP - Apps on Google Play  -> Connect the reader in TagXplorer -> Place the card on the reader and press Connect Tag -> Check for NDEF (1) and then, read NDEF (2). The Text Records can be visualized in the NDEF Payload Info below: I hope this is of great help! Ivan R.
記事全体を表示
The video shows how to read the NDEF message under password protection. For more details , please kindly refer to https://community.nxp.com/docs/DOC-347622 
記事全体を表示
Hello NFC Community,   This document focuses to the configuration of the LPC8N04 to be controlled by the data it receives though the NFC interface. The document is based on the nfc_eeprom project of LPC8N04’s SDK. It will basically be necessary to modify the code within while(1) loop as below.   Get the data from NFC and store it on d_Data buffer:             if (NDEFT2T_GetMessage(g_NdefInstance, g_Data, sizeof(g_Data))) { /* Save NDEF Data into EEPROM */ //Chip_EEPROM_Write(LPC_EEPROM, 0, g_Data, sizeof(g_Data)); }‍‍‍‍‍‍‍ Clear respective semaphore and Flag: /** Clear Memory Write Semaphore */ releaseMemSemaphore(); /** Clear Write Flag */ g_TargetWritten = 0;‍‍‍‍‍‍‍   Now that the information is in the g_Data buffer now you may proceed to verify the received data with the one expected to trigger a function e.g., to turn on/off a led.   if(g_Data[7] == 'A') { Led_Set(true); } else if(g_Data[7] == 'B') { Led_Set(false); }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍     On the other side, it will only be necessary to approach the reader to the LPC8N04's antenna and the NDEFT2T_GetMessage(g_NdefInstance, g_Data, sizeof(g_Data)) function will get the data and store it on the g_data buffer mentioned above. Happy development! BR, Ivan.
記事全体を表示
MIFARE DESFire Light read and write demonstration
記事全体を表示