i.MX处理器知识库

取消
显示结果 
显示  仅  | 搜索替代 
您的意思是: 

i.MX Processors Knowledge Base

讨论

排序依据:
目录 1 i.MX8Mmini 板级开发包镜像结构 ............................... 2 2 创建 i.MX8Mmini Linux 4.14.78_ga 板级开发包编译环境 3 2.1 下载板级开发包 ...................................................... 3 2.2 创建yocto编译环境: ................................................ 4 2.3 编译sdk及安装 ........................................................ 7 2.4 独立编译 ................................................................. 8 3 DDR配置,测试与输出 ............................................ 13 4 i.MX8Mmini ATF ...................................................... 15 5 FSL Uboot SPL 定制 ............................................... 17 5.1 SPL的编译............................................................ 17 5.2 SPL的启动流程 .................................................... 26 5.3 SPL的定制............................................................ 33 6 FSL Uboot 定制 ....................................................... 39 6.1 FDT支持 ............................................................... 40 6.2 DM(driver model)支持 .......................................... 45 6.3 Uboot目录 结构 .................................................... 59 6.4 Uboot编译 ............................................................ 61 6.5 Uboot初始化流程 .................................................. 62 6.6 uboot 定制 ............................................................ 72 6.7 uboot debug信息 .................................................. 78
查看全文
Basic Linear Algebra Subprograms (BLAS) is a specification that prescribes a set of low-level routines for performing common linear algebra operations such as vector addition, scalar multiplication, dot products, linear combinations, and matrix multiplication. OpenBLAS is an optimized BLAS library which is uesd for deep learning accelerator in Caffe/Caffe2. I enable it in Yocto (Rocko) by adding bb file. And I build on i.MX6QP, i.MX7ULP and i.MX8MQ and also run its test example successfully. You can find test example(openblas_utest) under folder image/opt/openblas/bin of OpenBLAS work directory. Currently, version 0.3.0 is supported in the bb file. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ update to v 0.3.6 and enable mutli-thread by set USE_OPENMP=1 and USE_THREAD=4 when compiling this library.
查看全文
The Linux L4.9.88_2.0.0 Rocko, i.MX7ULP Linux/SDK2.4 RFP(GA) release files are now available. Linux on IMX_SW web page, Overview -> BSP Updates and Releases ->Linux L4.9.88_2.0.0 SDK on https://mcuxpresso.nxp.com/ web page.   Files available: Linux:  # Name Description 1 imx-yocto-L4.9.88_2.0.0.tar.gz L4.9.88_2.0.0 for Linux BSP Documentation. Includes Release Notes, User Guide. 2 L4.9.88_2.0.0_images_MX6QPDLSOLOX.tar.gz i.MX 6QuadPlus, i.MX 6Quad, i.MX 6DualPlus, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo, i.MX 6Solox Linux Binary Demo Files 3 L4.9.88_2.0.0_images_MX6SLEVK.tar.gz i.MX 6Sololite EVK Linux Binary Demo Files 4 L4.9.88_2.0.0_images_MX6UL7D.tar.gz i.MX 6UltraLite EVK, 7Dual SABRESD, 6ULL EVK Linux Binary Demo Files 5 L4.9.88_2.0.0_images_MX6SLLEVK.tar.gz i.MX 6SLL EVK Linux Binary Demo Files 6 L4.9.88_2.0.0_images_MX8MQ.tar.gz i.MX 8MQuad EVK Linux Binary Demo files 7 L4.9.88_images_MX7ULPEVK.tar.gz i.MX 7ULP EVK Linux Binary Demo Files  8 L4.9.88_2.0.0-ga_mfg-tools.tar.gz Manufacturing Toolkit for Linux L4.9.88_2.0.0 iMX6,7 BSP 9 L4.9.88_2.0.0_mfg-tool_MX8MQ.tar.gz Manufacturing Toolkit for Linux L4.9.88_2.0.0 i.MX8MQ BSP 10 imx-aacpcodec-4.3.5.tar.gz Linux AAC Plus Codec for L4.9.88_2.0.0   SDK:   On https://mcuxpresso.nxp.com/, click the Select Development Board to customize the SDK based on your configuration then download the SDK package.    Target board: i.MX 6QuadPlus SABRE-SD Board and Platform i.MX 6QuadPlus SABRE-AI Board i.MX 6Quad SABRE-SD Board and Platform i.MX 6DualLite SABRE-SD Board i.MX 6Quad SABRE-AI Board i.MX 6DualLite SABRE-AI Board i.MX 6SoloLite EVK Board i.MX 6SoloX SABRE-SD Board i.MX 6SoloX SABRE-AI Board i.MX 7Dual SABRE-SD Board i.MX 6UltraLite EVK Board i.MX 6ULL EVK Board i.MX 6SLL EVK Board i.MX 7ULP EVK Board i.MX 8MQ EVK Board   What’s New/Features: Please consult the Release Notes.   Known issues For known issues and more details please consult the Release Notes.   More information on changes of Yocto, see: README: https://source.codeaurora.org/external/imx/imx-manifest/tree/README?h=imx-linux-rocko ChangeLog: https://source.codeaurora.org/external/imx/imx-manifest/tree/ChangeLog?h=imx-linux-rocko
查看全文
meta-avs-demos Yocto layer meta-avs-demos is a Yocto meta layer (complementary to the NXP BSP release for i.MX) published on CodeAurora that includes the additional required packages to support  Amazon's Alexa Voice Services SDK (AVS_SDK) applications. The build procedure is the described on the README.md of the corresponding branch. We have 2 fuctional branches now: imx-alexa-sdk: Support for Morty based i.mx releases imx7d-pico-avs-sdk_4.1.15-1.0.0: legacy support for Jethro releases The master branch is only used to collect manifest files, that used with repo init/sync commands will fetch the whole environment for the 2 special supported boards: i.MX7D Pico Pi and i.MX8M EVK. However the meta-avs-demos can be used with any i.MX board either. Recipes to include Amazon's Alexa Voice Services in your applications. The meta-avs-demos provides the required recipes to build an i.MX image with the support for running Alexa SDK. The imx-alexa-sdk branch is based on Morty and kernel 4.9.X and it supports the next builds: i.MX7D Pico Pi i.MX8M EVK Generic i.MX board For the i.MX7D Pico Pi and i.MX8M EVK there is an extended support for additional (external) Sound Cards like: TechNexion VoiceHat: 2Mic Array board with DSPConcepts SW support Synaptics Card: 2 Mic with Sensory WakeWord support The Generic i.MX is for any other regular i.MX board supported on the official NXP BSP releases. Only the default soundcard (embedded) on the board is supported. Sensory wakeword is currently only enabled for those with ARMV7 architecture. To support any external board like the VoiceHat or Synaptics is up to the user to include the additional patches/changes required. Build Instructions Follow the corresponding README file to follow the steps to build an image with Alexa SDK support README-IMX7D-PICOPI.md README-IMX8M-EVK.md README-IMX-GENERIC.md
查看全文
Host TFTP and NFS Configuration Now configure the Trivial File Transfer Protocol (TFTP) server and Networked File System (NFS) server. U-Boot will download the Linux kernel and dtb file using tftp and then the kernel will mount (via NFS) its root file system on the computer hard drive. 1. TFTP Setup   1.1.1 Prepare the TFTP Service   Get the required software if not already set up. On host for TFTP: Install TFTP on Host $ sudo apt-get install tftpd-hpa   (Note: There are a number of examples in various forums, etc, of how to automatically start the TFTP service - but not all are successful on all Linux distro's it seems! The following may work for you.)   Start the tftpd-hpa service automatically by adding a command to /etc/rc.local. $ vi /etc/rc.local   Now, just before the exit 0 line edit below command then Save and Exit. $ service tftpd-hpa start  Now, To control the TFTP service from the command line use: $ service tftpd-hpa restart    To check the status of the TFTP service from the command line use: $ service tftpd-hpa status   1.1.1 Setup the TFTP Directories Now, we have to create the directory which will contain the kernel image and the device tree blob file. $ mkdir -p /imx-boot/imx6q-sabre/tftp Then, copy the kernel image and the device tree blob file in this directory. $ cp {YOCTO_BUILD_DIR}/tmp/deploy/images/{TARGET}/zImage /imx-boot/imx6q-sabre/tftp $ cp {YOCTO_BUILD_DIR}/tmp/deploy/images/{TARGET}/<dtb file> /imx-boot/imx6q-sabre/tftp   OR we can use the default directory created by yocto {YOCTO_BUILD_DIR}/tmp/deploy/images/{TARGET}/ The tftpd-hpa service looks for requested files under /imx-boot/imx6q-sabre/tftp The default tftpd-hpa directory may vary with distribution/release, but it is specified in the configuration file: /etc/default/tfptd-hpa. We have to change this default directory with our directory   Edit default tftp directory $ vi /etc/default/tftpd-hpa   Now, change the directory defined as TFTP_DIRECTORY with your host system directory which contains kernel and device tree blob file. Using created directory TFTP_DIRECTORY=”/imx-boot/imx6q-sabre/tftp” OR Using Yocto directory path TFTP_DIRECTORY=”{YOCTO_BUILD_DIR}/tmp/deploy/images/{TARGET}” Restart the TFTP service if required $ service tftpd-hpa restart   1.2 NFS Setup 1.2.1 Prepare the NFS Service Get the required software if not already set up. On host for NFS: Install NFS on Host $ sudo apt-get install nfs-kernel-server The NFS service starts automatically. To control NFS services : $ service nfs-kernel-server restart To check the status of the NFS service from the command line : $ service nfs-kernel-server status 1.2.2 Setup the NFS Directories Now, we have to create the directory which will contain the root file system. $ mkdir -p /imx-boot/imx6q-sabre/nfs   Then, copy the rootfs in this directory. $ cp -R {YOCTO_BUILD_DIR}/tmp/work/{TARGET}-poky-linux-gnueabi/{IMAGE}/1.0-r0/rootfs/* /imx-boot/imx6q-sabre/nfs   OR we can use the default directory created by yocto. $ {YOCTO_BUILD_DIR}/tmp/work/{TARGET}-poky-linux-gnueabi/{IMAGE}/1.0-r0/rootfs 1.2.3 Update NFS Export File The NFS server requires /etc/exports to be configured correctly to access NFS filesystem directory to specific hosts. $ vi /etc/exports Then, edit below line into the opened file. <”YOUR NFS DIRECTORY”> <YOUR BOARD IP>(rw,sync,no_root_squash,no_subtree_check) Ex. If you created custom directory for NFS then, /imx-boot/imx6q-sabre/nfs <YOUR BOARD IP>(rw,sync,no_root_squash,no_subtree_check) Ex: /imx-boot/imx6q-sabre/nfs 192.168.*.*(rw,sync,no_root_squash,no_subtree_check) OR /{YOCTO_BUILD_DIR}/tmp/work/{TARGET}-poky-linux-gnueabi/{IMAGE}/1.0-r0/rootfs <YOUR BOARD IP>(rw,sync,no_root_squash,no_subtree_check)   Now, we need to restart the NFS service. $ service nfs-kernel-server restart   2 Target Setup   We need to set up the network IP address of our target. Power On the board and hit a key to stop the U-Boot from continuing. Set the below parameters, setenv serverip 192.168.0.206       //This must be your Host IP address The path where the rootfs is placed in our host has to be indicated in the U-Boot, Ex. // if you choose default folder created by YOCTO setenv nfsroot /{YOCTO_BUILD_DIR}/tmp/work/{TARGET}-poky-linux-gnueabi/{IMAGE}/1.0-r0/rootfs   OR // if you create custom directory for NFS setenv nfsroot /imx-boot/imx6q-sabre/nfs Now, we have to set kernel image name and device tree blob file name in the u-boot, setenv image < zImage name > setenv fdt_file <dtb file name on host> Now, set the bootargs for the kernel boot, setenv netargs 'setenv bootargs console=${console},${baudrate} ${smp} root=/dev/nfs ip=dhcp nfsroot=${serverip}:${nfsroot},v3,tcp' Use printenv command and check loadaddr and fdt_addr environment variables variables for I.MX6Q SABRE, loadaddr=0x12000000 fdt_addr=0x18000000   Also, check netboot environment variable. It should be like below, netboot=echo Booting from net ...; run netargs; if test ${ip_dyn} = yes; then setenv get_cmd dhcp; else setenv get_cmd tftp; fi; ${get_cmd} ${image}; if test ${boot_fdt} = yes || test ${boot_fdt} = try; then if ${get_cmd} ${fdt_addr} ${fdt_file}; then bootz ${loadaddr} - ${fdt_addr}; else if test ${boot_fdt} = try; then bootz; else echo WARN: Cannot load the DT; fi; fi; else bootz; fi; Now, set environment variable bootcmd to boot every time from the network, setenv bootcmd run netboot Now finally save those variable in u-boot: saveenv Reset your board; it should now boot from the network: U-Boot 2016.03-imx_v2016.03_4.1.15_2.0.0_ga+ga57b13b (Apr 17 2018 - 17:13:43 +0530)  (..) Net:   FEC [PRIME] Normal Boot Hit any key to stop autoboot:  0   Booting from net ... Using FEC device TFTP from server 192.168.0.206; our IP address is 192.168.3.101 Filename 'zImage'. Load address: 0x12000000 Loading: #################################################################         #################################################################         #################################################################         #################################################################         #################################################################         #################################################################         ###########################################################         2.1 MiB/s done Bytes transferred = 6578216 (646028 hex) Using FEC device TFTP from server 192.168.0.206; our IP address is 192.168.3.101 Filename 'imx6q-sabresd.dtb'. Load address: 0x18000000 Loading: ####         1.8 MiB/s done Bytes transferred = 45893 (b345 hex) Kernel image @ 0x12000000 [ 0x000000 - 0x646028 ] ## Flattened Device Tree blob at 18000000   Booting using the fdt blob at 0x18000000   Using Device Tree in place at 18000000, end 1800e344 switch to ldo_bypass mode!   Starting kernel ...
查看全文
The Linux L4.9.51 and SDKv2.3 for i.MX 8MQuad(mScale850D) RFP(GA) release files are now available. Linux on IMX_SW web page, Overview -> BSP Updates and Releases ->Linux L4.9.51 for i.MX 8MQuad GA. SDK on https://mcuxpresso.nxp.com/ web page.   Files available: Linux: # Name Description 1 fsl-yocto-L4.9.51_mx8mq-ga.tar.gz L4.9.51 i.MX 8MQuad GA Linux BSP Documentation. Includes Release Notes, User Guide. 2 L4.9.51-ga_images_mx8mq.tar.gz Linux Binary Demo files for i.MX 8MQuad EVK 3 L4.9.51_8mq-ga_mfg-tools.tar.gz Manufacturing Toolkit for Linux L4.9.51 i.MX8MQuad GA 4 L4.9.51_8mq-ga_gpu-tools.tar.gz VivanteVTK file for L4.9.51 i.MX8MQuad GA 5 imx-aacpcodec-4.3.4.tar.gz AAC Plus Codec for L4.9.51 of iMX 8MQuad GA   SDK:   On https://mcuxpresso.nxp.com/, click the Select Development Board to customize the SDK based on your configuration then download the SDK package. CMSIS pack is also supported.   Target board: i.MX 8MQuad EVK   What’s New/Features: Please consult the Release Notes.   Known issues For known issues and more details please consult the Release Notes.   More information on changes of Yocto, see: README: https://source.codeaurora.org/external/imx/imx-manifest/tree/README?h=imx-linux-morty ChangeLog: https://source.codeaurora.org/external/imx/imx-manifest/tree/ChangeLog?h=imx-linux-morty  
查看全文
The PICO-PI-IMX7 is a TechNexion board defined here. It is now supported in mainline U-Boot, mainline Kernel, FSL Community BSP and Buildroot. In mainline U-Boot it is supported since v2017.07. In mainline Linux Kernel it is supported since 4.13. To generate an image for PICO-PI-IMX7 using FSL Community BSP, please see: The imx7d-pico board is now supported in FSL Community BSP - i.MXDev Blog. To generate an image for PICO-PI-IMX7 using Buildroot, please see: The imx7d-pico board is now supported in Buildroot - i.MXDev Blog.
查看全文
The Linux L4.1.15_2.0.3 Patch for i.MX 6ULL@900MHz Release is now available on www.nxp.com. BSP Updates and Releases -> Linux -> Linux 4.1.15_2.0.3 Patch.   Files available: # Name Description 1 L4.1.15_2.0.3_6ULL_patch_images.tar.gz i.MX 6ULL-EVK@900MHz Linux Binary Demo Files   Information of release, see: README: http://git.freescale.com/git/cgit.cgi/imx/fsl-arm-yocto-bsp.git/tree/README?h=imx-4.1-krogoth ChangeLog: http://git.freescale.com/git/cgit.cgi/imx/fsl-arm-yocto-bsp.git/tree/ChangeLog?h=imx-4.1-krogoth
查看全文
The OpenSSL recipe halts saying it can't find find.pl . How to resolve this problem?   From the blog, linked below : create file find.pl in /etc/perl.   Missing find.pl compiling OE - Kemp's blog    "find.pl" content :   warn "Legacy library @{[(caller(0))[6]]} will be removed from the Perl core distribution in the next major release. Please install it from the CPAN distribution Perl4::CoreLibs. It is being used  at @{[(caller)[1]]}, line @{[(caller)[2]]}.\n";   # This library is deprecated and unmaintained. It is included for # compatibility with Perl 4 scripts which may use it, but it will be # removed in a future version of Perl. Please use the File::Find module # instead.   # Usage: #              require "find.pl"; # #              &find('/foo','/bar'); # #              sub wanted { ... } #                            where wanted does whatever you want. $dir contains the #                            current directory name, and $_ the current filename within #                            that directory. $name contains "$dir/$_". You are cd'ed #                            to $dir when the function is called. The function may #                            set $prune to prune the tree. # # For example, # # find / -name .nfs\* -mtime +7 -exec rm -f {} \; -o -fstype nfs -prune # # corresponds to this # #              sub wanted { #               /^\.nfs.*$/ && #               (($dev,$ino,$mode,$nlink,$uid,$gid) = lstat($_)) && #               int(-M _) > 7 && #               unlink($_) #               || #               ($nlink || (($dev,$ino,$mode,$nlink,$uid,$gid) = lstat($_))) && #               $dev < 0 && #               ($prune = 1); #              } # # Set the variable $dont_use_nlink if you're using AFS, since AFS cheats.   use File::Find ();   *name                            = *File::Find::name; *prune                            = *File::Find::prune; *dir                            = *File::Find::dir; *topdir                            = *File::Find::topdir; *topdev                            = *File::Find::topdev; *topino                            = *File::Find::topino; *topmode              = *File::Find::topmode; *topnlink              = *File::Find::topnlink;   sub find {   &File::Find::find(\&wanted, @_); }   1;
查看全文
The document is a master page for learning i.MX6Q SABRE. It contains several parts as following. The pdf files listed below(item 0, 1, 2) are contained in the NXP official website and others are in the community links. 0. i.MX6 SMART DEVICE SYSTEM(Schematics): SPF-27516_C5.pdf(in the iMX6Q_SABRE_SDB_DESIGNFILES) i.MX 6Quad SABRE Development Board|NXP  1. How to build an image for an i.MX NXP board by using a Yocto Project build environment: Freescale_Yocto_Project_User's_Guide.pdf(in the L4.1.15_1.1.0_LINUX_DOCS) i.MX 6Quad SABRE Development Board|NXP  2. How to build and install the NXP Linux OS BSP: i.MX_Linux_User's_Guide.pdf (in the L4.1.15_1.1.0_LINUX_DOCS) i.MX 6Quad SABRE Development Board|NXP  3. How to Use Trace32 to Run U-boot in the i.MX6Q SABRE Platform: How to Use Trace32 to Run U-boot in the i.MX6Q SABRE Platform  4. Bootloader Boot Procedure for linux OS in i.MX6Q: Bootloader Boot Procedure for linux OS in i.MX6Q  5. Kernel Loading Procedure for Linux OS in i.MX6Q: Kernel Loading Procedure for Linux OS in i.MX6Q 
查看全文
Uploading the i.MX 6 Linux Reference Manual here after being un-able to find it on Google or on i.MX6 product page.
查看全文
i.MX6UL OBDS test image
查看全文
NFS and TFTP Boot 1  Introduction This document explains the required steps to boot Linux Kernel and mount a NFS on your target. 2 Requirements A functional Yocto environment (Images generated for your target). Your preferred target.  (SABRE-AI, SABRE-SD) 1 Ethernet Cable 1 Micro USB cable USB to Serial converter depending on your target features. 3 Yocto Folders When you develop your Linux kernel and Root File System with Yocto, different folders are created and each folder contains different information. {YOCTO_BUILD_DIR}/tmp/deploy/images/ {TARGET}/  This directory contains the output images, like Kernel, U-Boot and the File System in a tar file. This directory will be used to fetch the kernel and device tree blob file only. {YOCTO_BUILD_DIR}/tmp/sysroot/{TARGET}/  This folder contains all the development files used to generate our Yocto images. Here we can find all the dynamic libraries and headers used for development. This folder is used as parameter for cross-compilation. {YOCTO_BUILD_DIR}/tmp/work/{TARGET}-poky-linux-gnueabi/{IMAGE}/1.0-r0/rootfs This folder contains the uncompressed rootfs of our target. This folder will be used as entry in the host NFS server. 4 IP Address and Network Setup This section covers how to boot Linux that mounts the root file system (RFS) over the network. Remember that in this scenario, the RFS exists on the laptop hard drive, and the kernel that runs on the target board will mount the RFS over Ethernet. This setup is used for developing and debugging Linux applications. It allows for applications to be loaded and run without having to re-boot the kernel each time. First some packages on your host need to be installed: # apt-get install xinetd tftp tftpd isc-dhcp-server nfs-kernel-server portmap For development, it is best to have a static IP setup for the board and Linux environment. This way U-Boot options won’t change between reboots as you get a new IP address as you would using DHCP. 4.1 Linux Host Setup This section describes how to setup a static IP in your Linux host environment. This is not required but will allow the IP address of your virtual host system to remain unchanged. Because u-boot parameters use specific IP addresses, this step is recommended because u-boot parameters may need to be updated in the future to match your virtual IP address if it should ever change. You could take the existing IP address and make it static, but you would lose the Internet connection in your virtual machine. Instead we want to make use of the virtual environment and add a secondary Ethernet port that is tied to your wired Internet connection, while keeping the original Ethernet port which can use the wireless connection on your laptop. In the Linux virtual environment, type sudo ifconfig and note that you should have one Ethernet adapter (eth0). The other item listed (lo) is a virtual port for loopback mode. Shutdown the Linux virtual machine In VMware Player, go to Edit virtual machine settings. And add a Bridged Network Adapter, choosing only the wired Ethernet port. And click on OK.  See below for example: Start up the Linux VM. Open a terminal and type: sudo ifconfig You should have a new entry (eth1). This is the new Ethernet port you created in the virtual machine, and it is bridged to your wired Ethernet port. This is the port we want to make a static IP address. To set eth1 to a static IP, open /etc/nework/interfaces sudo gedit /etc/network/interfaces Add the following to set eth1 to your desired IP address. auto eth1 iface eth1 inet static address 192.168.0.100      <-- Your HOST IP netmask 255.255.255.0 gateway 192.168.0.1 Save the file Restart eth1 sudo ifdown eth1 sudo ifup eth1 4.2 Target Setup We need to setup the network IP address of our target. Power On the board and hit a key to stop the U-Boot from continuing. Set the below parameters: setenv serverip 192.168.0.100 <-- This must be your Host IP address setenv ipaddr 192.168.1.102  <-- This must be your target IP addres setenv ip_dyn no The path where the rootfs is placed in our host has to be indicated in the U-Boot: setenv nfsroot /home/usuario/fsl-release-bsp/buildimx6q/tmp/work/imx6qsabresd-poky-linux-gnueabi/fsl-image-gui/1.0-r0/rootfs setenv image zImage setenv fdt_file uImage-imx6q-sabresd.dtb setenv netargs 'setenv bootargs console=${console},${baudrate} ${smp} root=/dev/nfs ip={ipaddr} nfsroot=${serverip}:${nfsroot},v3,tcp' 4.3 TFTP and NFS Configuration Now configure the Trivial File Transfer Protocol (TFTP) server and Networked File System (NFS) server. This is how U-Boot will download (via TFTP) the Linux kernel, and then the kernel will mount (via NFS) its root file system on the computer hard drive. 4.3.1 TFTP Setup Next setup the TFTP server. The following commands show that we are logged in as root (#). If you are not root ($) then precede each instruction with “sudo”. Edit /etc/xinetd.conf gedit /etc/xinetd.conf Add and save the following lines in the file service tftp { socket_type = dgram protocol = udp wait = yes user = root server = /usr/sbin/in.tftpd server_args = -s {YOCTO_BUILD_DIR}/tmp/deploy/images/ {TARGET}/  disable = no } Notice that {YOCTO_BUILD_DIR}/tmp/deploy/images/ {TARGET}/   has to be written as absolute path. Restart the xinetd service service xinetd restart Test that TFTP is working tftp localhost tftp> get {An Image found in the tftp folder} tftp> quit 4.3.2 NFS Setup Edit the /etc/exports file gedit /etc/exports Add the path where the rootfs is found in your host. {YOCTO_BUILD_DIR}/tmp/work/{TARGET}-poky-linux-gnueabi/{IMAGE}/1.0-r0/rootfs *(rw,no_root_squash)                                                                 NOTE:      {YOCTO_BUILD_DIR}/tmp/work/{TARGET}-poky-linux-gnueabi/{IMAGE}/1.0-r0/rootfs may work most of the times,        but it is recommended to untar the {IMAGE}.bz2 in an exported           folder keeping using sudoand keeping the chmod of each file.     3. Restart the NFS service sudo service portmap stop sudo service nfs-kernel-server stop sudo service portmap start sudo service nfs-kernel-server start 5 Host Final Configuration and Booting Linux over NFS In your host, under the images folder {YOCTO_BUILD_DIR}/tmp/deploy/images/ {TARGET}/ create the below links ln -s zImage_imx_v7_defconfig zImage      2. In U-boot type the below command:                run netboot After a pair of minutes you should get a Linux working system on your target.
查看全文
All, This document will help you to understand the " YOCTO PROJECT COMMUNITY LAYERS" and the "YOCTO PROJECT FREESCALE OFFICIAL RELEASE" differences and where the layer content is coming from.   Best Regards, Luis
查看全文
The i.MX 6 D/Q/DL/S/SL Linux 3.10.17_1.0.0 GA release is now available on www.freescale.com Files available Name Description L3.10.17_1.0.0_LINUX_DOCS i.MX 6 D/Q/DL/S/SL Linux 3.10.17_1.0.0 GA BSP documentation. y L3.10.17_1.0.0_iMX6QDLS_Bundle i.MX 6 D/Q/DL/S  Linux 3.10.17_1.0.0 GA BSP Binary Demo Files L3.10.17_1.0.0_iMX6SL_Bundle i.MX 6 SL  Linux 3.10.17_1.0.0 GA BSP Binary Demo Files i.MX_6_Vivante_VDK_150_Tools Vivante VTK 1.5 Codec for the i.MX 6 D/Q/DL/S/SL Linux 3.10.17_1.0.0 GA BSP    y L3.10.17_1.0.0_AACP_CODECS AAC Plus Codec for the i.MX 6 D/Q/DL/S/SL Linux 3.10.17_1.0.0 GA BSP y IMX_6_MFG_L3.10.17_1.0.0_TOOL Manufacturing Tool and Documentation for Linux 3.10.17_1.0.0 GA BSP y Target HW boards o   i.MX6DL  SABRE SD board o   i.MX6Q  SABRE SD board o   i.MX6DQ SABRE AI board o   i.MX6DL SABRE AI board o   i.MX6SL EVK board New  Features o   Main BSP New Features on MX6DQ, MX6DL and MX6SL from L3.10.9_1.0.0 GA: SD3.0 reset USB HSIC HWRNG security feature on MX6SL VIIM OTP Fuse in uboot Battery charge LED U-boot USB mass storage support USB Camera on host mode X backend: Adaptive HDMI display support backed by XRandR Main Codec New Features on MX6DQ, MX6DL and MX6SL from L3.10.17_1.0.0 Beta: Bug fix Main Codec New Features on MX6DQ, MX6DL and MX6SL from L3.10.17_1.0.0 Beta: Bug fix Other features not supported found during testing: UART: only support some baud rates like 9600, 115200, can't support high to 4000000 Known issues For known issues and limitations please consult the release notes located in the BSP documentation package.
查看全文
$ ~/dylan/sources$ find -name *image*.bb ./meta-fsl-demos/recipes-fsl/images/fsl-image-gui-sdk.bb ./meta-fsl-demos/recipes-fsl/images/fsl-image-test.bb ./meta-fsl-demos/recipes-fsl/images/fsl-image-gui.bb ./meta-fsl-demos/recipes-qt/images/qt-in-use-image.bb ./meta-fsl-demos/recipes-qt/images/qte-in-use-image.bb ./meta-openembedded/meta-initramfs/recipes-bsp/images/initramfs-kexecboot-klibc-image.bb ./meta-openembedded/meta-initramfs/recipes-bsp/images/initramfs-kexecboot-image.bb ./meta-openembedded/meta-oe/recipes-support/imagemagick/imagemagick_6.7.5.bb ./meta-openembedded/meta-oe/recipes-multimedia/libsdl-image/libsdl-image_1.2.12.bb ./poky/meta-hob/recipes-core/images/hob-image.bb ./poky/meta-skeleton/recipes-multilib/images/core-image-multilib-example.bb ./poky/meta/recipes-devtools/mkelfimage/mkelfimage_svn.bb ./poky/meta/recipes-sato/images/core-image-sato-dev.bb ./poky/meta/recipes-sato/images/core-image-sato.bb ./poky/meta/recipes-sato/images/core-image-sato-sdk.bb ./poky/meta/recipes-qt/images/qt4e-demo-image.bb ./poky/meta/recipes-core/images/core-image-minimal.bb ./poky/meta/recipes-core/images/core-image-base.bb ./poky/meta/recipes-core/images/core-image-minimal-dev.bb ./poky/meta/recipes-core/images/core-image-minimal-initramfs.bb ./poky/meta/recipes-core/images/build-appliance-image.bb ./poky/meta/recipes-core/images/core-image-minimal-mtdutils.bb ./poky/meta/recipes-extended/images/core-image-lsb-sdk.bb ./poky/meta/recipes-extended/images/core-image-basic.bb ./poky/meta/recipes-extended/images/core-image-lsb-dev.bb ./poky/meta/recipes-extended/images/core-image-lsb.bb ./poky/meta/recipes-graphics/images/core-image-directfb.bb ./poky/meta/recipes-graphics/images/core-image-x11.bb ./poky/meta/recipes-graphics/images/core-image-clutter.bb ./poky/meta/recipes-graphics/xcb/xcb-util-image_0.3.9.bb ./poky/meta/recipes-bsp/u-boot/u-boot-mkimage_2013.01.01.bb ./poky/meta/recipes-bsp/u-boot/u-boot-mkimage_2011.06.bb ./poky/meta/recipes-bsp/u-boot/u-boot-mkimage_2011.03.bb ./poky/meta/recipes-rt/images/core-image-rt-sdk.bb ./poky/meta/recipes-rt/images/core-image-rt.bb Those are all available images. And note that, available images from poky and meta-fsl-arm only. As you may imagine, several other layers can be included, and any new layer can provide new images. If you look line by line, you can see that some of that files are not images, for example u-boot-mkimage_2011.06.bb but you got the message. Yocto Project (and meta-fsl-demos) provides some "pre baked" images. In my point of view, those images are not to be used on your product. They are examples and quick starting points. When you desire a pie, you can go to supermarket and buy a frozen chocolate pie. But when you´re developing a pie to be the Apple Salted Caramel with Dark Chocolate Cinnamon Topping you need to decide every piece of this pie. What is the base, which type of apple to use. How much salt on caramel. This is your product, your pie, not a frozen standard pie. I know the analogy is kind of dumb. But it´s important to understand that the "pre baked" images provided by Yocto Project, or meta-fsl-demos are not supposed to become a product image! You can (and maybe should) base your image on some of those images, but they are not good enough to your product. I highly recommend you to have your own image file. The pre-baked images I´m used with are core-image-minimal I use to image name I use it when/for Formal description core-image-minimal testing machine support; uboot support/upgrade; kernel support/upgrade A small image just capable of allowing a device to boot. core-image-base when I need to add something like ssh/dropbear or evtest or usb utils. I always configure this on local.conf to add the desired package. A console-only image that fully supports the target device hardware. core-image-x11 when I need to test X11 accelerated by GPU, or I need to have X11 for any test. A very basic X11 image with a terminal core-image-direcftb when I debug directfb GPU support An image that uses DirectFB instead of X11. core-image-weston when I debug Wayland GPU support A very basic Wayland image with a terminal fsl-image-test when I need to test VPU with and without gstreamer. - fsl-image-gui when I need to have QT, or I want to build everything altogether. Although I´ve been preferring the smaller images instead. - meta-toolchain To have the crosscompiler installed on my machine to manually build u-boot and kernel, when I´m changing it Meta package for building a installable toolchain All those images DO NOT include -dev packages or native build. If you want it you MUST configure your local.conf. Although, you can find special images that provides the header files or the native compiler. The images with -dev sufix include the header files (and development files) from all packages. For example: core-image-minimal-dev ( A small image just capable of allowing a device to boot and is suitable for development work. ) The images with -sdk sufix include the native build tools. For example core-image-sato-sdk ( Image with Sato support that includes everything within core-image-sato plus meta-toolchain, development headers and libraries to form a standalone SDK. ) *all formal description was copied from poky source code (poky - Poky Build Tool and Metadata) Please, go back to Yocto Training - HOME
查看全文
One of the most important features of Yocto is its ability to handle sublayers. To understand the sublayers please Yocto Project Development Manual Start creating meta-custom folder, then create the other folders. For example: meta-daiane/ ├── conf │   └── layer.conf ├── README ├── recipes-core │   └── helloworld │       ├── helloworld │       │   └── hello_world.c │       └── helloworld_0.0.bb └── recipes-daiane     └── images         └── dai-image-hello.bb It´s possible to create recipes-kernel and place there your defconfig, or create a bbappend to apply your patches to kernel, or even create a recipes-multimedia and place there custom application for gstreamer, for example. Here, the custom application example is a helloworld application. One important tip: Yocto see recipes name as PACKAGENAME_VERSION.bb, It means, yocto uses "_" (underline) to separate the package name from package version on a recipe file name. So, if you call your helloworld application as hello_world_1.0.bb Yocto will think your application is called "hello" and the version is something around "world_1.0" Please, be careful. LAYER.CONF This is the file that gives new layer live. Find the content of mine layer.conf below: # We have a conf and classes directory, add to BBPATH BBPATH .= ":${LAYERDIR}" # We have a packages directory, add to BBFILES BBFILES += "${LAYERDIR}/recipes-*/*/*.bb \             ${LAYERDIR}/recipes-*/*/*.bbappend" BBFILE_COLLECTIONS += "daiane" BBFILE_PATTERN_daiane := "^${LAYERDIR}/" BBFILE_PRIORITY_daiane = "4" As soon as the new custom layer is created, it MUST include it to  conf/bblayers.conf file. Please see the example: LCONF_VERSION = "6" BBPATH = "${TOPDIR}" BSPDIR := "${@os.path.abspath(os.path.dirname(d.getVar('FILE', True)) + '/../..')}" BBFILES ?= "" BBLAYERS = " \   ${BSPDIR}/sources/poky/meta \   ${BSPDIR}/sources/poky/meta-yocto \   \   ${BSPDIR}/sources/meta-openembedded/meta-oe \   \   ${BSPDIR}/sources/meta-fsl-arm \   ${BSPDIR}/sources/meta-fsl-arm-extra \   ${BSPDIR}/sources/meta-fsl-demos \   \   ${BSPDIR}/sources/meta-daiane \ " Please, find the tarball with sample meta layer attached to this document. It includes one image that will install the Hello World application: $ bitbake dai-image-hello When the content of image tar ball is extracted, hello_world was installed and it was for ARM: $ find -name hello* ./usr/bin/hello_world $ file ./usr/bin/hello_world ./usr/bin/hello_world: ELF 32-bit LSB executable, ARM, version 1 (SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.6.16, stripped Go to Yocto Training - HOME Go to Task #9 - How to add bad/ugly
查看全文
Bad and Ugly gstreamer plugins has their own special licensing, so it cannot be released formally inside any tarball. (I do not understand it deeply, if you want more info, please go to GStreamer: Licensing advice) But you can add it on your own image, and you only need to change the local.conf Please, add the following code to your local.conf: LICENSE_FLAGS_WHITELIST = "commercial" COMMERCIAL_AUDIO_PLUGINS ?= " \ gst-plugins-ugly-mad \ gst-plugins-ugly-mpegaudioparse \ " COMMERCIAL_VIDEO_PLUGINS ?= " \ gst-plugins-ugly-mpeg2dec \ gst-plugins-ugly-mpegstream \ gst-plugins-bad-mpegvideoparse \ " CORE_IMAGE_EXTRA_INSTALL += " \ packagegroup-fsl-gstreamer \ gst-plugins-base-videotestsrc \ gst-plugins-bad-fbdevsink \ gst-ffmpeg alsa-utils \ gst-plugins-good-isomp4 \ " Please, note that this will not install *every* plugin from ugly or bad. It will only install the plugins from the list. Go to Yocto Training - HOME Go to Task #8 - Build kernel manually using created toolchain
查看全文
The Yocto Project is open-source, so anyone can contribute. No matter what your contribution is (bug fixing or new metadata), contributions are sent through patches to a community list. Many eyes will look into your patch and at some point it is either rejected or accepted. Follow these steps to contribute: Make sure you have previously configured your personal info $ git config --global user.name "Your Name Here" $ git config --global user.email "your_email@example.com" Subscribed to the Freescale Yocto Project Mailing List Download `master` branches fsl-community-bsp $ repo init \   -u https://github.com/Freescale/fsl-community-bsp-platform \   -b master Update fsl-community-bsp $ repo sync Create local branches so your work is *not* done on master fsl-community-bsp $ repo start <branch name> --all Where `<branch name>` is any name you want to give to your local branch (e.g. `fix_uboot_recipe`, `new_gstreamer_recipe`, etc.) Make your changes in any Freescale related folder (e.g. sources/meta-fsl-arm). In case you modified a recipe (.bb) or include (.inc) file, do not forget to *bump* (increase the value by one) either the `PR` or `INC_PR` value Commit your changes using `git`. In this example we assume your change is on `meta-fsl-arm` folder sources/meta-fsl-arm $ git add <file 1> <file 2> sources/meta-fsl-arm $ git commit On the commit's log, the title must start with the filename change or introduced, then a brief description of the patch's goal, following with a long description. Make sure you follow the standards (type ` git log --pretty=oneline` to see previous commits) Create a patch sources/meta-fsl-arm $ git format-patch -s  --subject-prefix='<meta-fsl-arm][PATCH' -1 Where the last parameter (`-1`) indicate to patch last commit. In case you want to create patches for older commits, just indicate the correct index. If your patch is done in other folder, just make sure you change the `--subject-prefix` value. Send your patch or patches with git send-email --to meta-freescale@yoctoproject.org <patch> where `<patch>` is the file created by `git format-patch`. Keep track of patch's responses on the mailing list. In case you need to rework your patch, repeat the steps but this time the patch's subject changes to `--subject-prefix='<meta-fsl-*][PATCH v2'` Once your patch has been approved, you can delete your working branches fsl-community-bsp $ repo abandon <branch name>
查看全文
1. To setup the Yocto environment, from the BASE folder run fsl-community-bsp $ . setup-environment build 2. Build the toolchain build $ bitbake meta-toolchain # Other toolchains: # Qt Embedded toolchain build: bitbake meta-toolchain-qte # Qt X11 toolchain build: bitbake meta-toolchain-qt 3. Install it on your PC build $ sudo sh \   tmp/deploy/sdk/poky-eglibc-x86_64-arm-toolchain-<version>.sh 4. Setup the toolchain environment build $ source \   /opt/poky/<version>/environment-setup-armv7a-vfp-neon-poky-linux-gnueabi 5. Get the Linux Kernel's source code. $ git clone git://git.freescale.com/imx/linux-2.6-imx.git linux-imx $ cd linux-imx 6. Create a local branch linux-imx $ BRANCH=imx_3.0.35_4.0.0 # Change to any branch you want,   # Use 'git branch -a' to list all linux-imx $ git checkout -b ${BRANCH} origin/${BRANCH} 7. Export ARCH and CROSS_COMPILE linux-imx $ export ARCH=arm  linux-imx $ export CROSS_COMPILE=arm-poky-linux-gnueabi- linux-imx $ unset LDFLAGS 8. Choose configuration and compile linux-imx $ make imx6_defconfig  linux-imx $ make uImage  9. To Test your changes, copy the `uImage` into your SD Card linux-imx $ sudo cp arch/arm/boot/uImage /media/boot 10. If case you want your changes to be reflected on your Yocto Framework, create the patches following the document i.MX Yocto Project: How can I patch the kernel?
查看全文