S32 Design Studio Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

S32 Design Studio Knowledge Base

Discussions

Sort by:
S32DS contains many example projects from which you can learn how S32DS can be used with the help of the Vision SDK to develop vision applications. The example projects contain generated and hand-written code, which utilize the Vision SDK to demonstrate a workflow using S32DS. In this document, the procedure for creating a project from one of the provided ISP examples through to execution on the EVB is detailed. This project was run using S32DS version 3.2 and VSDK version 1.5.0.   1) Launch S32DS 2) Select 'File -> New -> S32DS Project from Example' 3) Select 'isp_h264dec_single_stream' project    In this particular project, the ISP graph diagram is included. If you wish to view it, go to the Project Explorer panel and expand 'isp_h264dec_single_stream_graph'. Then double click on 'ISP data flow : h264dec_single_stream'. The ISP graph diagram will appear in the editor panel. 4) If not in the C/C++ Perspective, switch over by clicking on the icon showed below (Hovering over the correct icon should display 'C/C++'). The current perspective is displayed on the top bar. 5) Select isp_h264dec_single_stream: A53 in the Project Explorer panel 6) Build project for A53  7) Start a debug session using method as described in HOWTO Create A53 Linux Project in S32DS for Vision, beginning at step 9. 😎 Click Resume  The program takes the input H264 encoded image img_1280x960.h264 located in the /home/root/vsdk/data/common folder on the Linux BSP and outputs it on the display The output image should look like below.
View full article
S32DS contains many example projects from which you can learn how S32 can be used with the help of the Vision SDK to develop vision applications. The example projects contain generated and hand-written code, which utilize the Vision SDK to demonstrate a workflow using S32DS. In this document, the procedure for creating a project from one of the provided APEX2 examples through to execution on the EVB is detailed. This tutorial was made with S32DS Version 3.2 and VSDK Version 1.5.0. 1) Launch S32DS 2) Select 'File -> New -> S32DS Project from Example' 3) Select apex2_rotate_180 project 4) Click Finish 5) If not in the C/C++ Perspective, switch over by clicking on the icon showed below (Hovering over the correct icon should display 'C/C++'). The current perspective is displayed on the top bar. 6) Select apex2_rotate_180: A53 in the Project Explorer panel. Build the project using build config 'TEST_A53'. 7) Start a debug session using method as described in HOWTO: Create A53 Linux Project in S32DS for Vision, beginning at step 9. 😎 Click Resume  The program takes the input image  in_grey_256x256.png located in the /home/root/vsdk/data/common folder on the Linux BSP and rotates it 180 degrees The output image out.png is located inside the /home/root/vsdk folder 9) To see the output, access the device from the remote systems view. If this has not been set up, complete the steps described in HOWTO: Access Linux BSP file system on S32V234-EVB from S32DS for Vision.  10) Open both the input and output files from the remote systems view to verify that the program ran correctly.
View full article
      Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio 3.2  Update 191226          What is new? Vision Extension Package for S32V234 1.1.0 with VSDK 1.5.0 integrated.(VSDK Release Notes) This is a cumulative update (includes previous updates: Update 191219) Installation instructions The update is available for online (via Eclipse Updater) or offline installation (direct download link)  online installation:  go to menu "Help" -> "S32DS Extensions and Updates" dialog  select from available items and click "Install/Update" button   offline installation:   go to S32 Design Studio product page -> Downloads section or use direct link to download the update archive zip file Start S32 Design Studio and go to "Help" -> "S32DS Extensions and Updates" Add a new "Add.." S32DS Software Site and browse to select the downloaded update archive .zip file you downloaded in the previous step         Select from available items and click "Install/Update" button. This will start the update installation process.
View full article
Users can now get the AMMCLib for S32K3 in S32DS 3.4 if they manually add the following URL to the list of “Available S32DS Software Sites”: http://www.nxp.com/lgfiles/updates/Eclipse/AMMCLIB/S32DS_3.5 (the URL will be auto-added with the upcoming S32DS 3.5 release). From within S32 Design Studio for S32 Platform 3.4, launch S32DS Extensions and Updates menu (Help -> S32DS Extensions and Updates), then select 'Add Update Sites'. Please note that the S32K3XXMCLUG.pdf User’s Guide incorrectly indicates that the library is available as a standalone SDK, which is incorrect. AMMCLib for S32K3 is part of the “PlatformSDK” system which means that users must use the RTD for S32K3 in their S32DS project to gain access to AMMCLib:   Then they must activate the „S32 Configuration Tool“ (CT):   Within the CT, they must click on the „Peripherals“, then „Libraries“, and select „AMMCLib“ from the list:   Then they must click on „Update code“, to update the paths in the project:    
View full article
The S32 Debugger included within the S32 Design Studio for S32 Platform IDE provides the capability to access the flash programming capabilities of the S32 Debug Probe via the S32 Debugger.   Note: currently only QSPI flashing is supported.   Preparation Install S32 Design Studio IDE  Install the Development Package for the device you are debugging. In this case, the S32R4xx development package. This package is important as the S32 Debugger support component contains the device-specific Python scripts required for initialization of the cores.   Open the application project from which the flash image will be generated. Follow the steps in HOWTO: Generate S-Record/Intel HEX/Binary file , selecting the 'Raw Binary' option. Build the project, generating the binary executable. This will be our application binary input to the IVT Tool. The IVT Tool must be used to generate the BLOB image which can be programmed to flash memory device and loaded to the RAM by the BootROM. Follow the steps in HOWTO: Use IVT Tool To Create A BLOB Image S32R45. The resulting BLOB image file is what can be flashed to the device.   Procedure Open Debug Configuration menu Select 'S32 Debugger Flash Programmer', then right-click and select New. Enter an name for the new configuration and click Add... to add the file to be flashed. Click Browse... to select the project from the workspace where the application binary is located Select the project and click OK By default, the ELF file is found. Click Search in project to select the binary file. Select the .bin file and click OK Now we must enter the base address. Typically, this could be 0, but you may have other requirements. Click OK. Now we are ready to configure the debugger connection settings. Click on the Debugger tab. Starting from the top and working our way down, click on Select device. Select the device and click OK The correct Initialization script will automatically be set. Set the Debug Probe Connection settings to match your setup. When done, click Apply To start the flashing, click Debug Flashing progress will be displayed. When complete, the Debug perspective will show at terminated thread.   Happy flashing with GDB! Note, to debug this application since it will be subsequently started by the BootROM: use 's32r45_attach.py' in the Initialization script field on the debugger tab of the Debug Configurations menu Make the following adjustments on the Startup tab within the Debug Configurations menu: Uncheck "Load image" Check “Set program counter at:” and enter the value “Reset_Handler”
View full article
  In some cases FreeRTOS heap can consume huge portion of RAM memory - especially on small devices like S32K312 and for example DTCM memory is unused. FreeRTOS allows user defined heap which can be moved in any section in RAM.  First step - make sure, that in FreeRTOS config is application allocated heap is disabled:   Second step - open linker script file and create new section which points into DTCM memory:     Third step - define ucHeap variable with section attribute:     We are done - FreeRTOS Heap is moved into DTCM memory:    In case, that DTCM memory is used - typically there can be Interrupt Vector Table, stack and so on, you can skip creating new section in linker script file and simply add *(my_head) at the end of existing section mapped into dtcm:    FreeRTOS heap will be placet at the end of used DTCM memory:     
View full article
The NXP device S32R41 has accelerators that can be programmed. The S32 Debugger included within the S32 Design Studio for S32 Platform IDE with the S32 Debug Probe provides the ability to debug these accelerators. The accelerator covered in this document: Signal Processing Toolbox (SPT).   Section map: Preparation             Setup the software tools             Setup the hardware Procedure             Create A New Debug Configuration                                Start A Debug Session                         Multi-Core Preparation Setup the software tools Install S32 Design Studio for S32 Platform Install the S32R41 development package and the Radar extension package for S32R41. Both of these are required for the SPT3.5 accelerator. Setup the hardware Confirm the setup of the S32R41 evaluation board. Connect the power supply cable Setup the S32 Debug Probe. Refer to the S32 Debug Probe User Guide for installation instructions. Connect the S32 Debug Probe to the evaluation board via JTAG cable. Connect the S32 Debug Probe to the host PC via USB cable OR via Ethernet cable (via LAN or directly connected and configured for static IP address) and power supply connected to USB port. Launch S32 Design Studio for S32 Platform Open existing project or create a new project and check that it successfully builds. If creating a new project, be sure the S32 Debugger is selected in the New Project Wizard.   Procedure The procedure for starting a debug session and accessing the associated accelerator-specific registers is detailed here. Debugging SPT is only conducted through the multi-core method. The SPT executable is included within A53 executable, the A53 application loads the SPT executable to the SPT core and both A53 and SPT core are available for debugging. The debug connection is made to the two cores through the Baremetal/Bareboard method. The debugger connects to both the A53 and SPT cores using the probe over JTAG. Before a debug session can be started a debug configuration must exist.   Create A New Debug Configuration If the New Project Wizard was used to create the project using the S32DS Application Project option, then there was an opportunity to select the desired debugger from within the wizard. If the desired debugger option was selected at this time, then the needed configuration already exists and will only require adjustments to the hardware connection settings.   If the New Project Wizard was not used to create the project OR the currently desired debugger was not the one selected at the time of project creation, a new debug configuration must be created. With the existing project selected in Project Explorer, open the Debug Configurations Menu: Run -> Debug Configurations Having the existing project selected in the Project Explorer view will make the creation of a new launch configuration easier as many settings will be imported from the selected project. To select a project, click on it so it becomes highlighted. Next, select the debugger for which the new debug configuration will be created. To create the new configuration, either click on the ‘New launch configuration’ button from the toolbar at the top and to the left, or right-click on the ‘S32 Debugger’ and select ‘New Configuration’ from the menu. Once the configuration is created it will be displayed and any errors with the configuration will be shown. If the project was selected in the Project Explorer, then the Name of the debug configuration will contain the project’s name and the Project and C/C++ Application fields may be populated as well. The C/C++ Application field will only be populated if the build output executable exists. Confirm these values are correct before moving on. If the C/C++ Application field is empty, just click ‘Browse..’ button (The ‘Search Project…’ button is setup to identify standard executable file types, not the SPT’s ‘aspt’ file type) and navigate to the folder containing the build output <project name>.aspt. If you like, the tool already knows the project directory path, so you could shorten the path to start with from the ‘Debug’ folder, as shown here. There is an error showing that the Device core ID is not specified on the Debugger tab. Switch to the Debugger tab and click on the button ‘Select device and core’. From the Select Target Device and Core window, expand the listing until all cores are listed. Notice that all supported cores on the S32R41 are listed. Select the SPT35 core and click OK. Now that the device and core are selected, the attach script is selected automatically. The attach script will allow to start debugging on a core that is already initialized. This is correct for the SPT core as it is always launched in multicore scenario. Refer to the document 'README.txt' located in the same folder as these script files for details on all of the provided scripts. Confirm the setting of the ‘Initial core’ checkbox. This box should be checked within the debug configuration that establishes the first connection to the target device via S32 Debug Probe. When this box is checked, the Debug Probe Connection interface and GDB Server settings become available. The probe connection only needs to be configured once and only one GDB Server needs to be running for each debug session. When debugging the SPT3.5 core, the A53 core will always launch first, so this box should be checked for the A53 debug configuration and should not be checked for the SPT debug configuration. Check that the GDB Client section has the correct path to the SPT GDB executable. It should point to the variable ‘S32DS_R41_GDB_SPT_PATH’. Startup tab check the following settings Load image is NOT checked for multicore debugging. Basically, if it is loaded by A53 core (SPT executable is contained within A53 ELF file), then it does not need to be loaded. Load symbols is NOT checked. The SPT source file is assembly code, so there are no symbols to load. Set breakpoint at main and Resume are NOT checked for multicore debugging. After saving the new configuration with the ‘Apply’ button, SPT debugging can be performed. Start A Debug Session For convenience, the S32DS Application Project wizard was used to create a new project for demonstrating multi-core A53/SPT debugging. The SPT core does not support standalone debugging. For instructions on loading this example project to your workspace, see ‘HOWTO: S32 Design Studio - Create New Application Project’, selecting instead the Processor option Family S32R41 -> S32R41xxx Cortex-A53 SPT3 from the wizard menu. A53 / SPT Multi-Core For multi-core debugging, the A53 core is running an executable which also contains the SPT code. The A53 code will make a call into the SPT to load the SPT code to memory and to start the SPT execution. So the A53 must be started first. The EVB settings are irrelevant as the debugger will take control of the target via the JTAG connection. Before beginning the debug sessions, be sure each project is built clean. Start A53 debug. From the menu at the top, select Run -> Debug Configurations… In the Debug Configurations menu, from the configuration list, look for the ‘S32 Debugger’ group and select the A53 Debug_RAM configuration for the project to be debugged. In the case of our example, the ‘New_S32R41_SPT_Project_A53_Debug_RAM_S32Debug’ configuration. On the Debugger tab, check that the Debug Probe Connection settings match with the current hardware connection configuration for the S32 Debug Probe. Use the ‘Test connection’ button to confirm. Click Debug to start debugging on the A53 core. The debugger will launch and execute until the first executable line in main(). See Debugger tab in Debug Configurations menu to adjust this setting. Once the A53 debug session is running, advance the program counter to a line after the desired SPT kernel is loaded to memory but before the SPT kernel is launched. In the example here, this would be in ‘main.c’, line 57, where ‘StartSptProgram()’ function is called. This can be done by setting a breakpoint on the line and clicking Resume.  After the breakpoint is reached, the SPT debug session can be started. Return to the Debug Configurations menu, select the SPT debug configuration. In the case of this example, ‘New_S32R41_SPT_Project_SPT35_Debug_S32Debug’, and click Debug. Wait for the SPT debug session to launch and stop in the disassembly. Use the Step Over command one time in the A53 debug thread to complete the SPT launch. Select the SPT debug thread to change the context of the Disassembly, Registers and etc.views. Notice the SPT code is not loaded yet. Enable Instruction Stepping Mode and step one time. Notice the SPT code is now loaded. Now you can step through the assembly code, access registers, etc.
View full article
        Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio for Power v1.2, Update 1 1            What is new? The S32 Software Development Kit (S32 SDK v0.8.0 EAR) which is an extensive suite of peripheral drivers, RTOS, stacks and middleware designed to simplify and accelerate application development on NXP Power MPC5748G and MPC5746C microcontrollers. Release notes are available here: http://www.nxp.com/docs/en/release-note/C55_SDK_EAR_0.8.0-RN.pdf  Installation instructions The update is available for online (Eclipse Updater) or offline (direct download link) installation.   online installation: go to menu "Help" -> "Install New Software..." dialog select predefined NXP S32 Design Studio update repository http://www.nxp.com/lgfiles/updates/Eclipse/S32DS_POWER_1_2/com.freescale.s32power.updatesite  select all available items and click "Next" button offline installation: go to S32 Design Studio product page -> Downloads section or use the direct download link to download the "S32 Design Studio for Power v1.2 - Update 1" file.   Start S32DS and go to "Help" -> "Install New Software..." Add a new "Archive" repository and browse to select the downloaded Update 1 archive file: Select all available items and click "Next" button.
View full article
      Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio for Power Architecture 2017.R1 Update 4          What is new? Radar SDK RTM 1.0.0. This is a cumulative update - it includes all of the content of previous updates (Update 1, Update 2, Update 3). Installation instructions The update is available for online (via S32DS Eclipse Updater) or offline installation (direct download link) online installation:  go to menu "Help" -> "Install New Software..." dialog  select predefined update site "S32DesignStudio - http://www.nxp.com/lgfiles/updates/Eclipse/S32DS_POWER_2017.R1/updatesite" select all available items and click "Next" button   offline installation:   go to S32 Design Studio for ARM product page -> Downloads section or use  direct link to download the update archive zip file  Start S32DS and go to "Help" -> "Install New Software..." Add a new "Archive" repository and browse to select the downloaded update archive zip file you downloaded in the previous step Select all available items and click "Next" button.   This will start the update installation process.
View full article
S32DS for Vision contains many example projects from which you can learn how S32DS for Vision can be used with the help of the Vision SDK to develop vision applications. The example projects contain generated and hand-written code, which utilize the Vision SDK to demonstrate a workflow using S32DS for Vision. In this document, the procedure for creating a project from one of the provided APEX2 examples through to execution on the EVB is detailed. 1) Launch S32DS for Vision 2) Select 'New S32DS Project from example' 3) Select apex2_fast9 project 4) Click Finish 5) Change to C/C++ perspective, click on 'Switch to C/C++ Development' 6) Select apex2_fast9: A53 in the Project Explorer panel. Build the project using build config 'TEST_A53'. 7) Start a debug session using method as described in HOWTO: Create A53 Linux Project in S32DS for Vision, beginning at step 9. 😎 Click Resume  Should see something similar to what is pictured below There are green diamonds at the corners in the image as identified by the fast9 corner detection algorithm
View full article
Example contains modified startup code to be able run in BookE only mode. For GNU gcc and as you need to add -mno-vle parameter in project properties:  For debugging with PE Micro you need to use modified Initialization script in Advanced options: Please note that there is no STD C BookE only library available:
View full article
Hi: I just wonder whether I can use S32 debug probe for S32K3 EVB in S32DS 3.4? I couldn't locate script and algorism for S32K3xx. Thanks.
View full article
      Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio 3.1  Update 190508          What is new? S32 Design Studio Platform Package 3.1.1 S32 Design Studio Platform Tools Package 3.1.1 Updated S32 Debugger and S32 Flash tool to support S32S247TV S32S2xxTV Development Package 3.1.0 S32V2xx Development Package 3.1.0 Vision Extension Package for S32V2xx 1.0.0 This is a cumulative update - it is applicable to S32 Design Studio 3.1 Installation instructions The update is available for online (via Eclipse Updater) or offline installation (direct download link)  online installation:  go to menu "Help" -> "S32DS Extensions and Updates" dialog  select all available items and click "Install/Update" button   offline installation:   go to S32 Design Studio product page -> Downloads section or use direct link to download the update archive zip file Start S32 Design Studio and go to "Help" -> "S32DS Extensions and Updates" Add a new "Add.." S32DS Software Site and browse to select the downloaded update archive .zip file you downloaded in the previous step          Select all available items and click "Install/Update" button.   This will start the update installation process.
View full article
        Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio v3.4 Vision Extension Package for S32V23x 1.3.0          What is new? Integrated VSDK 1.7.0   Installation instructions The update is available for online installation (via S32DS Extensions and Updates) or offline installation (direct download link)  installation:  go to menu "Help" -> "S32DS Extensions and Updates" dialog  select from available items and click "Install/Update" button offline installation:   go to S32 Design Studio for S32 Platform product page -> Downloads section or use direct link to download the update archive zip file        Start S32 Design Studio and go to "Help" -> "S32DS Extensions and Updates", then click 'Add Update Sites' link Select the downloaded update archive zip file you downloaded in the previous step       Select the 'Vision extension package for S32V23x' package and click "Install/Update" button.   This will start the update installation process.
View full article
Purpose   This document holds information about how S32 Design Studio and S32Debugger probe or PE Micro Debug probe can be used to debug applications running on NXP’s S32 family processors from the operating system perspective using OSEK Kernel awareness.   Abbreviations Abbreviation Description OSEK Open Systems and their Interfaces for Automotive Electronics is a standard developed in the automotive industry to define a common architecture for embedded Real-Time Operating Systems (RTOS). NXP RTOS NXP Real Time Operating System compliant with OSEK specification  ORTI OSEK Run Time Interface.  ORTI file is generated based on NXP RTOS configuration *.ort / *.orti OSEK system builder ORTI file extension MSI Microsoft Software Installer   Background OSEK Kernel awareness within S32 Design Studio allows you to debug your application from the operating system perspective. ORTI is a specification that enables OS awareness for external debuggers (e.g NXP S32 Debugger, Lauterbach T32, PEmicro's debug probe).  Most OSEK system builders are able to extract all necessary information of the OS component into a text file, called “ORTI file”. NXP RTOS generates an *.ort file based on the user configuration. Debuggers can load this ORTI file to add support for the operating system. S32Design Studio can load such an ORTI file and adds some special views that will allow the user to inspect the configured OS objects: Tasks, Alarms, Counters, Scheduletable.   Document structure The basic workflow for setting up and managing OSEK OS Awareness projects in S32 Design Studio remains consistent across both single-core and multi-core projects, irrespective of the debug probe used. The focus will be on the universal steps that are described in single-core projects case. For OSEK OS Awareness multi-core projects and for projects utilizing PE Micro debug probes, only the specific considerations will be highlighted.                 Hardware Support OSEK OS Awareness support in S32 Design Studio is available for: S32G27x, S32G39x S32E/Z  S32K396 S32R41 SAF85xx   OS Support OSEK OS Awareness support is available only on Windows.   How to use OSEK OS Awareness with S32 Design Studio and S32Debugger probe   Single core projects   Prerequisites Note: This HOWTo Guide describes the required steps for using OSEK Run Time Interface on a single-core example project for S32R418AA Cortex-M7 in S32 Design Studio. Prerequisites might differ depending on the project hardware type.   Software environment S32 Design Studio project or example project delivered with the NXP RTOS imported in S32 Design Studio Workspace S32R41 Development Package S32R41 Real-Time Drivers Version 1.0.0 SW32R41 RTOS 4.7.0 version 0.9.0 BETA   !Note: For this example project, NXP RTOS SysGen requires Java Runtime Environment OpenJDK-JRE 11.0.11 installed on your computer. The OpenJDK-JRE can be downloaded from the following URL (please search with exact keyword "jre-11.0.11-x64 MSI" or “jdk-11.0.11-x64 MSI” for correct version): https://developers.redhat.com/products/openjdk/download Using the installer (MSI) is recommended because it creates the HKEY_LOCAL_MACHINE\SOFTWARE\JavaSoft\JDK registry entry. JAVA_HOME environment variable must be set to point to location of Java Runtime Environment. For example: JAVA_HOME=C:\Program Files\RedHat\java-11-openjdk-jre-11.0.11-1 (Please choose correct path for your machine). Error or unexpected behavior may occur if the version of Java is different than 11.0.11 when NXP RTOS SysGen is executed (steps that are described Chapter III – “Generating Configuration”). If Java version is not found in the HKEY_LOCAL_MACHINE (HKEY_LOCAL_MACHINE\SOFTWARE\JavaSoft) a warning is reported.    Hardware environment Silicon: - Chip P/S32R418AAU(K1)MUFT (rev 1.1) Board: - X-S32R41-EVB PCB 48194 RevD SCH RevD Debug Probe: S32 Debug Probe       Project setup While in Design Studio, go to File -> New -> S32DS Project From Example  and select one of the existing single core S32 Design Studio Sample applications delivered with the NXP RTOS or import your own S32 Design Studio project.   Select the desired project from the list of examples and click finish       Generating configuration Before running the example, a configuration needs to be generated. First, go to Project Explorer View in S32 Design Studio and select the current project.   Right click and select the "S32 Configuration Tool" menu then click "Open Peripherals".  Click on the "Update Code" button.   Click on Select directory under "Generate" field to select the directory which contains example project (E.g.: D:\WorkspaceS32DS\RTOS_example_S32R418AA_SC1_M7) then click on Generate Configuration.  Click "Update Code" again.   Building the project Select the project in the S32 Design Studio Workspace and click on Build. Clicking this button will start the build using the preset build type.    Debug configuration Click on Debug Configurations   Setup the Debug Probe Connection for the project. Select either USB or Ethernet, depending upon your hardware setup. If USB is selected, the COM port for the S32 Debug Probe will automatically be detected (unless not connected or more than one probe is connected). If Ethernet is selected, then enter either the hostname (fsl + last 6 digits of MAC address) or IP address. See ‘S32_Debug_Probe_User_Guide.pdf’ ({S32DS_installation_directory}/S32DS/tools/S32Debugger/Debugger/Docs/S32_Debug_Probe_User_Guid e.pdf) for more details on the setup of the S32 Debug Probe.      Loading the ORTI file and starting debug From the OS Awareness tab select “OSEK” from the OS dropdown list. Browse and select from local system or Workspace the required *.ort file Click the Debug button.     OS Details Browser view Navigate to go to Window -> Show View -> Other…  and select the OS Details Browser view     Using the OS Details Browser view, Design Studio can display information about the tasks status on the target.   Tasks tab In the “Tasks”  tab from the OS Details Browser view you can see information about the operating system (the number of tasks, current task states, system objects):   Implementation tab Switch to the “Implementation” tab to see more detailed information gathered from the .ort file:   OS – current state Tasks – priority, state and assigned stack Stacks – usage and attributes Other OS resources defined and declared through ORTI Detailed info about ORTI data object Customize data presentation (HEX format, re-arrange the table columns) Colored presentation of data: -   White fields are static Blue fields are non-static Yellow fields are fields that changed their values from the last time they were inspected/checked.   OS information: Tasks information:   Stacks information:   Multi-core projects Prerequisites Note: This HOWTo Guide describes the required steps for using OSEK Run Time Interface on a multi-core example project for S32Z270 Cortex-R52 in S32 Design Studio. Prerequisites might differ depending on the project hardware type.   Software environment: S32 Design Studio project or example project delivered with the NXP RTOS imported in S32 Design Studio Workspace S32Z2/E2 Development Package S32Z/E Real Time Drivers Version 0.9.0 S32ZE RTOS R21-11 version 0.9.0   !Note: For this multi-core example project, NXP RTOS SysGen requires Java Runtime Environment OpenJDK-JRE 1.8 installed on your computer. The OpenJDK-JRE can be downloaded from the following URL (please search with exact keyword "jdk-8u372-x86 MSI" for correct version): https://developers.redhat.com/products/openjdk/download - Using the JDK 1.8 installer (MSI) is recommended. JAVA_HOME environment variable must be set to point to location of Java Runtime Environment. For example: JAVA_HOME= C:\Program Files (x86)\Java\java-1.8.0-openjdk-1.8.0.372-1 (Please choose correct path for your machine). Error or unexpected behavior may occur if the version of Java is different than 1.8 when NXP RTOS SysGen is executed (steps that are described in Chapter III – “Generating Configuration”).   Please notice that SysGen is not stable in JRE 1.8 64 bit. Using SG with JRE 1.8 32 bit is recommended.     Hardware environment:             Boards: S32Z27X-DC PCB 50588 RevA1 SCH RevB (DC2)             Silicon chip: P32Z270ADCK0MJFT P65C ATTJ2151A (E2). (21x21, 594 BGA) Debug Probe: S32 Debug Probe               Boards: S32Z270-DC PCB 50912 RevA SCH RevA (DC1)             Silicon chip: S32Z270ADCK0MJET (17x17, 400 BGA) Debug Probe: S32 Debug Probe   Project setup Go to File -> New -> S32DS Project From Example  and select one of the existing multi-core S32 Design Studio Sample applications delivered with the NXP RTOS or import your own S32 Design Studio project.      Generating configuration The steps for generating configuration must be performed for all projects: RTOS_example_S32Z270_SC1_multi_instance_R52_0_0, RTOS_example_S32Z270_SC1_multi_instance_R52_0_1, RTOS_example_S32Z270_SC1_multi_instance_R52_0_2, RTOS_example_S32Z270_SC1_multi_instance_R52_0_3.   Building the projects Before running, you must build all projects: RTOS_example_S32Z270_SC1_multi_instance_R52_0_0, RTOS_example_S32Z270_SC1_multi_instance_R52_0_1, RTOS_example_S32Z270_SC1_multi_instance_R52_0_2, RTOS_example_S32Z270_SC1_multi_instance_R52_0_3.     Debug configuration Click on Debug Configurations. Click the initial core under S32 Debugger in Debug configurations menu.  Setup the Debug Probe Connection.    Loading the ORTI file   Loading the ORTI file must be done for all the project configurations:  RTOS_example_S32Z270_SC1_multi_instance_R52_0_0 RTOS_example_S32Z270_SC1_multi_instance_R52_0_1 RTOS_example_S32Z270_SC1_multi_instance_R52_0_2 RTOS_example_S32Z270_SC1_multi_instance_R52_0_3   Starting debug on multi core project From the Debug Configuration menu, click on Launch Group for S32 Debugger. Check all the cores that you want to debug. Click the Debug button.   OS Details Browser view Compared with single core projects, when debugging multi core projects you can switch between the debugging sessions and information from all debugged cores   Tasks tab     Implementation tab The information displayed in Implementation tab is the same as in single-core projects case, but you can switch between the debugged cores       How to use OSEK OS Awareness with S32 Design Studio and PE Micro Debug probe Prerequisites Note: This HOWTo Guide describes the required steps for using OSEK Run Time Interface on a single-core example project for S32K396 Cortex-M7 in S32 Design Studio. Prerequisites might differ depending on the project hardware type.   Software environment: S32 Design Studio project or example project delivered with the NXP RTOS imported in S32 Design Studio Workspace S32 Design Studio 3.5.6 development package with support for S32K396 devices S32K3 Real-Time Drivers Version 3.0.0 P01 SW32K396 RTOS version 0.9.0 BETA   !Note: check the note from S32 Debugger – multi-core projects and install requires Java Runtime Environment OpenJDK-JRE 1.8   Hardware environment: Board:             Mini-module: XS32K396-BGA-DC PCB 54614 RevX1 SCH RevA              Silicon: Chip P32K396EHMJBS OP40E QAD2222F  Debug Probe: PE Micro Debug Probe     Project setup Select the desired project from the list of examples delivered with PE Micro Debug probe support or import your own S32 Design Studio project and click finish For this How To Guide, RTOS_example_S32K396_SC1_M7_0_0 was used   Generating configuration     Building the projects Select the project in the S32 Design Studio Workspace and click on Build.    Debug configuration Click on Debug Configurations. Select the debug configuration associated with your current build configuration and click on the “PEmicro Debugger” tab. Verify proper interface and port and if the device is properly detected.   Loading the ORTI file and starting debug From the OS Awareness tab select “OSEK” from the OS dropdown list. Browse and select from local system or Workspace the required *.ort file Click the Debug button.   OS Details Browser view Go to Window -> Show View -> Other…  and select the OS Details Browser view   Tasks tab In the “Tasks”  tab from the OS Details Browser view you can see information about the operating system (the number of tasks, current task states, system objects):   Implementation tab  “Implementation” tab displays more detailed information gathered from the .ort file:   Revision history: Revision no. Revision date Description 01 Nov 2023 Created document about how to use OSEK OS Awareness in S32 Design Studio on single and multi core projects with PE Micro and S32 Debug probes    
View full article
In this document, we show the steps to use the New Project Wizard to create a new application project for APEX2, ISP, or both.   1. Launch S32DS for Vision 2. Select 'S32DS Application Project' 3. Enter a name for the project 4. Select the 'A53 APEX2/ISP Linux' processor option 5. Click Next 6. Select the APEX2/ISP options you need.       a. APEX2 programming - will add support to your project for an APEX2 application, you need this for any new APEX2 project       b. APEX2 visual modeling - will create a separate project for your APEX2 program diagram, you need this to connect your APEX2 graph diagrams together. But you could also create it separately later. The APEX graph diagram must be created separately with another New Project Wizard.       c. ISP programming - will add support to your project for an ISP application, you need this for any new ISP project       d. ISP visual modeling - will create a separate project for your ISP data flow diagram, you will not need this if you plan to use an existing graph diagram. This can also be created later.       e. ISP static sequencer - by default, a dynamic sequencer is generated from your graph diagram, enable this to generate a static sequencer instead. This can be set/changed later in the Emit Configurations. 7. Click Finish 8. You now have a project or set of projects for development on the S32V234.
View full article
      Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio 3.1  Update 2          What is new? S32 SDK for S32S247TV EAR 0.8.1 - be installed on top of the previous EAR 0.8.0 This is a cumulative update -  it includes all the content of previous updates (Update 190508 , Update 190708 ) This update is ONLY applicable to S32 Design Studio 3.1 (DO NOT APPLY IT TO S32 Design Studio 3.2 or later) Installation instructions The update is available only via offline installation (direct download link)  offline installation:   go to S32 Design Studio product page -> Downloads section or use direct link to download the update archive zip file Start S32 Design Studio and go to "Help" -> "S32DS Extensions and Updates" Add a new "Add.." S32DS Software Site and browse to select the downloaded update archive .zip file you downloaded in the previous step          Select from available items and click "Install/Update" button. This will start the update installation process.
View full article
      Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio 3.1  Update 190708          What is new? S32 Design Studio Platform Package 3.1.2 S32 Design Studio Platform Tools Package 3.1.2 Updated S32 Debugger and S32 Flash tool to support S32S247TV NXP GCC for Arm Embedded Processor build 1620 S32S2xxTV Development Package 3.1.2 Integrated S32 SDK EAR 0.8.0 for S32S (Windows only), S32 Configuration Tool IVT and DCD tools S32V2xx Development Package 3.1.1 Integrated S32 SDK for S32V23x RTM 1.0.0 (Windows only) Vision Extension Package for S32V2xx 1.0.0 This is a cumulative update - it is applicable to S32 Design Studio 3.1 Installation instructions The update is available for online (via Eclipse Updater) or offline installation (direct download link)  online installation:  go to menu "Help" -> "S32DS Extensions and Updates" dialog  select from available items and click "Install/Update" button   offline installation:   go to S32 Design Studio product page -> Downloads section or use direct link to download the update archive zip file Start S32 Design Studio and go to "Help" -> "S32DS Extensions and Updates" Add a new "Add.." S32DS Software Site and browse to select the downloaded update archive .zip file you downloaded in the previous step         Select from available items and click "Install/Update" button. This will start the update installation process.
View full article
This tutorial walks a user through the steps to create a new application for the S32V234 MCU using S32DS (with S32V2xx development package and Vision extension package for S32V2xx) and the built in ISP Visual Graph tool. The completed application will take an image from camera, processes it on ISP and put the processed image in DDR buffers. Once the image is in DDR buffer, host (A53 core running Linux) will direct the display control unit (DCU) to display it on screen. Prerequisites: Some knowledge of the S32V234 System on a Chip (SoC) Have an understanding of the ISP architecture Be familiar with the NXP Vision SDK software Looking for Interactive Tutorial? You can view this tutorial as a video, go to Getting started with S32 Design Studio IDE including Vision Extension Package for S32V processors | NXP and select '3 | Create a new ISP Application'
View full article
The S32 Design Studio for S32 Platform supports the S32R41 device with the S32 Debugger. This document provides the details on how to setup and begin a debugging session on the S32R41 EVB (X-S32R45-EVB). Preparation Setup the software tools Install S32 Design Studio IDE Use the Extensions and Updates menu within S32 Design Studio for S32 Platform to add the S32R41 Development Package. Setup the hardware Confirm the setup of the S32R41 evaluation board.        Connect the power supply cable Setup the S32 Debug Probe        Connect the S32 Debug Probe to the evaluation board via JTAG cable. Refer to the S32 Debug Probe User Manual for installation instructions.        Connect the S32 Debug Probe to the host PC via USB, or Ethernet (via LAN or directly connected and configured for static IP address) and power supply connected to USB port. Launch S32 Design Studio for S32 Platform Create new or open existing project and check that it successfully builds. If creating a new project, be sure the S32 Debugger is selected in the New Project Wizard. Procedure Open the Debug Configurations menu, then follow the steps depending on whether an S32 Debugger configuration exists for your project. If the project was created using the New Project Wizard in S32 Design Studio for S32 Platform, and the S32 Debugger was selected as the debugger, then it likely has existing debug configuration(s). S32 Debugger Configuration(s) Exist If existing S32 Debugger configuration, proceed with probe configuration. Otherwise, skip to the next section. Below is shown the debug configuration which appears for the provided RTD example project Port_ToggleLed_S32R41_M7'. The suffixes 'debug', 'ram', and 's32debugger' refer to how the project was built and the debugger the configuration is for. Select the debug configuration which corresponds to the project, build type debug, and primary core (if a multicore project) Select the Debugger tab Select the Interface (Ethernet/USB) by which the S32 Debug Probe is connected. If connected via USB and this option is selected for interface, then the COM port will be detected automatically (in the rare event where 2 or more S32 Debug Probes are connected via USB to the host PC, then it may be necessary to select which COM port is correct for the probe which is connected to the EVB) If connected via Ethernet, enter the IP address of the probe. See the S32 Debug Probe User Manual for ways to determine the IP address. Proceed to section ‘Start Debugger’ S32 Debugger Configuration(s) Do Not Exist There might be no existing debug configuration if the project is being ported from another IDE or was created to use another debugger. Select the S32 Debugger heading and click New Launch configuration (or double click on the S32 Debugger heading, or right click on the S32 Debugger heading and select New from the context menu) A new debug configuration appears with the name set to the name of the active project in the Project Explorer window(this can be set by opening a file from the project or selecting an already opened file from the project in the editor), and the build type which was used to build it. If this is not matching your intended project then it can either be modified to match or deleted and recreated after the active project has been changed to the desired project. Adjust the name of the project as desired. From the Main tab, check that the Project field is set to the correct project name, as listed in the Project Explorer, and that the C/C++ Application is set to the ELF file which was built. The name of the project can be customized, but '_' must be used instead of spaces. If the Project field is not set or incorrect, click Browse... and then select the correct project name from the list. If more than one project is open in the workspace, then each will be listed. This shows how, regardless of which project is active in the C/C++ perspective, any available workspace project could be associated. This can be useful when reusing a debug configuration from one project in another. If the C/C++ Application is not set or incorrect, click Search Project... and then select the correct binary file (will only work if Project field is correct and project was successfully built). Switch to the Debugger tab. Click 'Select device and core' and then select the correct core from the list. In the case of our example, the M7_0 core is correct. If this is not the primary core, then uncheck the box next to 'Initial core'. This is done only for multicore projects for the non-boot cores. This causes the scripts to skip the initialization of the core as the boot core will launch the other cores so additional initialization will not be required. Select the Interface (Ethernet/USB) by which the S32 Debug Probe is connected. If connected via USB and this option is selected for interface, then the COM port will be detected automatically (in the rare event where 2 or more S32 Debug Probes are connected to the host PC, then it may be necessary to select which COM port is correct for the probe which is connected to the EVB) If connected via Ethernet, enter the IP address of the probe. See the S32 Debug Probe User Manual for ways to determine the IP address. Click Apply, then proceed to next section ‘Start Debugger’. Start Debugger Click Debug. This will launch the S32 Debugger. When the debugger has been successfully started, the Debug perspective is opened and the application is executed until a breakpoint is reached on the first line in main().
View full article