S32 Design Studio Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

S32 Design Studio Knowledge Base

Discussions

Sort by:
This document shows, how to set optimization level for whole project and how to edit single files with different optimization level. As soon as the project is created, it has set optimization level to 0 by default. This means, compiler do neither size optimization nor speed optimization. Optimization level can be set for every project according to the project requirements. 1) Optimization level set Right click the project and select project properties. Click C/C++ Build ->Settings->Standard S32DS C Compiler ->Optimization. You can see, optimization level is none -O0. Click the arrow on the right side of the list and choose the required optimization level. There are five options you can choose. Details description of the options are included in S32DS reference manual. Chosen optimization is used for all files in the project. 2) Change optimization level for single file in the project If you want to change optimization level for single file and do no affect another files, select required file, right click on it and select properties. As you can see, there are limited possibilities to set the file itself. Select required optimization level, click apply and close the window. Now, selected file has different options than the rest of the project. Hope it helps. Martin
View full article
Example introduction: After startup - uninitialized RAM is set to 0 by startup code (startup_S32K144.S). If you need access to data stored in the RAM after reset is performed, you can  add these variables into .noinit section. You need to update your linker file and add .noinit section aligned to 1024 bytes before _RAM_START is defined:  In code assign your variable into .noinit section:  Example usage:  Import attached example into S32DS for ARM, build in and start debug session. Resume target and suspend program execution:  In semihosting debug console you can see that noinit_data are set to 0. The board is in state after power ON: Reset board and let's check if data remains in RAM memory:  After resume, you can see in semihosting console (or expressions view), that data remains unchanged:
View full article
Getting started with APEX2 S32DS for Vision: Getting Started - APEX2 Graph Tool Tutorial  Getting started with ISP S32DS for Vision: Getting Started - ISP Graph Tool Tutorial 
View full article
      Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio for ARM® 2018.R1  Update 4          What is new? S32 SDK 1.9.0 BETA for S32K14x. This is a cumulative update - it includes all the content of previous updates (Update 1, Update 2, Update 3) To select the new SDK in the New Project Wizard, the Toolchain must be changed to 'ARM Bare-Metal 32-bit Target Binary Toolchain' Installation instructions The update is available for online (via Eclipse Updater) or offline installation (direct download link) online installation:  go to menu "Help" -> "Install New Software..." dialog  select predefined update site "S32DesignStudio - http://www.nxp.com/lgfiles/updates/Eclipse/S32DS_ARM_2018.R1/updatesite" select all available items and click "Next" button   offline installation:   go to S32 Design Studio for ARM product page -> Downloads section or use direct link to download the update archive zip file Start S32DS and go to "Help" -> "Install New Software..." Add a new "Archive" repository and browse to select the downloaded update archive .zip file you downloaded in the previous step Select all available items and click "Next" button.   This will starts the update installation process.
View full article
To install updates and additional packages to S32 Design Studio: 1) Download the Update from the S32 Design Studio page at NXP.com. 2) From S32 Design Studio, got to Help – S32DS Extensions and Updates. 3) Click on ‘Manage Sites’ link. 4) Select 'Add...' 5) Select 'Archive...', locate the downloaded update: 6) Click OK. 7) Click Apply and Close on the Preferences menu 😎 Notice the S32DS Extensions and Updates menu displays the new content. 9) Check the box next to the new package and click Install/Update. 10) Accept license terms and click Finish. 11) After the installation is complete, restart S32 Design Studio.
View full article
The S32 Debugger included within the S32 Design Studio for S32 Platform IDE provides the capability to access the flash programming capabilities of the S32 Debug Probe via GTA command line and the GDB. This instruction details the steps to perform flash programming of the S32R45 EVB via the JTAG interface with the S32 Debug Probe.   Note: currently only QSPI flashing is supported.   Preparation Install S32 Design Studio IDE  Install the Development Package for the device you are debugging. In this case, the S32R4xx development package. This is important as the S32 Debugger support within it contains the device-specific Python scripts required for initialization of the cores.    Setup the hardware Confirm the setup of the S32R45 evaluation board.  Confirm the JTAG connection. The S32R45 evaluation board supports both 10- and 20- pin JTAG connections. Both are supported by the S32 Debugger and S32 Debug Probe. Connect the power supply cable Setup the S32 Debug Probe Connect the S32 Debug Probe to the evaluation board via JTAG cable. Refer to the S32 Debug Probe User Manual for installation instructions. Use the JTAG connection as was confirmed in the previous step. Connect the S32 Debug Probe to the host PC via USB OR via Ethernet (via LAN or directly connected, and configured for static IP address) and power supply connected to USB port. Launch S32 Design Studio for S32 Platform Create new or open existing project and check that it successfully builds. If creating a new project, be sure the S32 Debugger is selected in the New Project Wizard.   Procedure Launch GTA server. From command prompt or Windows File Explorer run the command:  {S32DS Install Path}\S32DS\tools\S32Debugger\Debugger\Server\gta\gta.exe Should see a window appear like this:   Ensure Environment Variable for Python is set. From command prompt, run the command:   set PYTHONPATH={S32DS Install Path}\S32DS\build_tools\msys32\mingw32\lib\python2.7;{S32DS Install Path}\S32DS\build_tools\msys32\mingw32\lib\python2.7\site-packages   Start GDB. In a command window, run the command: Windows OS: {S32DS Install Path}\S32DS\tools\gdb-arm\arm32-eabi\bin\arm-none-eabi-gdb-py.exe (for arm32) OR {S32DS Install Path}\S32DS\tools\gdb-arm\arm64-eabi\bin\aarch64-none-elf-gdb-py.exe (for arm64) Linux OS: arm-none-eabi-gdb-py A (gdb) prompt should now be displayed in the command window:     Configure the EVB's Boot Mode switches for Serial Boot. Issue the following commands, replacing the PROBE_IP address and FLASH_NAME, as appropriate: source {S32DS Install Path}/S32DS/tools/S32Debugger/Debugger/scripts/gdb_extensions/flash/s32flash.py py _FLASH_TYPE = "qspi" py _PROBE_IP="10.81.64.66" py _JTAG_SPEED=20000 py _GDB_SERVER_PORT=45000 py _GDB_TIMEOUT=7200 py _REMOTE_TIMEOUT=30 py _RESET_DELAY=1 py _RESET_TYPE="default" py _INIT_SCRIPT="{S32DS Install Path}/S32DS/tools/S32Debugger/Debugger/scripts/s32r45/s32r45_generic_bareboard.py" py _FLASH_NAME="MX25UW51245G" py _IS_LOGGING_ENABLED=False py flash() Note: Replace the {S32DS Install Path} in the commands above with the actual path to your installation of S32 Design Studio. Now flash commands may be used. fl_blankcheck -- blank check fl_close -- close command fl_current -- current device command fl_dump -- dump command fl_erase -- erase section of memory command, will erase whole sectors starting from 'offset' through 'size' contiguously, so to erase only one sector, ensure that the 'offset' address is within the desired sector and 'size' does not extend into the following sector fl_erase_all -- erase all memory command fl_info -- info command, shows list of registered devices fl_protect -- protect section of memory command fl_unprotect -- unprotect section of memory command fl_write -- write memory command, hex or binary are supported, options to erase first and verify after write fl_write_elf -- write elf file to memory command, options to erase first, verify after, and rearrange flash base Type 'help fl_<command>' to print the help info on the specified command Type 'help support' to print a list of the fl_ commands For example, you may wish to write a binary file: fl_write -e 0x0 C:\\Users\\<userid_folder>\\workspaceS32DS\\hello_world\\Debug_RAM\\hello_world_blob.bin Happy flashing with S32DS Flash Programmer!
View full article
      Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio for Power Architecture v2.1 Update 1          What is new? Integrated Radar SDK RTM 1.3.0 (see the Radar SDK release notes) Installation instructions The update is available for online installation (via S32DS Extensions and Updates) or offline installation (direct download link)  installation:  go to menu "Help" -> "S32DS Extensions and Updates" dialog  select from available items and click "Install/Update" button offline installation:   go to S32 Design Studio for Power product page -> Downloads section or use direct link to download the update archive zip file  Start S32 Design Studio and go to "Help" -> "S32DS Extensions and Updates", then click 'Go to Preferences' link And add a new site "Add..." repository and browse to select the downloaded update archive zip file you downloaded in the previous step Select the 'RSDK 1.3.0 for S32R274 and S32R372' package and click "Install/Update" button.   This will start the update installation process.
View full article
        Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio for ARM v2.0             Austin, Texas, USA August 16, 2017 The Automotive Microcontrollers and Processors’ Embedded Tools Team at NXP Semiconductors, is pleased to announce the first release of the S32 Design Studio for ARM  v2.0  Release content (What is new?) • Eclipse Neon 4.6 Framework • GNU Tools for ARM® Embedded Processors (Launchpad) build (4.9.3 20150529) • ARM64: Linaro GCC 4.9-2015.05 • Libraries included: newlib, newlib-nano and ewl2 (ewl and ewlnano) • P&E Multilink/Cyclone/OpenSDA (with P&E GDB Server) - updated (v3.1.1.20180808) • SEGGER J-Link (with SEGGER GDB Server) -  (V616f_b170707) • New Project wizard to create application and library projects for supported devices • Fully integrated S32 SDK for S32K14x EAR release v.0.8.4. For the details on the feature set  of SDK please refer to SDK Release notes and Reference Manuals attached below. • SDK management included: o Sample Drivers for KEA family (Evaluation grade) o FreeMASTER Serial Communication driver for KEA and S32K families o Automotive Math and Motor Control Libraries for KEA and S32K devices v1.1.8  • Import projects from CodeWarrior for MCU v.10.6 and Kinetis Design Studio for respective supported processors • IAR v7.x compiler support by new project wizard • iSystem, Lauterbach and IAR debuggers support by new project wizard • Kernel Aware debugging for FreeRTOS, OSEK. • Devices supported: o SKEAZN8, SKEAZN16, SKEAZN32, SKEAZN64, SKEAZ128, SKEAZ64 o S32K144 v2.0, S32K148, S32K142 o S32V234 o MAC57D54H Complete S32 Design Studio for ARM v2.0 release notes are available here Installation Notes To download the installer please visit the S32DS product page downloads section. The installer requires the the NEW Activation ID to be entered during the installation. You should receive an email including the Activation ID after starting the download process:   Technical Support S32 Design Studio issues are tracked through the S32DS Public NXP Community space. https://community.nxp.com/community/s32/s32ds
View full article
1. Modify your application to be compatible with RAppID BL tool. Add memory space for delay and application key in linker file (modified hello world project is in attachment):   Add data for this sections in your app (for example in main.c file): 2. Flash MPC5744P.rbf file into MCU. You can create new empty project or use existing one. Start debug Configurations and Browse MPC5744P.rbf file (located in [YOUR_RAPPID_INSTALL_FOLDER]\RBF_Files. Start debug session.  3. Modify your EVB - add jumper wire from J3-4 to J2-16  and J3-2 to J2-14. RAppID uses UART0 and to USB is connected UART1.   4. Start RAppID BL tool, select COM port where EVB is connected,  choose your s-record file and Start Boot Loader:
View full article
When a new application project is created using the New Project Wizard, it is possible to select the debugger to be used. This results in the associated debugger configurations being created within the new project. But what if support for multiple debuggers is required or it is desired to switch to a different debugger? There are easy ways to resolve this. One is as simple as creating a new debug configuration. Another method is by creating new application project, selecting the new debugger to be supported. Then either repurposing the associated debug configuration or duplicating then modifying the debug configuration to support instead the previously existing project. This minimizes the effort by benefiting from the automation of the New Project Wizard.   Detailed below are the steps to add a new debug configuration.  Create A New S32 Debugger Configuration Load the existing project. For this demonstration, the SDK project ‘hello_world_s32v234’ will be used. Select the project so it appears highlighted in blue. Notice that the other project, ‘New_App_Project’, is bold text. This is because the main.c file open in the editor window to the right is the currently selected source file and is from this project. This has no effect on the process detailed in this document. Check that the existing project has been build and the executable is present. If the executable is not present, then an error will be displayed within the Debug Configurations menu and the executable file will need to be selected in a later additional step after it has been created. Open the Debug Configurations menu. Run -> Debug Configurations   Now select the Debugger Group for which you wish to create the new configuration. In this case, we will select ‘S32 Debugger’. Next, click ‘New Launch Configuration’ Now a new Debug Configuration has been created for your project and for the S32 Debugger. Most of the fields are already completed for you. Select the Debugger tab to see the source of the error message. The error message indicates ‘Specify Device and Core’. So click on ‘Select device and core’. Now expand the lists until the Device and Core are visible. Select the correct core for your project. In the demonstration example, the correct Device and Core are ‘S32V234’ and ‘M4’, respectively. Click OK, when done. If you have a debug probe connected, it may have been detected. If not, the Debug Probe Connection section will need to be completed. Now select the ‘Common’ tab to setup the storage location for this new Debug Configuration. Select ‘Shared file’ and then ‘Browse…’ Expand the lists until ‘Project_Settings/Debugger’ is open. Select ‘Debugger’, then click OK. Now the basic debug configuration settings are complete. It is now ready to be used and the Debug button could be clicked to start debug. Otherwise, you may have more customizations to make, such as for Attach Mode. Repurpose S32 Debugger Configuration From A New Project Create new project New -> S32DS Application Project New Project Wizard, processor and toolchain page Enter a project name Select the device and core to match the existing project If necessary, select the toolchain to match the existing project Click Next New Project Wizard, cores and parameters page Select the number of cores to match the existing project Select the debugger, S32 Debugger If necessary, select other parameters to match the existing project Click Finish   Open existing project which does not already have the S32 Debugger debug configurations (for this demonstration, we will use the hello_world_s32v234 example project from the S32 SDK) Copy debug configurations and modify settings to adapt to existing project Run -> Debug Configurations... Debug Configurations window Within the S32 Debugger grouping, select the debug configuration for the new project which corresponds to the build configuration and core of the existing project Change the name of the debug configuration. Change the portion of the name containing the project name to match the name of the existing project. Main tab Project field Click Browse... Select existing project C/C++ Application Click Search Project... Select the Elf file Common tab Save as field Click Browse... Select {existing_project_name}\Project_Settings\Debugger Debugger tab, Debug Probe Connection Setup connection parameters Click Apply Repeat as needed for all core/build config options The existing project now has the S32 Debugger configurations and is ready for debug with the S32 Debug Probe.
View full article
        Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio for Power Architecture v2.1         The Automotive Microcontrollers and Processors’ Embedded Tools Team at NXP Semiconductors, is pleased to announce the release of the S32 Design Studio for Power Architecture version v2.1. It is the successor of S32 Design Studio for Power 2017.R1. - the versioning scheme has changed. Release content (What is new?) Eclipse Neon 4.6 Framework GNU Build Tools for e200 processors bld=1607 rev=gceb1328 (support VLE and BookE ISA, based on gcc 4.9.4 [1.February 2019], binutils 2.28 and gdb 7.8.2) - see the complete GCC release notes Libraries included: newlib, newlib-nano and Freescale EWL2 P&E Multilink/Cyclone/OpenSDA (with P&E GDB Server) - updated (v1.7.2.201709281658) New Project wizards to create application and library projects and projects from project examples for supported devices Peripherals Register and Special Purpose Registers View Fully integrated S32 SDK RTM v.3.0.0 (Windows only). For the details on the feature set of SDK please refer to SDK Release notes attached and Reference Manuals (Please note that SDK has Early Access Release status, which means that there could be some limitations and/or issues. Also note, the SDK is available for Windows host only). SDK management included: o FreeMASTER Serial Communication driver (v2.0 August 31th 2016) o Automotive Math and Motor Control Libraries(v1.1.15) o Support for importing MCAL configuration to a custom SDK o An SDK can be attached to a library project using the project wizard Windriver Diab, and GreenHills compiler support by new project wizard (The Green Hills Software (GHS) compiler support depends on the availability of the Eclipse plug-in integrating GHS compiler compatible with the Eclipse Neon. Full support for the Green Hills Software compiler Eclipse Neon-compatible plug-in within S32DS for PA 2.1 was not validated in time for this release.) Lauterbach, iSystem, and PLS debuggers support by new project wizard (The plugins to support Diab, iSystem, Lauterbach, and GreenHills are not included and have to be installed from the corresponding update site or installation.) Kernel Aware debugging for FreeRTOS, eCOS, OSEK Devices supported: S32R274 S32R372 MPC5775B, MPC5775E MPC5775K, MPC5774K MPC5746R, MPC5745R, MPC5743R MPC5777M MPC5777C MPC5748G, MPC5747G, MPC5746G MPC5744B, MPC5745B, MPC5746B, MPC5744C, MPC5745C, MPC5746C MPC5744P, MPC5743P, MPC5742P, MPC5741P MPC5601P, MPC5602P, MPC5603P, MPC5604P MPC5644B, MPC5644C, MPC5645B, MPC5645C, MPC5646B, MPC5646C MPC5601D, MPC5602B, MPC5602C, MPC5602D, MPC5603B, MPC5603C, MPC5604B, MPC5604C, MPC5605B, MPC5606B, MPC5607B MPC5606S MPC5604E MPC5644A, MPC5642A MPC5643L MPC5676R MPC5632M, MPC5633M, MPC5634M MPC5674F MPC5673K, MPC5674K, MPC5675K Collateral Getting Started page The S32DS Extensions and Updates tool Migration guide to help migrate projects from an earlier version to S32 Design Studio for Power Architecture 2. Bug Fixes For detailed list of the GNU Tools bug fixes, refer to the release notes located in S32DS/ build_tools/powerpc-eabivle-4_9/ Fixed the semihosting issues with the EWL and NewLib libraries Fixed the FLASH programming algorithm for MPC5744P Added missing linker script sections for MPC5748G Fixed reading values from the peripheral bridge A registers for MPC5634M Fixed access to the RAM memory for MPC5634M Removed unavailable addresses from the MPC574xB linker files Added the -fstrict-volatile-bitfield compiler option to the project settings Fixed secure connection to MPC5744P Disabled RTTI for EWL library due to incompatibility with the GNU tools Fixed importing/exporting projectinfo.xml with library settings Complete S32 Design Studio for Power Architecture v2.1 release notes are available here Installation Notes To download the installer please visit the S32DS for Power Architecture product page: downloads section. The installer requires the the NEW Activation ID to be entered during the installation. You should receive an email that includes your Activation ID after starting the installer downloading process: Technical Support S32 Design Studio issues are tracked through the S32DS Public NXP Community space: https://community.nxp.com/community/s32/s32ds    
View full article
* Brief Periodical function call by LPIT timer ******************************************************************************** * Detailed Description: * Application performs function call on configurable period. Period in ms is * taken from potentiometer connected to ADC. * * * * ------------------------------------------------------------------------------ * Test HW: S32K144EVB, * MCU: S32K144 * * Debugger: PeMicro USB-ML-PPCNEXUS * * Target: internal_FLASH (debug mode, debug_ram and release mode) *
View full article
There are a number of existing ISP Graph diagrams provided within the VSDK. It is possible to import them into S32DS and use them in a new C/C++ project. The steps to do this are detailed within this document. Prerequisite Before following the steps in this HOWTO, ensure you have the Vision Extension Package for V2xx (as well as the S32V2xx development package) installed to S32DS. 1) Launch S32DS 2) Select File -> New -> S32DS Application Project. 3) Enter a project name, such as: ISP_ISP_Generic_demo 4) Select 'A53 APEX/ISP Linux' 5) Click Next 6) Deselect the APEX2 options and 'ISP Visual Modeling' option. 7) Click Finish 😎 Select File -> New -> S32DS Project from Example. 9) Select isp_generic. 10) Select Finish 11) Open isp_generic in the project explorer 12) Double-click ISP data flow ; isp_generic. The ISP data flow graph will appear in the editor 13) Define a new configuration for emitting code from the graph       a) Right-click in the ISP data flow window and select Emit As -> Emit Configurations...       b) Select ISP Emitter       c) Press New Launch Configuration       d) Enter a name       e) To select the graph, press Browse Workspace       f) Expand each item until you can select the .isp file. Click OK       g) Select the location of the emitted output to the application project, select Browse Workspace       h) Select the name of your application project, then press OK       i) Enter 'A53_gen' to the Dynamic sequences sources folder box. This is the folder within the target project that generated code will be stored. Check the box for Emit host code.       j)Now select the location to store the configuration file. Go to the Common tab, select Shared file and click Browse       k) Select the .launches folder inside ISP_ISP_Generic_demo and click OK       l) Click Apply and Emit. Dialog box will appear when code generation is successful              m) Expand the folders within ISP_ISP_Generic_demo, A53_gen, src and inc, to see the newly generated output files 14) Build the project 'ISP_ISP_Generic_demo' for ISP 15) Open file 'ISP_ISP_Generic_demo/A53_inc/isp_user_define.h', by double clicking on it in the Project Explorer. Change '#define DCU_BPP DCU_BPP_YCbCr422' to '#define DCU_BPP DCU_BPP_24' and change '#define __DCU_BPP' to "#undef __DCU_BPP". Before After 16) Using the method detailed in steps 8 - 10, create the example project 'isp_sonyimx224_csi_dcu'. Take from this project the file 'isp_sonyimx224_csi_dcu/A53_src/main.cpp' and use it to replace the file 'ISP_ISP_Generic_demo/A53_src/main.cpp' in the current project. Then make the following modifications:  On line 36, change <#include "mipi_simple_c.h"> to <#include "isp_generic_c.h">. On line 303, change <gpGraph_mipi_simple> to <gpGraph> AND <gGraphMetadata_mipi_simple> to <gGraphMetadata> On line 330, change <FDMA_IX_FastDMA_Out_MIPI_SIMPLE> to <FDMA_IX_ISP_OUTPUT>. Please see C:\NXP\S32DS.3.1\S32DS\software\VSDK_S32V2_RTM_1_3_0\s32v234_sdk\docs\drivers\SDI_Software_User_Guide.pdf for details on what this code is for. 17) In Project Explorer, right-click on "...\A53_gen\src\isp_process.cpp" and select Build path -> Remove from -> A53 18) Select 'ISP_ISP_Generic_demo:A53' in the Project Explorer panel, then Build for A53 19) Run it remotely on the target using the method fromHOWTO: Create S32V234 Cortex-A53 Linux Project in S32DS . Should get results similar to this:
View full article
Condition:  I am trying FreeRTOS using S32K118 EVB and run in DEBUG mode. When I set the break point in vTaskDelay and press Resume for the first time, there is a smooth stop at the break point. The second time I press Resume, the debugger should enter the same break point again, but there is no response. Then I press Suspend and can't press Resume again, at this point I can only leave. However, I am free to run this project with no problem, what's wrong? Analysis: This is due to an access of DDR memory region which is not initialized by default project settings. Solution: To resolve it, a macro initializing the DDR memory should be selected to run at the beginning of a debug session. A user should go to Advanced Options dialog and check "Enable initialization script". Our DDR init macros can be found at the following location within S32DS3.2 layout: eclipse\plugins\com.pemicro.debug.gdbjtag.pne_4.2.8.201909091700\win32\gdi\P&E\supportFiles_ARM\NXP\S32Vxxx\S32V234M100_DDR3_EVB29288.mac. Please note that the type of the macro might depend on the revision of the board and S32V23x device one is working with. I am also attaching a picture of debug configuration and Advanced Options dialog with all the settings in place.
View full article
In this document, we show the steps to use the New Project Wizard to create a new application project for APEX2, ISP, or both.   1. Launch S32DS for Vision 2. Select 'S32DS Application Project' 3. Enter a name for the project 4. Select the 'A53 APEX2/ISP Linux' processor option 5. Click Next 6. Select the APEX2/ISP options you need.       a. APEX2 programming - will add support to your project for an APEX2 application, you need this for any new APEX2 project       b. APEX2 visual modeling - will create a separate project for your APEX2 program diagram, you need this to connect your APEX2 graph diagrams together. But you could also create it separately later. The APEX graph diagram must be created separately with another New Project Wizard.       c. ISP programming - will add support to your project for an ISP application, you need this for any new ISP project       d. ISP visual modeling - will create a separate project for your ISP data flow diagram, you will not need this if you plan to use an existing graph diagram. This can also be created later.       e. ISP static sequencer - by default, a dynamic sequencer is generated from your graph diagram, enable this to generate a static sequencer instead. This can be set/changed later in the Emit Configurations. 7. Click Finish 8. You now have a project or set of projects for development on the S32V234.
View full article
Migration guide You can use a project that was created in an earlier version of S32 Design Studio for Power Architecture 2.1, but it requires changes according to the new product directory structure. The following explains how to import and configure your project. Click File > Import... > General > Existing Projects into Workspace, then click Next. Click Browse... and browse to the project location, click OK, select the Copy projects into workspace option, then click Finish. If the Problems view displays the following warning: "The hardware settings required for project not found", right-click it and select Quick Fix on the context menu. Select the project from the Resource list and click Finish. Specify the Family, Device and Core settings. Click OK. For the EWL source code debugging, open the debug configuration settings, switch to the Source tab, select Path Mapping: EWL and click Edit. Update the e200_ewl2 location: Compilation Path: e200_ewl2 Local file system path: <s32ds_for_power_dir>\S32DS\build_tools\e200_ewl2 Depending on the project type, update the following environment variables and file locations. For projects with the SPT tools: open the project settings, click C/C++ Build > Settings > SPT Assembler. Update the SPT include files location: "${SPT_TOOLCHAIN_DIR}/inc" for the SPT1 tools, "${SPT2_TOOLCHAIN_DIR}/inc" for the SPT2 tools, and "${SPT2.5_TOOLCHAIN_DIR}/inc" for SPT2.5 accordingly. For projects with the attached PEx SDK: after you import the project, the path validation notification appears. Click Yes to open the S32 SDK Specific properties page and update SDK path (click Browse and navigate to the <s32ds_for_power_dir>/S32DS/software/<sdk_name> folder). If you import the project example, additionally open the project settings, click C/C++ Build > Build Variables and update the S32_SDK_PATH value: ${eclipse_home}/../S32DS/software/<sdk_name>. For projects with the attached FreeMaster or AMMCLIB SDKs: open the project settings, click C/C++ Build > Settings and update the SDK paths on the following pages: Standard S32DS C/C++ Compiler > Includes Standard S32DS C/C++ Linker > Libraries Standard S32DS Assembler > General For the FreeMaster SDK project, additionally navigate to the project folder, open the .project file, and update the linkedResources locations. If some errors and warnings still occur, try to close and reopen your project, or restart S32DS for Power Architecture.
View full article
      Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio for ARM® 2018.R1  Update 6          What is new? S3214x SDK RTM 2.0.0. This is a cumulative update - it includes all the content of previous updates (Update 1, Update 2, Update 3, Update 4, Update 5) To select the new SDK in the New Project Wizard, the Toolchain must be changed to 'ARM Bare-Metal 32-bit Target Binary Toolchain' Installation instructions The update is available for online (via Eclipse Updater) or offline installation (direct download link) online installation:  go to menu "Help" -> "Install New Software..." dialog  select predefined update site "S32DesignStudio - http://www.nxp.com/lgfiles/updates/Eclipse/S32DS_ARM_2018.R1/updatesite" select all available items and click "Next" button   offline installation:   go to S32 Design Studio for ARM product page -> Downloads section or use direct link to download the update archive zip file Start S32DS and go to "Help" -> "Install New Software..." Add a new "Archive" repository and browse to select the downloaded update archive .zip file you downloaded in the previous step Select all available items and click "Next" button.   This will starts the update installation process.
View full article
The following article describes how to add FreeRTOS thread aware debugging to the Eclipse Debug view using SEGGER J-Link: Show FreeRTOS Threads in Eclipse Debug View with SEGGER J-Link and NXP S32 Design Studio | MCU on Eclipse  I hope this is useful, Erich
View full article
S32DS for Vision contains many example projects from which you can learn how S32DS, with the Vision Extension Package for V2xx, can be used with the help of the Vision SDK to develop vision applications. The example projects contain generated and hand-written code, which utilize the Vision SDK to demonstrate a workflow using S32DS. In this document, the procedure for creating a project from one of the provided APEX2 examples through to execution on the EVB is detailed. Prerequisite Before following the steps in this HOWTO, ensure you have the Vision Extension Package for V2xx (as well as the S32V2xx development package) installed to S32DS. 1) Launch S32DS 2) Select 'New S32DS Project from example' 3) Select apex2_fast9 project 4) Click Finish 5) Select apex2_fast9: A53 in the Project Explorer panel. Build the project using build config 'TEST_A53'. 6) Start a debug session using method as described in HOWTO: Create A53 Linux Project in S32DS for Vision, beginning at step 9. 7) Click Resume  Should see something similar to what is pictured below There are green diamonds at the corners in the image as identified by the fast9 corner detection algorithm
View full article
        Product Release Announcement Automotive Processing S32 Design Studio for ARM 2.2         January 31, 2020   The Automotive Processing's Embedded Tools Team at NXP Semiconductors is pleased to announce the release of the S32 Design Studio for Arm® v2.2.  Here are some of its major features: GNU Bare-Metal Targeted Tools for Arm® 32-bit Embedded Processors (GCC version 6.3.120170509, revision g7fea41d) GNU Tools for Arm® Embedded Processors (Launchpad) (GCC version 4.9.3 20150529,revision 227977) Libraries: NewLib, NewLib Nano, EWL, and EWL Nano Semihosting for Arm® 32-bit Bare-Metal Targeted toolchain MSYS2 32bit version 1.0.0 GDB 7.12.1 with Python support The wizards for creating application, library projects and projects from project examples The S32DS Extensions and Updates tool Support for importing projects from CodeWarrior for MCU v.10.6 and Kinetis Design Studio Support for importing MCAL configuration to a custom SDK IAR v7.x and v8.11.2 compiler support Green Hills compiler support SEGGER J-Link (with SEGGER GDB Server) iSystem, Lauterbach and IAR debuggers support PEMicro debugger support (P&E Multilink/Cyclone/OpenSDA) Kernel Aware debugging for FreeRTOS, OSEK MQX 4.2 for MAC57D54H EmbSys Registers view support FreeMASTER Serial Communication Driver v2.0 Sample Drivers for KEA family (Evaluation grade) Integrated S32SDK RTM 3.0.2 Integrated AMMCLIB SDKs 1.1.18 The Getting Started page   NOTE Support for S32V234 was moved to S32 Design Studio for S32 Platform 3.x and not included into S32 Design Studio for ARM anymore. The complete S32 Design Studio for ARM 2.2 release notes are attached below.   Installation Notes Please visit the S32 Design Studio for ARM product page - download section or direct link to download the installer. The installer requires the NEW Activation ID to be entered during the installation. You should receive an email that includes your Activation ID after starting the download.   Technical Support S32 Design Studio issues are tracked through the S32 Design Studio Public NXP Community space: https://community.nxp.com/community/s32/s32dsS32 Design Studio    
View full article