NFC Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

NFC Knowledge Base

Discussions

Sort by:
DISCLAIMER APPLICABLE TO THIS DOCUMENT CONTENTS:   PN5190-NTAG 5 boost High Speed Communication Demo This article describes the unique feature of these two chips when interacting with each other at contactless interface: Passthrough demonstrator at high bit rates for ISO 15693 between PN5190 and NTAG5 Boost. Scope of demonstrator: ▪ Demonstrating a unique feature of NXP Semiconductors. High bit rates for ISO15693 communication (212 kbps) between a PN5190 reader IC and an NTAG5 boost plus LPC55S69 host MCU, when implementing passthrough mode using the SRAM of the NTAG5 boost. ▪ Through MCUXpresso console, the user can configure the contactless bit rate (26.4kbps or 212kbps options) as well as the amount of data to exchange using passthrough mode. ▪ Passthrough mode is implemented from NFC reader to LPC side only. ▪ The PN5190 prints on the MCUXpresso console the outcome of the transaction and baud rate achieved. ▪ In order to handle passthrough communication, we are using GPIO interrupt handlers on the NTAG 5 boost + LPC55S69 side and hard coded timeout on the PN5190 + MCU side. Required hardware and software material: Hardware ▪ PNEV5190BP development board ▪ LPCXpresso55S69 Development Board ▪ OM2NTA5332 - NTAG5 boost development kit ▪ 3 x USB micro cables Software ▪ Firmware Source Code for PN5190is attached to this article, containing keywork pn5190: mobileknowledge-nxp-connected-tags-pn5190-2cfb4c59b56e_v1.0.zip ▪ SDK_2.x_FRDM-K82F is already included in bundle mentioned above. ▪ Firmware Source Code for LPCXpresso55S69 is attached to this article, containing keyword lpc55s69: mobileknowledge-nxp-connected-tags-lpc55s69-5f2f9667cc60_v1.1.zip ▪ MCUXpresso IDE recent version (v11.6.0 or newer) Demonstrator bring up: Hardware assembly for LPCXpresso55S69: • Connect NTAG5 Boost board to LPCXpresso55S69 • Make sure SW6 is on position 2-3 to enable 5V power on tag side. • Connect LPCXpresso55S69 board to your computer (Debug Link Input). • No additional power source is needed. Hardware assembly for PNEV5190B: • Connect two USB micro cables to PNEV5190B board for power, flashing firmware and UART connection • Red LED indicates power is enabled • Green LED debugging/UART status Software loading on LPC55S69: Import “lpcxpresso55s69_ntag5_passthrough_nolib” project to MCUXpresso IDE • Install SDK_2_12_0_LPCXpresso55S69. SDK can be downloaded from • https://www.nxp.com/security/login?service=https%3A%2F%2Fmcuxpresso.nxp.com%2Flogin%2F  • Build project and flash a binary file using GUI Flash Tool. After flashing, reboot your board. Blue LED must be enabled which means tag is waiting for field to be detected. Under MCUXpresso: 1. Import project from file system 2. Select lpcxpresso55s69 project 3. Uncheck copy projects into workspace Software loading on PNEV5190B: • Unzip the “PN5190_NTAG5boost_Passthrough.zip” folder. • Import all projects inside “PN5190_NTAG5boost_Passthrough” to MCUXpresso IDE • Install SDK_2.x_FRDM-K82F. Such SDK is included in project file tree: • nxp-connected-tags-pn5190\Platform\SDK_2.x_FRDM-K82F • Build project and flash a binary file using GUI Flash Tool. After flashing, reboot your board. Blue LED must be enabled which means reader is waiting for NTAG5 to be detected. • Start Debug session to see available bitrate options on the console. Under MCUXpresso: 1. Import project from file system 2. Select all the projects 3. Uncheck copy projects into workspace LED User Interface Specifications (same for LPCXpresso55S69 an PNEV5190B) • Steady blue - waiting for Tag - discovery loop, • Blinking green - passthrough transfer ongoing • Steady green - all data transferred successfully. • Steady red - error - tag lost during transfer. Menu options when two boards have NFC antennas facing each other: Two options of bitrate are available for transfer amount of data from host to NTAG5 Boost: ▪  standard 26.4 kbps or ▪  highest bit rate 212 kbps It is possible to configure amount of data to be exchanged between PN5190 and NTAG 5 boost: ▪1KByte ▪2KBytes ▪10KBytes Demonstration flow: Once one of these option is selected, reader is ready to detect a tag. ▪ When tag is detected, reader configures selected bitrate and starts data exchange. ▪ Blinking green LED indicates transfer ongoing and the console shows a progress. Here are some results of transaction at the different bit rates and data sizes offered by this demonstrator: Data Size (Bytes) Selected bitrate (kbps) Result Bitrate (kbps) Transfer time (ms) 1024 26.4 2.8 357 1024 212 12.35 81 2048 26.4 2.8 714 2048 212 12.42 161 10240 26.4 2.7 3569 10240 212 12.41 806   High speed demo user manual can be also find attached to this article: 22-10-11 NXP - Connected Tags demonstrator User Manual.pdf Conclusions: This demonstrator HW & SW can show that high speed interaction can be achieved between PN5190 (NFC Front end) and NTAG 5 boost, making use of available commands described in product support package. Disclaimer: All SW available here is aimed only for evaluation purposes and NXP disclaims any direct or indirect liability damages, since referred SW bundles are not official part of PN5190/NTAG 5 boost standard product support packages available in nxp.com.  
View full article
AN13189 provides guidelines for the integration of PN7160 NXP NCI-based NFC controller to an Android platform from software perspective. But some developers found some compile issues when integrating PN7160 NFC package into Android 11.   This article describes how to fix the build error when you integrating PN7160 NXP NCI-based NFC controller to Android 11 system.  You need to follow the AN13189 (PN7160 Android porting guide ) first.  After you run the installation script install_NFC.sh, the following modification should be added to the source code. 1) Open package/apps/Nfc/nci/jni/Android.bp Add  "-DNXP_EXTNS=TRUE",   2 )  open system/nfc/src/Android.bp Add   "-DNXP_EXTNS=TRUE",     3 )   open packages/apps/Nfc/src/com/android/nfc/NfcService.java And add this: between isNfcSecureEnabled and setNfcSecure methods:             @Override         public IBinder getNfcAdapterVendorInterface(String vendor) {             if(vendor.equalsIgnoreCase("nxp")){                     return (IBinder) mNfcAdapter;             } else {                    return null;             }         }     Next, follow AN13189, complete the following steps in section 4.2. Then you can build the package successfully.  Thanks  @andraz_skupek .      
View full article
Using an alternative clock source to set up PN7462's contact interface clock , so that we have more options of the clock frequency.
View full article
Demo for Originality Signature Verification(AN11350)
View full article
--The document consists of the following: Step 1. Connections And Firmware Version Step 2. Updating FW On PC Windows 10 Step 3. Updating FW On VMplayer16.0 + Ubuntu 20.04 Step 4. Updating FW On i.MX8MN-EVK With Embedded L5.4.70_2.3.0 BSP Step 5. Confirming whether update is successful using cockpit4.8 --About Cockpit There are several different versions of cockpit, and each version can only recognize the same version of firmware. --Reference Materials 1.https://community.nxp.com/t5/NFC/Mounting-the-PN7462AU-in-the-USB-downloader-mode-under-Linux/m-p/800939 2.https://community.nxp.com/t5/NFC/PN7462-updating-EEPROM-on-linux/m-p/739808/highlight/true#M3144       NXP CAS-TIC team Weidong Sun 04-15-2021  
View full article
     This document mainly describes how to use NanoNVA tool to do antenna tuning on OM29263ADK with CLEV663B/PN5180B board. Please refer to the application note AN12810(https://www.nxp.com/docs/en/application-note/AN12810.pdf) about the NanoVNA tool. And please refer the user manual UM11098 (https://www.nxp.com/docs/en/user-guide/UM11098.pdf) about OM29263ADK. After setting NanoVNA tool with reference to the above documents. Firstly, take the small antenna of OM29263ADK with CLEV663B as an example. The small antenna can be directly connected and used on the CLEV6630B。the antenna board can be directly connected to the CLEV6630B without any additional modification, after the original antenna had been removed (cut off).   The result of the antenna tuning with NanoVNA tool as the below:   Second, take the small antenna of OM29263ADK with PN5180B board as an example. Follow the UM11098 steps as the below: (a) the EMC filter cut off frequency must be adjusted, and (b) the DPC and related features should be disabled, since the antenna is asymmetrically tuned and the DPC is not used. (a) The original antenna uses a symmetrical tuning, which uses an EMC filter with L0 = 470nH and C0 = 253pF (220pF + 33pF). The inductor as well as the first part of the capacitance (220pF) are assembled on the main board. To operate the OM29263ADK antenna, the C0 (220pF) on the PNEV5180B must be replaced by a 68pF.   (b) The DPC and its related features should be disabled to operate an asymmetrical antenna.   If can’t get the card information please refer to the AN11740’s related steps to achieve a good sensitivity of RxP/RxN path. The result of the antenna tuning with NanoVNA tool as the below:   The whole process of the small antennas tuning of OM29263ADK with CLEV66B/PN5180 with NanoVNA is completed. PS: It is the similar with the steps for the large antennas tuning of OM29263ADK with CLEV66B/PN5180 with NanoVNA.  
View full article
A Quick Solution for link issue of "missing --end-group" when you use the latest MCUXpresso IDE to compile the NFC reader library projects.
View full article
The video shows how to read the NDEF message under password protection. For more details , please kindly refer to https://community.nxp.com/docs/DOC-347622 
View full article
MIFARE DESFire Light read and write demonstration
View full article
Example sends Wi-Fi credentials from phone to IoT device, so it can join the Wi-Fi network.  Using: iOS and Android phone with NXP's TagWriter app PN7462 NFC Reader device on PNEV7462B eval board, part of kit OM27462CDK Host Card Emulation mode example based on NfcrdlibEx8_HCE_T4T example from NFC Reader Library Example will also print out other NDEF messages received.  NDEF formats include: Contacts / Business Cards URL link Wi-Fi network and credentials Bluetooth MAC address for pairing Email address Phone number Geo location Launch application on host OS Plain text SMS (sorry the audio is horrible)
View full article
https://community.nxp.com/docs/DOC-340389 
View full article
https://community.nxp.com/docs/DOC-340244 
View full article
The NFC reader library is supporting multiple frontends. For a customer this might become a more difficult to use, if only the part for one of the frontend chips is needed. To enhance the readability and usability, you can remove the support for not used reader ICs by simply removing the folders below NxpRdLib/comps/phhalHw/src. For instance: if you only want to use the RC663, you could simply delete the folders Pn5180, Rc523. The result would be a library that only supports RC663. This short screen recording shows the steps to reduce the number of supported Frontends.
View full article
Hello NFC enthusiasts, The following topics will be covered in this document: Activation of multiple Tags. For more information, please refer to Activating multiple Tags using NFC Reader Library  Read and Write NDEF messages. Reading values from GPIOs. This document will be segmented into three parts: Description. Software configuration section. Hardware configuration section. Demonstration. Description. The purpose of this project is to copy the information stored from one tag to another by making use of GPIOs to decide which tag to copy from. This way, topics such as read and write NDEF, card activation and GPIOs will be implemented.   Software configuration section: This demonstration is based on NXP NFC Reader Library v05.02.00, NfcrdlibEx3_NFCForum project for PNEV7462B, in which some modifications are going to be made in order to carry this out. These tags are compliant with NFC Forum Type 2 Tag and ISO/IEC14443 Type A specifications.    In phacDiscLoop.h modify the max number of cards supported (two cards for this demonstration):   #define PHAC_DISCLOOP_CFG_MAX_CARDS_SUPPORTED 0x02U      In NfcrdlibEx3_NFCForum.c add the following code in LoadDiscoveryConfiguration():   static phStatus_t LoadDiscoveryConfiguration() { ... /*Passive max typea devices*/ status = phacDiscLoop_SetConfig(pDiscLoop, PHAC_DISCLOOP_CONFIG_TYPEA_DEVICE_LIMIT, 2); CHECK_STATUS(status); }   A fix to the SW stack has to be made (Fix will be implemented in the next release): open "phacDiscLoop_Sw_Int_A.c", line 511, change if statement as below.     if((pDataParams->sTypeATargetInfo.bTotalTagsFound > 1) && ((bTypeATagIdx) < pDataParams->sTypeATargetInfo.bTotalTagsFound))   In NfcrdlibEx3_NFCForum.c add #include "phhalGpio.h" to local headers section. /* Local headers */ #include <cards.h> #include "phhalGpio.h" #include "NfcrdlibEx3_NFCForum.h"‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ In NfcrdlibEx3_NFCForum.c define uint16_t NDEFlength = 0 and declare void InitGPIOs(void) in Global Defines section. /******************************************************************************* **   Global Defines *******************************************************************************/ phacDiscLoop_Sw_DataParams_t       * pDiscLoop;       /* Discovery loop component */ void * ppalI18092mPI; void * ppalI18092mT; void * palTop; /* Variables and InitGPIOs() needed for this application */ uint8_t bTagState1; uint8_t* value; uint8_t* value1; uint8_t val,val1; uint16_t NDEFlength = 0;‍‍‍‍‍‍‍‍‍‍‍‍‍‍ void InitGPIOs(void);‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ in Main Function, initialize the following: /******************************************************************************* **   Main Function *******************************************************************************/ int main (void) {      /* Initialize section */      value=&val;      value1=&val1;      InitGPIOs();‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ In case of multiple devices (which is of our interest) add the following code and comment the if(wNumberOfTags > 1){...} section as follows: else if((status & PH_ERR_MASK) == PHAC_DISCLOOP_MULTI_DEVICES_RESOLVED)             {                 /*                  * Multiple cards resolved. It enters here if DEVICE LIMIT > 1 and more than one devices are                  * detected and resolved.                  */                 DEBUG_PRINTF (" \n Multiple cards resolved: \n");                 /* Get detected technology type */                 status = phacDiscLoop_GetConfig(pDiscLoop, PHAC_DISCLOOP_CONFIG_TECH_DETECTED, &wTagsDetected);                 CHECK_STATUS(status);                 /* Get number of tags detected */                 status = phacDiscLoop_GetConfig(pDiscLoop, PHAC_DISCLOOP_CONFIG_NR_TAGS_FOUND, &wNumberOfTags);                 CHECK_STATUS(status);                 DEBUG_PRINTF ("\tNumber of tags: %d \n",wNumberOfTags);                 /* Tag 1 information */                 DEBUG_PRINTF ("\n Tag 1 NDEF information: \n");                 status = phacDiscLoop_ActivateCard(pDataParams, PHAC_DISCLOOP_TECH_TYPE_A, 0x00);                 /* Check for NDEF presence */                 status = phalTop_CheckNdef(palTop, &bTagState1);                 DEBUG_ERROR_PRINT(status);                 status = ReadNdefMessage(PHAL_TOP_TAG_TYPE_T2T_TAG);                 DEBUG_ERROR_PRINT(status);                 /* Tag 2 information */                 DEBUG_PRINTF ("\n Tag 2 NDEF information: \n");                 status = phacDiscLoop_ActivateCard(pDataParams, PHAC_DISCLOOP_TECH_TYPE_A, 0x01);                 /* Check for NDEF presence */                 status = phalTop_CheckNdef(palTop, &bTagState1);                 DEBUG_ERROR_PRINT(status);                 status = ReadNdefMessage(PHAL_TOP_TAG_TYPE_T2T_TAG);                 DEBUG_ERROR_PRINT(status);                 DEBUG_PRINTF (" \n --------------------------------------------------------------------------------------- \n\n");                 DEBUG_PRINTF (" \n Options: \n\n");                 DEBUG_PRINTF (" \n 1.- Left button  -(X)-( )- To copy NDEF message from Tag 1 to Tag 2 \n\n");                 DEBUG_PRINTF (" \n 2.- Right button -( )-(X)- To copy NDEF message from Tag 2 to Tag 1 \n\n");                 DEBUG_PRINTF (" \n --------------------------------------------------------------------------------------- \n\n");                 /* Reading values from GPIOs 2 and 3 */                 do                 {                     phhalPcr_GetGpioVal(2,value);                     phhalPcr_GetGpioVal(3,value1);                 }while(*value==1 && *value1==1);                 /* Copy NDEF content from tag at index 0 to Tag at index 1*/                 if(*value==0 && *value1==1)                 {                      DEBUG_PRINTF (" \n Copy NDEF from Tag 1 to Tag 2 \n");                 status = phacDiscLoop_ActivateCard(pDataParams, PHAC_DISCLOOP_TECH_TYPE_A, 0x00);                 /* Check for NDEF presence */                 status = phalTop_CheckNdef(palTop, &bTagState1);                 DEBUG_ERROR_PRINT(status);                 status = ReadNdefMessage(PHAL_TOP_TAG_TYPE_T2T_TAG);                 DEBUG_ERROR_PRINT(status);                 status = phacDiscLoop_ActivateCard(pDataParams, PHAC_DISCLOOP_TECH_TYPE_A, 0x01);                 /* Check for NDEF presence */                 status = phalTop_CheckNdef(palTop, &bTagState1);                 DEBUG_ERROR_PRINT(status);                     if(bTagState1 == PHAL_TOP_STATE_READWRITE)                     {                     status = WriteNdefMessage(PHAL_TOP_TAG_TYPE_T2T_TAG);                     DEBUG_ERROR_PRINT(status);                     }                     DEBUG_PRINTF (" \n NDEF from Tag 1 to Tag 2 already copied \n");                 }                 /* Copy NDEF content from tag at index 1 to Tag at index 0*/                 else if(*value==1 && *value1==0)                 {                      DEBUG_PRINTF (" \n Copy NDEF from Tag 2 to Tag 1 \n");                     /* Check for NDEF presence */                     status = phalTop_CheckNdef(palTop, &bTagState1);                     status = ReadNdefMessage(PHAL_TOP_TAG_TYPE_T2T_TAG);                     DEBUG_ERROR_PRINT(status);                     status = phacDiscLoop_ActivateCard(pDataParams, PHAC_DISCLOOP_TECH_TYPE_A, 0x00);                     /* Check for NDEF presence */                     status = phalTop_CheckNdef(palTop, &bTagState1);                         if(bTagState1 == PHAL_TOP_STATE_READWRITE)                         {                         status = WriteNdefMessage(PHAL_TOP_TAG_TYPE_T2T_TAG);                         DEBUG_ERROR_PRINT(status);                         }                         DEBUG_PRINTF (" \n NDEF from Tag 2 to Tag 1 already copied \n");                 }                 DEBUG_PRINTF (" \n Please remove the tags \n\n");                 DEBUG_PRINTF (" \n Press any button to continue... \n\n");                                 /* Reading values from GPIOs 2 and 3 */                 do                 {                     phhalPcr_GetGpioVal(2,value);                     phhalPcr_GetGpioVal(3,value1);                 }while(*value==1 && *value1==1); /*                if(wNumberOfTags > 1)                 {                      Get 1st detected tag and activate device at index 0                     for(bIndex = 0; bIndex < PHAC_DISCLOOP_PASS_POLL_MAX_TECHS_SUPPORTED; bIndex++)                     {                         if(PHAC_DISCLOOP_CHECK_ANDMASK(wTagsDetected, (1 << bIndex)))                         {                             DEBUG_PRINTF("\t Activating device @ index 0\n");                             status = phacDiscLoop_ActivateCard(pDataParams, bIndex, 0);                             break;                         }                     }                     if( ((status & PH_ERR_MASK) == PHAC_DISCLOOP_DEVICE_ACTIVATED) ||                             ((status & PH_ERR_MASK) == PHAC_DISCLOOP_PASSIVE_TARGET_ACTIVATED))                     {                          Get detected technology type                         status = phacDiscLoop_GetConfig(pDiscLoop, PHAC_DISCLOOP_CONFIG_TECH_DETECTED, &wTagsDetected);                         CHECK_STATUS(status);                         GetTagInfo(pDataParams, 0x01, wTagsDetected);                         DEBUG_PRINTF("\t\t Activation successful\n");                     }                     else                     {                         DEBUG_PRINTF("\t\tCard activation failed\n");                     }                 }*/                 /* Switch to LISTEN mode if supported after POLL mode */             }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ In NfcrdlibEx3_NFCForum.h declare WriteNdefMessage(). /** * Write NDEF message to a detected tag. * */ phStatus_t WriteNdefMessage(     uint8_t TopTagType);      /* [in] Tag type to which write NDEF */‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ In NfcrdlibEx3_NFCForum.c define the function WriteNdefMessage(). /** * Writes NDEF Message to a tag */ phStatus_t WriteNdefMessage(uint8_t TopTagType) {     phStatus_t status;     uint8_t bTagState;     uint16_t wDataLength = 0;     /* Configure Top layer for specified tag type */     status = phalTop_SetConfig(palTop, PHAL_TOP_CONFIG_TAG_TYPE, TopTagType);     DEBUG_ERROR_PRINT(status);     /* Check for NDEF presence */     status = phalTop_CheckNdef(palTop, &bTagState);     DEBUG_ERROR_PRINT(status);     if(bTagState == PHAL_TOP_STATE_READWRITE)     {         /* Write NDEF message */         status = phalTop_WriteNdef(palTop, baSnepAppBuffer, NDEFlength);         DEBUG_ERROR_PRINT(status);         /* Print NDEF message, if not NULL NDEF */         if(NDEFlength)         {             DEBUG_PRINTF("\tNDEF detected...\n");             DEBUG_PRINTF("\tNDEF length: %d\n", wDataLength);             DEBUG_PRINTF("\tNDEF message:\n");             //DumpBuffer(aData, wDataLength);             DumpBuffer(baSnepAppBuffer, 50);         }         else         {             DEBUG_PRINTF("\tNDEF content is NULL...\n");         }     }     else     {         DEBUG_PRINTF("\tNo NDEF content detected...\n");     }     return status; }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ In NfcrdlibEx3_NFCForum.c define InitGPIOs(). void InitGPIOs(void) {     phhalPcr_ConfigInput(2,true,false,false,false,true,false);     phhalPcr_ConfigInput(3,true,false,false,false,true,false); }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Hardware configuration section: For the Hardware set up, two push buttons will be connected to GPIO_2 and GPIO_3 of PNEV7462B as follows. Vdd will be connected to 3V3 pin on the board: GND can be connected to any GND on the board. Demonstration: Each tag was previously written with a text NDEF message respectively.   Tag 1: Text: Tag1 Language: en   Tag 2: Text: Tag2 Language: en   Writing to a tag can be done by making use of our TagWriter app available in the play store: NFC TagWriter by NXP - Aplicaciones de Android en Google Play  First both tag's NDEF text messages will be displayed: Once the information is read, you'll be asked to select an option from the following menu: If left button (GPIO_2) is pressed, the content from Tag 1 will be written to Tag 2: Otherwise, If left button (GPIO_3) is pressed, the content from Tag 2 will be written to Tag 1: Please find the modified files attached. I hope this is of great help! Best regards, Ivan.
View full article
Based on NFC reader library porting guide for LPC11u37h(Ver 5.12) ,We have a partial ported NFC reader library like below: Now, it is time to port other demos in this project. You may choose any demo, but here NfcrdlibEx2_AdvancedDiscoveryLoop is selected. and similar with before, the first step is creating a new build configuration: then in the project references, choose the LPCopen library for LPC11u37 instead. Change the MCU settings: Change the build settings: Change FreeRTOS portable to cortex M0: Search "PHDRIVER_LPC1769RC663_BOARD" in the source code of "NfcrdlibEx2_AdvancedDiscoveryLoop" project, and you may simply replace it with "PHDRIVER_LPC11U37RC663_BOARD", and there are only two places needs to be fixed. Search "PHDRIVER_LPC1769" in the source code of "NfcrdlibEx2_AdvancedDiscoveryLoop" project, and you may simply replace it with "PHDRIVER_LPC11U37". Most changes are in phApp_Init.c. Also please don't forget to enable optimization for size. Building result: Demo testing result:
View full article
The NXP-NCI example is based on NXP-NCI lib and LPCopen lib, and due to the good consistency, the porting is mainly focus on LPCopen lib switching.   Software setup download lpcopen package via http://www.nxp.com/assets/downloads/data/en/software/lpcopen_3_01_lpcxpresso_nxp_lpcxpresso_11u68.zip  download SW3241 via https://www.nxp.com/webapp/Download?colCode=SW3241&amp;appType=license&amp;location=null&fsrch=1&sr=3&pageNum=1&Parent_n…  import NXP-NCI_LPC11Uxx_example by LPCXpresso v8.1.4.   LPCopen porting remove *.h and *.c in the folder of LPC11Uxx/inc and LPC11Uxx/src. 2.import header files and c files from lpc_chip_11u6x/inc and lpc_chip_11u6x/src to LPC11Uxx/inc and LPC11Uxx/src 3. repeat step 2 , import source files and header files from lpc_board_nxp_lpcxpresso_11u68/inc and lpc_board_nxp_lpcxpresso_11u68/src to Drivers/inc and Drivers/src. 4.Change MCU settings 5.Change project settings. 6.compiling error fixes: 6.1 solution: replace with i2c_11u6x.h 6.2 solution: 6.3 solution: create a template project for LPC11U6x and import the source file of "cr_startup_lpc11u6x.c"   Porting Result   This porting guide is for LPC11U68 Xpresso v2 Rev C, and can also be used a reference when you try to port NXP-NCI examples to other lpcxpresso boards.   Please kindly refer to the attachment for details. Original Attachment has been moved to: NXP-NCI_LPC11Uxx_example.zip
View full article
This post contains a guide of how to use the NFC Reader Library with LPC845 using the Basic Discovery Loop example. The vanilla Basic Discovery Loop example is larger than the flash size of LPC845 (64KB), so the project needs to be reduced in size as well. How to reduce the size is explained in section “Porting the NFC Reader Library and reducing the size of project” A ready to use package “lpcxpresso845max_Basic_Discovery_Loop” example from the NFC Reader Library to be run on LPC845 and CLRC663 plus frontend is attached with this document. This document is structured as follows:   Overview of LPC845 The LPCXpresso-MAX family of boards provides a powerful and flexible development system for NXP's low-end Arm® Cortex®-M0+ based MCUs. They can be used with a range of development tools, including the MCUXpresso IDE toolchain. The LPCXpresso845-MAX board was created to enable evaluation of and prototyping with the LPC84x family of MCUs. Based on the Arm® Cortex®-M0+ core, LPC845 is a low-cost, 32-bit MCU family operating at frequencies of up to 30 MHz. The LPC845 MCU contains 64 KB of flash memory and 16 KB of SRAM.  Hardware Requirements Following hardware is required to run the project: LPCXpresso845-MAX development board. CLEV6630B board or BLE-NFC-V2 board. Both boards contain CLRC663 plus frontend. Here we use BLE-NFC-V2.   Connections Connect the two boards as follows: Porting the NFC Reader Library and reducing the size of Project: The porting of Basic Discovery Loop Example (NFC Reader Library) to LPC845 Max was done following the procedure mentioned in “NFC Reader Library Porting to i.MX RT1050” document. However, after completing the porting and building the project, the size of the binary, which is 134.264 KB, is greater than the size of Flash of LPC845 which is 64KB of flash. To reduce the size of the project, the following two steps were taken: 1. Apply compiler optimization for size. This can be done in the MCUXpresso by: Opening properties of project. Right Click project-   >Properties Go to Settings->Optimization. For Optimization Level choose “Optimize for Size” Building the project after this step results in a successful build but the project takes up 93% of all Flash, leaving very little space for adding more functionality. 2. The vanilla Basic discovery loop example detects all types of NFC tags. This increases our code size, so further size reduction can be achieved by limiting the number of protocols used. To limit our Basic Discovery loop to only look for Type A tags, do the following: Open the file “ph_NxpBuild_App.h” file which is inside in the “intfs” folder. This file defines the protocols (types) which are detected by the Basic Discovery Loop example. The type A cards uses the “ISO 14443-3A” protocol, so comment out all other protocol definitions except for “ISO 14443-3A” protocol as shown in Figure.   Building the project after this step takes up only 42.784KB of space consuming 65% of the Flash, leaving sufficient amount of space for adding application code.   Running Basic Discovery Loop on LPC845 If this is the first time you’re using the LPCXpresso845 Max board, follow the getting started guide first ->  LPC845Max | NXP . Make sure to install the SDK package LPCXpresso845 Max which is required for the project below to run. Download the “lpcxpresso845max_Basic_Discovery_Loop” package which you will find attached to this post. Drag and drop the downloaded package to the “Project Explorer” tab of your MCUXpresso IDE workspace (If you don’t have MCUXpresso, it can be downloaded for free from here: https://www.nxp.com/support/developer-resources/software-development-tools/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE ) Now that the package has been imported to the MCUXpresso IDE (via drag and drop), click on Debug icon from the Quickstart panel to begin a debug session. Once the debug session has started, click on the run icon to run the code: After step 4, the project should be running now. The output “BasicDiscoveryLoop Example” can be seen in the console. The project contains basic discovery loop functionality. Bring any NFC card near the frontend’s RF antenna and the output console will show the detection and type of the card. Running other examples from NFC Reader Library on LPC845: Once the “lpcxpresso845max_Basic_Discovery_Loop” project is running on the LPC845, running other examples from NFC Reader Library is simple. Here we use the “NfcrdlibEx9_NTagI2C” example from the reader library to describe the process. In “intfs” folder remove everything except the “phaApp_Init.h” file. Then go to the “intfs” folder of the NFC Reader Library example you want to run (“NfcrdlibEx9_NTagI2C” in this case), and copy all the files except “phaApp_Init.h” and paste them in the original “intfs” folder.  In line 57 of the “ph_NxpBuild_App.h” file in “intfs” folder, replace  Go to “source” folder and remove every file except “phApp_Init.c“ and “semihost_hardfault.c” files. Then go to “src” folder of the example you want to run (“NfcrdlibEx9_NTagI2C” in this case) and copy all the files except “phaApp_Init.c” and paste them into the “source” folder.  Finally, copy the main file of the example you want to run (NfcrdlibEx9_NTagI2C in this case) and paste it into the “source” folder as well. The project is ready to build and run on LPC845. Available Resources: Porting NFC Reader Library to i.MX RT1050. (Detailed Description of porting) https://community.nxp.com/docs/DOC-341843 NFC Reader Library  NFC Reader Library | NXP  LPC845 Max  LPCXpresso845-MAX Board for LPC84x Microcontrollers (MCUs) | NXP 
View full article
Hello NFC community,  as you may know the The PN7462 family consists of 32-bit Arm® Cortex®-M0-based NFC microcontrollers offering high performance and low power consumption. It has a simple instruction set and memory addressing along with a reduced code size compared to existing architectures. PN7462 family offers an all-in-one-solution, with features such as NFC, supporting all NFC Forum modes, microcontroller, optional contact smart card reader, and software in a single chip. It operates at CPU frequencies of up to 20 MHz. and  MIFARE® Ultralight-based tickets offer an ideal solution for low-cost, high-volume applications such as public transport, loyalty cards and event ticketing. They serve as a perfect contactless replacement for magnetic stripe, barcode, or QR-code systems. The introduction of the contactless MIFARE Ultralight® ICs for limited-use applications can lead to reduced system installation and maintenance costs. As you may know the MIFARE family has the Ultralight C tag which is a contactless IC supporting 3DES cryptography is mostly used in limited use applications such smart ticketing, this tag complies with ISO 14443-3 type A and it is defined as type 2 tag. In this document I am going to show you how to modify an example that is provided in the NXP Reader Library to authenticate to a not personalized Mifare Ultralight C and perform a Read operation. Materials: PN7462 or PNEV7462 ( this is the evaluation board  from NXP) PN7462 Reader library Mifare Ultralight C Mifare Ultralight C Data sheet MCUXpresso First we are going to go to  NfcrdlibEx4_MIFAREClassic.c, I am going to explain as much as I can with comments in the code and add some information here we are going to  add the following include: #define MFULC_READ_DATA_SIZE 16 /* Number of bytes that is read by MIFARE Ultralight Read command */ #define MFULC_USER_MEMORY_BEGIN 0x04 /* Number of bytes that is read by MIFARE Ultralight Read command */ #define MFULC_PAGE_SIZE 0x04 /* Size of page of MIFARE Ultralight card */ #define KEYCOUNT 0x7FU /* number of keys */ #define KEYVERSIONS 0x01U /* number of key versions */ #define RAND_KEY_2K3DES_ADDRESS 0x01U /* Random 2K3DES key address in keystore */ #define RAND_KEY_2K3DES_VERSION 0x00U /* Random 2K3DES key version in keystore */ #define UL_C_KEY_ADDRESS 0x02U /* Ultralight C key address in keystore */ #define UL_C_KEY_VERSION 0x00U /* Ultralight C key version in keystore */ #define KEY_POSITION 0x00U /* Key position */ ‍ ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ after this in the Global Variable declaration section we will have to add the following: phCryptoSym_Sw_DataParams_t cryptoEnc; /* CryptoSym parameter structure for ENC */ phCryptoSym_Sw_DataParams_t cryptoSymRng; /* CryptoSym parameter structure for SymRng */ phCryptoRng_Sw_DataParams_t cryptoRng; /* CryptoRng parameter structure for Rng */ phKeyStore_Sw_DataParams_t keyStore; /* KeyStore parameter structure */ static uint8_t gaUlcKey[] = {0x49, 0x45, 0x4D, 0x4B, 0x41, 0x45, 0x52, 0x42, 0x21, 0x4E, 0x41, 0x43, 0x55, 0x4F, 0x59, 0x46}; phacDiscLoop_Sw_DataParams_t * pDiscLoop; /* Discovery loop component */ void *psKeyStore; void *psalMFUL; void *ppalMifare;‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ the variable static uint8_t gaUlcKey[] = {0x49, 0x45, 0x4D, 0x4B, 0x41, 0x45, 0x52, 0x42, 0x21, 0x4E, 0x41, 0x43, 0x55, 0x4F, 0x59, 0x46}; this is the key for default in the Mifare Ultralight c as stated in the datasheet section 7.5.6 this is a reference for the key we should be using. Then we are going to change the PAL variables /*PAL variables*/ phKeyStore_Sw_KeyEntry_t aKeyEntry[KEYCOUNT]; phKeyStore_Sw_KeyVersionPair_t aKeyVersion[KEYCOUNT * KEYVERSIONS]; phKeyStore_Sw_KUCEntry_t aKeyUsageCounter[KEYCOUNT]; uint8_t bDataBuffer[DATA_BUFFER_LEN]; /* universal data buffer */ uint8_t bSak; /* SAK card type information */ uint16_t wAtqa; /* ATQA card type information */ ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ then we are going to change this in line 131 psalMFC = phNfcLib_GetDataParams(PH_COMP_AL_MFC);‍‍‍ to psalMFUL = phNfcLib_GetDataParams(PH_COMP_AL_MFUL);‍‍‍ so this get the MIFARE Ultralight AL-Components, then after this line we are going to add  ppalMifare = phNfcLib_GetDataParams(PH_COMP_PAL_MIFARE);‍‍‍  then we are going to erase the Mifare classic  functionality to avoid any kind of error due to Mifare classic not being present in the field.and add the following: First we are going to proceed with the Authentication part, we are going tu use the API phalMful_UlcAuthenticate(pDataParams, wKeyNumber, wKeyVersion);  the first  parameter is the structure pointing to the tag that was activated by the discoveryloop, then the key address and last the  version of the key. as you can see we do not send the key we only tell the tag where is the key stored and the version if it was updated. to ensure the confidentiality of the communication. /* Authenticate with the Key even if no memory of Ultralight Card is restricted by Authentication access Authentication with correct key provides access to any part of the memory (beside key storage) . */ /* Send authentication for entire Ultralight C */ status = phalMful_UlcAuthenticate(psalMFUL, UL_C_KEY_ADDRESS, UL_C_KEY_VERSION); /* Check for Status */ if ((status & PH_ERR_MASK) != PH_ERR_SUCCESS) { /* Print Error info */ DEBUG_PRINTF("\nAuthentication Failed!!!"); DEBUG_PRINTF("\nPlease correct the used key"); DEBUG_PRINTF("\nExecution aborted!!!\n"); break; } DEBUG_PRINTF("\nAuthentication Successful"); /* ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ after this the status should be  OK  and no error found, if you have an error in this please check that the card you are using was not tampered before and changed the key or if you distributor delivered a configured key please be sure to use the correct key. then we are going to proceed to the Read operation: phalMful_Read(pDataParams, bAddress, pData) as you can see  the first parameter is the same as authentication because we are still talking to the same tag,  the MFULC_USER_MEMORY_BEGIN its value is 04 this is because as you can see in the datasheet section 7.5 Memory organization the user memory starts in page 4 and ends in page 39 so we just want to read the first page of the tag and the bDataBuffer variable will store the received information. /* *************** READ operation ****************************** */ /* Empty the bDataBuffer */ memset(bDataBuffer, '\0', DATA_BUFFER_LEN); DEBUG_PRINTF("\n\nRead data from page %d, %d, %d, %d", MFULC_USER_MEMORY_BEGIN, MFULC_USER_MEMORY_BEGIN + 1, MFULC_USER_MEMORY_BEGIN + 2, MFULC_USER_MEMORY_BEGIN + 3); /* Read data from custom */ status = phalMful_Read(psalMFUL, MFULC_USER_MEMORY_BEGIN, bDataBuffer); /* Check for Status */ if (status != PH_ERR_SUCCESS) { /* Print Error info */ DEBUG_PRINTF("\nRead operation failed!!!\n"); DEBUG_PRINTF("\nExecution aborted!!!\n\n"); break; /* Break from the loop*/ } DEBUG_PRINTF("\nRead Success"); DEBUG_PRINTF("\nThe content of page %d is:\n", MFULC_USER_MEMORY_BEGIN); phApp_Print_Buff(&bDataBuffer[0], MFULC_READ_DATA_SIZE);‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ and that is all of our project, this is a simple project but can help a lot of people to understand how to work with Mifare Ultralight C using the PN7462 and then help people to start doing more complex examples based on this project. if you want to know how to configure a Mifare Ultralight c product using our PEGODA reader please check the document I posted called "Mifare Ultralight C - Changing default password and protecting page address". if you have any questions please let me know. BR Jonathan
View full article
This page contains information about the supported NXP MCU/MPU and NXP NFC product combinations which have ready to use packages. These can be used as a reference. The table below contains link to where you can find the projects as well.    MCU ↓   NFC IC →  NTAG I²C  plus NTAG 5 PN7150 CLRC663 plus family* PN5180 i.MX RT1050 i.MX RT1050 + NTAG I²C plus i.MX RT1050 + CLRC663 plus   Video: Using i.MX RT1050 with CLRC663 plus family and the NFC Reader Library | NXP  i.MX RT1060 i.MX RT1060 + NTAG I²C plus  i.MX RT1060 + PN7150 i.MX 8M Mini i.MX 8M Mini + PN7150 (Andriod) i.MX 8M Mini + PN7150 (linux-yocto) i.MX 7 Dual Sabre i.MX7 Dual Sabre + PN5180 LPC1769 LPC1769 + CLRC663 plus LPC1769 + PN5180 LPC55S69 LPC55S69 + NTAG I²C plus LPC55S69 + NTAG 5 LPC55S69 + PN7150 LPC55S69 + CLRC663 plus LPC55S69 + CLRC663 plus + SE050 (smart lock) LPC11u37h LPC11u37 + PN7150 LPC11u37h + CLRC663 plus LPC11u68 LPC11u68 + PN7150 LPC82X LPC82X + PN7150 LPC845 LPC845 + CLRC663 plus Kinetis K82F K82F + CLRC663 plus K82F + PN5180 Kinetis K64F K64F + PN7150 K64F + CLRC663 plus Kinetis K63 K63 + PN7150 Kinetis K24 K24 + PN7150 KW41Z KW41Z + NTAG I²C plus KW41Z + NTAG 5 KW41Z + PN7150 *CLRC663 plus family: CLRC663 plus, MFRC630 plus, MFRC631 plus, SLRC610 plus For more information on the NFC products, please visit https://www.nxp.com/nfc
View full article
The latest NXP-NCI example is rev 1.6, and when you run this demo with the lpc11xx board, for example, lpc1115 rev A, and the OM5577, you may meet the following issue: The problem is due to two aspects: one is hardware and the other is software. For hardware solution, besides following what is described in AN11658 section 2.4 LPC11xx, you have to do one more thing: a) The I2C lines are not pulled-up: LPC11xx doesn't offer internal pull-up setting of the I2C lines so external pull-up resistors must be added. For software solution, the function of Sleep()( in tool.c) was optimized too much, and it didn't meet the timing requirement of OM5577, so we should let the IDE ignore it. The solution I use is as below: __attribute__((optimize("O0"))) void my_func() { blah } You may check the attachment for details. The result is shown as below: Original Attachment has been moved to: tool.c.zip
View full article