i.MXプロセッサ ナレッジベース

キャンセル
次の結果を表示 
表示  限定  | 次の代わりに検索 
もしかして: 

i.MX Processors Knowledge Base

ディスカッション

ソート順:
Header 1 Header 2 Video rendering gst-launch videotestsrc ! mfw_v4lsink Audio rendering gst-launch audiotestsrc ! alsasink WAV Audio rendering gst-launch filesrc location=test.wav ! wavparse ! alsasink Video rendering selecting caps gst-launch videotestsrc ! capsfilter name='video/x-raw-yuv,format=(fourcc)I420' ! mfw_v4lsink gst-launch videotestsrc ! 'video/x-raw-yuv,format=(fourcc)I420' ! mfw_v4lsink
記事全体を表示
In order to get USB cameras (web cams) working on i.MX 51 EVK board running Ubuntu, a few steps must be followed, and they are: Enable USB Camera's drivers on Kernel Test it using Gstreamer or another compatible software (as Cheese) Kernel Driver USB cameras (web cameras) on Linux work over GSPCA driver, to enable this driver you need to go to: ./ltib -c   [*] Configure the kernel     Device Drivers -->          Multimedia Devices -->               [*] Video Capture Adapters -->                    [*] V4L USB Devices -->                         <*> USB Video Class (UVC)                                      [*] UVC input events device support                         <*> GSPCA Based WebCams --> From this point, you need to choose your specific driver. If you don't know, you can select all of those options as a built-in module "<*>" that will work. GSPCA Drivers USB Camera Detection Connect your USB camera to the USB Host port on i.MX 51 EVK board and then type "dmesg", and also check if there is a video0 device using: ubuntu@ubuntu-desktop:~$ ls /dev/video0 /dev/video0 USB Camera Detection Gstreamer Command Line In order to test your USB camera using Gstreamer plugin, use the following command line to perform it: ubuntu@ubuntu-desktop:~$ gst-launch-0.10 v4l2src ! ffmpegcolorspace ! ximagesink and the results: Hi there !!! EOF !
記事全体を表示
meta-avs-demos Yocto layer meta-avs-demos is a Yocto meta layer (complementary to the NXP BSP release for i.MX) published on CodeAurora that includes the additional required packages to support  Amazon's Alexa Voice Services SDK (AVS_SDK) applications. The build procedure is the described on the README.md of the corresponding branch. We have 2 fuctional branches now: imx-alexa-sdk: Support for Morty based i.mx releases imx7d-pico-avs-sdk_4.1.15-1.0.0: legacy support for Jethro releases The master branch is only used to collect manifest files, that used with repo init/sync commands will fetch the whole environment for the 2 special supported boards: i.MX7D Pico Pi and i.MX8M EVK. However the meta-avs-demos can be used with any i.MX board either. Recipes to include Amazon's Alexa Voice Services in your applications. The meta-avs-demos provides the required recipes to build an i.MX image with the support for running Alexa SDK. The imx-alexa-sdk branch is based on Morty and kernel 4.9.X and it supports the next builds: i.MX7D Pico Pi i.MX8M EVK Generic i.MX board For the i.MX7D Pico Pi and i.MX8M EVK there is an extended support for additional (external) Sound Cards like: TechNexion VoiceHat: 2Mic Array board with DSPConcepts SW support Synaptics Card: 2 Mic with Sensory WakeWord support The Generic i.MX is for any other regular i.MX board supported on the official NXP BSP releases. Only the default soundcard (embedded) on the board is supported. Sensory wakeword is currently only enabled for those with ARMV7 architecture. To support any external board like the VoiceHat or Synaptics is up to the user to include the additional patches/changes required. Build Instructions Follow the corresponding README file to follow the steps to build an image with Alexa SDK support README-IMX7D-PICOPI.md README-IMX8M-EVK.md README-IMX-GENERIC.md
記事全体を表示
Qt Creator can be a very good IDE in order to develop great QT applications. This IDE does not only helps with syntax highlighting, access to examples and tutorials, but also helps you to configure different toolchains Qt binary versions and target options. First download the binary installer from: For 32 bits: $ wget http://releases.qt-project.org/qtcreator/2.6.2/qt-creator-linux-x86-opensource-2.6.2.bin For 64 bits: $ wget http://releases.qt-project.org/qtcreator/2.6.2/qt-creator-linux-x86_64-opensource-2.6.2.bin execute the binary $ ./qt-creator-linux-x86_64-opensource-2.6.2.bin Follow the Installer GUI and choose a location. Default options should be OK. in my case the installation was done here: $ /home/b35153/qtcreator-2.6.2/bin Open Qt Creator (in my case from command line, use "&" to regain control of the terminal) $./qtcreator & Open Tools -> Options Choose Build & Run  on the menu of the left. and Select the Compilers Tab Here you can add the toolchain GCC compiler of your convenience. It will appear in the "Manual"  section. Now click on Qt Version Tab.  Here you can add the Qmake that you had created with your Qt installation; for example, the Qt5 installation described here: Building QT for i.MX6 It will appear in the Manual section. In my case I have Qmake for PC and Qmake for i.MX6. Now click on Kits Tab Here you can create combinations of Compilers and Qmake, and also specify where do you want the executables to go. In my case here I combined the i.MX6 toolchain and the Qmake for I.MX6 i had created. I did not set up device configuration since the sysroot is already shared to my device via NFS, but you can configure it so the files are sent via ssh to your device. And that's It! Next time you load a project you can choose which Kit you want to work on, and it will be compiled just as you need.
記事全体を表示
1. Set up HDMI Set up your kernel to use HDMI adding the following code to bootargs on u-boot: video=mxcfb0:dev=hdmi,1920x1080M@60,if=RGB24 2. Test raw audio In order to test only raw audio, use the following command: aplay -D hw:1,0 Kaleidoscope.wav 3. Make HDMI audio the default output In order to configure audio output over HDMI, please, replace content of file ~/.asoundrc to the following one pcm.dmix_48000{      type dmix      ipc_key 5678293      ipc_key_add_uid yes      slave{           pcm "hw:1,0"           period_time 0           period_size 2048           buffer_size 24576           format S16_LE           rate 48000      } } pcm.!dsnoop_44100{      type dsnoop      ipc_key 5778293      ipc_key_add_uid yes      slave{           pcm "hw:0,0"           period_time 0           period_size 2048           buffer_size 24576           format S16_LE           rate 44100      } } pcm.!dsnoop_48000{      type dsnoop      ipc_key 5778293      ipc_key_add_uid yes      slave{           pcm "hw:1,0"           period_time 0           period_size 2048           buffer_size 24576           format S16_LE           rate 48000      } } pcm.asymed{      type asym      playback.pcm "dmix_48000"      capture.pcm "dsnoop_44100" } pcm.dsp0{      type plug      slave.pcm "asymed" } pcm.!default{      type plug      route_policy "average"      slave.pcm "asymed" } ctl.mixer0{      type hw      card 0 } This will configure alsa to use sound card hw:1,0. Please, pay attention to use the proper audio card name for your device. In order to see available sound cards on board: root@imx53qsb:~# aplay -l **** List of PLAYBACK Hardware Devices **** card 0: imx3stack [imx-3stack], device 0: SGTL5000 SGTL5000-0 []   Subdevices: 1/1   Subdevice #0: subdevice #0 card 1: imx3stackspdif [imx-3stack-spdif], device 0: IMX SPDIF mxc spdif-0 []   Subdevices: 1/1   Subdevice #0: subdevice #0 For detail on how to create asound.conf, please see alsa-lib configuration introduction. 4. Encoded audio For encoded (i.e. AC3, DTS) audio, you can use, for example, ac3dec, an utility provided by alsa-tools with the following command line: ac3dec -D hw:1,0 -C test.ac3 This would work for both HDMI audio and SPDIF audio. Double check your hardware and/or schematic in order to know which one to use.
記事全体を表示
Multiple-Display means video playback on multiple screens. In case playback needs to be in a unique screen, the mfw_isink element must be used and some pipelines examples can be found on this link: GStreamer iMX6 Multi-Overlay. Number of Displays Display type Kernel parameters Pipelines # Set these shells variables before running the pipelines alias gl=gst-launch SINK_1="\"mfw_v4lsink device=/dev/video17\"" SINK_2="\"mfw_v4lsink device=/dev/video18\"" SINK_3="\"mfw_v4lsink device=/dev/video20\"" media1=file:///root/media1 media2=file:///root/media2 media3=file:///root/media3 2 hdmi + lvds video=mxcfb0:dev=hdmi,1920x1080M@60,if=RGB24 video=mxcfb1:dev=ldb,LDB-XGA,if=RGB666 gl playbin2 uri=$media1 video-sink=$SINK_1 playbin2 uri=$media2 video-sink=$SINK_2 2 lvds + lvds video=mxcfb0:dev=ldb,LDB-XGA,if=RGB666 video=mxcfb1:dev=ldb,LDB-XGA,if=RGB666 gl playbin2 uri=$media1 video-sink=$SINK_1 playbin2 uri=$media2 video-sink=$SINK_2 2 lcd + lvds video=mxcfb0:dev=lcd,800x480M@55,if=RGB565 video=mxcfb1:dev=ldb,LDB-XGA,if=RGB666 gl playbin2 uri=$media1 video-sink=$SINK_1 playbin2 uri=$media2 video-sink=$SINK_2 3 hdmi + lvds + lvds video=mxcfb0:dev=hdmi,1920x1080M@60,if=RGB24 video=mxcfb1:dev=ldb,LDB-XGA,if=RGB6 video=mxcfb2:dev=ldb,LDB-XGA,if=RGB666 gl playbin2 uri=$media1 video-sink=$SINK_1 playbin2 uri=$media2 video-sink=$SINK_2 playbin2 uri=$media3 video-sink=$SINK_3
記事全体を表示
Notes: First run the playback pipeline then the streaming pipeline. The above example streams H263 video and AMR audio data. Change codec format to your needs. In case where the iMX is the streaming machine, the audio encoder 'amrnbenc' must be installed before. This scenario has not been tested Shell variables and pipelines Playback machine (receiver) # On playback machine, set either IMX2PC or PC2IMX variables, then run the pipeline ## IMX2PC: Case where PC does the playback     AUDIO_DEC_SINK="rtpamrdepay ! amrnbdec ! alsasink "     VIDEO_CAPS="\"application/x-rtp,media=(string)video,clock-rate=(int)90000,encoding-name=(string)H263-1998\""     VIDEO_DEC_SINK="rtph263pdepay ! ffdec_h263 ! autovideosink" ## End of IMX2PC Settings ## PC2IMX: Case where iMX does the playback     AUDIO_DEC_SINK="rtpamrdepay ! mfw_amrdecoder ! alsasink "     VIDEO_CAPS="\"application/x-rtp,media=(string)video,clock-rate=(int)90000,encoding-name=(string)H263-1998\""     VIDEO_DEC_SINK="rtph263pdepay ! vpudec ! mfw_v4lsink " ## End of PC2IMX Settings PLAYBACK_AUDIO="udpsrc caps=\"application/x-rtp,media=(string)audio,clock-rate=(int)8000,encoding-name=(string)AMR,encoding-params=(string)1,octet-align=(string)1\" \             port=5002 ! rtpbin.recv_rtp_sink_1 \         rtpbin. ! $AUDIO_DEC_SINK \      udpsrc port=5003 ! rtpbin.recv_rtcp_sink_1 \      rtpbin.send_rtcp_src_1 ! udpsink port=5007 sync=false async=false" PLAYBACK_VIDEO="udpsrc caps=$VIDEO_CAPS port=5000 ! rtpbin.recv_rtp_sink_0 \         rtpbin. ! $VIDEO_DEC_SINK \         udpsrc port=5001 ! rtpbin.recv_rtcp_sink_0 \         rtpbin.send_rtcp_src_0 ! udpsink port=5005 sync=false async=false" PLAYBACK_AV="$PLAYBACK_VIDEO $PLAYBACK_AUDIO" # Playback pipeline gst-launch -v gstrtpbin name=rtpbin $PLAYBACK_AV Streaming Machine (sender) # On Streaming machine, set either IMX2PC or PC2IMX variables, then run the pipeline ## IMX2PC: Case where iMX does the streaming     IP=x.x.x.x # IP address of the playback machine     VIDEO_SRC="mfw_v4lsrc"     VIDEO_ENC="vpuenc codec=h263 ! rtph263ppay "    AUDIO_ENC="audiotestsrc ! amrnbenc ! rtpamrpay " ## END IMX2PC settings ## PC2IMX: Case where PC does the streaming     IP=y.y.y.y # IP address of the playback machine     VIDEO_SRC="v4l2src"     VIDEO_ENC="ffenc_h263 ! rtph263ppay "     AUDIO_ENC="audiotestsrc ! amrnbenc ! rtpamrpay " # END PC2PC settings STREAM_AUDIO="$AUDIO_ENC ! rtpbin.send_rtp_sink_1 \         rtpbin.send_rtp_src_1 ! udpsink host=$IP port=5002 \         rtpbin.send_rtcp_src_1 ! udpsink host=$IP port=5003 sync=false async=false \         udpsrc port=5007 ! rtpbin.recv_rtcp_sink_1" STREAM_VIDEO="$VIDEO_SRC ! $VIDEO_ENC ! rtpbin.send_rtp_sink_0 \         rtpbin.send_rtp_src_0 ! queue ! udpsink host=$IP port=5000 \         rtpbin.send_rtcp_src_0 ! udpsink host=$IP port=5001 sync=false async=false \         udpsrc port=5005 ! rtpbin.recv_rtcp_sink_0" STREAM_AV="$STREAM_VIDEO $STREAM_AUDIO" # Stream pipeline gst-launch -v gstrtpbin name=rtpbin $STREAM_AV
記事全体を表示
Notes: + Run the pipelines in the presented order + The above example streams H263 video. + the gl command is equal to 'gst-launch' (two instead of 'gst-launch'.size() chars ) + Pending work: H264 test cases and other scenarios. Scenario Shell variables and pipelines # Export always these variables on the i.MX export VSALPHA=1 export WIDTH=320 export HEIGHT=240 export SEP=20 # decoded and displayed Uni-directional: from PC to i.MX. PC is streaming 4 H.263 streams and i.MX displays all in the screen. # On i.MX (Target) gl udpsrc caps='application/x-rtp, media=(string)video, clock-rate=(int)90000, encoding-name=(string)H263' port=8890 ! rtph263depay ! vpudec ! mfw_isink sync=false axis-top=0 axis-left=0 disp-width=$WIDTH disp-height=$HEIGHT & gl udpsrc caps='application/x-rtp, media=(string)video, clock-rate=(int)90000, encoding-name=(string)H263' port=8891 ! rtph263depay ! vpudec ! mfw_isink sync=false axis-top=0 axis-left=`expr $WIDTH + $SEP` disp-width=$WIDTH disp-height=$HEIGHT & gl udpsrc caps='application/x-rtp, media=(string)video, clock-rate=(int)90000, encoding-name=(string)H263' port=8892 ! rtph263depay ! vpudec ! mfw_isink sync=false axis-top=`expr $HEIGHT + $SEP` axis-left=0   disp-width=$WIDTH disp-height=$HEIGHT & gl udpsrc caps='application/x-rtp, media=(string)video, clock-rate=(int)90000, encoding-name=(string)H263' port=8893 ! rtph263depay ! vpudec ! mfw_isink sync=false axis-top=`expr $HEIGHT + $SEP` axis-left=`expr $WIDTH + $SEP` disp-width=$WIDTH disp-height=$HEIGHT & # On PC (Source) export IP_iMX= # Place the IP address of the i.MX board gst-launch -v videotestsrc ! ffenc_h263 ! rtph263pay ! multiudpsink clients=IP_iMX:8890,IP_iMX:8891,IP_iMX:8892,$IP_iMX:8893 Uni-directional: from PC to i.MX. PC is streaming one H.264 stream and i.MX displays it on the screen # On i.MX (Target) # Make sure you set the caps correctly, specially the sprop-parameter-sets cap. The one show below is just an example and works with the source file sintel_trailer-1080p.mp4 export VSALPHA=1 GST_DEBUG=*:2 gst-launch -v udpsrc caps='application/x-rtp, media=(string)video, clock-rate=(int)90000, encoding-name=(string)H264, sprop-parameter-sets=(string)\"Z2QAMqw05gHgCJ+WEAAAAwAQAAADAwDxgxmg\\,aOl4TLIs\", payload=(int)96' port=8890 ! rtph264depay ! vpudec ! mfw_isink sync=false # On PC (Source) gst-launch -v filesrc location=sintel_trailer-1080p.mp4 typefind=true ! qtdemux ! rtph264pay ! multiudpsink clients=10.112.102.168:8890 Bi-directional: PC is streaming 4 H.263 streams to i.MX, iMX displays it and sends the four back to PC # On i.MX export IP_PC= # Place the IP address of the PC host machine gl -v udpsrc caps='application/x-rtp, media=(string)video, clock-rate=(int)90000, encoding-name=(string)H263' port=8890 ! rtph263depay ! vpudec ! tee name=t ! queue ! mfw_isink sync=false axis-top=0 axis-left=0 disp-width=$WIDTH disp-height=$HEIGHT t. ! queue ! vpuenc codec=5 ! rtph263pay ! udpsink host=$IP_PC port=9990 & gl -v udpsrc caps='application/x-rtp, media=(string)video, clock-rate=(int)90000, encoding-name=(string)H263' port=8891 ! rtph263depay ! vpudec ! tee name=t ! queue ! mfw_isink sync=false axis-top=0 axis-left=`expr $WIDTH + $SEP` disp-width=$WIDTH disp-height=$HEIGHT t. ! queue ! vpuenc codec=5 ! rtph263pay ! udpsink host=$IP_PC port=9991 & gl -v udpsrc caps='application/x-rtp, media=(string)video, clock-rate=(int)90000, encoding-name=(string)H263' port=8892 ! rtph263depay ! vpudec ! tee name=t ! queue ! mfw_isink sync=false axis-top=`expr $HEIGHT + $SEP` axis-left=0   disp-width=$WIDTH disp-height=$HEIGHT t. ! queue ! vpuenc codec=5 ! rtph263pay ! udpsink host=$IP_PC port=9992 & gl -v udpsrc caps='application/x-rtp, media=(string)video, clock-rate=(int)90000, encoding-name=(string)H263' port=8893 ! rtph263depay ! vpudec ! tee name=t ! queue ! mfw_isink sync=false axis-top=`expr $HEIGHT + $SEP` axis-left=`expr $WIDTH + $SEP` disp-width=$WIDTH disp-height=$HEIGHT t. ! queue ! vpuenc codec=5 ! rtph263pay ! udpsink host=$IP_PC port=9993 & # On PC ## Stream received from iMX export IP_iMX= # Place the IP address of the i.MX board gl -v udpsrc caps='application/x-rtp, media=(string)video, clock-rate=(int)90000, encoding-name=(string)H263' port=9990 ! rtph263depay ! ffdec_h263 ! xvimagesink & gl -v udpsrc caps='application/x-rtp, media=(string)video, clock-rate=(int)90000, encoding-name=(string)H263' port=9991 ! rtph263depay ! ffdec_h263 ! xvimagesink & gl -v udpsrc caps='application/x-rtp, media=(string)video, clock-rate=(int)90000, encoding-name=(string)H263' port=9992 ! rtph263depay ! ffdec_h263 ! xvimagesink & gl -v udpsrc caps='application/x-rtp, media=(string)video, clock-rate=(int)90000, encoding-name=(string)H263' port=9993 ! rtph263depay ! ffdec_h263 ! xvimagesink & ## Stream sent to iMX gl -v videotestsrc ! videoscale ! video/x-raw-yuv,width=\(int\)1408,height=\(int\)1152 !  ffenc_h263 ! rtph263pay ! udpsink host=$IP_iMX port=8890 & gl -v videotestsrc ! videoscale ! video/x-raw-yuv,width=\(int\)1408,height=\(int\)1152 ! ffenc_h263 ! rtph263pay ! udpsink host=$IP_iMX port=8891 & gl -v videotestsrc ! videoscale ! video/x-raw-yuv,width=\(int\)1408,height=\(int\)1152 ! ffenc_h263 ! rtph263pay ! udpsink host=$IP_iMX port=8892 & gl -v videotestsrc ! videoscale ! video/x-raw-yuv,width=\(int\)1408,height=\(int\)1152 ! ffenc_h263 ! rtph263pay ! udpsink host=$IP_iMX port=8893 &
記事全体を表示
GStreamer has a simple feature to enable tracing, allowing the developer to do basic debugging. These can be done in two ways: Adding the parameter --gst-debug=LIST to the pipeline (a pipeline is a executed gst-launch command) Prepending the environment variable GST_DEBUG=LIST' LIST is a a comma-separated argument, indicating the GStreamer elements to trace. For example, if one needs to trace the sink element      $ GST_DEBUG=*sink*:5 gst-launch playbin2 uri=file:///sample.avi or      $ gst-launch playbin2 uri=file:///sample.avi --gst-debug=*sink*:5 Both commands produces the same log. In case want to trace for than one element, so can simple add the <element>:5, for example      $ GST_DEBUG=mfw_v4lsink:5,vpudec:5 gst-launch playbin2 uri=file:///sample.avi The number 5 indicates the log category, where 5 is the highest (the most verbose log you can get) and 0 produces no output (5=LOG, 4=DEBUG, 3=INFO, 2=WARN, 1=ERROR). Log can be huge in each pipeline run. One way to filter it is using the grep command. Before grepping, one needs to redirect the standard error to the standard output (GStreamer log goes always to stderr), so      $ GST_DEBUG=mfw_v4lsink:5,vpudec:5 gst-launch playbin2 uri=file:///sample.avi 2>&1 | grep <filter string> In case the log needs to be shared, it is important to remove the 'color' of the log, again, one just needs to add the parameter --gst-debug-no-color or prepend the env variable GST_DEBUG_NO_COLOR=1 ----- More shell variables that GStreamer react, can be found here https://developer.gnome.org/gstreamer/0.10/gst-running.html
記事全体を表示
Overview: This document is written for Freescale customers who have Freescale AC3 release packages (excluded package). (If you did not have the AC3 release package, you can disregard this document.) Freescale OMX Player in Android release supports audio track selection when playing files with multiple audio tracks. However, most customers don't use this enhanced API to select the audio track even if current audio codec is not supported. To avoid a soundless output when partial audio track can be played, this document provides the method to select the available audio track automatically to play. The patch in this document is not included in our current release because it did not match with our track selection rule - play the first track. If you have any idea with this issue, feel free to add comments into this document. Issue description: Software: R13.4-GA or R13.4.1 Android releases Hardware: MX6Dual/Quad SabreSD board Test source: 1.mkv Test Step: 1. Lunch Gallery from main menu. 2. Play the video And you can see the watch the video without any sound Root Reason: The file has 2 audio track DTS & AC3: audio track 1 is DTS and track 2 is AC3. OMX Player will choose the first audio track to play as default audio track, which is DTS audio. However, the software only supports the AC3 audio codec, so it could not set up audio decoder for DTS track. If we choose to play the AC3 track, sounds could be heard. How to fix: The audio track index is set in GMPlayer::LoadParser(). You can get audio format to check whether it is supported by decoder. Please see the patch audio_track_slection.diff
記事全体を表示
gst-inspect is a tool to to get documentation about GStreamer elements. Pipeline Check installed GST elements gst-inspect | tail -1 Check installed FSL GST elements gst-inspect | grep imx Element documentation gst-inspect <gst element>
記事全体を表示
The i.MX 8QXP MEK does not allow the OV5640/LVDS/LCD usage only by changing the device tree anymore. It occurs because the M4 owns the i2c resources, so the A core must use rpmsg to enable virtual drivers. Due to this, if the user changes the device tree, for instance, the *ov5640.dtb, the kernel won't boot, entering in the following loop: [    8.603353] [drm] Supports vblank timestamp caching Rev 2 (21.10.2013).      [    8.610025] [drm] No driver support for vblank timestamp query.              [    8.616077] imx-drm display-subsystem: bound imx-drm-dpu-bliteng.2 (ops dpu_) [    8.624978] imx-drm display-subsystem: bound imx-dpu-crtc.0 (ops dpu_crtc_op) [    8.632526] imx-drm display-subsystem: bound imx-dpu-crtc.1 (ops dpu_crtc_op) [    8.639833] imx-drm display-subsystem: failed to bind ldb@562210e0 (ops imx_7 [    8.648428] imx-drm display-subsystem: master bind failed: -517 With the approach provided in this post, it is possible to make this change manually, only by changing the flash.bin at U-boot for a non-m4 one. In order to make the changes to the flash.bin file, it’s needed to obtain the following files: - u-boot.bin from internal u-boot provided by NXP. - scfw_tcm.bin from SCFW porting kit - bl31.bin from ARM Trusted Firmware - SECO firmware container image Disclaimer The described procedures in this document target a GNU/Linux (Ubuntu 20.04 LTS) and it’s focused on iMX8QXP B0 + BSP L4.19.35_1.1.0. Required packages 1 - Install ARM64 ToolChain: 1.1 - Install ARM64 GCC and G++ cross-compilers: # apt install gcc-aarch64-linux-gnu g++-aarch64-linux-gnu 2 - Install ARM32 GCC6 ToolChain: 2.1 - Download the ARM32 6 Toolchain and install it: $ mkdir ~/gcc_toolchain $ cp ~/Downloads/gcc-arm-none-eabi-6-2017-q2-update-linux.tar.bz2 ~/gcc_toolchain/ $ cd ~/gcc_toolchain/ $ tar xvjf gcc-arm-none-eabi-6-2017-q2-update-linux.tar.bz2 # apt-get update # apt-get install srecord 3 - Download MKimage 3.1 - Create a new directory desired to the packages: $ mkdir flash_build $ cp flash_build 3.1 - Clone the MKimage: $ git clone https://source.codeaurora.org/external/imx/imx-mkimage -b imx_4.19.35_1.1.0 4 - U-boot build 4.1 - Clone the U-boot  $ git clone https://source.codeaurora.org/external/imx/uboot-imx -b imx_v2019.04_4.19.35_1.1.0 $ cd uboot-imx 4.2 - Export the ARM64 ToolChain:  $ export ARCH=arm64 $ export CROSS_COMPILE=/usr/bin/aarch64-linux-gnu- 4.3 - Build it:  $ unset LDFLAGS $ make -j4 imx8qxp_mek_defconfig $ make 4.4 - Copy the binary files to the MKimage/iMX8QX directory:  $ cp spl/u-boot-spl.bin ../imx-mkimage/iMX8QX/ $ cp u-boot-nodtb.bin ../imx-mkimage/iMX8QX/ $ cd ..   5 - ARM Trusted Firmware 5.1 - Clone the imx-atf:  $ git clone https://source.codeaurora.org/external/imx/imx-atf -b imx_4.19.35_1.1.0 $ cd imx-atf 5.2 - Build it:  $ unset LDFLAGS $ make PLAT=imx8qx bl31 5.3 - Copy the binary files to the MKimage/iMX8QX directory:  $ cp build/imx8qx/release/bl31.bin ../imx-mkimage/iMX8QX/ $ cd ..   6 - SCFW 6.1 - Export the ARM32 GCC6 Toolchain:  $ export TOOLS=~/gcc_toolchain/ 6.2 - Download the BSP L4.19.35_1.1.0_SCFW and copy it to the flash_build directory:  $ cp ~/Downloads/imx-scfw-porting-kit-1.2.7.1.tar.gz $ tar xvzf imx-scfw-porting-kit-1.2.7.1.tar.gz $ cd packages/ $ chmod a+x imx-scfw-porting-kit-1.2.7.1.tar.gz $ ./imx-scfw-porting-kit-1.2.7.1.bin 6.3 - Build it to i.MX 8QXP MEK B0:  $ cd imx-scfw-porting-kit-1.2.7.1/src/ $ tar xvzf scfw_export_mx8qx_b0.tar.gz $ cd scfw_export_mx8qx_b0/ $ make qx R=B0 B=mek 6.4 - Copy the binary file to the MKimage/iMX8QX directory:  $ cp build_mx8qx_b0/scfw_tcm.bin ../../../../imx-mkimage/iMX8QX/ $ cp ../../../../ 7 - SECO Firmware Container Image 7.1 - Download the SECO firmware binaries and copy it to the flash_build directory $ cp ~/Downloads/firmware-imx-7.9.bin . $ chmod a+x firmware-imx-7.9.bin 7.2 - Copy the binary files to the MKimage/iMX8QX directory:  $ cp firmware-imx-7.9/firmware/seco/mx8qx-ahab-container.img /imx-mkimage/iMX8QX/ 8 - Build flash.bin 8.1 - In a new terminal, open the imx-mkimage directory: $ cd flash_build/imx-mkimage 8.2 - Build it:  $ make SOC=iMX8QX flash 8.3 - Deploy it to the SDCard:  $ sudo dd if=iMX8QX/flash.bin of=/dev/sdX bs=1k seek=32 && sync Now, you are able to use any non-rpmsg.dtb without kernel errors. Author: Pedro Jardim: pedro.jardim@nxp.com
記事全体を表示
Audio, from a file gst-launch filesrc location=test.wav ! wavparse ! mfw_mp3encoder ! filesink location=output.mp3 Audio Recording gst-launch alsasrc num-buffers=$NUMBER blocksize=$SIZE ! mfw_mp3encoder ! filesink location=output.mp3 # where #     duration = $NUMBER*$SIZE*8 / (samplerate *channel *bitwidth) # Example: 60 seconds recording # gst-launch alsasrc num-buffers=240 blocksize=44100 ! mfw_mp3encoder ! filesink location=output.mp3 # # To verify that is correct, do a normal audio playback gst-launch filesrc location=output.mp3 typefind=true ! beepdec ! audioconvert ! 'audio/x-raw-int,channels=2' ! alsasink Video, from a test source gst-launch videotestsrc ! queue ! vpuenc ! matroskamux ! filesink location=./test.avi Video, from a file gst-launch filesrc location=sample.yuv blocksize=$BLOCK_SIZE ! 'video/x-raw-yuv,format=(fourcc)I420, width=$WIDTH, height=$HEIGHT, framerate=(fraction)30/1' ! vpuenc codec=$CODEC ! matroskamux ! filesink location=output.mkv sync=false # where #     BLOCK_SIZE = WIDTH * HEIGHT * 1.5 #     CODEC = 0(MPEG4), 5(H263), 6(H264) or 12(MJPG). # # For example, encoding a CIF raw file gst-launch filesrc location=sample.yuv blocksize=152064 ! 'video/x-raw-yuv,format=(fourcc)I420, width=352, height=288, framerate=(fraction)30/1' ! vpuenc codec=0 ! matroskamux ! filesink location=sample.mkv sync=false Video, from Web camera # when the web cam is connected, the device node /dev/video0 should be present. In order to test the camera, without encoding gst-launch v4l2src ! mfw_v4lsink # in recording, run: # gst-launch v4l2src num-buffers=-1 ! queue max-size-buffers=2 ! vpuenc codec=0 ! matroskamux ! filesink location=output.mkv sync=false # # where sync=false indicates filesink to to use a clock sync # # In case a specific width/height is needed, just add the filter caps gst-launch v4l2src num-buffers=-1  ! 'video/x-raw-yuv,format=(fourcc)I420, width=352, height=288, framerate=(fraction)30/1' ! queue ! vpuenc codec=0 ! matroskamux ! filesink location=output.mkv sync=false # # In case you want to see in the screen what the camera is capturing, add a tee element # gst-launch v4l2src num-buffers=-1 ! tee name=t ! queue ! mfw_v4lsink t. ! queue ! vpuenc codec=0 ! matroskamux ! filesink location=output.mkv sync=false Video, from Parallel/MIPI camera # The camera driver needs to be loaded before executing the pipeline, refer to the BSP document to see which driver to load # MIPI (J5 port): modprobe ov5640_camera_mipi modprobe mxc_v4l2_capture   # Parallel (J9 port): modprobe ov5642_camera modprobe mxc_v4l2_capture   gst-launch mfw_v4lsrc ! queue ! vpuenc codec=0 ! matroskamux ! filesink location=output.mkv sync=false   # Do a 'gst-inspect mfw_v4lsrc' or 'gst-inspect vpuenc' to see other possible settings (resolution, fps, codec, etc.)
記事全体を表示
Recently I published this i.MX Dev Blog post about the Gateworks plugin gst-variable-rtsp-server support for i.MX 6. Now, you can check how to use it on i.MX 8 SoCs as well. 1. Preparing the image In order to use gst-variable-rtsp-server plugin, prepare your machine and distro: Add the following line to conf/local.conf: IMAGE_INSTALL_append += "gstreamer1.0-rtsp-server gst-variable-rtsp-server" Download the attached patch and apply it by doing: $ cd <yocto_path>/sources/meta-fsl-bsp-release/ $ git am ~/Download/0001-Add-RTSP-support-for-i.MX-8-L4.14.78_ga1.0.0-or-olde.patch Note: This patch is not necessary for L4.14.98_ga2.0.0 BSP! Then, build the image with bitbake and deploy it to the SD card. 2. Video Test Source Example Server $ gst-variable-rtsp-server -p 9001 -u "videotestsrc ! v4l2h264enc ! rtph264pay name=pay0 pt=96" Client 2. Camera Example Server $ gst-variable-rtsp-server -p 9001 -u "v4l2src device=/dev/video0 ! video/x-raw,width=640,height=480 ! v4l2h264enc ! rtph264pay name=pay0 pt=96" Client In order to use VLC or other application as the client, just enter the URL as shown in the image below:
記事全体を表示
This document describes the i.MX 8MQ EVK HDMI output and mini-SAS connectors features on Linux and Android use cases, covering the supported daughter-board, the process to change Device Tree (DTS) files or Boot Images, and enable these different display options on the board.
記事全体を表示
Qt framework Qt is a cross-platform complete development framework with tools designed to streamline the creation of stunning native applications and amazing user interfaces for desktop, embedded and mobile platforms. Qt's cross-platform full framework and tools enables developers to target various desktop, embedded, mobile and real-time operating systems with one code base. Qt brings freedom to the developer saving development time, adding efficiency and ultimately shortening time to market. Building Qt Compile Qt for i.MX28 Building QT5 for i.MX53 Building QT for i.MX6 Qt on iMX6 Installing tools Installing and Configuring QT Creator (Ubuntu) Qt5 with Qt3D over Wayland rootfs Demos Qt5 Cinematic Experience Demo on i.MX6 Video - IMx 53 Qt5 qt3d demo Qt5 with Qt3D over Wayland rootfs Information Qt5 on i.MX6  DO's and DONT's Best Practices for QML
記事全体を表示
Multiple-Overlay (or Multi-Overlay) means several video playbacks on a single screen. In case multiple screens are needed, check the dual-display case GStreamer i.MX6 Multi-Display $ export VSALPHA=1 $ SAMPLE1=sample1.avi; SAMPLE2=sample2.avi; SAMPLE3=sample3.avi; SAMPLE4=sample4.avi; $ WIDTH=320; HEIGHT=240; SEP=20 Four displays (2x2) $gst-launch \ playbin2 uri=file://`pwd`/$SAMPLE1 video-sink="mfw_isink axis-top=0 axis-left=0   disp-width=$WIDTH disp-height=$HEIGHT" \ playbin2 uri=file://`pwd`/$SAMPLE2 video-sink="mfw_isink axis-top=0 axis-left=`expr $WIDTH + $SEP` disp-width=$WIDTH disp-height=$HEIGHT" \ playbin2 uri=file://`pwd`/$SAMPLE3 video-sink="mfw_isink axis-top=`expr $HEIGHT + $SEP` axis-left=0   disp-width=$WIDTH disp-height=$HEIGHT" \ playbin2 uri=file://`pwd`/$SAMPLE4 video-sink="mfw_isink axis-top=`expr $HEIGHT + $SEP` axis-left=`expr $WIDTH + $SEP` disp-width=$WIDTH disp-height=$HEIGHT" Basic rotation, (2 x 1, normal and inverted) gst-launch \ playbin2 uri=file://`pwd`/$SAMPLE1 video-sink="mfw_isink axis-top=0 axis-left=0   disp-width=$WIDTH disp-height=$HEIGHT rotation=0" \ playbin2 uri=file://`pwd`/$SAMPLE2 video-sink="mfw_isink axis-top=`expr $HEIGHT + $SEP` axis-left=0 disp-width=$WIDTH disp-height=$HEIGHT rotation=3"
記事全体を表示
There is no Freescale GStreamer element which does the JPEG decoding, so we must rely on a standard one, like 'jpegdec'. In case your Linux system was built using LTIB, in order to have the jpegdec element included on the gst-plugin-good, follow these steps: On the LTIB menuconfig, make sure the following packages are selected: gstreamer-plugins-good libjpeg libpng Remove the configure parameters '--disbale-libpng' and '--disable-jpeg' on the file './dist/lfs-5.1/gst-plugins-good/gst-plugins-good.spec' Rebuild and flash your board (or SD card) again. Image display VSALPHA=1 gst-launch filesrc location=sample.jpeg ! jpegdec ! imagefreeze ! mfw_isink Important: non 8 pixel aligned width and height is treated as not supported format in isink plugin.
記事全体を表示
If you want to use a USB camera (these types of cameras are also called 'Web Cameras') with GStreamer on i.MX6 devices (Linux Kernel version >= 3.035), you need to either load the module dynamically or compile and link statically selecting (Y) the following config on the Kernel configuration      Device Drivers -> Multimedia support -> Video capture adapters -> V4L USB devices -> <*> USB Video Class (UVC) After the Kernel image has been built, flash it into the target, plug the web cam, then on a (target) terminal run      gst-launch v4l2src ! mfw_v4lsink You should see what the camera is capturing on the display. In case you need to encode the camera src data, you need to place the encoder into the pipeline      gst-launch v4l2src num-buffers=100  ! queue ! vpuenc codec=0 ! matroskamux ! filesink location=output.mkv sync=false We are using a certain codec (codec=0 means mpeg4), check options using 'gst-inspect vpuenc'.
記事全体を表示
Note: All these gstreamer pipelines have been tested using a i.MX6Q board with a kernel version 3.0.35-2026-geaaf30e. Tools: gst-launch gst-inspect FSL Pipeline Examples: GStreamer i.MX6 Decoding GStreamer i.MX6 Encoding GStreamer Transcoding and Scaling GStreamer i.MX6 Multi-Display GStreamer i.MX6 Multi-Overlay GStreamer i.MX6 Camera Streaming GStreamer RTP Streaming Other plugins: GStreamer ffmpeg GStreamer i.MX6 Image Capture GStreamer i.MX6 Image Display Misc: Testing GStreamer Tracing GStreamer Pipelines GStreamer miscellaneous
記事全体を表示