i.MXプロセッサ ナレッジベース

キャンセル
次の結果を表示 
表示  限定  | 次の代わりに検索 
もしかして: 

i.MX Processors Knowledge Base

ディスカッション

ソート順:
Some customers often use LVDS LCD with low resolution on i.MX6 platform, such as 320x240, but by defualt , linux bsp doesn't support low frequency pixel clock for LVDS module input. Question:     When we port LVDS LCD with 320x240 resolution to android4.2.2, we found pixel clock is not correct, it always output 38.9MHz, it is no probem for big resolution , for example 1024x768, but the clock we need for 320x240 LCD is 6.4MHz.     According to the quesiton, Let us check IPU & LDB clock in i.MX6 datasheet at first : From above table, if ldb clock is from IPU, we will not get 6.4MHz pixel clock, so we will have to adjust its source clock: The following steps are procedure that ports LVDS LCD with 320x240 resolution to i.MX6Q. 1. Adding LVDS LCD timing structure to ldb.c static struct fb_videomode ldb_modedb[] = { {       "LDB-XGA", 60, 320, 240, 155914,       38, 20,       15, 4,       30, 3,       0,       FB_VMODE_NONINTERLACED,       FB_MODE_IS_DETAILED, }, {      "LDB-1080P60", 60, 1920, 1080, 7692,      100, 40,      30, 3,      10, 2,      0,      FB_VMODE_NONINTERLACED,      FB_MODE_IS_DETAILED,}, }; 2.Modifying clock source of ldb module Checking /arch/arm/mach-mx6/clock.c, we can find there are 3 ldb's clock source : &pll5_video_main_clk, &pll2_pfd_352M, &pll2_pfd_400M, static int _clk_ldb_di1_set_parent(struct clk *clk, struct clk *parent) {        u32 reg, mux;        int rev = mx6q_revision();        reg = __raw_readl(MXC_CCM_CS2CDR)               & ~MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_MASK;        mux = _get_mux6(parent, &pll5_video_main_clk,               &pll2_pfd_352M, &pll2_pfd_400M,               (rev == IMX_CHIP_REVISION_1_0) ?                &pll3_pfd_540M :       /* MX6Q TO1.0 */                &mmdc_ch1_axi_clk[0],     /* MX6Q TO1.1 and MX6DL */               &pll3_usb_otg_main_clk, NULL);        reg |= (mux << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET);        __raw_writel(reg, MXC_CCM_CS2CDR);        return 0; } By default, pll2_pfd_352M is configured as the clock source of ldb: clk_set_parent(&ldb_di0_clk, &pll2_pfd_352M);        clk_set_parent(&ldb_di1_clk, &pll2_pfd_352M); We should change the clock source to be pll5_video_main_clk clk_set_parent(&ldb_di0_clk, &pll5_video_main_clk,);        clk_set_parent(&ldb_di1_clk, &pll5_video_main_clk,); 3. Configuring initial clock in board-mx6q_sabresd.c static struct ipuv3_fb_platform_data sabresd_fb_data[] = {        { /*fb0*/        .disp_dev = "ldb",        .interface_pix_fmt = IPU_PIX_FMT_RGB666,        .mode_str = "LDB-XGA",        .default_bpp = 16,        .int_clk = false,        .late_init = false, } int_clk=false means LDB clock is from PLL2_PFD_352 or pll5_video_main_clk; int_clk=true mean LDB clock if from IPU. OK, after doing above steps, LVDS LCD with low resolution should normally work. Freescale TICS team Weidong.sun 2015-08-18
記事全体を表示
The document includes the following contents: (1)document how to port ov5646 to android jb4.2.2 (2) ov5645 driver for Linux 3.0.35 (3) ov5645 schematic based on i.MX6Q/DL (4)ov5645 for android camera HAL   [Note:]      P5V29A-0JG is a camera module based on OV5645, and PAO532-0JG is based on OV5640, both manufactured by NINGBO SUNNY OPOTECH CO.LTD (China), If customer wants to use them on i.MX6 platform, can send me email to ask for datasheets of P5V29A & PAO532 , or discuss corresponding questions on porting.   Email: weidong.sun@freescale.com
記事全体を表示
For iMX6DQ, there are two IPUs, so they can support up to 4 cameras at the same time. But the default BSP can only support up to two cameras at the same time.     The attached patch can make the BSP support up to 4 cameras based on 3.10.53 GA 1.1.0 BSP.   The 4 cameras can be: - 1xCSI, 3xMIPI - 2xCSI, 2xMIPI - 4xMIPI   For 4xMIPI case, the four cameras should be combined on the single MIPI CSI2 interface, and each camera data should be transfered on a mipi virtual channel.   In this patch, we given the example driver for Intersil ISL79985. The input to ISL79985 is four CVBS camera. There are four patches: 0001-IPU-update-IPU-capture-driver-to-support-up-to-four-.patch      Updated IPU common code to support up to four cameras.   0002-Add-Intersil-ISL79985-MIPI-Video-Decoder-Driver-for-.patch      ISL79985 driver, which can support both 1 lanes and 2 lanes mode.   0003-Remove-the-page-size-align-requirement-for-v4l2-capt.patch      With this patch, the mxc_v4l2_tvin test application can use overlay framebuffer as V4l2 capture buffer directly.   0004-IPU-CSI-Drop-1-2-frame-on-MIPI-interface-for-interla.patch      This patch is option, it will drop one field data, so for each camera, the input will be 720*240 30 FPS.   For 720P HD solution, it is based on Maxim MAX9286: iMX6DQ MAX9286 MIPI CSI2 720P camera surround view solution for Linux BSP   How to builld the kernel with ISL79985 support:       make imx_v7_defconfig       make menuconfig (In this command, you should select the ISL79985 driver:             Device Drivers  --->                   <*> Multimedia support  --->                         [*]   V4L platform devices  --->                               <*>   MXC Video For Linux Video Capture                                       MXC Camera/V4L2 PRP Features support  --->                                           <*>Intersil ISL79985 Video Decoder support                                           <*>mxc VADC support                                           <*>Select Overlay Rounting (Queue ipu device for overlay library)                                           <*>Pre-processor Encoder library                                           <*>IPU CSI Encoder library)       make zImage       make dtbs   The built out image file:       arch/arm/boot/dts/imx6q-sabresd.dtb       arch/arm/boot/zImage   "mxc_v4l2_tvin.zip" is the test application, test command to capture the four cameras and render on 1080P HDMI display: /mxc_v4l2_tvin.out -ol 0 -ot 0 -ow 960 -oh 540 -d 1 -x 0 -g2d & /mxc_v4l2_tvin.out -ol 960 -ot 0 -ow 960 -oh 540 -d 1 -x 1 -g2d & /mxc_v4l2_tvin.out -ol 0 -ot 540 -ow 960 -oh 540 -d 1 -x 2 -g2d & /mxc_v4l2_tvin.out -ol 960 -ot 540 -ow 960 -oh 540 -d 1 -x 3 -g2d &   2015-10-10 Update: Updated the test application "mxc_v4l2_tvin_isl79985.tar.gz" to fix the Yocto build errors. Updated ISL79985 register setting "page5, isl79985_write_reg(0x07, 0x46)" in patch "0002-Add-Intersil-ISL79985-MIPI-Video-Decoder-Driver-for-.patch", which can fix the green line issue.   2016-01-25 Update: Added de-interlace support, L3.10.53_ISL79985_Surroundview_Patch_20160125.tar.gz New test capplication for de-interlance: mxc_v4l2_tvin_isl79985_vdi_20160125.tar.gz New test commands: /mxc_v4l2_tvin.out -ol 0 -ot 0 -ow 960 -oh 540 -d 1 -x 0 -g2d -m & /mxc_v4l2_tvin.out -ol 960 -ot 0 -ow 960 -oh 540 -d 1 -x 1 -g2d -m & /mxc_v4l2_tvin.out -ol 0 -ot 540 -ow 960 -oh 540 -d 1 -x 2 -g2d -m & /mxc_v4l2_tvin.out -ol 960 -ot 540 -ow 960 -oh 540 -d 1 -x 3 -g2d -m &   Note:  with the 0005-Add-interlaced-mode-capture-for-ISL79985.patch, the V4l2 capture driver will return 720x480 video size, but only odd lines have the video data, they are filled in line skip line mode.     2016-11-21 Update: Added ISL79987 support, L3.10.53_ISL7998x_Surroundview_Patch_20161121.zip New test capplication for de-interlance support: mxc_v4l2_tvin_isl7998x.tar.gz   Test commands (without de-interlace): /mxc_v4l2_tvin.out -ol 0 -ot 0 -ow 960 -oh 540 -d 1 -x 0 -g2d & /mxc_v4l2_tvin.out -ol 960 -ot 0 -ow 960 -oh 540 -d 1 -x 1 -g2d & /mxc_v4l2_tvin.out -ol 0 -ot 540 -ow 960 -oh 540 -d 1 -x 2 -g2d & /mxc_v4l2_tvin.out -ol 960 -ot 540 -ow 960 -oh 540 -d 1 -x 3 -g2d &   Test commands (with de-interlace, for ISL79987 only): /mxc_v4l2_tvin.out -ol 0 -ot 0 -ow 960 -oh 540 -d 1 -x 0 -m 1 -g2d & /mxc_v4l2_tvin.out -ol 960 -ot 0 -ow 960 -oh 540 -d 1 -x 1 -m 1 -g2d & /mxc_v4l2_tvin.out -ol 0 -ot 540 -ow 960 -oh 540 -d 1 -x 2 -m 1 -g2d & /mxc_v4l2_tvin.out -ol 960 -ot 540 -ow 960 -oh 540 -d 1 -x 3 -m 1 -g2d &     Now the same patch can support both ISL79985 and ISL79987, with NTSC CVBS camera, for ISL79985, it captures 60fps 720*240; for ISL79987, it captures 30fps 720*480.   2016-11-22 Update: Added patch for L4.1.15 BSP, it supports both ISL79985 and ISL79987, L4.1.15_ISL7998x_Surroundview_Patch_20161122.zip Test capplication mxc_v4l2_tvin_isl7998x.tar.gz is re-used.
記事全体を表示
Uploading the i.MX 6 Linux Reference Manual here after being un-able to find it on Google or on i.MX6 product page.
記事全体を表示
INTRODUCTION REQUIREMENTS CREATE A NEW PROJECT GPU EXAMPLE GSTREAMER EXAMPLE 1. INTRODUCTION:      The below steps show how to create different application examples using Elipse IDE. 2. REQUIREMENTS:      A fully working image and meta-toolchain generated in Yocto . You can follow the  next training: Yocto Training - HOME      Install and configure the Yocto Eclipse Plug-in. For more details about this requirement please refer to Setting up the Eclipse IDE for Yocto Application Development         To demonstrate the steps, L3.14.28  BSP, fsl-image-qt5 image and i.MX6Q SABRE-SDP board were used. 3. CREATE A NEW PROJECT      Follow the section Creating a Hello World Project of this document Setting up the Eclipse IDE for Yocto Application Development 4. GPU EXAMPLE           For this project we use the source code found in the fsl-gpu-sdk that can be downloaded from:      https://www.freescale.com/webapp/Download?colCode=IMX6_GPU_SDK&location=null&Parent_nodeId=1337637154535695831062&Parent…      Follow section 3 and create a new project named gputest.      From the IMX6_GPU_SDK choose one of the examples of GLES2.0 folder. In this case the 01_SimpleTriangle is chosen.      Copy the .c and .h files to the src directory of the gputest project. The Project Explorer window should look like this:              Add the needed files and libraries to compile and link in the Makefile.am file found in the ´src´ folder. The Makefile.am file should have the below content:          bin_PROGRAMS = gputest          gputest_SOURCES = gputest.c fsl_egl.c fslutil.c          AM_CFLAGS = @gputest_CFLAGS@          AM_LDFLAGS = @gputest_LIBS@ -lstdc++ -lm -lGLESv2 -lEGL -lX11 -ldl          CLEANFILES = *~ ​    Add the PATH to CFLAGS where the compiler will look for the headers at Project->Properties->Autotools->configure:           In this project there is no need to add extra PATHs for the headers. Apply the changes by clicking on Reconfigure Project. Build the project To test the file you can send the executable to the board with:           $ scp gputest root@<board_ip>:/home/root      $./gputest      You should get the next output in the display: 5. GSTREAMER EXAMPLE      For this project we use the source code found at Basic tutorial 1: Hello world! - GStreamer SDK documentation - GStreamer SDK documentation    Follow section 3 and create a new project named Gstreamer.    Copy the code of the basic tutorial to your Gstreamer.c file.    Add the needed files and libraries to compile and link in the Makefile.am file found in the ´src´ folder. The Makefile.am file should have the below content:                           bin_PROGRAMS = Gstreamer      Gstreamer_SOURCES = Gstreamer.c      AM_CFLAGS = @Gstreamer_CFLAGS@      AM_LDFLAGS = @Gstreamer_LIBS@ -lstdc++  -lVDK -lm -lGLESv2 -lGAL -lEGL  -ldl -lgstreamer-0.10 -lgobject-2.0 -lgmodule-2.0 -lgthread-2.0 -lrt -lxml2 -lglib-2.0      CLEANFILES = *~         ​    Add the PATH to CFLAGS where the compiler will look for the headers at Project->Properties->Autotools->configure:           For this example the next lines are added             -I${Sysroot}/usr/include/gstreamer-1.0        -I${Sysroot}/usr/include/glib-2.0        -I${Sysroot}/usr/include/libxml2        -I${Sysroot}/usr/lib/glib-2.0/include      Apply the changes by clicking on Reconfigure Project. Build the project To test the file you can send the executable to the board with:           $ scp Gstreamer root@<board_ip>:/home/root To execute the application on the board:      $./Gstreamer The board should have internet access and the application should play the video found at http://docs.gstreamer.com/media/sintel_trailer-480p.webm
記事全体を表示
Platform: Ubuntu 12.04 Board: Freescale MCIMX6Q-SDP  and  MCIMX-LVDS1 Screen BSP: L3.0.35_4.1.0_ER_SOURCE_BSP Other device: PC , One Router, 3 Network Cable and 2 usb-otg lines The  platform is as follow: Boot form NFS is very convenient in porting and debugging, and will value us much time. If the customers have modified the kernel and rebuild the kernel to generate the uImage running on board, he can directly download the uImage to the board by TFTP network. It is fast and can avoid the normal operation ,  first customers need to copy the images to the mfgtool specified directory and download the u-boot, uImage and file sytem again to the flash device in board, and then change to boot up mode to boot up the board. If customers are doing debug this operation will waste lot of time. So use the NFS is vey convenient. Beyond this, in the target board customers can also read the files and content in host machine. In a word, use NFS it will help save much time and also convenient. So the follows is introduce and show how to set NFS and then boot up the board. 1 Preparation (1)Build the BSP Build up the L3.0.35_4.1.0_ER_SOURCE_BSP use LTIB on the Ubuntu12.04, you can refer to our user guide document here no details. The u-boot, uImage and file system are all under the directory of litb. Boot up from NFS, so when build uImage some items are needed, here you can see the build details in the section of  Setting Target Linux Image to use NFS in this articel. (2)Download the u-boot to the target board Use the mfgtool Mfgtools-Rel-4.1.0_130816_MX6Q_UPDATER to download the u-boot to the SD card of MCIMX6Q-SDP board or use dd command to write the u-boot to SD card.( By the way, writing to the EMMC is also OK) 2 Setting the NFS Environment Set host machine 1 - Install NFS Service on host typing:     $sudo apt-get install nfs-kernel-server       2 - Create symbolic link to ltib/rootfs     $sudo ln -s <ltib instalation folder>/rootfs /tftpboot/rootfs       3 - Setup exports typing:     $sudo gedit /etc/exports       and add the following line:     /tftpboot/rootfs/ *(rw,no_root_squash,no_subtree_check,async) 4 - Restart the NFS server:     $sudo /etc/init.d/nfs-kernel-server restart       Now the host is ready to use NFS Setting Target Linux Image to use NFS       1. Run LTIB configuration by typing: $cd <ltib instalation folder>       $./ltib -c       2. On first page menu, go to "Target Image Generation -> Options"       3. Select the option NFS only and exit LTIB configuration to compile with the new configuration. 4. LTIB should start new compiling and create a new Linux image on /<ltib instalation folder>/rootfs/boot/uImage      5. Copy the created image on /<ltib instalation folder>/rootfs/boot/uImage to /tftpboot/uImage 6. The system is ready to run with NFS. The root file system on target will be located on host on /<ltib instalation folder>/rootfs/ 3 Setting the u-boot command line (1)Download the u-boot to the target board fist according to the section 1 (2) Download the u-boot to the target board. Then give the power to the board, boot up board, u-boot boot up. (2)Configuration the Network Configure the Network and IP , to make the target board and the host machine IP are in the local area network of Router. (3)Set the u-boot command line As follow is my setting for you to refer to : 4 Boot up the board Running the “run bootcmd” after setting the u-boot parameters then boot up the kernel and file system. We can see that the board download the uImage by the TFTP from host machine, then boot up the kernel and finally mount the NFS in the kernel. As follows is the details: Downloading the uImage success and boot up kernel: Input root and access the system. Test: Create a new file in the host machine directory, you can see in the next picture: Then open the target board, in the terminal go to the same directory  in the unit_test we can see the same name. So as we can see in the above operation we can see it is very convenient and fast use the NFS. It will help save time and speed the development time.
記事全体を表示
By default Linux BSP will work with LVDS screen on i.MX 6SoloX SABRE board. To enable MCIMX28LCD on the board, following need to be modified in u-boot: setenv panel 'MCIMX28LCD' setenv fdt_file 'imx6sx-sdb-lcdif1.dtb' #add video=mxc_lcdif:SEIKO-WVGA,bpp=16 to kernel command line you’re using #For example, when booting from MMC it will be: #  setenv mmcargs 'setenv bootargs console=${console},${baudrate} root=${mmcroot} video=mxc_lcdif:SEIKO-WVGA,bpp=16' saveenv
記事全体を表示
NFS and TFTP Boot 1  Introduction This document explains the required steps to boot Linux Kernel and mount a NFS on your target. 2 Requirements A functional Yocto environment (Images generated for your target). Your preferred target.  (SABRE-AI, SABRE-SD) 1 Ethernet Cable 1 Micro USB cable USB to Serial converter depending on your target features. 3 Yocto Folders When you develop your Linux kernel and Root File System with Yocto, different folders are created and each folder contains different information. {YOCTO_BUILD_DIR}/tmp/deploy/images/ {TARGET}/  This directory contains the output images, like Kernel, U-Boot and the File System in a tar file. This directory will be used to fetch the kernel and device tree blob file only. {YOCTO_BUILD_DIR}/tmp/sysroot/{TARGET}/  This folder contains all the development files used to generate our Yocto images. Here we can find all the dynamic libraries and headers used for development. This folder is used as parameter for cross-compilation. {YOCTO_BUILD_DIR}/tmp/work/{TARGET}-poky-linux-gnueabi/{IMAGE}/1.0-r0/rootfs This folder contains the uncompressed rootfs of our target. This folder will be used as entry in the host NFS server. 4 IP Address and Network Setup This section covers how to boot Linux that mounts the root file system (RFS) over the network. Remember that in this scenario, the RFS exists on the laptop hard drive, and the kernel that runs on the target board will mount the RFS over Ethernet. This setup is used for developing and debugging Linux applications. It allows for applications to be loaded and run without having to re-boot the kernel each time. First some packages on your host need to be installed: # apt-get install xinetd tftp tftpd isc-dhcp-server nfs-kernel-server portmap For development, it is best to have a static IP setup for the board and Linux environment. This way U-Boot options won’t change between reboots as you get a new IP address as you would using DHCP. 4.1 Linux Host Setup This section describes how to setup a static IP in your Linux host environment. This is not required but will allow the IP address of your virtual host system to remain unchanged. Because u-boot parameters use specific IP addresses, this step is recommended because u-boot parameters may need to be updated in the future to match your virtual IP address if it should ever change. You could take the existing IP address and make it static, but you would lose the Internet connection in your virtual machine. Instead we want to make use of the virtual environment and add a secondary Ethernet port that is tied to your wired Internet connection, while keeping the original Ethernet port which can use the wireless connection on your laptop. In the Linux virtual environment, type sudo ifconfig and note that you should have one Ethernet adapter (eth0). The other item listed (lo) is a virtual port for loopback mode. Shutdown the Linux virtual machine In VMware Player, go to Edit virtual machine settings. And add a Bridged Network Adapter, choosing only the wired Ethernet port. And click on OK.  See below for example: Start up the Linux VM. Open a terminal and type: sudo ifconfig You should have a new entry (eth1). This is the new Ethernet port you created in the virtual machine, and it is bridged to your wired Ethernet port. This is the port we want to make a static IP address. To set eth1 to a static IP, open /etc/nework/interfaces sudo gedit /etc/network/interfaces Add the following to set eth1 to your desired IP address. auto eth1 iface eth1 inet static address 192.168.0.100      <-- Your HOST IP netmask 255.255.255.0 gateway 192.168.0.1 Save the file Restart eth1 sudo ifdown eth1 sudo ifup eth1 4.2 Target Setup We need to setup the network IP address of our target. Power On the board and hit a key to stop the U-Boot from continuing. Set the below parameters: setenv serverip 192.168.0.100 <-- This must be your Host IP address setenv ipaddr 192.168.1.102  <-- This must be your target IP addres setenv ip_dyn no The path where the rootfs is placed in our host has to be indicated in the U-Boot: setenv nfsroot /home/usuario/fsl-release-bsp/buildimx6q/tmp/work/imx6qsabresd-poky-linux-gnueabi/fsl-image-gui/1.0-r0/rootfs setenv image zImage setenv fdt_file uImage-imx6q-sabresd.dtb setenv netargs 'setenv bootargs console=${console},${baudrate} ${smp} root=/dev/nfs ip={ipaddr} nfsroot=${serverip}:${nfsroot},v3,tcp' 4.3 TFTP and NFS Configuration Now configure the Trivial File Transfer Protocol (TFTP) server and Networked File System (NFS) server. This is how U-Boot will download (via TFTP) the Linux kernel, and then the kernel will mount (via NFS) its root file system on the computer hard drive. 4.3.1 TFTP Setup Next setup the TFTP server. The following commands show that we are logged in as root (#). If you are not root ($) then precede each instruction with “sudo”. Edit /etc/xinetd.conf gedit /etc/xinetd.conf Add and save the following lines in the file service tftp { socket_type = dgram protocol = udp wait = yes user = root server = /usr/sbin/in.tftpd server_args = -s {YOCTO_BUILD_DIR}/tmp/deploy/images/ {TARGET}/  disable = no } Notice that {YOCTO_BUILD_DIR}/tmp/deploy/images/ {TARGET}/   has to be written as absolute path. Restart the xinetd service service xinetd restart Test that TFTP is working tftp localhost tftp> get {An Image found in the tftp folder} tftp> quit 4.3.2 NFS Setup Edit the /etc/exports file gedit /etc/exports Add the path where the rootfs is found in your host. {YOCTO_BUILD_DIR}/tmp/work/{TARGET}-poky-linux-gnueabi/{IMAGE}/1.0-r0/rootfs *(rw,no_root_squash)                                                                 NOTE:      {YOCTO_BUILD_DIR}/tmp/work/{TARGET}-poky-linux-gnueabi/{IMAGE}/1.0-r0/rootfs may work most of the times,        but it is recommended to untar the {IMAGE}.bz2 in an exported           folder keeping using sudoand keeping the chmod of each file.     3. Restart the NFS service sudo service portmap stop sudo service nfs-kernel-server stop sudo service portmap start sudo service nfs-kernel-server start 5 Host Final Configuration and Booting Linux over NFS In your host, under the images folder {YOCTO_BUILD_DIR}/tmp/deploy/images/ {TARGET}/ create the below links ln -s zImage_imx_v7_defconfig zImage      2. In U-boot type the below command:                run netboot After a pair of minutes you should get a Linux working system on your target.
記事全体を表示
The i.MX 6 D/Q/DL/S/SL Linux 3.10.53_1.1.0 GA release is now available on www.freescale.com ·         Files available           Name Description L3.10.53_1.1.0_LINUX_DOCS i.MX 6 D/Q/DL/S/SL Linux   3.10.53_1.1.0 GA BSP documentation. L3.10.53_1.1.0_iMX6QDLS_Bundle i.MX 6 D/Q/DL/S  Linux   3.10.53_1.1.0 GA BSP Binary Demo Files L3.10.53_1.1.0_iMX6SL_Bundle i.MX 6 SL  Linux   3.10.53_1.1.0 GA BSP Binary Demo Files L3.10.53_1.1.0_AACP_CODECS AAC Plus Codec for the i.MX 6 D/Q/DL/S/SL Linux 3.10.53_1.1.0   GA BSP y IMX_6_MFG_L3.10.53_1.1.0_TOOL Manufacturing Tool and Documentation for Linux   3.10.53_1.1.0 GA BSP y ·         Target HW boards o   i.MX6DL  SABRE SD board o   i.MX6Q  SABRE SD board o   i.MX6DQ SABRE AI board o   i.MX6DL SABRE AI board o   i.MX6SL EVK board New Features ·                             Please refer to formal Release Note document for all details. Known issues For known issues and limitations please consult the release notes located in the BSP documentation package.
記事全体を表示
All, This document will help you to understand the " YOCTO PROJECT COMMUNITY LAYERS" and the "YOCTO PROJECT FREESCALE OFFICIAL RELEASE" differences and where the layer content is coming from.   Best Regards, Luis
記事全体を表示
This is an example of QR code encoding using i.MX28. The encoded QR image can show on the LCD display directly using frame buffer and the image saved as a BMP file. Board : i.MX28EVK BSP : L2.6.35_1.1.0_130130_source QR Code Lib:  qrencode-3.4.4.tar.gz Download from https://fukuchi.org/works/qrencode/ Libqrencode is a C library for encoding data in a QR Code symbol. This library is a free software made by Kentaro Fukuchi. Build the QR Code Lib source code into rootfs. 1. Create a new folder in <ltib>/dist/lfs-5.1/.     e.g. <ltib>/dist/lfs-5.1/qrencode 2. Copy the qrencode.spec to this new created folder 3. Build the source code    ./ltib –p qrencode.spec –m prep    ./ltib –p qrencode.spec –m scbuild    ./ltib –p qrencode.spec –m scdeploy Create and build the application in unit_test: - I use the existing unit_test package to build my application code. 1. Extract the source code of unit_test    ./ltib –p imx-test –m prep 2. cd <ltib>/rpm/BUILD/imx-test-2.6.35.3-1.1.0/test 3. mkdir qr_test 4. copy the Makefile and qr_test.c to qr_test folder 5. Build the unit_test     ./ltib –p imx-test  –m scbuild     ./ltib –p imx-test  –m scdeploy After built the code successfully, the qr_test.out will be generated in the unit_test folder. I start the board with NFS, so I can run the qr_test.out on the board directly. The command is : ./qr_test.out   (the default QR encode text is “http://www.freescale.com”) Or input the new text like this : ./qr_test.out –t https://community.freescale.com/community/imx The QR code  show on the display: And the BMP files will be generated in the unit_test folder.
記事全体を表示
It is based on 3.0.35 GA 4.1.0 BSP.   0001-Correct-mipi-camera-virtual-channel-setting-in-ipu_c.patch It is the updated IPU code for MIPI ID and SMFC setting in ipu_capture.c. These setting should not be combined with MIPI virtual channel value, they shoule be fixed with ID 0.   0002-Use-virtual-channel-3-for-ov5640-mipi-camera-on-iMX6.patch The sample code to modify ov5640_mipi camera to use virtual channel 3 on SabreSD board.   The followed command can be used to verify the mipi camera function after booted into Linux: $ gst-launch mfw_v4lsrc capture-mode=1 device=/dev/video1 ! mfw_v4lsink     2014-09-30 update: Added the patch for 3.10.17_GA1.0.0 BSP. "L3.10.17_1.0.0_mipi_camera_virtual_channel_3.zip"  
記事全体を表示
Here is a quick summary at booting a Linux system on the i.MX 6 Sabre SD platform, through USB. This assumes you have a "working" Linux development environment at hand (e.g. Debian), and that your are able to build a working Linux system with buildroot already, as explained in this post. You will also need libusb-1.0 development files (headers and libraries), as well as root/sudo permissions to access USB peripherals. Also, we will use the fine imx_usb_loader tool that the nice folks at Boundary Devices have developed for their i.MX 5/6 boards, as it works fine for Sabre sd as well. Get buildroot sources We will use git to fetch buildroot sources: $ git clone git://git.busybox.net/buildroot This should create a buildroot directory with all the latest sources (after a while). Note that for more stability you might want to checkout a release instead of the latest version; to do so, list the available release tags with e.g. git tag -l '201*', and git checkout <the-desired-tag>. Compile buildroot The beauty of buildroot is that it will take care of everything for you, including preparing a cross compiler. You can configure buildroot for Sabre SD by doing: $ cd buildroot $ make freescale_imx6sabresd_defconfig By default this would generate binaries suitable for booting with an SD card, so we need to tweak a few settings to obtain a ramdisk, which u-boot will like. Summon the configuration menu with the following command: $ make menuconfig Descend into the "Filesystem images" submenu, and select the following buildroot options: cpio the root filesystem (for use as an initial RAM filesystem) Compression method (gzip) Create U-Boot image of the root filesystem Exit, saving your configuration. You might want to verify that you have indeed the the correct options in your .config: $ grep '^BR2_TARGET_ROOTFS_CPIO' .config This should return the following: BR2_TARGET_ROOTFS_CPIO=y BR2_TARGET_ROOTFS_CPIO_GZIP=y BR2_TARGET_ROOTFS_CPIO_UIMAGE=y You may then proceed with the build: $ make This should download and build everything, so it will take a while. Note that, as bryanthomas pointed out, there are no files for the sabre sd in the boards folder. This is because no patches or custom kernel configurations are needed outside of what is defined in the defconfig. So the only place the sabre sd board lives in buildroot is in the configs directory. At the time of writing we still need a small final hack to have Linux boot on /init instead of its default /linuxrc for proper boot on ramdisk, though. Hopefully this should be addressed in a future buildroot version, and a patch is on his way, but for now we change the boot script in our target filesystem with: $ cd output/target $ ln -svf init linuxrc $ cd ../.. $ make All build results will fall under the output/images folder. We are most interested in the following pieces: output/images/ +- imx6q-sabresq.dtb +- rootfs.cpio.uboot +- u-boot.imx `- uImage Get imx_usb_loader sources We will use git to fetch imx_usb_loader sources: $ git clone git://github.com/boundarydevices/imx_usb_loader.git This should create an imx_usb_loader directory with all the latest sources. Compile imx_usb_loader Assuming your Linux development environment has the necessary libusb-1.0 headers and libraries, you can simply build by doing: $ cd imx_usb_loader $ make This should compile an imx_usb tool in the current folder. Prepare your payload and configuration First, copy all the necessary buildroot generated items to the imx_usb_loader directory. You will need: u-boot.imx uImage imx6q-sabresd.dtb rootfs.cpio.uboot Now we need to explain to imx_usb what we want to download to the i.MX romcode through USB. Add the following lines in the end of the mx6_usb_work.conf: ... u-boot.imx:dcd,plug uImage:load 0x12000000 rootfs.cpio.uboot:load 0x12C00000 imx6q-sabresd.dtb:load 0x18000000 u-boot.imx:clear_dcd,jump header The first line with dcd, plug uses u-boot header to configure the DDR3 memory, allowing us to download contents to the Sabre SD memory. This is exactly what the three subsequent lines with load directives do. The last line re-uses u-boot one more time to find out the address where to jump (jump header directive), but not touching the DDR configuration any more thanks to the clear_dcd directive (thanks jeanmariepons-b46892 for the tips) . Look at the comments in mx6_usb_work.conf for (a bit) more details on the various directives available. Also, note that all the absolute addresses mentioned above are what u-boot needed at the time of writing. Hopefully this should be fairly stable. Boot through USB! We are all set for booting now. Connect to the USB to UART port with a serial terminal set to 115200 baud, no parity, 8bit data. Connect also your PC to the USB OTG port of the Sabre SD, and make sure you have no SD card inserted and power up the platform. The Sabre SD should not boot into an operating system, but rather wait for a payload to download through USB. You might want to verify that it is indeed waiting with the following command: $ lsusb In the resulting output, there should be a line like the following: Bus 001 Device 098: ID 15a2:0054 Freescale Semiconductor, Inc. i.MX 6Dual/6Quad SystemOnChip in RecoveryMode On your PC, start the download of our "payload" to your Sabre SD with: $ sudo ./imx_usb (Note that you need proper permissions to do that.) After download of all the pieces, u-boot should start in its "mfgtools mode", as reflected by the following messages on UART: ... Boot from USB for mfgtools Use default environment for mfgtools Run bootcmd_mfg: run mfgtool_args;bootm ${loadaddr} ${initrd_addr} ${fdt_addr}; ... The Linux kernel should then start, and your buildroot system should reach a prompt: ... Welcome to Buildroot buildroot login: From there you may login as root. Enjoy! See also... This post details the buildroot steps a bit more. This post explains how to build a ramdisk for i.MX6 with busybox directly. AdeneoEmbedded - Whitepaper on USB loader for i.MX6 platforms imx_usb_loader README on github Buildroot: making embedded Linux easy
記事全体を表示
The i.MX 6 D/Q/DL/S/SL Linux 3.10.17_1.0.0 GA release is now available on www.freescale.com Files available Name Description L3.10.17_1.0.0_LINUX_DOCS i.MX 6 D/Q/DL/S/SL Linux 3.10.17_1.0.0 GA BSP documentation. y L3.10.17_1.0.0_iMX6QDLS_Bundle i.MX 6 D/Q/DL/S  Linux 3.10.17_1.0.0 GA BSP Binary Demo Files L3.10.17_1.0.0_iMX6SL_Bundle i.MX 6 SL  Linux 3.10.17_1.0.0 GA BSP Binary Demo Files i.MX_6_Vivante_VDK_150_Tools Vivante VTK 1.5 Codec for the i.MX 6 D/Q/DL/S/SL Linux 3.10.17_1.0.0 GA BSP    y L3.10.17_1.0.0_AACP_CODECS AAC Plus Codec for the i.MX 6 D/Q/DL/S/SL Linux 3.10.17_1.0.0 GA BSP y IMX_6_MFG_L3.10.17_1.0.0_TOOL Manufacturing Tool and Documentation for Linux 3.10.17_1.0.0 GA BSP y Target HW boards o   i.MX6DL  SABRE SD board o   i.MX6Q  SABRE SD board o   i.MX6DQ SABRE AI board o   i.MX6DL SABRE AI board o   i.MX6SL EVK board New  Features o   Main BSP New Features on MX6DQ, MX6DL and MX6SL from L3.10.9_1.0.0 GA: SD3.0 reset USB HSIC HWRNG security feature on MX6SL VIIM OTP Fuse in uboot Battery charge LED U-boot USB mass storage support USB Camera on host mode X backend: Adaptive HDMI display support backed by XRandR Main Codec New Features on MX6DQ, MX6DL and MX6SL from L3.10.17_1.0.0 Beta: Bug fix Main Codec New Features on MX6DQ, MX6DL and MX6SL from L3.10.17_1.0.0 Beta: Bug fix Other features not supported found during testing: UART: only support some baud rates like 9600, 115200, can't support high to 4000000 Known issues For known issues and limitations please consult the release notes located in the BSP documentation package.
記事全体を表示
This is a How-To documentation for OpenCL on i.MX6 using LTIB, there are all necessary steps and sample code to create,  build and run a HelloWorld application.
記事全体を表示
1. Description     1) Support HDMI interlaced display mode, the followed format had been verified.         CEA format 5: 1920x1080i @60Hz         CEA format 6&7: 720(1440)x480i @60Hz         CEA format 20: 1920x1080i @50Hz         CEA format 21&22: 720(1440)x576i @50Hz     2) Support LCD interface for interlaced display mode, 1920x1080i @50Hz(CEA format 20)        had been verified. 2. File List -- 0001-IPUv3-support-interlaced-display-mode.patch    Patch to support interlaced display output for iMX6 ipuv3. -- 0002-iMX6-HDMI-support-interlaced-display-mode.patch    Patch to support interlaced display mode for iMX6 HDMI driver. -- 0003-iMX6-LCD-interface-supports-1920x1080i50-mode.patch    Patch to support interlaced display mode for iMX6 LCD interface driver.    -- readme.txt    this file, please refer to it before use the patches 3. Requirement - iMX6 SabreSD board. - L3.0.35_4.1.0_GA_iMX6DQ kernel. 4. How to use -- Copy the patch files to kernel folder.     $ cd ~/ltib/rpm/BUILD/linux-3.0.35/     $ git apply ./0001-IPUv3-support-interlaced-display-mode.patch     $ git apply ./0002-iMX6-HDMI-support-interlaced-display-mode.patch     $ git apply ./0003-iMX6-LCD-interface-supports-1920x1080i50-mode.patch -- Build the new kernel image:     $ cd ~/ltib/rpm/BUILD/linux-3.0.35     $ export CROSS_COMPILE=/opt/freescale/usr/local/gcc-4.6.2-glibc-2.13-linaro-multilib-2011.12/fsl-linaro-toolchain/bin/arm-fsl-linux-gnueabi-     $ export ARCH=arm     $ make imx6_defconfig     $ make uImage -- Uboot parameters for video mode    Output 1080i50 display mode on HDMI:       "video=mxcfb0:dev=hdmi,1920x1080Mi@25,if=RGB24,bpp=32"    Output 1080i60 display mode on HDMI:       "video=mxcfb0:dev=hdmi,1920x1080Mi@30,if=RGB24,bpp=32"    Output 576i50 display mode on HDMI:       "video=mxcfb0:dev=hdmi,1440x576Mi@25,if=RGB24,bpp=32"    Output 480i60 display mode on HDMI:       "video=mxcfb0:dev=hdmi,1440x480Mi@30,if=RGB24,bpp=32"    Output 1080i50 display mode on LCD interface:       "video=mxcfb0:dev=lcd,LCD-1080I50,if=RGB565,bpp=32"       -- Switch HDMI interlaced mode    $ echo S:1920x1080i-50 > /sys/class/graphics/fb0/mode    $ echo S:1920x1080i-60 > /sys/class/graphics/fb0/mode    $ echo S:1440x480i-50 > /sys/class/graphics/fb0/mode    $ echo S:1440x576i-60 > /sys/class/graphics/fb0/mode 5. Know issue     1) When the interlaced display and another display work on same IPU,        blank and unblank the interlaced display will get the followed IPU        warning, but the display still works due to IPU can revover from the error.     imx-ipuv3 imx-ipuv3.0: IPU Warning - IPU_INT_STAT_5 = 0x00800000     imx-ipuv3 imx-ipuv3.0: IPU Warning - IPU_INT_STAT_10 = 0x00080000 2015-05-13 update: Replace the fourth patch to make interlace display mode follow CEA-861-specification The patch "0004-IPU-fine-tuning-the-interlace-display-timing-for-CEA.patch" was fine tuned for CEA-861-D specification on interlaced mode display. Please use this patch to replace the old 0004 patch. 2016-05-20 Update: For 3.0.35 BSP, add patch 0005-IPU-update-interlaced-video-mode-parameters-to-align.patch      Align the interlaced video mode parameters to progressive mode. 0006-IPU-update-IDMAC-setting-for-interlaced-display-mode.patch      Udate the IDMAC setting for interlaced display mode, output odd field data from memory first, it aligns with IPU DI timing, odd field first. For 3.14.52 BSP, created the new patch L3.14.52_1.1.0_GA_HDMI_Interlaced_Mode_Patch_2016_05_20.zip.
記事全体を表示
When working with IPU applications, sometimes image format converter is needed to check images generated by IPU that are not readable by PC (e.g. RGB565, common i.MX framebuffer format -> png or jpg) or generate a RGB picture from an encoded file to be read by IPU (e.g. png -> RGB565 framebuffer). There are some useful tools on Linux and some also available on Windows that can perform these conversions. I listed 5 tools with some usage examples below. IMAGEMAGICK // Display a 800x600 rgb image display -size 800x600 -depth 8 rgb:output.rgb // Show information of output.rgb identify -size 1296x972 -depth 8 output.rgb // Convert a 640x480 grayscale raw rgb file to png convert -size 640x480 -depth 8 imagefile.rgb image.png // To list all available color formats identify -list format For more information about Imagemagick and its format support. access: http://www.imagemagick.org/script/formats.php FFMPEG // List available formats for ffmpeg ffmpeg -pix_fmts // Convert raw rgb565 image to png ffmpeg -vcodec rawvideo -f rawvideo -pix_fmt rgb565 -s 1024x768 -i freescale_1024x768.raw -f image2 -vcodec png screen.png // Convert png to raw rgb565 ffmpeg -vcodec png -i image.png -vcodec rawvideo -f rawvideo -pix_fmt rgb565 image.raw // Convert a 720x480 NV12 (YUV 420 semi-planar) image to png ffmpeg -s 720x480 -pix_fmt nv12 -i image-nv12.yuv -f image2 -pix_fmt rgb24 image-png.png // Convert a 640x480 uyvy422 image to png ffmpeg -s 640x480 -pix_fmt uyvy422 -i image-uyvy422.yuv -f image2 -pix_fmt rgb24 image-uyvy422.png MENCODER http://www.mplayerhq.hu/DOCS/HTML/en/encoding-guide.html TRANSCODING http://www.transcoding.org/cgi-bin/transcode?Examples GRAPHICSMAGICK http://www.graphicsmagick.org/
記事全体を表示
Here is a quick summary at building a bootloader, a kernel and a root filesystem for the i.MX 6 sabre sd platform, using buildroot. This assumes you have a "working" Linux development environment at hand (e.g. Debian). Buildroot is a fine build system, which makes deploying Linux on embedded platforms really easy. It is comparable to Yocto in spirit, but much simpler. Thanks to my colleague gillestalis, buildroot now has builtin support for the i.MX6 sabre sd platform. Get buildroot sources We will use git to fetch buildroot sources: $ git clone git://git.busybox.net/buildroot This should create a buildroot directory with all the latest sources (after a while). Note that for more stability you might want to checkout a release instead of the latest version; to do so, list the available release tags with e.g. git tag -l '201*', and git checkout <the-desired-tag>. Compile The beauty of buildroot is that it will take care of everything for you, including preparing a cross compiler. You can download and build everything by doing: $ cd buildroot $ make freescale_imx6sabresd_defconfig $ make This should download and build everything, so it will take a while. buildroot detects the number of CPUs you have in your machine and builds with parallel jobs automatically; no need to specify any -j argument to make here. All build results fall under the output/images folder: output/images/ +- rootfs.ext2 +- rootfs.tar +- u-boot.bin `- uImage Format the SD card As for Debian, we need to format the SD card with two partitions; one small FAT partition to contain the Linux kernel, and one large ext4 partition, which will contain the root filesystem with the buildroot generated userspace. Also, we need to make sure we leave some space for u-boot starting from offset 1024B. Here is an example SD card layout: +-----+------+--------+-----+---------------+----------------- | MBR |  ... | u-boot | ... | FAT partition | Linux partition ... +-----+------+--------+-----+---------------+----------------- 0     512    1024           1M              ~257M (offsets in bytes) Here is an example SD card layout, as displayed by fdisk: Device    Boot      Start         End      Blocks   Id  System /dev/sdc1            2048      526335      262144    c  W95 FAT32 (LBA) /dev/sdc2          526336     8054783     3764224   83  Linux (units: 512B sectors) You can format the FAT boot partition with: # mkfs.vfat /dev/<your-sd-card-first-partition> Your SD card first partition is typically something in /dev/sd<X>1 or/dev/mmcblk<X>p1. You can format the Linux partition with: # mkfs.ext4 /dev/<your-sd-card-second-partition> Your SD card second partition is typically something in /dev/sd<X>2 or/dev/mmcblk<X>p2. Put on SD As explained here, u-boot should reside at offset 1024B of your SD card. Also, as buildroot generates an u-boot.bin (and not an u-boot.imx) we should skip its first KB, too. In summary, to put u-boot on your SD, do:   # dd if=output/images/u-boot.bin of=/dev/<your-sd-card> bs=1k seek=1 skip=1   # sync Your SD card device is typically something in /dev/sd<X> or /dev/mmcblk<X>. Note that you need write permissions on the SD card for the command to succeed, so you might need to su - as root, or use sudo, or do a chmod a+w as root on the SD card device node to grant permissions to users. Similarly to what this post describes, you can copy the kernel to the FAT boot partition with: # mount /dev/<your-sd-card-second-partition> /mnt # cp output/images/uImage /mnt/ # umount /mnt Your SD card first partition is typically something in /dev/sd<X>1 or/dev/mmcblk<X>p1. And not unlike what is done in this post, You can install your generated root filesystem to the Linux partition with: # mount /dev/<your-sd-card-second-partition> /mnt # tar -C /mnt -xvf output/images/rootfs.tar # umount /mnt Your SD card second partition is typically something in /dev/sd<X>2 or/dev/mmcblk<X>p2. Boot! Your SD card is ready for booting. Insert it in the SD card slot of your i.MX6 sabre sd platform, connect to the USB to UART port with a serial terminal set to 115200 baud, no parity, 8bit data and power up the platform. Like with Debian, u-boot default settings will not allow it to boot from the SD card, so we need to interrupt it by pressing enter at u-boot prompt for the first boot and setup u-boot environment to fix this: MX6Q SABRESD U-Boot > setenv bootargs_mmc 'setenv bootargs ${bootargs} root=/dev/mmcblk1p2 rootwait' MX6Q SABRESD U-Boot > setenv bootcmd_mmc 'run bootargs_base bootargs_mmc; mmc dev 2; fatload mmc 2:1 ${loadaddr} ${kernel}; bootm' MX6Q SABRESD U-Boot > setenv bootcmd 'run bootcmd_mmc' MX6Q SABRESD U-Boot > saveenv Saving Environment to MMC... Writing to MMC(2)... done As this is saved in the SD card it need only to be done once at first boot. You can reboot your board or type boot; your buildroot system should boot to a prompt: (...) Welcome to Buildroot buildroot login: From there you may login as root. Enjoy! Tweak buildroot uses Linux kernel kconfig to handle its configuration. So, as for the Linux kernel, changes to the configuration can be done with e.g.: $ make menuconfig Most of the options can be tuned from there, including (most importantly) which packages get installed into the generated root filesystem. This is configuration section 'Filesystem images'. Further details are documented in buildroot manual. Tips ccache is natively supported by buildroot and can be easily enabled with configuration option BR2_CCACHE. If you only use the generated rootfs.tar as described in this post and do not care about the rootfs.ext2, you might as well save a few seconds of build by disabling its generation. This is done with configuration option BR2_TARGET_ROOTFS_EXT2. It is recommended to install an ssh server inside the target for further development. This is conveniently done with configuration option BR2_PACKAGE_OPENSSH. See also... Other root filesystems may make more sense for you; see this post for a Debian root filesystem, and this post for a minimal busybox filesystem. Freescale Yocto Project main page
記事全体を表示
This is the procedure and patch to set up Ubuntu 13.10 64bit Linux Host PC and building i.MX6x L3.0.35_4.1.0. It has been tested to build GNOME profile and with FSL Standard MM Codec for i.MX6Q SDB board. A) Basic Requirement: Set up the Linux Host PC using ubuntu-13.10-desktop-amd64.iso Make sure the previous LTIB installation and the /opt/freescale have been removed B) Installed the needed packages to the Linux Host PC $ sudo apt-get update $ sudo apt-get install gettext libgtk2.0-dev rpm bison m4 libfreetype6-dev $ sudo apt-get install libdbus-glib-1-dev liborbit2-dev intltool $ sudo apt-get install ccache ncurses-dev zlib1g zlib1g-dev gcc g++ libtool $ sudo apt-get install uuid-dev liblzo2-dev $ sudo apt-get install tcl dpkg $ sudo apt-get install asciidoc texlive-latex-base dblatex xutils-dev $ sudo apt-get install texlive texinfo $ sudo apt-get install lib32z1 lib32ncurses5 lib32bz2-1.0 $ sudo apt-get install libc6-dev-i386 $ sudo apt-get install u-boot-tools $ sudo apt-get install scrollkeeper $ sudo apt-get install gparted $ sudo apt-get install nfs-common nfs-kernel-server $ sudo apt-get install git-core git-doc git-email git-gui gitk $ sudo apt-get install meld atftpd $ sudo ln -s /usr/lib/x86_64-linux-gnu/librt.so   /usr/lib/librt.so C) Unpack and install the LTIB source package and assume done on the home directory: $ cd ~ $ tar -zxvf L3.0.35_4.1.0_130816_source. tar.gz $ ./L3.0.35_4.1.0_130816_source/install      After that, you will find ~/ltib directory created D) Apply the patch to make L3.0.35_4.1.0 could be installed and compiled on Ubuntu 13.10 64bit OS $ cd ~/ltib $ git apply 0001_make_L3.0.35_4.1.0_compile_on_Ubuntu_13.10_64bit_OS.patch What the patch is doing: a) The patch modifies the following files:    dist/lfs-5.1/base_libs/base_libs.spec    dist/lfs-5.1/m4/m4.spec    dist/lfs-5.1/ncurses/ncurses.spec b) Add the following files to the pkgs directory:    pkgs/m4-1.4.16-1383761043.patch    pkgs/m4-1.4.16-1383761043.patch.md5 E) Then, it is ready to proceed the rest of the LTIB env setup process: $ cd ~/ltib $ ./ltib -m config $ ./ltib Reference: L3.0.35_4.1.0_130816_docs/doc/mx6/Setting_Up_LTIB_host.pdf https://community.freescale.com/message/332385#332385 https://community.freescale.com/thread/271675 https://community.freescale.com/message/360556#360556 m4 compilation issue: 1. https://github.com/hashdist/hashstack/commit/f6be2a58de62327d05e052d89c9aa931d4c926b3 2. https://github.com/hashdist/hashstack/issues/81 rpm-fs package failed to build issue: https://community.freescale.com/message/355771#355771 scrollkeeper is for the gnome-desktop compilation NOTE: When compiling gstreamer, this warning was pop up.  Just ignore it seems okay.
記事全体を表示
This is the procedure and patch to set up Ubuntu 13.10 64bit Linux Host PC and building i.MX28 L2.6.35_1.1.0_130130. It has been tested to build GNOME profile and with FSL Standard MM codec. A) Basic Requirement: Set up the Linux Host PC using ubuntu-13.10-desktop-amd64.iso Make sure the previous LTIB installation and the /opt/freescale have been removed B) Installed the needed packages to the Linux Host PC $ sudo apt-get update $ sudo apt-get install gettext libgtk2.0-dev rpm bison m4 libfreetype6-dev $ sudo apt-get install libdbus-glib-1-dev liborbit2-dev intltool $ sudo apt-get install ccache ncurses-dev zlib1g zlib1g-dev gcc g++ libtool $ sudo apt-get install uuid-dev liblzo2-dev $ sudo apt-get install tcl dpkg $ sudo apt-get install asciidoc texlive-latex-base dblatex xutils-dev $ sudo apt-get install texlive texinfo $ sudo apt-get install lib32z1 lib32ncurses5 lib32bz2-1.0 $ sudo apt-get install libc6-dev-i386 $ sudo apt-get install u-boot-tools $ sudo apt-get install scrollkeeper $ sudo apt-get install gparted $ sudo apt-get install nfs-common nfs-kernel-server $ sudo apt-get install git-core git-doc git-email git-gui gitk $ sudo apt-get install meld atftpd $ sudo ln -s /usr/lib/x86_64-linux-gnu/librt.so   /usr/lib/librt.so C) Unpack and install the LTIB source package and assume done on the home directory: $ cd ~ $ tar -zxvf L2.6.35_1.1.0_130130_source.tar.gz $ ./L2.6.35_1.1.0_130130_source/install After that, you will find ~/ltib directory created D) Apply the patch to make L2.6.35_1.1.0_130130 could be installed and compiled on Ubuntu 13.10 64bit OS $ cd ~/ltib $ git apply 0001_make_L2.6.35_1.1.0_130130_compile_on_ubuntu_13.10_64bit_OS.patch What the patch is doing: a) The patch modifies the following files: dist/lfs-5.1/base_libs/base_libs.spec dist/lfs-5.1/elftosb/elftosb.spec dist/lfs-5.1/lkc/lkc.spec dist/lfs-5.1/mux_server/mux_server.spec dist/lfs-5.1/ncurses/ncurses.spec b) Add the following files to the pkgs directory: pkgs/elftosb-2.6.35.3-1385779630.patch pkgs/elftosb-2.6.35.3-1385779630.patch.md5 pkgs/lkc-1.4-lib.patch pkgs/lkc-1.4-lib.patch.md5 E) Then, it is ready to proceed the rest of the LTIB env setup process: $ cd ~/ltib $ ./ltib -m config $ ./ltib Reference: L2.6.35_1.1.0_130130_docs/doc/mx28/Setting_Up_LTIB_Host_on_Ubuntu_9_04.pdf https://community.freescale.com/docs/DOC-93394 https://community.freescale.com/message/332385#332385 https://community.freescale.com/thread/271675 https://community.freescale.com/message/360556#360556 scrollkeeper is for the gnome-desktop compilation elftosb compilation issue fixed by added -lm to LIBS in the elftosb-2.6.35.3-1.1.0/makefile.rules NOTE: When compiling gstreamer, this warning was pop up.  Just ignore it seems okay.
記事全体を表示