S32K Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

S32K Knowledge Base

Labels

Discussions

Sort by:
Hi everyone, Welcome to the NXP Tech Days 2024 training session AUT-T4977: Hands - On Workshop: S32K3 Ethernet- How to Configure Hardware and Software. This session was initially planned for 15 attendees. But due to the popularity of the lecture, we have increased the number of available seats . Therefore, we will work in pairs during the Hands-On. My name is Alejandro Flores Triana (Alex) and I will be your guide during this conference. I am an Automotive Applications Engineer supporting different OEMs, Tier1s, Partners and other internal NXP teams on topics related to communication protocols (e.g. CAN, LIN, SPI, I2C, Ethernet, etc.). The idea of this session is for you to understand how to program the S32K3 Ethernet interface using NXP Real-Time Drivers (RTDs) – Autosar MCAL Layer. We will use a base project and together modify it to create a simple Ethernet application. Therefore, to be ready follow the steps below to get your environment up and running before the session. On your laptop, install the NXP Software environment described in the attached presentation: Hands - On Workshop: S32K3 Ethernet Prerequisites.   Once you have the NXP software environment installed, download the attached project: S32K344_ETH_MCAL_TechDays.exe   Run the .exe project with administrator rights. Accept the license and install in the desired folder         Open the NXP Design Studio. Click File -> Import -> Existing Projects into Workspace   Select root directory and browse the folder where you downloaded the project   Select Copy projects into workspace   Click Finish. Select the project. Click on the arrow next to the hammer. Click on Debug_FLASH. Then you are ready for the session! See you soon. Best Regards, Alejandro Flores Triana
View full article
The S32K3 family of 32-bit AEC-Q100 qualified MCUs combines a scalable family of Arm® Cortex-M7-based microcontrollers built on long-lasting features with a comprehensive suite of production-grade tools. S32K3 MCUs are included in NXP’s Product Longevity Program, guaranteeing a minimum of 15 years of assured supply. The S32K3 offers dedicated peripherals set for rapid motor control loop implementation: enhanced Modular IO Subsystem(eMIOS), Logic Control Unit (LCU), TRGMUX, BodyCross-triggering Unit (BCTU), Analog to Digital Converter(ADC), and Analog Comparator (CMP). The comprehensive motor control ecosystem based on Automotive Math and Motor Control Library(AMMCLib) set, FreeMASTER with Motor Control ApplicationTuning (MCAT) tool and Model-Based Design Toolbox (MBDT) helps to enable S32K3 MCU in wide range of motor control use cases. The table below points to the articles with more detailed description each of S32K3 motor control use cases, hardware description, links to appropriate application notes and their addendums, and software repositories.  Device HW Article S32K344       MCSPTE1AK344 12 V development kit engineered for 3-phase PMSM and BLDC motor control applications     FOC with dual shunt current measurement Article focuses on solution based Field Oriented Control (FOC) technique (typically used for 3-phase PMSM motors) with dual shunt current measurement and without any position sensor (sensorless). The Encoder sensor is supported by SW option, but missing on HW kit. The available example codes covers both ANSI-C and Matlab Simulink approaches and uses RTD drivers with high-level Autosar complient API or low-level non-Autosar API.    FOC with single shunt current measurement Article focuses on solution based Field Oriented Control (FOC) technique (typically used for 3-phase PMSM motors) with single shunt current measurement and without any position sensor (sensorless). The Encoder sensor is supported by SW option, but missing on HW kit. The single shunt current measurement is advanced technique that allows decrese the cost of Bill of Material (BOM). The available example codes covers both ANSI-C and Matlab Simulink approaches and uses RTD drivers with high-level Autosar complient API or low-level non-Autosar API.    FOC integrated with FreeRTOS Article focuses on integration of motor control software (based on FOC with dual shunt current measurement) and Real Time Operating System (FreeRTOS). The available example code is based ANSI-C  code and uses RTD drivers with low-level non-Autosar API.    Six-step commutation control. Article focuses on solution based Six-step commutation (6-step) technique (typically used for 3-phase BLDC motors) with Hall position sensor and without any position sensor (sensorless). The available example codes covers both ANSI-C and Matlab Simulink approaches and uses RTD drivers with low-level non-Autosar API.    Note: the list of use cases cannot cover all combinations of MCU, current measurement scenario, control technique and sensor inputs, but should work as a base reference for most common configurations. This list is not final, please follow this acticle to be notified about updates with new use cases.   
View full article
*******************************************************************************  The purpose of this demo application is to present a usage of the LPI2C-0 as MASTER and LPI2C-1 SLave, using DMA for TX & RX for the S32K3xx MCU.  ------------------------------------------------------------------------------ * Test HW: S32K3X2EVB-Q172 * MCU: S32K312 * Compiler: S32DS3.5 * SDK release: RTD 3.0.0 * Debugger: PE micro * Target: internal_FLASH ********************************************************************************
View full article
 ------------------------------------------------------------------------------ * Test HW: S32K3X4EVB-Q172 * MCU: S32K312 * Compiler: S32DS3.5 * SDK release: RTD 3.0.0 * Debugger: PE Micro * Target: internal_FLASH ******************************************************************************** For S32K312, please use this correct clock HSE to AIPS clock should be ½. Please make these changes in the below all example code clock setting. HSE clock to 60 MHZ.   S32K312 PIT BTCU ADC-1 BCTU_ADC_DATA_REG DMA :-- https://community.nxp.com/t5/S32K-Knowledge-Base/Example-S32K312-PIT-BTCU-ADC-1-BCTU-ADC-DATA-REG-DMA-DS3-5/ta-p/1787778 S32K312 UART Transmit & Receive Using DMA :-- https://community.nxp.com/t5/S32K-Knowledge-Base/Example-S32K312-UART-Transmit-amp-Receive-Using-DMA-DS3-5-RTD300/ta-p/1787799 S32K312 EIRQ Interrupt :-- https://community.nxp.com/t5/S32K-Knowledge-Base/Example-S32K312-EIRQ-Interrupt-DS3-5-RTD300/ta-p/1787860 S32K312 SPI Transmit & Receive Using DMA :-- https://community.nxp.com/t5/S32K-Knowledge-Base/Example-S32K312-SPI-Transmit-amp-Receive-Using-DMA-DS3-5-RTD300/ta-p/1787856 Example S32K312 SPI Transmit & Receive Using Polling DS3.5 RTD300 :-- Example S32K312 SPI Transmit & Receive Using Polling DS3.5 RTD300 - NXP Community Example S32K312 SPI Transmit & Receive Using Interrupt DS3.5 RTD300 :-- Example S32K312 SPI Transmit & Receive Using Interrupt DS3.5 RTD300 - NXP Community S32K312 CAN Transmit & Receive Using Polling mode :-- https://community.nxp.com/t5/S32K-Knowledge-Base/Example-S32K312-CAN-Transmit-amp-Receive-Using-Polling-mode-DS3/ta-p/1789191 S32K312 CAN Transmit & Receive Using MB & FIFO DMA :-- https://community.nxp.com/t5/S32K-Knowledge-Base/Example-S32K312-CAN-Transmit-amp-Receive-Using-MB-amp-FIFO-DMA/ta-p/1789196 S32K312 ADC :-- https://community.nxp.com/t5/S32K-Knowledge-Base/Example-S32K312-ADC-DS3-5-RTD300/ta-p/1789282 S32K312 Switch Debouncing :-- https://community.nxp.com/t5/S32K-Knowledge-Base/Example-S32K312-Switch-Debouncing-DS3-5-RTD300/ta-p/1789290 S32K312 UART Freemaster :-- https://community.nxp.com/t5/S32K-Knowledge-Base/Example-S32K312-UART-Freemaster-DS3-5-RTD300/ta-p/1789306 S32K312 PIT BTCU parallel ADC FIFO DMA  :-- https://community.nxp.com/t5/S32K-Knowledge-Base/Example-S32K312-PIT-BTCU-parallel-ADC-FIFO-DMA-DS3-5-RTD300/ta-p/1789908 S32K312 placing variables in DCTM & code in ICTM  :-- https://community.nxp.com/t5/S32K-Knowledge-Base/Example-S32K312-placing-variables-in-DCTM-amp-code-in-ICTM-DS3-5/ta-p/1790101 Example S32K312 Standby mode & Standby RAM and PAD keeping DS3.5 RTD300 :-- https://community.nxp.com/t5/S32K-Knowledge-Base/Example-S32K312-Standby-mode-amp-Standby-RAM-and-PAD-keeping-DS3/ta-p/1797713 Example S32K312 SWT DS3.5 RTD300 :-- https://community.nxp.com/t5/S32K-Knowledge-Base/Example-S32K312-SWT-DS3-5-RTD300/ta-p/1800559 Example S32K312 Printf Semihosting DS3.5 RTD300 :--- https://community.nxp.com/t5/S32K-Knowledge-Base/Example-S32K312-Printf-Semihosting-DS3-5-RTD300/ta-p/1801354 Example S32K312 I2C Transmit & Receive Using DMA DS3.5 RTD300 :-- https://community.nxp.com/t5/S32K-Knowledge-Base/Example-S32K312-I2C-Transmit-amp-Receive-Using-DMA-DS3-5-RTD300/ta-p/1801357 Example S32K312 HARDFAULT Handling Interrupt DS3.5 RTD300 :-- https://community.nxp.com/t5/S32K-Knowledge-Base/Example-S32K312-HARDFAULT-Handling-Interrupt-DS3-5-RTD300/ta-p/1806259 Example S32K312 Bootloader to Application Jump DS3.5 RTD300 :-- https://community.nxp.com/t5/S32K-Knowledge-Base/Example-S32K312-Bootloader-to-Application-Jump-DS3-5-RTD300/ta-p/1809810 Example S32K312 PIT timer Toggle LED DS3.5 RTD300 :-- https://community.nxp.com/t5/S32K-Knowledge-Base/Example-S32K312-PIT-timer-Toggle-LED-DS3-5-RTD300/ta-p/1809932 Example S32K312 HARDFAULT Interrupt Handling using a script DS3.5 RTD300 :-- https://community.nxp.com/t5/S32K-Knowledge-Base/Example-S32K312-HARDFAULT-Interrupt-Handling-using-a-script-DS3/ta-p/1818507 Example S32K312 UART Transmit & Receive Using Interrupt DS3.5 RTD300 :-- https://community.nxp.com/t5/S32K-Knowledge-Base/Example-S32K312-UART-Transmit-amp-Receive-Using-Interrupt-DS3-5/ta-p/1818775 Example S32K312 CAN Transmit & Receive Using MB Interrupt DS3.5 RTD300 :-- https://community.nxp.com/t5/S32K-Knowledge-Base/Example-S32K312-CAN-Transmit-amp-Receive-Using-MB-Interrupt-DS3/ta-p/1818790 Example S32K312 STANDBY wake up using CAN-0-RX and GPIO Switch DS3.5 RTD300 :-- https://community.nxp.com/t5/S32K-Knowledge-Base/Example-S32K312-STANDBY-wake-up-using-CAN-0-RX-and-GPIO-Switch/ta-p/1891411 Example S32K312 STANDBY wake up using RTC DS3.5 RTD300 :-- https://community.nxp.com/t5/S32K-Knowledge-Base/Example-S32K312-STANDBY-wake-up-using-RTC-DS3-5-RTD300/ta-p/1930115 S32K312 : ADC Clock selection :-- https://community.nxp.com/t5/S32K-Knowledge-Base/S32K312-ADC-Clock-selection/ta-p/1997759 Example IP S32K312 PWM ICU using EMIOS Custom IRQ DS3.5 RTD300 :-- Example IP S32K312 PWM ICU using EMIOS DS3.5 RTD300 - NXP Community Example IP S32K312 EMIO PWM Generation & Duty capture using Interrupt DS3.5 RTD300 :-- Example IP S32K312 EMIO PWM Generation & Duty capture using Interrupt DS3.5 RTD300 - NXP Community Example IP S32K312 EMIO PWM Generation & Duty capture using Polling DS3.5 RTD300 :-- Example IP S32K312 EMIO PWM Generation & Duty capture using Polling DS3.5 RTD300 - NXP Community
View full article
*******************************************************************************  The purpose of this demo application is to present a usage of the  FlexCAN IP Driver for the S32K3xx MCU.  The example uses FLEXCAN-0 for transmit & receive Tusing following Message buffer :-- #define RX_MB_IDX_0 10U #define RX_MB_IDX 11U #define TX_MB_IDX 12U FIFO Receive Message from range :-- 0x01 to 0x16 BAUDRATE : 500 KBPS  ------------------------------------------------------------------------------ * Test HW: S32K3X2EVB-Q172 * MCU: S32K312 * Compiler: S32DS3.5 * SDK release: RTD 3.0.0 * Debugger: PE micro * Target: internal_FLASH ********************************************************************************    
View full article
To restrict the S32K3 MCU access by JTAG the process depends on whether HSE FW is used or not. With HSE FW (not covered in this document): 1. Set up ADKP (Application Debug Key/Password). 2. Make sure the password mode or challenge-response mode. 3. Move the lifecycle to the IN-FIELD stage. NOTE: All the above steps can only be done via HSE services (not via IVT or by direct flash programming). Without HSE FW: WARNING: ONCE YOU REALIZE THIS PROCESS YOU CAN NOT CONFIGURE HSE IN THE DEVICE. NOTE: All the following codes represent just the essential part of the application and, where made using the S32K344 (not EVB), S32DS v3.5, the S32K3 Real-Time Drivers Version 3.0.0 (released on March 31, 2023) and a modified version of the C40_Ip_Example_S32K344, unless otherwise mentioned. As the debugger the PEmicro’s USB Multilink Universal FX was used, unless otherwise mentioned. 1. Program the field CUST_DB_PSWD_A: The UTEST Sector is an OTP (One Time Programmable). This causes the erase operations not to be allowed. You only going to be able to append new data or configuration and read data. This UTEST memory field is defined with a size of 32 bytes located from addresses 1B00_0080h to 1B00_009Fh, but its real size is 16 bytes because from 1B00_0090h to 1B00_009Fh is reserved (Table 184. UTEST memory location usage by SBAF of the S32K3xx Reference Manual, Rev. 7). To write the desired password in the UTEST Sector is the same process used to program data in other blocks. I. First, the sector needs to be unlocked to realize program operations. UTEST has its register PFCBLKU_SPELOCK[SLCK]. II. Once the sector is unlocked, write the 16-byte lend password at 1B00_0080h. The following changes need to be done in the example code: /*============================================================================ * LOCAL MACROS ============================================================================*/ #define FLS_MASTER_ID 0U #define FLS_BUF_SIZE 16U #define FLS_SECTOR_ADDR 0x1B000080U #define FLS_SECTOR_TEST C40_UTEST_ARRAY_0_S000 NOTE: Make sure that the definition FLS_MAX_VIRTUAL_SECTOR located in C40_Ip_Cfg.h has the same value as the C40_UTEST_ARRAY_0_S000 and that C40_SECTOR_ERROR is one value greater than C40_UTEST_ARRAY_0_S000.  For example instead of: #define FLS_MAX_VIRTUAL_SECTOR (527U) … #define C40_SECTOR_ERROR (528U) Needs to be: #define FLS_MAX_VIRTUAL_SECTOR (528U) … #define C40_SECTOR_ERROR (529U) /*============================================================================ * GLOBAL CONSTANTS ============================================================================*/ uint8 TxBuffer[FLS_BUF_SIZE] = {0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E,0x0F}; /* Password */ You can confirm the password was written by using the Memory Viewer (not covered by this document).   2. Advance the MCU's lifecycle: I. First, set the address of the lifecycle configuration word in the IVT/boot header. For more information refer to sections 32.5 (Image vector table) and 32.5.3 (Structure definition of image vector table) of the S32K3xx Reference Manual, Rev. 7. NOTE: Make sure that the structure of the boot_header (located in Project_Settings -> Startup_Code -> startup_cm7.s) is defined as shown below:     #define LF_CONFIG_ADDR (0x007D2000) /* The LC word can be at any flash address, taking care that does not interfere with HSE */     II. Once defined LF_CONFIG_ADDR, write in such address the value for the LC word corresponding to the target lifecycle: Life cycle stage Valid Values for LC Advancement OEM_PROD DADA_DADAh IN_FIELD BABA_BABAh The following changes need to be done in the example code (the changes can be done in the same project used before):     /*=========================================================================== * LOCAL MACROS ===========================================================================*/ #define FLS_MASTER_ID 0U #define FLS_BUF_SIZE 8U #define FLS_SECTOR_ADDR 0x007D2000U #define FLS_SECTOR_TEST C40_CODE_ARRAY_0_BLOCK_3_S489 /* Look into C40_Ip_Cfg.h file to find the corresponding sector */ /*=========================================================================== * GLOBAL CONSTANTS ===========================================================================*/ uint8 LC_TxBuffer[FLS_LC_SIZE] = {0xDA, 0xDA, 0xDA, 0xDA, 0x0, 0x0, 0x0, 0x0}; /* Minimum data length 8 bytes */     Once the LC word is written in the memory, you can confirm the LC word was written by using the Memory viewer (not covered by this document). III. Reset the MCU NOTE: Directly from the reset pin (RESET_B), not the debugger. If the procedure was done correctly you should see the following message: Now to unlock the MCU, PEmicro provides some Python scripts (PEmicro support files package) to facilitate the authentication of the debugger when the password is set. In summary: I. Make sure to have already installed Python (3.5 or later). II. Open Command Prompt. III. Use cd to change the current working directory to where the file package is. IV. Run the script using: py authenticate_password_mode.py -hardwareid=USB1 -password=… Where hardwareid, is the debug hardware IP address, name, serial number, or port name. And the password is the preconfigured 16-byte hexadecimal. NOTE: This steps need to be done each time the MCU is reset or power cycled.  Once the debugger has been authenticated, you are going to be able to securely debug the device under S32DS. NOTE: Just make sure that In S32DS when you configure the Debug Configurations of a project, change the Target to the one that says "SECUREDEBUG". This is because during debug entry a hard reset is toggled which clears the authentication. You can follow the below steps for this:  
View full article
******************************************************************************** * Detailed Description: * The example adds DTCM_1 backdoor access for CM7_0. * int_dtcm_1_bd memory region and section dtcm1_bd_data added to the linker file. * DTCM1 ECC initialized in startup_cm7.s * MPU on DTMC1 enabled in system.c * Global variables decleared with __attribute__ ((section(".dtcm1_bd_data"))) in main.c * ------------------------------------------------------------------------------ * Test HW: S32K314EVB-Q172 * MCU: S32K314 * Debugger: S32DS_ARM_3.4 * Target: internal_FLASH ********************************************************************************
View full article
What is “Flash Driver” (The following content is taken from Klaus Emmert->“FLASH Bootloader User Manual Version 2.7”) “The Flash Driver(actual flash algorithm) is the hardware dependent code for performing the flash functions.In most cases, programming flash memory from flash is not possible.Therefore the Flash Driver is downloaded and executed into RAM to allow programming of the application.The advantage of downloading the flash algorithm into RAM is that updates to the flash algorithms are possible without the need to reprogram the primary bootloader. The algorithm is cleared from RAM upon completion of the download to avoid accidental calls to the flash functions while in application. In special cases the flash algorithms are kept in flash memory and copied to RAM when needed. Of course the possibility of changing the flash algorithms is no longer available when this configuration is used. Moreover, there is a risk that the flash memory will be unintentionally erased from an accidental call to these functions. A remedy to correct this would be to encrypt the corresponding program code, such as e.g an XOR or the like.”   Regarding the demos -The software is using “S32 Design Studio for S32 Platform V3.4” and the SDK is “RTM 4.0.3” - Hardware based on S32K142-EVB -two demo provided, one for making “flash driver”, another is for testing the flash driver image     ·“Flash_Driver_Source_Project”  this routine used for making flash driver image.     ·“Flash_Driver_Source_Project_Test” this routine used for testing flash driver image.   ·Flash driver image making process 1.Create a new project and add the flash component       Refer to the demo provided and modified main.c file. Note 1 define function index table in main.c 2.Modify the link file Note 2 modified S32K142_32_flash.ld file   Note 3 modified S32K142_32_flash.ld file 3.Add “attribute” commands for the functions necessary to operate flash   Note 4 add "attribute" to function,like this         If another function is referenced in a function, then we also need to add “attribute” to the referenced function. 4.Compile the project and check the xx.map file to confirm whether the allocated address space is correct.   Note 5 check Flash_Driver_Source_Project.map 5.Make flash driver   Note 6 create flash image   Note 7 choose image format   Note 8 make flash driver image       New a “xx.s19” file and then copy the data which range of 0x1fffe000~0x1ffffffff into this file   Note 9 change link order if necessary       If some functions are distributed in different files, the function address allocated can be changed by changing the link order.   The process of testing the flash driver image 1.Create a new project without adding flash component.       You still need to create a new project, but you don’t need to add the Flash component to it. 2.Modify the link file as before. 3.Refer to the provided demo and modify main.c file. 4.Compile the project, check the .map file, and confirm whether the address space of the allocated array location is correct   Note 10 make sure Function_TABLE already put on the right place 5.Enter debug section, import the prepared flash driver image.   Note 12 import flash driver image before operate flash module 6.Test whether the flash driver can work normally.   Note 13 check the test result So far, we know how to make a flash driver image and how to test the flash driver image. This method is not limited to making functions related to flash operations, and other functions can also be used in this way, but there are few applications with such application scenarios.
View full article
************************************************************************************************ * Detailed Description: * The example shows how to skip an instruction * that causes uncorrectable ECC fault exception during C40_Ip_Read(). * ----------------------------------------------------------------------------------------------- * Test HW: S32312EVB-Q172 * MCU: S32K312 * Debugger: S32DS 3.4, PEMicro Multilink * Target: internal_FLASH *************************************************************************************************
View full article
******************************************************************************** The purpose of this demo application is to show you the usage of the FlexCAN module configured to use CAN FD and Enhance RXFIFO using the S32 RTD API. - This demo application requires two boards, or single board connected with CAN tool. - CAN FD is enabled with bitrate 500/2000 kbps - MB0 is configured to transmit either std. or ext ID - MB1 is configured to receive ext ID 0xFACE and MB2 to receive std ID 0x1 - Enhanced RXFIFO is enabled and 3 enhanced RXFIFO filter elements (filter + mask scheme) are defined ext ID 0xABCD with mask 0x1FFFFFFF std ID 0x123 with mask 0x7FF std ID 0x456 with mask 0x7FF - Callback function is used as well to handle TX and RX process in MBs and Enhanced RXFIFO - setupCanXCVR function can be called if TJA1153 is used on the board. It expects transceiver in Vanilla state and set TPL to pass all std and ext ID and do not block any message comming from bus. Finally leaving configuration mode without writing to non-volatile memory nor locking the transceiver. * * ------------------------------------------------------------------------------ * Test HW: S32K3444EVB-Q172 * MCU: PS32K344EHVPBS 1P55A * Compiler: S32DS.ARM.3.4 * SDK release: SW32K3_RTD_4_4_2_0_0_D2203 * Debugger: Lauterbach * Target: internal_FLASH * ********************************************************************************
View full article
@S32kUser  The S32K3 family is a highly scalable MCU that include single-core, dual-core, and lock-step core configurations. Meanwhile, NXP provides rich eco-software. For example, NXP provides a powerful IDE: S32 Design Studio(S32DS), which can be used to configure, compiler, debug. And the RTD (Real-Time Drivers) is the software development package, it includes a lot of default example projects. Low power management is always required in auto product since it's powered by battery. K3's power management is quite different with K1. Provide a one-stop application information about S32K3xx family MCU power management features for automotive customer to accelerate their application/product time to market. Besides, the software package in this page provides additional example projects for wakeup use case. All the wakeup example projects mentioned in this page are developed based on RTD/HLD, and the configuration tool is EB tresos Studio and S32 CT. The hardware is based on S32K344 Whiteboard and S32K3X4EVB-Q172. The software is based on RTD V2.0 and S32DS3.4 About the wakeup examples package, it provides very wakeup examples. The below figures summarized the package contents: Example Projects: Application Note: Any questions, please contact me.
View full article
This article is written in Chinese. It is mainly for the disty and mass market customers in local China. It is useful for the the developers who is newly in touch with S32K1, and will help them install several software of S32K1, otherwise it may waste a lot of time.     S32DS中快速搭建S32K1的开发环境 一.背景 我最近换装了新电脑,需要重新安装S32DS,发现存在很多问题。尤其是对比之前的安装过程,发现官网的很多链接已经失效,甚至有一定的迷惑性。 最新的S32K1安装包比较隐蔽,而且安装存在前后依赖,对于刚接触NXP S32系列的新手非常不友好,所以写这篇文档总结一下典型的问题和解决方法。 同时也希望提供一个check的思路和步骤,在后续新版本发布时,升级IDE的时候更方便找到合适的安装包。 二.S32DS中各个包依赖关系解析 在S32DS中,每一个系列的MCU,总共需要安装两个插件包,一个是基础依赖包,一个是SDK(也叫RTD,同一个意思)。 1.基础依赖包 这个包对应S32DS版本,比如当前的3.4.3,官网可以下载离线版,一般大小在3GB左右,会更新S32DS中的很多组件,如下图1所示:            图1 尤其需要关注图1中红框的内容,没有这个development package的话,是无法进行对应MCU的debug。 图1中安装的包,对应到S32DS中安装的内容如图2所示:            图2 2.RTD安装包(与SDK同义) 这个包对应于RTD版本,也会标识AutoSAR的版本,比如最新的2.0.0,AutoSar 4.4,如图3所示:           图3 基础依赖包与RTD安装包存在前后依赖关系,如果不安装基础依赖包直接安装RTD,在安装时会报错。另外,我们下载的RTD包,即使写明是K3,里面也会包含K1的RTD,这点需要注意。如果此时还没有装K1的development package,就会出错。 三.S32K1开发环境搭建 官网对于S32K3的软件划分为standard software和reference software,其中S32DS和基础依赖包在standard software中,可以很方便的找到。 但S32K1的官网却仅有一个reference software,页面也只能找到几个RTD(或SDK)链接:                                                                             图4 这里面所有的链接都不是我们需要的,全是RTD。问题就出在这里,K1的网页中没有K1的基础依赖包!而前面讲过,缺基础依赖包会导致RTD也无法安装。经过我研究,K1的基础依赖包隐藏的非常深,可以通过两个方法找到: 从S32K1的reference software进去,然后重新点击product list,如下图5所              图5         进入如下页面,如图6所示,这里最能看出来,针对K1的界面很不友好,需要点最底下的NXP Software.              图6 在NXP.com官网首页搜索栏直接搜S32DS,找到S32 Design Studio for S32 Platform(注意不要选成for ARM或或者for PowerPC),从S32DS的主界面进入,然后一直下拉,找到S32DS service pack 1,这个才是K1的,如图7所示:                 图7 这个链接更加隐蔽,要在40多个选项里挨个找。   经过上面两个方法,都可以进入图8所示的界面,然后再按图8所示操作:              图8   这回终于到了最终可以下载S32K1基础依赖包的地方,如图9所示。我们需要重点关注一下命名,SW32开头的,会包含所有S32的development package,包括K1,K3,G;SW32K1开头的,仅有K1,同理如果你在K3的界面中,可以看到SW32K3开头的。            图9 下载最新版本的S32K1基础依赖包,然后再安装RTD,大功告成。
View full article
Attachment is the UDS bootloader solution of S12Z, S32K1xx and S32K3xx. The package include projects and user guide. All projects are verified over ECU BUS(0.2.22). Unified bootloader V2.1 Vs V2 1. Integrated S32K312, S32K314, S32K324, S32K344 PC tool(https://github.com/frankie-zeng/ECUBus😞 1. ECU BUS 2. Add CAN FD support 3. Easy of use 4. The tool only support PEAK Disclaimer: 1. All projects/source code are demo code          
View full article
The purpose of this demo application is to show you the usage of the FlexCAN module configured to use Flexible Data Rate using the S32 SDK API. - In the first part, the application will setup the board clocks, pins and other system functions such as SBC if the board uses this module as a CAN transceiver. - Then it will configure the FlexCAN module features such as FD, Bitrate and Message buffers - The application will wait for frames to be received on the configured message buffer or for an event raised by pressing one of the two buttons which will trigger a frame send to the recipient. - Pressing SW3 button of board 1 shall trigger a CAN transfer that results in toggling the RED led on board 2. - Pressing SW2 button of board 1 shall trigger a CAN transfer that results in toggling the GREEN led on board 2. - This demo application requires two boards, one configured as master and the other one configured as slave (see MASTER/SLAVE defines in application code) or single board connected with CAN tool. - Both the event and error callbacks are installed, callback_test variable indicates event entering bit0 .. RX complete bit1 .. TX complete bit2 .. ERR INT flag set bit3 .. BOFF INT flag set - to enter bus off simply short CANH with GND and send message using either SW1 or SW2, FlexCAN enters bus off (error event) and blue LED is ON. Also TX MB is aborted. Remove short connection and send message again normally, blue LED is off.   ------------------------------------------------------------------------------ * Test HW: S32K144EVB-Q100 * MCU: FS32K1441 0N57U * Compiler: S32DS.ARM.2.2 * SDK release: S32SDK_S32K1xx_RTM_3.0.3 * Debugger: Lauterbach, OpenSDA * Target: internal_FLASH  
View full article
Due to K3 hasn't been mass-produced yet, this content is moved to S32K3 Internal forum: https://community.nxp.com/t5/S32K3-Internal-Community/S32K3-Low-power-lab/ta-p/1280219 Any question, pls contact Jeremy.he@nxp.com.
View full article
Hi Everyone, Here I'd like to share three S32K1xx SDK FlexCAN PD and PAL component sample projects to demonstrate its basic and advanced features: 1. S32K144_CAN_PAL_SamplePrj_Basic_TxRx_ID_FiltersConfig_SDKRTM3P0 Functions implementation key points and tips: This sample project is made to demonstrate the following S32K1xx FlexCAN features with SDK FlexCAN PAL driver: 1. Configure to receiver the following exact 16 standard ID CAN message with RxFIFO 8x ID filter table with format type-B(2x 16-bit ID) Standard ID: 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x111, 0x222, 0x333, 0x444, 0x555, 0x666, 0x777, 0x788 The RxFIFO is configured to use CPU interrupt for CAN message receive, and CAN_PAL cannot support DMA for RxFIFO directly. Note: A. FlexCAN of S32K1xx dose not support to receive CAN-FD message frame with RxFIFO, so no CAN-FD support in this demo project. B. All the filter table elements must be configured to contain only standard or extend ID, if it contains both standard and extend ID, the IDE-bit mask will be ignored.  C. After RxFIFO enabled, MB0~MB5 is used as the RX FIFO, at least MB6~MB7 are used as the ID filter table(to store the acceptance ID), the actual available MB number is determined by RxFIFO ID filter table size, details please refer to section--55.4.6 Rx FIFO structure of S32K1xx RM Rev.12.1  2. Configure two extra individual MBs to receive: RX_MB1: 16 standard ID CAN 2.0 message with the lower 4LSB masked(mask=0x7F0, acceptance ID = 0x123): 0x120 ~ 0x12F and  RX_MB2: 4 standard ID CAN 2.0 message with the ID8 and ID9 masked(mask=0x4FF, acceptance ID = 0x256): 0x056, 0x156, 0x256 and 0x356 Both the RxFIFO and individual MBs RX use non-blocking receive method/API with MB TX/RX complete ISR callback installed to set a new circle buffer for next message frame receive 3. Configure one individual MB to blocking transmit a standard CAN 2.0 message with ID = 0x100 periodically(period = 5ms), and also send back the received CAN messages(if it's available) to the CAN bus as a response. 4. Provide the FlexCAN bus-off manual recovery configuration API and interrupt ISR callback codes for reference, changing the macro CAN_BUSOFF_RECOVERY_MANUAL(in include/Config.h) to select the bus off recovery method(enable the macro definition: manual recovery, comment the macro definition: automatic recovery); Note: In this sample project, the macro CAN_BUSOFF_RECOVERY_MANUA is commented by default, so manual recovery codes does not work. To make the bus-off recovery callback work, user should replace the flexcan PD driver codes and S32K144_feature.h with S32K1xx RTM 4.0.0(which can be downloaded from nxp.com with registered account login and then installed stand-alone or installed via S32DS v3.3 IDE update). This is not done this sample project!!!  5. There 3 on-board RGB LED are used to indicate the FlexCAN working status: red RGB LED will be toggled after RXFIFO received a CAN message; blue RGB LED will be toggled after individual MB received a CAN message; green RGB LED will be turn ON after enter bus-off and turn OFF after exist bus-off(recover successfully). To run this sample project, the following HW and SW require: SW: S32DS for ARM v2.2 IDE with S32K1xx SDK RTM 3.0.3 installation HW: S32K144EVB-Q100 Rev.C with a DC-12V adapter for its power supply by J16 and a USB-to-CAN adapter(such as PEAK CAN) to connect PC with J13 of the EVB 2.S32K144_CAN_PAL_CANFD_ClassicCAN_Mix_TxRx_Wakeup_SDKRTM3P0 Functions implementation key points and tips: This sample project is made to demonstrate the following S32K1xx FlexCAN features with SDK FlexCAN PAL driver: 1. Configure to enable CAN-FD with 500 Kbit/s arbitration phase bitrate and 2Mbit/s data phase bitrate, so it can support both classic CAN 2.0 A/B and CAn-FD message frame transfer. Note: A. The RxFIFO is disabled to work with CAN-FD message frame. B. After CAN-FD enabled, CAN-FD message frame data length can support up to 64 Bytes, so the actual available MB number is determined by the max frame data length need to support, details please refer to section--55.4.5 FlexCAN message buffer memory map of S32K1xx RM Rev.12.1  C. In order to support bitrate bigger than 1Mbit/s for CAN-FD data phase with bitrate switch enabed, PE clock source of CAN_PAL should be configured to use peripheral clock(80MHz generated from SPLL) instead of 8MHz oscillator clock; 2. Configure 3 individual MBs to receive: RX_MB0: 16 extend ID CAN 2.0/FD message with the lower 4LSB masked(mask=0x1FFFFFF0, acceptance ID = 0xfff021): 0xfff020 ~ 0xfff02F RX_MB1: 16 standard ID CAN 2.0/FD message with the lower 4LSB masked(mask=0x7F0, acceptance ID = 0x123): 0x120 ~ 0x12F RX_MB2: 4 standard ID CAN 2.0/FD message with the ID8 and ID9 masked(mask=0x4FF, acceptance ID = 0x256): 0x056, 0x156, 0x256 and 0x356 Both the RxFIFO and individual MBs RX use non-blocking receive method/API with MB TX/RX complete ISR callback installed to set a new circle buffer for next message frame receive 3. Configure 3 individual MBs to transmit: TX_MB0: send back any CAN(2.0/FD) messages received from RX_MB0; TX_MB1: send back any CAN(2.0/FD) messages received from RX_MB1; TX_MB2: send back any CAN(2.0/FD) messages received from RX_MB2; 4. Configure one individual MB(TX_MB3) to blocking transmit a standard CAN FD message with ID = 0x100 periodically(period = 5ms) and length = 64 bytes, and also send back the received CAN messages(if it's available) to the CAN bus as a response. 5. Provide the FlexCAN bus-off manual recovery configuration API and interrupt ISR callback codes for reference, changing the macro CAN_BUSOFF_RECOVERY_MANUAL(in include/Config.h) to select the bus off recovery method(enable the macro definition: manual recovery, comment the macro definition: automatic recovery); Note: In this sample project, the macro CAN_BUSOFF_RECOVERY_MANUA is commented by default, so manual recovery codes does not work. To make the bus-off recovery callback work, user should replace the flexcan PD driver codes and S32K144_feature.h with S32K1xx RTM 4.0.0(which can be downloaded from nxp.com with registered account login and then installed stand-alone or installed via S32DS v3.3 IDE update). This is not done this sample project!!!  6. Provided the sample codes of how to configure FlexCAN as the VLPS low-power mode wakeup source, RXD of FlexCAN0 is configured as GPIO IRQ interrupt with falling edge trigger before entering VLPS mode, and after wakeup, re-configure it back to RXD function. Note: A. S32K1xx FlexCAN is unable to work as the VLPS wakeup source B. After wakeup, it's necessary to call SDK clock_manager's API--CLOCK_SYS_UpdateConfiguration() to reconfigure the system clock, or it will use 8MHz SIRC, 48 MHZ FIRC and SPLL are disabled after wakeup. c. By default, after receive ID = 0x123(it can be configured via macro LP_REQUEST_ID in /include/Config.h ) standard CAN(CAN 2.0 or CAN-FD), the MCU will go to VLPS mode 7. There 3 on-board RGB LED are used to indicate the FlexCAN working status: blue RGB LED will be toggled after individual MB received a CAN message; green RGB LED will be turn ON after enter bus-off and turn OFF after exist bus-off(recover successfully). To run this sample project, the following HW and SW require: SW: S32DS for ARM v2.2 IDE with S32K1xx SDK RTM 3.0.3 installation HW: S32K144EVB-Q100 Rev.C with a DC-12V adapter for its power supply by J16 and a USB-to-CAN adapter(such as PEAK CAN) to connect PC with J13 of the EVB 3.S32K144_FlexCAN_PD_SamplePrj_RxFIFO_DMA_Receive_SDKRTM3P0 Functions implementation key points and tips: This sample project is made to demonstrate the following S32K1xx FlexCAN features with SDK FlexCAN PD driver: 1. Configure to receiver the following exact 16 standard ID CAN message with RxFIFO 8x ID filter table with format type-B(2x 16-bit ID) Standard ID: 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x111, 0x222, 0x333, 0x444, 0x555, 0x666, 0x777, 0x788 The RxFIFO is also configured to use eDMA channel 0 for CAN message receive, user can easily change to use CPU interrupt for RxFIFO in processor expert flexcan component configuration if required. Note: A. FlexCAN of S32K1xx dose not support to receive CAN-FD message frame with RxFIFO, so no CAN-FD support in this demo project. B. all the filter table elements must be configured to contain only standard or extend ID, if it contains both standard and extend ID, the IDE-bit mask will be ignored.  C. After RxFIFO enabled, MB0~MB5 is used as the RX FIFO, at least MB6~MB7 are used as the ID filter table(to store the acceptance ID), the actual available MB number is determined by RxFIFO ID filter table size, details please refer to section--55.4.6 Rx FIFO structure of S32K1xx RM Rev.12.1  2. Configure one extra individual MB(MB8) to receive 16 standard ID CAN 2.0 message with the lower 4LSB masked(mask=0x7F0, acceptance ID = 0x123): 0x120 ~ 0x12F; Both RxFIFO and individual MB RX use non-blocking receive method/API with MB TX/RX complete ISR callback installed to set a new circle buffer for next message frame receive 3. Configure one individual MB(MB9) to blocking transmit a standard CAN 2.0 message with ID = 0x100 periodically(period = 5ms), and also send back the received CAN messages(if it's available) to the CAN bus as a response. 4. Provide the FlexCAN bus-off manual recovery configuration API and interrupt ISR callback codes for reference, changing the macro CAN_BUSOFF_RECOVERY_MANUAL(in include/Config.h) to select the bus off recovery method(enable the macro definition: manual recovery, comment the macro definition: automatic recovery); Note: In this sample project, the macro CAN_BUSOFF_RECOVERY_MANUA is enabled by default, and manual recovery codes works. To make the bus-off recovery callback work, user should replace the flexcan PD driver codes and S32K144_feature.h with S32K1xx RTM 4.0.0(which can be downloaded from nxp.com with registered account login and then installed stand-alone or installed via S32DS v3.3 IDE update). This is already done this sample project!!!  5. There 3 on-board RGB LED are used to indicate the FlexCAN working status: red RGB LED will be toggled after RXFIFO received any CAN message; blue RGB LED will be toggled after individual MB received any CAN message; green RGB LED will be turn ON after enter bus-off and turn OFF after exist bus-off(recover successfully). To run this sample project, the following HW and SW require: SW: S32DS for ARM v2.2 IDE with S32K1xx SDK RTM 3.0.3 installation HW: S32K144EVB-Q100 Rev.C with a DC-12V adapter for its power supply by J16 and a USB-to-CAN adapter(such as PEAK CAN) to connect PC with J13 of the EVB Attached are the sample project for your reference, and details can also be fiound with the detailed comments in source codes. Hope it can help you, and any comments/questions are welcomed, and you can just ask in this thread and I will try to anwser them. Best regard, Enwei Hu(胡恩伟).  
View full article
******************************************************************************** Detailed Description: This example shows SRAM ECC injection. By default, a double-bit ECC error is injected on read access of a location in SRAM_U region. This can be changed with the SRAM_U and DOUBLE_BIT macros. The errors can be detected by both the ERM and MCM modules and the corresponding interrupts can be called. Although only ERM is needed, for demonstration purposes, the MCM interrupt is enabled as well with a lower priority than the ERM interrupts. The ERM interrupts that are called first disable the injection mechanism so that subsequent errors can not be detected during a stack read access. The default S32 Design Studio start_up file copies the vector table to the SRAM_L region. To be able to inject ECC errors in this SRAM region and call the interrupts, the copying is disabled by __flash_vector_table__ symbol  declared in the start_up.h file and defined in the S32K144_64_flash linker file. -------------------------------------------------------------------------------------------- Test HW: S32K144EVB-Q100 MCU: S32K144 0N57U Debugger: S32DSR1 Target: internal_FLASH ********************************************************************************
View full article
Hi,     I would like to share with you the follow solution for S32K14x which could be attached while couldn't be re-programmed and stopped at RAM initializing.     If you met the issue as title, please check the SIM_CHIPCTL's value in IDE with attach function. Maybe you can find that the value is 0x0, which is not as default value after reset which is 0x0030_0000.     If you check the meaning on SIM_CHIPCTL, you can find that SRAMU and SRAML are retained across resets.  To solute the issue, you should add 'WRITE_LONG=00300000/40048004/ ;' in front of it the algorithm (it's better after reset) of freescale_s32k144f512m15_pflash_dflash_eeprom.arp which is at  'C:\NXP\S32DS_ARM_v20\eclipse\plugins\com.pemicro.debug.gdbjtag.pne_3.3.3.201712132114\win32\gdi\P&E\supportFiles_ARM\NXP\S32K1xx' After that, you can download your project as normal. Cheers! Oliver
View full article