i.MX Processors Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

i.MX Processors Knowledge Base

Discussions

Sort by:
Important: If you have any questions or would like to report any issues with the DDR tools or supporting documents please create a support ticket in the i.MX community. Please note that any private messages or direct emails are not monitored and will not receive a response. i.MX 6/7 Family DDR Stress Test  The i.MX6/7 DDR Stress Test Tool is a PC-based software to fine-tune DDR parameters and verify the DDR performance on a non-OS, single-task environment(it is a light-weight test tool to test DDR performance). It performs write leveling, DQS gating and read/write delay calibration features. The tool described on this page cover the following i.MX 6/7 series SoCs: i.MX 6DQP (Dual/Quad Plus) i.MX 6DQ (Dual/Quad) i.MX 6DL/S (Dual Lite/Solo) i.MX 6SoloX i.MX 6SL i.MX 6SLL i.MX 6UL i.MX 6ULL/ULZ i.MX 7D/S i.MX 7ULP Note that the DDR Stress test tool supports the all of the above i.MX SoCs, however, some of the supported i.MX SoCs named in the tool support multiple i.MX SoCs as follows: MX6DQ – when selected, this supports both i.MX 6DQ and i.MX 6DQP (Plus) MX6DL – when selected, this supports both i.MX 6DL and i.MX 6S (i.MX 6DLS family) MX6ULL – when selected, this supports both i.MX 6ULL and i.MX6 ULZ MX7D – when selected, this supports both i.MX 7D and i.MX 7S The purpose of the i.MX 6/7 series DDR Tools is to enable users to generate and test a custom DRAM initialization based on their device configuration (density, number of chip selects, etc.) and board layout (data bus bit swizzling, etc.). This process equips the user to then proceed with the bring-up of a boot loader and an OS. Once the OS is brought up, it is recommended to run an OS-based memory test (like Linux memtester) to further verify and test the DDR memory interface. The i.MX 6/7 series DDR Tools consist of: DDR Register Programming Aid (RPA): i.MX 6/7 Series DDR Tool Release DDR Stress test: Described below There are three options to run the DDR Stress test. Each of these options are provided in the attached zip files. The following is a high-level overview of each option along with the naming convention of the associated zip file: Option 1 GUI based: Run the GUI executable and connect your board to the host PC via USB Archive file: ddr_stress_tester_vX.xx.zip The tool will first need to run a DDR initialization script for the specified i.MX SoC (refer to Load Init Script in the GUI tool).  Example initialization scripts based on NXP's development boards can be found in this zip file under the script folder.  Note, these scripts may need to be modified for your custom board and memory.   Option 2 DDR Stress Tester: JTAG Interface A hardware debugger connected to the board via the JTAG interface is used to download an elf file into the i.MX SoC OCRAM (internal RAM) and then begin execution. Results are shown on the UART serial port (115200-8-n-1). Archive file: ddr_stress_tester_jtag_vX.xx.zip As with the GUI tool, the JTAG/debugger option will first need to run a DDR initialization script for the specified i.MX SoC. Refer to the GUI tool description above for the location of the example scripts (which are found in the ddr_stress_tester_vX.xx.zip file). Note that the scripts are available either in the RealView ICE format (.inc file) or the DS-5 DSTERAM format (.ds). For other debuggers, the user will have to modify the script's command syntax for their specific debugger. This is also true if converting from a RealView Ice (.inc) format to a DS-5 DSTREAM (.ds) format and vice versa. The DDR Stress Tester executable (starting with V2.20) has an auto UART detection feature. If a different UART port for the serial console has been chosen than used on the NXP development tool (EVK, SABRE) specific commands can be added to the DDR initialization script that allows you to configure for the specific UART and then load and run the elf executable. Refer to the FAQ section of this community post and the txt file found in the JTAG archive file for instructions.   Option 3 U-Boot: The boot loader u-boot is running and commands in u-boot are used to download the bin file into SoC OCRAM and begin execution. Results are shown on the UART serial port (115200-8-n-1) Archive file: ddr_stress_tester_uboot_vX.xx.zip When downloading the DDR Stress Tool by u-boot, please copy the ddr-test-uboot-jtag-mxxxx.bin to SD card and load it to IRAM using the 'fatload' u-boot command (see notes below when using newer versions of u-boot). For i.MX6, please load the binary to 0x00907000. For i.MX7D, please load the binary to 0x00910000.  It is imperative to first disable the I and D cache in u-boot as shown below as the DDR Stress Test re-configures and re-enables the cache and MMU page table. While this option allows the user to load and run the DDR stress test from u-boot, NXP highly recommends executing the GUI based version for system testing and debugging. The u-boot version is considered a “last resort” for systems in production which may not have USB or JTAG connectivity. The reasons behind this stance are: In the GUI version, the system starts “clean” and uninitialized, whereas u-boot initializes many SoC features outside the knowledge of the DDR stress test and may conflict with the stress test operation When running the u-boot version, the test will overwrite the contents of u-boot residing in DDR, hence the test will overwrite any data in DDR. Once the stress test is loaded and executed, u-boot itself will no longer be accessible. To return to the functionality of u-boot, a system re-boot is required. Newer versions on u-boot do not allow a direct loading of the DDR stress test code from the SD card (boot media) directly to the SoC internal OCRAM (aka IRAM). Hence, the procedure is updated to first load the DDR stress test code into DDR and then copy into OCRAM, as shown in the procedure below: u-boot> dcache off;icache off;fatload mmc 2:1 0x12000000 ddr-test-uboot-jtag-mx6dq.bin;cp.b 0x12000000 0x00907000 0x20000;go 0x00907000 As u-boot initializes many peripherals that may conflict with the operation of the DDR stress test, it is necessary to clock gate these peripherals prior to running the DDR stress test. Hence, it is highly recommended to augment the procedure above as follows: u-boot> dcache off;icache off;fatload mmc 2:1 0x12000000 ddr-test-uboot-jtag-mx6dq.bin;cp.b 0x12000000 0x00907000 0x20000; u-boot> mw 0x020c4068 0x00C0000F; u-boot> mw 0x020c406c 0x00000000; u-boot> mw 0x020c4074 0x3F300000; u-boot> mw 0x020c4078 0x0000F300; u-boot> mw 0x020c407c 0x0F000003; u-boot> mw 0x020c4080 0x000003FC; u-boot> go 0x00907000 Note, in the above procedure, it is recommended to write to each clock gate register in separate commands (refer to commands starting with “mw”). The SoC requires a finite amount of time to gate each clock hence performing this sequence with a new command line write ensures the SoC has time to gate the intended clocks.   Stress Test Revision Features Comments 3.00 Add i.MX 7ULP support in the GUI version Known issues: USB connection is unstable when under USB HUB or some PC environments 2.92 Minor correction with write leveling calibration code error check to avoid a corner case of flagging an error when none have occurred.    2.91 Resolved issue with write leveling calibration code where a race condition in the code may result in the calibration routine not being able to find any delay values.   Only applies to MX6 series SoCs that support DDR3.  2.90 Reserve write delay line register (MMDC_MPWRDLCTL) configuration as DDR script does when do write calibration. In previous releases, MMDC_MPWRDLCTL would be changed to 0x40404040 by default.      * Further details available in the release notes  _________________________________________________________________________________________________________________________________________    FAQ   Q. I see an error message that states "ERROR: DCD addr is out of valid range.", why is this and how do I resolve?   A. Sometimes, when using the register programming aid, there are registers writes that are not supported in the DCD range.  Try looking for the following items and comment them out from the DDR initialization script: wait = on setmem /16 0x020bc000 = 0x30 // disable watchdog (note the address for this may be different between i.MX6x devices)  Q. How do I select the "DDR Density" pull-down menu and what is the purpose of this?   A. The DDR Density pull-down menu gives the user the option of testing a DDR density smaller than what they actually have on their board.  The advantage of doing this is to speed up test time to allow the user to perform a "quick test" of their system.  IMPORTANT: it is imperative that the user not set this value higher than the supported density on their board, doing so will cause the stress test to fail and/or lock up. The DDR Density has a different meaning depending on the memory type being tested (DDR3 or LPDDR2): For DDR3, this is the density per CHIP SELECT.  So if your board has two chip selects, and each chip select has 512MB, you would simply select 512MB or lower.  The default setting will simply set this to the detected density per chip select. For LPDDR2, this is the density per CHANNEL.  This is only relevant for MX6 devices that support 2 channel LPDDR2 memories (MX6DQ, MX6DL).  For other MX6 devices that support only one LPDDR2 channel, then this is the total density (for the maximum setting) for that channel. Note that for LPDDR2, the number of chip selects (per channel) is irrelevant when selecting the density to test as the stress test combines both chip-selects into one combined density per channel.  For example, lets say you have a 2GB LPDDR2 device, which 2 channels and 2 chip-selects per channel.  That means you have 512MB per chip select, per channel.  Or, it also means you have 1GB per channel when combining both chip selects per channel.  In this case, you would choose (a maximum setting of) 1GB in the DDR Density drop down menu.  However, this is also the same setting as the default setting (which you are welcome to still choose 1GB to convince yourself that 1GB per channel is indeed being tested). Now let's assume you have only one channel (LPDDR2) and one chip select, with a density of 128MB; in this case, the maximum DDR Density you can select is 128MB. Let's assume you have one channel and two chip selects, each chip select is 128MB;  in this case, the maximum DDR Density you can select is 256MB (a combination of both chip selects).   Note, for the MX7D, an actual density needs to be entered. For the MX6x series, simply leaving this field as Default will cause the DDR stress test to ascertain the supported density from the DDR init script. As the MX7D DDR controller is different, this feature is not supported, hence it is required for the user to enter an actual density (for more details regarding MX7D usage of density and number of chip-selects, see the next FAQ on the DDR CS setting).   Q.  What is the purpose of the "DDR CS" pull-down option?   A.  The answer depends on which processor you are testing:   For the i.MX 6x series: This pull down menu gives you the option of testing one chip select (CS0) or ALL (both) chip selects *IF* you have a two-chip select configuration.  If you have a two-chip select configuration, then this allows you to test only one chip select for faster test time; else you can choose to test both chip selects.  Note that if you have a one-chip select configuration and you choose "ALL", the stress test will return an error.   For the iMX 7D: Because the MX7D DDR controller is different, the DDR stress test will need the user to supply the entire supported density found on their board. The chip select field should be left as is (0) as the test will naturally test one chip select to the next. For example, let’s assume you are using two chip selects, with each chip select being 512MB. In this case, you would enter 1GB for the DDR Density field ensuring that both chip selects will be tested. The user is allowed to enter a density less than the density found on their board (for quicker testing), but keeping in mind both chip selects may not be tested in this case.   Q. I run DDR calibration using the DDR Stress Test Tool to obtain the calibration results.  Are these calibration parameters are written to the uboot flash_header.S automatically or manually?   A. The calibration values obtained from the DDR Stress Test Tool will need to be manually updated in the flash_header.S file or any other DDR initialization script.   Q. When running the DDR stress test on MX7D and I try to perform calibration, I get an error stating that calibration is not supported, is this expected?   A. Yes, calibration is not supported or needed when using MX7.  The reason is, MX7 uses a different memory controller than the MX6 series.  The MX6 series memory controller has built-in support for calibration where the MX7 memory controller does not.   Q. When running the GUI version of the DDR stress test, on MX7 and I leave DDR Density as default, I get an error in the tool stating I must supply a density.  Why is this?   A. This is due to the fact that MX7 uses a different memory controller than the MX6 series.  In the MX6 series, it was possible to calculate the memory density from the memory controller register settings.  The MX7 memory controller is different and does not lend itself to easily calculate the supported density based on the register settings.  Instead, the user should verify the density on their board and selected this value in the DDR Density pull-down menu.    Q. I noticed that when I run write-leveling calibration I sometimes see a note that due to the write-leveling calibration value being greater than 1/8 clock cycle that WALAT must be set to 1.  What does this mean?   A. In the MMDC chapter of the reference manual for the specific i.MX 6 device, the need to set WALAT is described in the MDMISC register as follows: "The purpose of WALAT is to add time delay at the end of a burst write operation to ensure that the JEDEC time specification for Write Post Amble Delay (tWPST) is met (DQS strobe is held low at the end of a write burst for > 30% a clock cycle before it is released). If the value of any of the WL_DL_ABS_OFFSETn register fields are greater than ‘1F’, WALAT should be set to ‘1’ (cycle additional delay). WALAT should be further increased for any full-cycle delays added by the WL_CYC_DELn register fields." Therefore, if the write-leveling calibration routine detects any write-leveling delay value greater than 0x1F, it will note to the user that WALAT must be set and the user should update their DDR3 init script to ensure WALAT is set.  Sometimes, a user may find that the write-leveling delay value may fluctuate from one run to the next, which is quite normal.  If it is found that this delay is "borderline" meaning sometimes it is greater than 0x1F and sometimes it might be slightly less, then it is ok to go ahead and set WALAT permanently in your init script as there is no harm in doing so and will ensure you will stay within JEDEC's tWPST.   Q. I sometimes see that after running write-leveling calibration that delay values being reported back are zero'd out (0x00), and then at times I see a non-zero value being reported, why is this? A. It is quite normal to see slight variations in the delay value between write-leveling calibration runs.  The write-leveling calibration routine assumes a majority of users have designed their board such that the DDR3 memories are placed close to the i.MX 6 SoC. There’s a mechanism in NXP’s DDR Stress test write leveling calibration code that checks the returned write leveling value. If the write-leveling calibration routine detects that the returned delay value is greater than ¾ of a clock cycle, it will "zero out" the delay value. It does this because it assumes that such a large delay result is due to the fact that the DQS signal is already delayed relative to the SDCLK, and to align DQS with SDCLK requires the calibration routine to delay DQS even further to align it to the next SDCLK edge, something we ideally would like to avoid.  JEDEC specs that the DQS edge must be within 25% of a SDCLK cycle with respect to the SDCLK edge, so having DQS initially slightly delayed from SDCLK is actually ok, hence why the calibration routine “zero’s” this out when the returned value exceeds ¾ of a clock cycle.  In cases like this, the DQS edge and SDCLK edge are so close together that in some calibration runs, the DQS edge may slightly precede SDCLK (resulting in a very small write-leveling delay value) and other runs, it may be slightly delayed relative to the SDCLK (resulting in a very large write-leveling delay value that will try to align DQS to the next SDCLK edge, hence needs to be zero’d out).   Q. When using the JTAG version of the DDR stress test, how can I select a different UART port for my serial port?   A. Under the folder ddr_stress_tester_jtag_v2.52, there's a text file that describes how to add a different UART port by adding a few additional commands to your DDR init script.  The following is an outline of these commands: 1. Ungate UART module clocks (most NXP scripts ungate all of the peripheral clocks at the beginning of the script, so this part is already done) 2. Configure the IOMUX options for the pins you wish the UART to use (normally an IOMUX option for UART_TX and UART_RX, and a daisy chain option for the UART_RX input) 3. Enable the desired UART module via the register UCR1, bit UART_EN 4. Disable other UART modules (UCR1[UART_EN] = 0).  Normally disabling UART1 should be sufficient, but it doesn't hurt to disable all of the other un-used UART options for the purpose of the stress test.   Here's an example in the .ds file vernacular of a set up as follows: MX6DQ, UART4 on KEY_COL0 and KEY_ROW0 (assume clock is ungated to all peripherals): mem set 0x020E01F8 32 0x00000004   #// config_pad_mode(KEY_COL0, ALT4) mem set 0x020E01FC 32 0x00000004   #// config_pad_mode(KEY_ROW0, ALT4); mem set 0x020E0938 32 0x00000001   #// Pad KEY_ROW0 is involved in Daisy Chain. mem set 0x02020080 32 0x00000000   #//disable UART1 in UART1_UCR1 (Note, you can disable other UART modules as well) mem set 0x021F0080 32 0x00000001   #//enable UART4 in UART4_UCR1   Here's another example in the .inc file vernacular of a set up as follows: MX6SX, UART5 on SD4_DATA4 abd SD4_DATA5 (assume clock is ungated to all peripherals): setmem /32 0x020E0294 = 0x2 //IOMUXC_SW_MUX_CTL_PAD_SD4_DATA5, ALT2; UART5_TX_DATA setmem /32 0x020E0290 = 0x2 //IOMUXC_SW_MUX_CTL_PAD_SD4_DATA4, ALT2; UART5_RX_DATA setmem /32 0x020E0850 = 0x00000000 // IOMUXC_UART5_IPP_UART_RXD_MUX_SELECT_INPUT, daisy chain for UART5_RX input to use SD4_DATA4 setmem /32 0x021F4080 = 0x00000001 // Enable UART_EN in UCR1 of UART5 // Disable UART_EN in UCR1 of UART1, UART2, UART3, and UART4 setmem /32 0x02020080 = 0x00000000 // UART1 setmem /32 0x021F0080 = 0x00000000 // UART2 setmem /32 0x021EC080 = 0x00000000 // UART3 setmem /32 0x021E8080 = 0x00000000 // UART4     Related Resources Links: iMX 8M Mini Register Programming Aid DRAM PLL setting  i.MX 8/8X Series DDR Tool Release  i.MX 8M Family DDR Tool Release 
View full article
1. Description     These patches are used to support MPU 8080 LCD on L3.14.52_1.1.0_GA BSP.     They are based on ELCDIF hardware module, iMX6UL and iMX7D is the reference platform.   2. File List -- 0001-Add-ST7789S-MPU-LCD-support-for-iMX6UL-board.patch    Patch to support MPU display for iMX6UL, ST7789S 240*320 panel is the example.   -- 0002-Add-ST7735R-MPU-LCD-support-for-iMX7D-board.patch    Patch to support MPU display for iMX7D, ST7735R 128*128 panel is the example.   -- readme.txt    this file, please refer to it before use the patches   3. Requirement - iMX6UL EVK board or iMX7D SabreSD board. - L3.14.52_1.1.0_GA kernel.   4. How to use -- Copy the patch files to kernel folder.     $ cd ~/L3.14.52_GA1.1.0/build-imx7dsabresd-X11/tmp/work/imx7dsabresd-poky-linux-gnueabi/linux-imx/3.14.52-r0/git     $ git apply ./0001-Add-ST7789S-MPU-LCD-support-for-iMX6UL-board.patch     $ git apply ./0002-Add-ST7735R-MPU-LCD-support-for-iMX7D-board.patch   -- Build the new kernel image:     $ cd ~/L3.14.52_GA1.1.0/build-imx7dsabresd-X11/tmp/work/imx7dsabresd-poky-linux-gnueabi/linux-imx/3.14.52-r0/git     $ export CROSS_COMPILE=~/L3.14.52_GA1.1.0/build-imx7dsabresd-X11/tmp/sysroots/x86_64-linux/usr/bin/arm-poky-linux-gnueabi/arm-poky-linux-gnueabi-     $ export ARCH=arm     $ make imx_v7_defconfig     $ make zImage     $ make dtbs   5. How to add a new MPU panel     1) in dts file, such as imx6ul-14x14-evk-i80lcd.dts, update the panel name "lcd_panel",        update the PINs in "pinctrl_lcdif_dat" and "pinctrl_lcdif_ctrl" for the new panel,        the reset and rs PINs can be from GPIO pin, lcd_reset_gpio and lcd_rs_gpio. &lcdif { pinctrl-names = "default"; pinctrl-0 = <&pinctrl_lcdif_dat        &pinctrl_lcdif_ctrl>; display = <&display0>; status = "okay"; display0: display {   mpu-mode;   lcd_reset_gpio = <&gpio3 14 0>;   lcd_panel = "ST7789S-QVGA"; }; };       2) Reference to "mxsfb_st7789s_qvga.c", add a new panel driver code.       3) Add the new panel support in Makefile and Kconfig under "drivers/video/mxc/"       4) Add the new panel support in file "mxsfb.c" and "mxsfb.h"       5) Add the new panel support in default kernel config file "imx_v7_defconfig"   Note: mpu_lcd_fb_test.tar.gz is the test application, for 8080 display, it is not sync display, so software need call ioctl to refresh the LCD.     2016-08-02: Add the uboot reference patch for iMX7D. File: L3.14.52_Uboot_mpu_display.patch  
View full article
The i.MX Android N7.1.1_1.0.0 release is now available on Web Site (i.MX6 BSP Updates and Releases -> Android).   Files available: # Name Description 1 android_N7.1.1_1.0.0_docs.tar.gz i.MX Android N7.1.1_1.0.0 BSP Documentation 2 android_N7.1.1_1.0.0_source.tar.gz Source Code of Android N7.1.1_1.0.0 BSP (4.1 kernel) for i.MX 6QuadPlus, i.MX 6Quad, i.MX 6DualPlus, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo  i.MX 6Sololite, i.MX6SX and i.MX7D 3 android_N7.1.1_1.0.0_image_6dqpsabreauto.tar.gz Binary Demo Files of Android N7.1.1_1.0.0 BSP - SABRE for Automotive Infotainment based on i.MX 6QuadPlus, i.MX 6Quad, and i.MX 6DualLite 4 android_N7.1.1_1.0.0_image_6dqpsabresd.tar.gz Binary Demo Files of Android N7.1.1_1.0.0 BSP - SABRE Platform and SABRE Board based on i.MX 6QuadPlus, i.MX 6Quad and i.MX 6DualLite. 5 android_N7.1.1_1.0.0_image_6slevk.tar.gz Binary Demo Files of Android N7.1.1_1.0.0 BSP - i.MX 6Sololite evaluation kit. 6 android_N7.1.1_1.0.0_image_6sxsabresd.tar.gz Binary Demo Files of Android N7.1.1_1.0.0 BSP - SABRE Board based on i.MX 6SoloX 7 android_N7.1.1_1.0.0_image_6sxsabreauto.tar.gz Binary Demo Files of Android N7.1.1_1.0.0 BSP - SABRE for Automotive infotainment based on i.MX 6SoloX 8 android_N7.1.1_1.0.0_image_7dsabresd.tar.gz Binary Demo Files of Android N7.1.1_1.0.0 BSP - SABRE Board based on i.MX 7Dual 9 android_N7.1.1_1.0.0_tools.tar.gz Manufacturing Toolkit and VivanteVTK for N7.1.1_1.0.0   Supported Hardware SoC/Boards: MX 6Quad, i.MX 6QuadPlus, and i.MX 6DualLite SABRE-SD board and platform MX 6Quad, i.MX 6QuadPlus, and i.MX 6DualLite SABRE-AI board and platform MX 6SoloLite EVK platform MX 6SoloX SABRE-SD board and platforms MX 6SoloX SABRE-AI board and platforms MX 7Dual SABRE-SD board and platform   Changes: Compared to the M6.0.1_2.1.0 release, this release has the following major changes: Upgraded the Android platform version to Android 7.1. Upgraded the U-Boot and Linux Kernel Code base from the L4.1.15_1.0.0 release to the L4.1.15_1.2.0-ga release. Added support for the i.MX 7Dual SABRE-SD board. Upgraded the GPU driver from 5.0.11p8 to 6.2.0.p2.   Feature: For features please consult the release notes.   Known issues For known issues and more details please consult the Release Notes.
View full article
Symptoms   Trying to initialize a repo, for example:  $repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-mickledore -m imx-6.1.36-2.1.0.xml we have the below log: File "/home/username/bin/repo", line 51 def print(self, *args, **kwargs): ^ SyntaxError: invalid syntax   Workaround (1)   The first workaround consist in change the python alternatives (caused when you have installed two or more python versions). NOTE: in my case, the python version that i want to change as first priority is python3.8 $sudo update-alternatives --install /usr/bin/python python /usr/bin/python3.8 1   Then we run: $sudo update-alternatives --config python    To verify if your python priority was changed successfully try: $python --version   You should see the version configured as priority number 1.     Workaround (2)   The workaround is very simple, only we need modify the repo file $ nano ~/bin/repo   and we will change the python interpreter in the first line (from python to python3): ORIGINAL FILE   EDITED FILE   After to do this change, repo will works fine again.     I hope this can helps to you!   Best regards.
View full article
Important: If you have any questions or would like to report any issues with the DDR tools or supporting documents please create a support ticket in the i.MX community. Please note that any private messages or direct emails are not monitored and will not receive a response. These are detailed programming aids for the registers associated with DRAM initialization (LPDDR3, DDR3, and LPDDR2). The last work sheet tab in the tool formats the register settings for use with the ARM DS5 debugger. It can also be used with the windows executable for the DDR Stress Test (note the removal of debugger specific commands in this tab). These programming aids were developed for internal NXP validation boards.   This tool serves as an aid to assist with programming the DDR interface of the MX7D and is based on the DDR initialization scripts developed for NXP boards and no guarantees are made by this tool.   The following are some general notes regarding this tool: The default configuration for the tool is to enable bank interleaving. Refer to the "How To Use" tab in the tool as a starting point to use this tool. The tool can be configured for one of the three memory types supported by the MX7D.  However, three separate programming aids are provided based on the DRAM type: LPDDR3, LPDDR2, and DDR3.  Therefore, you may use the tool pre-configured for your desired memory type as a starting point. The DRAM controller IP in MX7D is different from the MX6 series MMDC controller. Results from DRAM calibration may be updated for the following registers: DDR_PHY_OFFSET_WR_CON0 (0x30790030) and DDR_PHY_OFFSET_RD_CON0 (0x30790020).  Also, the MX7D memory map DRAM starting address is fixed at 0x80000000. Some of the CCM programming at the beginning of the DRAM initialization script (in the "DStream .ds file" tab) were automatically generated and in very few cases may involve writing to reserved bits, however, these writes to reserved bits are simply ignored. Note that in the "DStream .ds file" tab there are DS5 debugger specific commands that should be commented out or removed when using the DRAM initialization for non-debugger specific applications (like when porting to bootloaders). This tool may be updated on an as-needed basis for bug fixes or future improvements.  There is no schedule for aforementioned maintenance. For questions or additional assistance using this tool, please contact your local sales or FAE.
View full article
    OpenSSL is popular software library for applications that secure communications over computer networks against eavesdropping or need to identify the party at the other end. It is widely used in internet web servers, serving a majority of all web sites. OpenSSL contains an open-source implementation of the Transport Layer Security (TLS) and Secure Sockets Layer (SSL) protocols, it is a robust, commercial-grade, and full-featured toolkit for the SSL and TLS protocols. OpenSSL is also a general-purpose cryptography library. Its core library, written in the C programming language, implements basic cryptographic functions and provides various utility functions. Wrappers allowing the use of the OpenSSL library in a variety of computer languages are available. More and more embeded systems, like IoT gateway, ePOS, based on i.MX use OpenSSL for their secure communications and cryptographic operations. But it's cryptography library is pure software implementation which need to occupy lots of CPU resouce and the perfermance is very weak than dedicated hardware IP (like CAAM).    CAAM is the i.MX's cryptographic acceleration and assurance module, which serves as NXP's latest cryptographic acceleration and offloading hardware. It combines functions previously implemented in separate modules to create a modular and scalable acceleration and assurance engine. It also implements block encryption algorithms, stream cipher algorithms, hashing algorithms, public key algorithms (i.MX6UL/i.MX7D/S), and a hardware random number generator.   The official Yocto release (L4.1.15_2.0.0-ga) of the i.MX only enable cryptodev for accelerating symmetric algorithms and hashing algorithms, not support asymmetric algorithms(RSA, ECC). And its engine in OpenSSL(version 1.0.2h) also miss some features which is used to support symmetric algorithms and hashing algorithms, for example, AES ECB, SHA224/256, etc. These patches in the post will close the above gaps for i.MX Linux system. The software environments as the belows: Linux kernel: imx_4.1.15_2.0.0_ga cryptodev: 1.8 OpenSSL: 1.0.2h The patches include the following key features: 1, Add public key cryptography part in CAAM driver, through protocol commands, to implement a number of public (and private) key functions. These are DSA and ECDSA sign/verify, Diffie-Hellman (DH) and ECDH key agreement, ECC key generation, DLC key generation, RSA encryption/decryption, RSA key-generation finalization. 2, Add big number operation and elliptic curve math in CAAM driver to implement addition, subtraction, multiplication, exponentiation, reduction, inversion, greatest common divisor, prime testing and point add, point double, point multiply. 3, Add API in cryptodev to support RSA encryption/decryption, DSA/ECDSA sign/verify, DH/ECDH key agreement, ECC & DLC & RSA key generation and big number operation and elliptic curve math. 4, Add public key cryptography functions, hardware rng, and missing hash symmetric algorithms in OpenSSL crytodev engine. Note: 1, You can refer to ecdhtest.c, ecdsatest.c, dhtest.c, dsatest.c, rsa_test.c for how to use crytodev engine in your applications based on libcryto.so. You can also find their executable programs in folder openssl-1.0.2h/test after compiling. 2, If you want to call crytodev API directly to accelerate public key cryptography operations, please refer to asymmetric_cipher.c in cryptodev-linux-1.8/tests. Current Limitation: 1, CAAM driver don't support AES GCM/CCM but hardware supporting. I plan to add the feature next version. 2, ECDSA sign/verify will fail on some binary curves (sect163r1, sect163r2, sect193r1, sect193r2, sect233r1, sect283r1, sect409r1, sect571r1 and X9.62 binary curves). I will try to find the root cause and fix it.   ==================================== for  some binary curves (sect163r1, sect163r2, sect193r1, sect193r2, sect233r1, sect283r1, sect409r1, sect571r1 and X9.62 binary curves)  are rarely used, so i will try to find the root cause when i'm free.  +++++++++++++++++++++++    updating for Linux-4.14.78-1.1.10 ++++++++++++++++++++++++++++ This updating is for Yocto release of Linux -4.14.78-1.1.10. The new software environments as the belows: Linux kernel: imx_4.14.78_1.1.10 cryptodev: 1.9 OpenSSL: 1.0.2p HW platform: i.MX6UL, i.MX7D/S, i.MX8M/8M Mini, i.MX8/8X. The patches include the following new features: 1, support  RSA key generation but defaultly use openssl build-in function (BN_generate_prime_ex) to create prime p, q for higher security. If need to use CAAM accelerating,  please comment Macro USE_BUILTIN_PRIME_GENERATION, but don't confirm its security. 2, Add Manufacturing-protection feature, and you can refer to manufacturing_protection_test function in asymmetric_cipher.c. 3, Support AES GCM in cryptodev. 4, git clone https://gitee.com/zxd2021-imx/meta-openssl-caam.git, git checkout Linux-4.14.78-1.1.10 and copy meta-openssl-caam to folder <Yocto 4.14.78-1.1.10 dir>/sources/ 5, Run DISTRO=fsl-imx-wayland MACHINE=imx6ulevk source fsl-setup-release.sh -b build-imx6ulevk and add BBLAYERS += " ${BSPDIR}/sources/meta-openssl-caam " into /build-imx6ulevk/conf/bblayers.conf 6, bitbake fsl-image-validation-imx 7, Run the below command on your i.MX6UL EVK board. modprobe cryptodev openssl genrsa -f4 -engine cryptodev 512 -elapsed openssl speed dsa -engine cryptodev -elapsed openssl genrsa -f4 -engine cryptodev 1024 -elapsed openssl speed rsa -engine cryptodev -elapsed openssl genrsa -f4 -engine cryptodev 2048 -elapsed openssl speed ecdsa -engine cryptodev -elapsed openssl genrsa -f4 -engine cryptodev 3072 -elapsed openssl speed ecdh -engine cryptodev -elapsed openssl genrsa -f4 -engine cryptodev 4096 -elapsed openssl speed -evp sha256 -engine cryptodev -elapsed openssl speed -evp aes-128-cbc -engine cryptodev -elapsed openssl speed -evp aes-128-ecb -engine cryptodev -elapsed openssl speed -evp aes-128-cfb -engine cryptodev -elapsed openssl speed -evp aes-128-ofb -engine cryptodev -elapsed openssl speed -evp des-ede3 -engine cryptodev -elapsed openssl speed -evp des-cbc -engine cryptodev -elapsed openssl speed -evp des-ede3-cfb -engine cryptodev -elapsed +++++++++++++++++++++++    updating for Linux-4.14.98-2.3.3 ++++++++++++++++++++++++++++ This updating is for Yocto release of Linux -4.14.98-2.3.3. The new software environments as the belows: Linux kernel: imx_4.14.98-2.3.3 cryptodev: 1.9 OpenSSL: 1.0.2p HW platform: i.MX6UL, i.MX7D/S, i.MX8M/8M Mini/8M Nano, i.MX8/8X. The patches include the following new features: 1, git clone https://gitee.com/zxd2021-imx/meta-openssl-caam.git, git checkout Linux-4.14.98-2.3.3 and copy meta-openssl-caam to folder <Yocto 4.14.98-2.3.3 dir>/sources/ 2, Run DISTRO=fsl-imx-wayland MACHINE=imx8mmevk source fsl-setup-release.sh -b build-imx8mmevk and add BBLAYERS += " ${BSPDIR}/sources/meta-openssl-caam " into /build-imx8mmevk/conf/bblayers.conf 3, bitbake fsl-image-validation-imx 4, Run the below command on your i.MX8M Mini EVK board. modprobe cryptodev openssl genrsa -f4 -engine cryptodev 512 -elapsed openssl speed dsa -engine cryptodev -elapsed openssl genrsa -f4 -engine cryptodev 1024 -elapsed openssl speed rsa -engine cryptodev -elapsed openssl genrsa -f4 -engine cryptodev 2048 -elapsed openssl speed ecdsa -engine cryptodev -elapsed openssl genrsa -f4 -engine cryptodev 3072 -elapsed openssl speed ecdh -engine cryptodev -elapsed openssl genrsa -f4 -engine cryptodev 4096 -elapsed openssl speed -evp sha256 -engine cryptodev -elapsed openssl speed -evp aes-128-cbc -engine cryptodev -elapsed openssl speed -evp aes-128-ecb -engine cryptodev -elapsed openssl speed -evp aes-128-cfb -engine cryptodev -elapsed openssl speed -evp aes-128-ofb -engine cryptodev -elapsed openssl speed -evp des-ede3 -engine cryptodev -elapsed openssl speed -evp des-cbc -engine cryptodev -elapsed openssl speed -evp des-ede3-cfb -engine cryptodev -elapsed +++++++++++++++++++++++    updating for Linux-4.19.35-1.1.2 ++++++++++++++++++++++++++++ This updating is for Yocto release of Linux 4.19.35-1.1.2​​.  Software environments as the belows: Linux kernel: imx_4.19.35-1.1.2 cryptodev: 1.10 OpenSSL: 1.1.1l HW platform: i.MX6UL, i.MX7D/S, i.MX8M/8M Mini/8M Nano, i.MX8/8X. How to build: 1, git clone https://gitee.com/zxd2021-imx/meta-openssl-caam.git, git checkout Linux-4.19.35-1.1.2 and copy meta-openssl-caam to folder <Yocto 4.19.35-1.1.2 dir>/sources/ 2, Run DISTRO=fsl-imx-wayland MACHINE=imx8mmevk source imx-setup-release.sh -b build-imx8mmevk and add BBLAYERS += " ${BSPDIR}/sources/meta-openssl-caam " into <Yocto 4.19.35-1.1.2 dir>/build-imx8mmevk/conf/bblayers.conf. 3, Run bitbake fsl-image-validation-imx. 4, Run the below command on your i.MX8M Mini EVK board. modprobe cryptodev openssl speed dsa openssl speed rsa openssl speed ecdsa openssl speed ecdh openssl genrsa -f4 -engine devcrypto 512 openssl genrsa -f4 -engine devcrypto 1024 openssl genrsa -f4 -engine devcrypto 2048 openssl genrsa -f4 -engine devcrypto 3072 openssl genrsa -f4 -engine devcrypto 4096 openssl speed -evp sha256 -engine devcrypto -elapsed openssl speed -evp aes-128-cbc -engine devcrypto -elapsed openssl speed -evp aes-128-ecb -engine devcrypto -elapsed openssl speed -evp aes-128-cfb -engine devcrypto -elapsed openssl speed -evp aes-128-ofb -engine devcrypto -elapsed openssl speed -evp des-ede3 -engine devcrypto -elapsed openssl speed -evp des-cbc -engine devcrypto -elapsed openssl speed -evp des-ede3-cfb -engine devcrypto -elapsed +++++++++++++++++++++++    updating for Linux-5.4.70-2.3.4 ++++++++++++++++++++++++++++ This updating is for Yocto release of Linux 5.4.70_2.3.4​​.  Software environments as the belows: Linux kernel: imx_5.4.70_2.3.4 cryptodev: 1.10 OpenSSL: 1.1.1l HW platform: i.MX6UL, i.MX7D/S, i.MX8M/8M Mini/8M Nano/8M Plus, i.MX8/8X. How to build: 1, git clone https://gitee.com/zxd2021-imx/meta-openssl-caam.git, git checkout Linux-5.4.70-2.3.4  and copy meta-openssl-caam to folder <Yocto 5.4.70_2.3.4 dir>/sources/ 2, Run DISTRO=fsl-imx-wayland MACHINE=imx8mmevk source imx-setup-release.sh -b build-imx8mmevk and add BBLAYERS += " ${BSPDIR}/sources/meta-openssl-caam " into <Yocto 5.4.70_2.3.4 dir>/build-imx8mmevk/conf/bblayers.conf. 3, Run bitbake imx-image-multimedia. 4, Run the below command on your i.MX8M Mini EVK board. modprobe cryptodev openssl speed dsa openssl speed rsa openssl speed ecdsa openssl speed ecdh openssl genrsa -f4 -engine devcrypto 512 openssl genrsa -f4 -engine devcrypto 1024 openssl genrsa -f4 -engine devcrypto 2048 openssl genrsa -f4 -engine devcrypto 3072 openssl genrsa -f4 -engine devcrypto 4096 openssl speed -evp sha256 -engine devcrypto -elapsed openssl speed -evp aes-128-cbc -engine devcrypto -elapsed openssl speed -evp aes-128-ecb -engine devcrypto -elapsed openssl speed -evp aes-128-cfb -engine devcrypto -elapsed openssl speed -evp aes-128-ofb -engine devcrypto -elapsed openssl speed -evp des-ede3 -engine devcrypto -elapsed openssl speed -evp des-cbc -engine devcrypto -elapsed openssl speed -evp des-ede3-cfb -engine devcrypto -elapsed     +++++++++++++++++++++++    updating for Linux-5.10.52-2.1.0 ++++++++++++++++++++++++++++ This updating is for Yocto release of Linux 5.10.52_2.1.0​​.  Software environments as the belows: Linux kernel: lf-5.10.y cryptodev: 1.12 OpenSSL: 1.1.1l HW platform: i.MX6UL, i.MX7D/S, i.MX8M/8M Mini/8M Nano/8M Plus, i.MX8/8X. How to build: 1, git clone https://gitee.com/zxd2021-imx/meta-openssl-caam.git, git checkout Linux-5.10.52-2.1.0 and copy meta-openssl-caam to folder <Yocto 5.10.52_2.1.0 dir>/sources/ 2, Run DISTRO=fsl-imx-xwayland MACHINE=imx8mmevk source imx-setup-release.sh -b build-imx8mmevk and add BBLAYERS += " ${BSPDIR}/sources/meta-openssl-caam " into <Yocto 5.10.52_2.1.0 dir>/build-imx8mmevk/conf/bblayers.conf. 3, Run bitbake imx-image-multimedia. 4, Run the below command on your i.MX8M Mini EVK board. modprobe cryptodev openssl speed dsa openssl speed rsa openssl speed ecdsa openssl speed ecdh openssl genrsa -f4 -engine devcrypto 512 openssl genrsa -f4 -engine devcrypto 1024 openssl genrsa -f4 -engine devcrypto 2048 openssl genrsa -f4 -engine devcrypto 3072 openssl genrsa -f4 -engine devcrypto 4096 openssl speed -evp sha256 -engine devcrypto -elapsed openssl speed -evp aes-128-cbc -engine devcrypto -elapsed openssl speed -evp aes-128-ecb -engine devcrypto -elapsed openssl speed -evp aes-128-cfb -engine devcrypto -elapsed openssl speed -evp aes-128-ofb -engine devcrypto -elapsed openssl speed -evp des-ede3 -engine devcrypto -elapsed openssl speed -evp des-cbc -engine devcrypto -elapsed openssl speed -evp des-ede3-cfb -engine devcrypto -elapsed   +++++++++++++++++++++++    updating for Linux-5.15.71-2.2.0 ++++++++++++++++++++++++++++ This updating is for Yocto release of Linux 5.15.71-2.2.0​​.  Software environments as the belows: Linux kernel: lf-5.15.71-2.2.0 cryptodev: 1.12 OpenSSL: 3.1.0 HW platform: i.MX6UL, i.MX7D/S, i.MX8M/8M Mini/8M Nano/8M Plus, i.MX8/8X. How to build: 1, git clone https://gitee.com/zxd2021-imx/meta-openssl-caam.git, git checkout Linux-5.15.71-2.2.0 and copy meta-openssl-caam to folder <Yocto 5.15.71_2.2.0 dir>/sources/ 2, Run DISTRO=fsl-imx-xwayland MACHINE=imx8mmevk source imx-setup-release.sh -b build-imx8mmevk and add BBLAYERS += " ${BSPDIR}/sources/meta-openssl-caam " into <Yocto 5.15.71_2.2.0 dir>/build-imx8mmevk/conf/bblayers.conf. 3, Run bitbake imx-image-multimedia. 4, Run the below command on your i.MX8M Mini EVK board. modprobe cryptodev openssl speed sm2 openssl speed dsa openssl speed rsa openssl speed ecdsa openssl speed ecdh openssl genrsa -f4 -engine devcrypto 512 openssl genrsa -f4 -engine devcrypto 1024 openssl genrsa -f4 -engine devcrypto 2048 openssl genrsa -f4 -engine devcrypto 3072 openssl genrsa -f4 -engine devcrypto 4096 openssl speed -evp sha256 -engine devcrypto -elapsed openssl speed -evp aes-128-cbc -engine devcrypto -elapsed openssl speed -evp aes-128-ecb -engine devcrypto -elapsed openssl speed -evp aes-128-cfb -engine devcrypto -elapsed openssl speed -evp aes-128-ofb -engine devcrypto -elapsed openssl speed -evp des-ede3 -engine devcrypto -elapsed openssl speed -evp des-cbc -engine devcrypto -elapsed openssl speed -evp des-ede3-cfb -engine devcrypto -elapsed    
View full article
       Of all the i.MX serials SoC, i.MX28/i.MX6UL/i.MX7D/S use Synchronous Audio Interface(SAI) to support audio applications. SAI supports I2S, AC97, TDM and code/DSP interfaces. The SAI interface consists of these signals: SAI_MCLK         ------------  used to provide working clock for external audio device , such as audio codec. SAI_RX_BCLK  ------------  bit clock for receiving channle. SAI_RX_DATA   ------------  data of receiving channel. SAI_RX_SYNC  ------------  Frame Synchronous signal of Left and right channel for receiving channel. SAI_TX_BCLK  ------------  bit clock for transmitting channel. SAI_TX_DATA   ------------  data of transmitting channel SAI_TX_SYNC  ------------  Frame Synchronous signal of Left and right channel for transmitting channel.         According to above signals, SAI has 2 channels: receive and transmit, and these 2 channels have their own clock: bit clock and frame SYNC, so they can work independently, it means PLAY and CAPTURE can be operated simultaneously, that is to say, SAI works at Asynchronous mode this moment.        In the document, we will discuss several usages of SAI on hardware design when it works at I2S(SYNC) mode. we will take i.MX6UL as an example, and for i.MX7D/S, usages are similar. 1. IOMUX of SAI From i.MX6UL reference manual, there are 3 SAI modules in i.MX6UL: SAI1 , SAI2 & SAI3, see page 2529 in IMX6ULRM.pdf. As common applications, we will use 2 interface of SAIs. 2. Hardware connections for I2S mode Either CPU is Master or Codec is Master, hardware connections are same. (1) Single audio codec or (2) Dual audio codec (3) Audio codec + Bluetooth PCM or (4) Audio codec + Bluetooth PCM + 4G PCM or     [Note]   Attachments are schematics of WM8958 and MAX98089, which are not released by NXP, just for users who are interested in i.MX audio applications reference. If you want to use WM98089 or WM8958, please contact their manufactures and confirm if schematics are correct, so don't use them directly for your solution. NXP China TIC i.MX team Weidong Sun
View full article
Few issues encountered trying to build L5.1.1_2.1.0 Android for i.MX6: (some of them can apply to Android M6 build also) Issue-1: OpenJDK-7 required to build L5.1.1_2.1.0 but not able to download/install in Ubuntu 16.04: solution: Ubuntu 16.04 and openjdk 7 - Ask Ubuntu =============================== sudo add-apt-repository ppa:openjdk-r/ppa sudo apt-get update sudo apt-get install openjdk-7-jdk =============================== Issue-2: without any modification, got error message like: "You have tried to change the API from what has been previously approved." during compilation. solution: follow the suggestion in the error message, do "make update-api" Issue-3: error messages like ========================================= external/libcxx/include/thread:149: error: unsupported reloc 43 clang: error: linker command failed with exit code 1 (use -v to see invocation) build/core/host_shared_library_internal.mk:44: recipe for target 'out/host/linux-x86/obj32/lib/libc++.so' failed make: *** [out/host/linux-x86/obj32/lib/libc++.so] Error 1 ========================================= related post on Internet: http://stackoverflow.com/questions/36048358/building-android-from-sources-unsupported-reloc-43 https://bbs.archlinux.org/viewtopic.php?id=209698 solution:(as mentioned in the link above) replaced "prebuilts/gcc/linux-x86/host/x86_64-linux-glibc2.15-4.6/x86_64-linux/bin/ld" with the symlink to "/usr/bin/ld.gold" so this should look like: ========================================= ~/myandroid/prebuilts/gcc/linux-x86/host/x86_64-linux-glibc2.11-4.6/x86_64-linux/bin$ ls -l ld* lrwxrwxrwx 1 jimlin jimlin      16     May  6 14:48 ld -> /usr/bin/ld.gold -rwxrwxr-x 1 jimlin jimlin 1645584 May  6 11:24 ld.bfd -rwxrwxr-x 1 jimlin jimlin 3497448 May  6 11:24 ld.gold -rwxrwxr-x 1 jimlin jimlin 3497448 May  6 11:24 ld.org ========================================= to this point I can build L5.1.1_2.1.0 successfully.(on 2016, May, 12.) Issue-4: can't run the SD tool "fsl-sdcard-partition.sh" used to partition/format SD card in "~/myandroid/device/fsl/common/tools" root-cause: in Ubuntu 16.04, "sfdisk" tool doesn't support "-u" parameter: ================================== sfdisk from util-linux 2.27.1 -u, --unit S              deprecated, only sector unit is supported ================================== error message encountered when running the script: ================================== ~/myandroid/device/fsl/common/tools$ sudo ./fsl-sdcard-partition.sh /dev/sdc sfdisk: unsupported unit 'M' sfdisk: unsupported unit 'M' ================================== I've modified the script a bit to adapt the changes, as attached.
View full article
Some Chinese customers using i.MX series SoC maybe encounter some issues when they download android , u-boot & kernel source code by 'git' command, the following steps will show customer how to get them: 1. Getting repo --No.1 methord # cd ~ # mkdir myandroid # mkdir bin # cd bin # git clone git://aosp.tuna.tsinghua.edu.cn/android/git-repo.git/ <if git failed, use : git clone https://aosp.tuna.tsinghua.edu.cn/android/git-repo.git/> # cd git-repo # cp ./repo ../ --No.2 methord # cd ~ # mkdir bin # curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo # chmod a+x ~/bin/repo [Note]Customers can select one of above to get "repo" 2. Modifying repo File Open ~/bin/repo file with 'gedit' and Change google address From        REPO_URL = 'https://gerrit.googlesource.com/git-repo' To        REPO_URL = 'git://aosp.tuna.tsinghua.edu.cn/android/git-repo'        like following: ## repo default configuration ## REPO_URL = 'git://aosp.tuna.tsinghua.edu.cn/android/git-repo' REPO_REV = 'stable' 3、Setting email address # cd ~/myandroid # git config --global user.email "weidong.sun@nxp.com" # git config --global user.name "weidong.sun" [ Email & Name should be yours] 4、Getting manifest # ~/bin/repo init -u https://aosp.tuna.tsinghua.edu.cn/android/platform/manifest -b android-5.1.1_r1 # cd ~/myandroid/.repo # gedit manifest.xml        Then change the value of fetch to " git://aosp.tuna.tsinghua.edu.cn/android/ ", like following: <manifest>   <remote name="aosp"            fetch="git://aosp.tuna.tsinghua.edu.cn/android/" />   <default revision="refs/tags/android-5.1.1_r1" ...... [Note] android-5.1.1_r1 is version of branch,customer can change it to another. 5、# ~/bin/repo sync          [Note] During runing repo sync, maybe errors will occur like the following: ...... * [new tag]         studio-1.4 -> studio-1.4 error: Exited sync due to fetch errors          Then 'repo sync' exits. But don't worry about it, continue to run the command please ! " ~/bin/repo sync", downloading source code will be continous. 6、Getting Cross Compiler # cd ~/myandroid/prebuilts/gcc/linux-x86/arm # git clone https://aosp.tuna.tsinghua.edu.cn/android/platform/prebuilts/gcc/linux-x86/arm/arm-eabi-4.6 # cd arm-eabi-4.6 # git checkout android-4.4.3_r1 7、Getting linux kernel source code        Probably, customer can't normally get linux kernel by using "git clone" command, she can download it directly from the following weblink:        http://git.freescale.com/git/cgit.cgi/imx/linux-2.6-imx.git/        At first, create a temperary directory, then download kernel into the directory. see following steps: # cd ~ /Downloads # mkdir linux-kernel   Atfer downloading l5.1.1_2.1.0-ga.tar.gz, use 'tar zxvf l5.1.1_2.1.0-ga.tar.gz' command to decompress it.        Then you can find a subdirectory name " l5.1.1_2.1.0-ga" is created, linux source code is in the directory, we should copy all files in the directory to ~/myandroid/kernel_imx/ # cd ~/myandroid # mkdir kernel_imx # cd kernel_imx # cp -a ~ /Downloads/linux-kernel/l5.1.1_2.1.0-ga ./ 8、Getting uboot source code               Probably, customer can't normally get linux kernel by using "git clone" command, she can download it directly from the following weblink:       http://git.freescale.com/git/cgit.cgi/imx/uboot-imx.git/        We can use similar way to that of linux kernel to get u-boot source code: # cd ~ /Downloads # mkdir u-boot        Download l5.1.1_2.1.0-ga.tar.gz file, and save it in ~ /Downloads/ u-boot, then decompress it, then u-boot source code will be in ~ /Downloads/ u-boot / l5.1.1_2.1.0-ga/, we should copy all file in the path to ~/myandroid/bootable/bootloader/uboot-imx/ # cd ~/myandroid/bootable/bootloader # mkdir uboot-imx # cd uboot-imx # cp -a ~ /Downloads/u-boot/l5.1.1_2.1.0-ga/* ./ 9、Patch android BSP source code        android_L5.1.1_2.1.0_consolidated-ga_core_source.gz is the name of patch. Run following command to patch android. # copy android_L5.1.1_2.1.0_consolidated-ga_core_source.gz /opt/ # tar zxvf android_L5.1.1_2.1.0_consolidated-ga_core_source.gz # cd /opt/ android_L5.1.1_2.1.0_consolidated-ga_core_source/code/ # tar zxvf L5.1.1_2.1.0_consolidated-ga.tar.gz # cd ~/myandroid # source /opt/ android_L5.1.1_2.1.0_consolidated-ga_core_source/code/ L5.1.1_2.1.0_consolidated-ga/ and_patch.sh # help # c_patch /opt/ android_L5.1.1_2.1.0_consolidated-ga_core_source/code/ L5.1.1_2.1.0_consolidated-ga/ imx_L5.1.1_2.1.0-ga        If everything is OK, the following logs will display on console:               **************************************************************        Success: Now you can build the Android code for FSL i.MX platform               ************************************************************** 10、Patch Freescale extended feathures code        Please refer to chapter 3.3 of Android_User's_Guide.pdf to patch another 2 files:        (1) android_L5.1.1_2.1.0_consolidated-ga_omxplayer_source.gz        (2) android_L5.1.1_2.1.0_consolidated-ga_wfdsink_source.gz [Note]       As for other steps, such as compiling etc, please refer to Android_User's_Guide.pdf that released by NXP. TICS team Weidong Sun 04/01/2016
View full article
Agenda: 1. How-to M4 boot-up from TCM, DDR, OCRAM or QSPI in i.MX7D SABRE board 2. About multicore communication, Linux / Cortex-A and FreeRTOS / Cortex-M    a. RPMsg Ping-Pong FreeRTOS demo    b. RPMsg String Echo FreeRTOS demo 3. Multi-core Resource Sharing and Protection, RDC (Resource Domain Controller), Master Assignment Registers, Peripheral Mapping and Memory region Map 4. RDC settings in FreeRTOS BSP
View full article
A new version of the Pins Tool for i.MX Application Processors has been released and is available for download as desktop tool from Pins Tool for i.MX Application Processors|NXP. The pins Tool for i.MX Application Processors is used for pin routing configuration, validation and code generation, including pin functional/electrical properties, power rails, run-time configurations, with the following main features: Desktop application Muxing and pin configuration with consistency checking Multicore support ANSI-C initialization code Graphical processor package view Multiple configuration blocks/functions Easy-to-use device configuration Selection of Pins and Peripherals Package with IP blocks Routed pins with electrical characteristics Registers with configured and reset values Power Groups with assigned voltage levels Source code for C/C++ applications Documented and easy to understand source code CSV Report and Device Tree File Localized for English and Simplified Chinese Mostly Connected: On-Demand device data download Integrates with any compiler and IDE What's New Added Label support to give signals a name Added ‘Log’ and ‘Problems’ view to report conflicts between settings Added support for templates to store user configurations as starting point for new configurations Added ability to download and share data for devices, especially for off-network host machines i.MX header files are now automatically part of the device data Import of legacy Processor Expert .pe files Export of register defines Various bug fixes and documentation improvements The release notes of the desktop application are attached to this article. Import Processor Expert Files A new importer has been added to import legacy Processor Expert for i.MX files: Labels Signals can now have user defined labels: Templates, Kits, Boards and Processors When creating a new configuration, it offers Templates, Boards and Processors. Custom configurations can be stored as templates and then used for new configurations. Board Specific Functions With the provided board and kit configurations, there are now pre-configured initialization functions for major blocks on the board: Export Data To simplify downloading the device specific data for the desktop tool, the 'Export' function can be used to download and export the data. The data can be copied that way to another machine or all data for a set of devices can be loaded. Export Registers With the Export command the registers can be exported as text/source: This is used to store the register values: /*FUNCTION********************************************************************** * * Function Name : init_audmux_pins * Description   : Configures pin routing and optionally pin electrical features. * *END**************************************************************************/ #define INIT_AUDMUX_PINS_IOMUXC_AUD5_INPUT_DA_AMX_SELECT_INPUT_VALUE            0x00000000   /*!< Register name: IOMUXC_AUD5_INPUT_DA_AMX_SELECT_INPUT */ #define INIT_AUDMUX_PINS_IOMUXC_AUD5_INPUT_TXCLK_AMX_SELECT_INPUT_VALUE         0x00000000   /*!< Register name: IOMUXC_AUD5_INPUT_TXCLK_AMX_SELECT_INPUT */ #define INIT_AUDMUX_PINS_IOMUXC_AUD5_INPUT_TXFS_AMX_SELECT_INPUT_VALUE          0x00000000   /*!< Register name: IOMUXC_AUD5_INPUT_TXFS_AMX_SELECT_INPUT */ #define INIT_AUDMUX_PINS_IOMUXC_SW_MUX_CTL_PAD_DI0_PIN02_VALUE                  0x00000002   /*!< Register name: IOMUXC_SW_MUX_CTL_PAD_DI0_PIN02 */ #define INIT_AUDMUX_PINS_IOMUXC_SW_MUX_CTL_PAD_DI0_PIN03_VALUE                  0x00000002   /*!< Register name: IOMUXC_SW_MUX_CTL_PAD_DI0_PIN03 */ #define INIT_AUDMUX_PINS_IOMUXC_SW_MUX_CTL_PAD_DI0_PIN04_VALUE                  0x00000002   /*!< Register name: IOMUXC_SW_MUX_CTL_PAD_DI0_PIN04 */ #define INIT_AUDMUX_PINS_IOMUXC_SW_MUX_CTL_PAD_DI0_PIN15_VALUE                  0x00000002   /*!< Register name: IOMUXC_SW_MUX_CTL_PAD_DI0_PIN15 */ #define INIT_AUDMUX_PINS_IOMUXC_SW_MUX_CTL_PAD_DISP0_DATA16_VALUE               0x00000003   /*!< Register name: IOMUXC_SW_MUX_CTL_PAD_DISP0_DATA16 */ #define INIT_AUDMUX_PINS_IOMUXC_SW_MUX_CTL_PAD_DISP0_DATA18_VALUE               0x00000003   /*!< Register name: IOMUXC_SW_MUX_CTL_PAD_DISP0_DATA18 */ #define INIT_AUDMUX_PINS_IOMUXC_SW_MUX_CTL_PAD_DISP0_DATA19_VALUE               0x00000003   /*!< Register name: IOMUXC_SW_MUX_CTL_PAD_DISP0_DATA19 */ ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ We hope you will find this new release useful. Thanks for designing with NXP! 
View full article
        The document will introduce how to setup cross‐compiling environment for android android7.1.1 BSP on Ubuntu 16.04.2 LTS, The purpose is to help i.MX customers create android BSP environment quickly, from this, save customer’s time and let them focus on the development of their product. Customer can compile android7.1.1 BSP according to the following steps: ‐‐Installing Ubuntu160.4.2 LTS 1. Running software updater to update system       Customer can download ubuntu‐16.04.2‐desktop‐amd64.iso from https://www.ubuntu.com/download/desktop Then install it to VMware workstation player v12 or PC, after finishing installation, use “Software Updater” to update system. 2. Installing necessary packages    Before compiling android7.1.1 source code, we need to install some neccesary software packages, see following, please! $ sudo apt-get install gnupg $ sudo apt-get install flex $ sudo apt-get install bison $ sudo apt-get install gperf $ sudo apt-get install build-essential $ sudo apt-get install zip $ sudo apt-get install zlib1g-dev $ sudo apt-get install libc6-dev $ sudo apt-get install lib32ncurses5-dev $ sudo apt-get install x11proto-core-dev $ sudo apt-get install libx11-dev $ sudo apt-get install lib32z1-dev $ sudo apt-get install libgl1-mesa-dev $ sudo apt-get install tofrodos $ sudo apt-get install python-markdown $ sudo apt-get install libxml2-utils $ sudo apt-get install xsltproc $ sudo apt-get install uuid-dev:i386 liblzo2-dev:i386 $ sudo apt-get install gcc-multilib g++-multilib $ sudo apt-get install subversion $ sudo apt-get install openssh-server openssh-client $ sudo apt-get install uuid uuid-dev $ sudo apt-get install zlib1g-dev liblz-dev $ sudo apt-get install liblzo2-2 liblzo2-dev $ sudo apt-get install lzop $ sudo apt-get install git-core curl $ sudo apt-get install u-boot-tools $ sudo apt-get install mtd-utils $ sudo apt-get install android-tools-fsutils $ sudo apt-get install openjdk-8-jdk 3. Downloading android7.1.1 source code, u‐boot, linux kernel 3.1 Downloading android7.1.1 source code 3.1.1 Getting source code from google .    if users can access google site, she can get source code accroding to steps in "Android_User's_Guide.pdf" released by NXP 3.1.2 Getting source code from the server of tsinghua university( this is for customer in China ) Steps: (1) Getting repo # cd ~ # mkdir myandroid # mkdir bin # cd bin # git clone https://aosp.tuna.tsinghua.edu.cn/android/git-repo.git/ # cd git‐repo # cp ./repo ../ (2) Modifying repo File Open ~/bin/repo file with 'gedit' and Change google address From REPO_URL = 'https://gerrit.googlesource.com/git-repo' To REPO_URL = ' https://gerrit-google.tuna.tsinghua.edu.cn/git-repo (3) Setting email address # cd ~/myandroid # git config --global user.email "email address" # git config --global user.name "name" [ Email & Name should be yours] (4) Modifying manifest.xml # ~/bin/repo init -u https://aosp.tuna.tsinghua.edu.cn/android/platform/manifest -b android-7.1.1_r13 # cd ~/myandroid/.repo # gedit manifest.xml Then change the value of fetch to " https://aosp.tuna.tsinghua.edu.cn/android/ ", like following: <manifest> <remote name="aosp" fetch="https://aosp.tuna.tsinghua.edu.cn/android/" /> <default revision="refs/tags/android-5.1.1_r1" ...... (5) # ~/bin/repo sync [Note] During runing repo sync, maybe errors will occur like the following: ...... * [new tag] studio‐1.4 ‐> studio‐1.4 error: Exited sync due to fetch errors Then 'repo sync' exits. But don't worry about it, continue to run the command please ! " ~/bin/repo sync", downloading source code will be continous. 3.2 Getting uboot source code $ cd ~/myandroid/bootable $ mkdir bootloader $ cd bootloader $ git clone git://git.freescale.com/imx/uboot-imx.git uboot-imx $ cd uboot-imx $ git checkout n7.1.1_1.0.0-ga 3.3 Downloading linux kernel $ cd ~/myandroid $ git clone git://git.freescale.com/imx/linux-imx.git kernel_imx $ cd kernel_imx $ git checkout n7.1.1_1.0.0-ga 4. Downloading android7.1.1 BSP source code and patch it above source code 4.1 Android7.1.1 BSP can be downloaded from the link: Android OS for i.MX Applications Processors|NXP  ---Board Support Packages (66) After downloading it, copy it to /opt/ 4.2 Patch it to android source code $ cd ~/myandroid $ source /opt/android_N7.1.1_1.0.0_source/code/N7.1.1_1.0.0/and_patch.sh $ help $ c_patch /opt/android_N7.1.1_1.0.0_source/code/N7.1.1_1.0.0/ imx_N7.1.1_1.0.0 If everything is OK, "c_patch" generates the following output to indicate the successful patch: 5. Compiling android7.1.1 BSP source code for i.MX boards $ export ARCH=arm $ export CROSS_COMPILE=~/myandroid/prebuilts/gcc/linux-x86/arm/armlinux-androideabi-4.9/bin/arm-linux-androideabi- $ cd ~/myandroid $ source build/envsetup.sh $ lunch sabresd_6dq-user $ make –j2   (Using 2 CPU cores to compile) Probably, users will enconter this error during compiling: [Solve it like this:] $ export ANDROID_JACK_VM_ARGS="-Dfile.encoding=UTF-8 -XX:+TieredCompilation -Xmx4g" $  cd ~/myandroid $ ./prebuilts/sdk/tools/jack-admin kill-server then run "make " to continue compiling. After compiling, we can see images in output path: -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Hope above items can help you! If customers have questions about the document, she can submit case to me by our saleforce system. the following is how to submit cases to us: ******************************************************************************************************************************************* In case a new customer is asking how to submit a technical case on nxp.com ,here is a template for your reference. 1) Please visit www.nxp.com and click on Support on the top of the webpage. 2) Select Sales and Support under Support Resources session. 3) Scroll down to the bottom ,click on “hardware & Software” . 4) Register by your business email to enter NXP Community 5) Get verification email and verify your account. 6) Select "contact support" on the top and click “submit a new case” to start the process. ******************************************************************************************** Then label : "please forward it to TIC Weidong Sun" in your content , I can get it. NXP TIC team Weidong.Sun 2017-03-16 in Shanghai China
View full article
The Linux L4.9.11_1.0.0 RFP(GA) for i.MX6 release files are now available on www.nxp.com    Files available: # Name Description 1 L4.9.11_1.0.0-ga_images_MX6QPDLSOLOX.tar.gz i.MX 6QuadPlus, i.MX 6Quad, i.MX 6DualPlus, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo, i.MX 6Solox Linux Binary Demo Files 2 L4.9.11_1.0.0-ga_images_MX6SLEVK.tar.gz i.MX 6Sololite EVK Linux Binary Demo Files 3 L4.9.11_1.0.0-ga_images_MX6UL7D.tar.gz i.MX 6UltraLite EVK, 7Dual SABRESD, 6ULL EVK Linux Binary Demo Files 4 L4.9.11_1.0.0-ga_images_MX6SLLEVK.tar.gz i.MX 6SLL EVK Linux Binary Demo Files 5 L4.9.11_1.0.0-ga_images_MX7ULPEVK.tar.gz i.MX 7ULP EVK Linux Binary Demo Files  6 L4.9.11_1.0.0-ga_mfg-tools.tar.gz i.MX Manufacturing Toolkit for Linux L4.9.11_1.0.0 BSP 7 L4.9.11_1.0.0-ga_gpu-tools.tar.gz L4.9.11_1.0.0 i.MX VivanteVTK file 8 bcmdhd-1.141.100.6.tar.gz The Broadcom firmware package for i.MX Linux L4.9.11_1.0.0 BSP. 9 imx-aacpcodec-4.2.1.tar.gz Linux AAC Plus Codec for L4.9.11_1.0.0 10 fsl-yocto-L4.9.11_1.0.0.tar.gz L4.9.11_1.0.0 for Linux BSP Documentation. Includes Release Notes, User Guide.   Target boards: i.MX 6QuadPlus SABRE-SD Board and Platform i.MX 6QuadPlus SABRE-AI Board i.MX 6Quad SABRE-SD Board and Platform i.MX 6DualLite SABRE-SD Board i.MX 6Quad SABRE-AI Board i.MX 6DualLite SABRE-AI Board i.MX 6SoloLite EVK Board i.MX 6SoloX SABRE-SD Board i.MX 6SoloX SABRE-AI Board i.MX 7Dual SABRE-SD Board i.MX 6UltraLite EVK Board i.MX 6ULL EVK Board i.MX 6SLL EVK Board i.MX 7ULP EVK Board (Beta Quality)   What’s New/Features: Please consult the Release Notes.   Known issues For known issues and more details please consult the Release Notes.   More information on changes, see: README: https://source.codeaurora.org/external/imx/fsl-arm-yocto-bsp/tree/README?h=imx-morty ChangeLog: https://source.codeaurora.org/external/imx/fsl-arm-yocto-bsp/tree/ChangeLog?h=imx-morty
View full article
meta-avs-demos Yocto layer meta-avs-demos is a Yocto meta layer (complementary to the NXP BSP release for i.MX) published on CodeAurora that includes the additional required packages to support  Amazon's Alexa Voice Services SDK (AVS_SDK) applications. The build procedure is the described on the README.md of the corresponding branch. We have 2 fuctional branches now: imx-alexa-sdk: Support for Morty based i.mx releases imx7d-pico-avs-sdk_4.1.15-1.0.0: legacy support for Jethro releases The master branch is only used to collect manifest files, that used with repo init/sync commands will fetch the whole environment for the 2 special supported boards: i.MX7D Pico Pi and i.MX8M EVK. However the meta-avs-demos can be used with any i.MX board either. Recipes to include Amazon's Alexa Voice Services in your applications. The meta-avs-demos provides the required recipes to build an i.MX image with the support for running Alexa SDK. The imx-alexa-sdk branch is based on Morty and kernel 4.9.X and it supports the next builds: i.MX7D Pico Pi i.MX8M EVK Generic i.MX board For the i.MX7D Pico Pi and i.MX8M EVK there is an extended support for additional (external) Sound Cards like: TechNexion VoiceHat: 2Mic Array board with DSPConcepts SW support Synaptics Card: 2 Mic with Sensory WakeWord support The Generic i.MX is for any other regular i.MX board supported on the official NXP BSP releases. Only the default soundcard (embedded) on the board is supported. Sensory wakeword is currently only enabled for those with ARMV7 architecture. To support any external board like the VoiceHat or Synaptics is up to the user to include the additional patches/changes required. Build Instructions Follow the corresponding README file to follow the steps to build an image with Alexa SDK support README-IMX7D-PICOPI.md README-IMX8M-EVK.md README-IMX-GENERIC.md
View full article
The i.MX Android O8.0.0_1.0.0 GA release is now available from IMX_SW page. Overview -> BSP Updates and Releases -> Android 8.0.0 Oreo (O8.0.0_1.0.0, 4.9 kernel)   Files available: # Name Description 1 android_O8.0.0_1.0.0_docs.tar.gz i.MX Android O8.0.0_1.0.0 BSP Documentation 2 imx-o8.0.0_1.0.0_ga.tar.gz i.MX Android O8.0.0_1.0.0 proprietary surce code for i.MX 6QuadPlus, i.MX 6Quad, i.MX 6DualPlus, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo  i.MX 6Sololite, i.MX6SX and i.MX7D 3 android_O8.0.0_1.0.0_image_6dqpsabreauto.tar.gz Binary Demo Files of Android O8.0.0_1.0.0 BSP - SABRE for Automotive Infotainment based on i.MX 6QuadPlus, i.MX 6Quad, and i.MX 6DualLite 4 android_O8.0.0_1.0.0_image_6dqpsabresd.tar.gz Binary Demo Files of Android O8.0.0_1.0.0 BSP - SABRE Platform and SABRE Board based on i.MX 6QuadPlus, i.MX 6Quad and i.MX 6DualLite. 5 android_O8.0.0_1.0.0_image_6slevk.tar.gz Binary Demo Files of Android O8.0.0_1.0.0 BSP - i.MX 6Sololite evaluation kit. 6 android_O8.0.0_1.0.0_image_6sxsabresd.tar.gz Binary Demo Files of Android O8.0.0_1.0.0 BSP - SABRE Board based on i.MX 6SoloX 7 android_O8.0.0_1.0.0_image_6sxsabreauto.tar.gz Binary Demo Files of Android O8.0.0_1.0.0 BSP - SABRE for Automotive infotainment based on i.MX 6SoloX 8 android_O8.0.0_1.0.0_image_7dsabresd.tar.gz Binary Demo Files of Android O8.0.0_1.0.0 BSP - SABRE Board based on i.MX 7Dual 9 fsl_aacp_dec_O8.0.0_1.0.0.tar.gz AAC Plus Codec for O8.0.0_1.0.0 10 android_O8.0.0_1.0.0_tools.tar.gz Manufacturing Toolkit and VivanteVTK for O8.0.0_1.0.0   Supported Hardware SoC/Boards: i.MX 6Quad, i.MX 6QuadPlus, and i.MX 6DualLite SABRE-SD board and platform i.MX 6Quad, i.MX 6QuadPlus, and i.MX 6DualLite SABRE-AI board and platform i.MX 6SoloLite EVK platform i.MX 6SoloX SABRE-SD board and platforms i.MX 6SoloX SABRE-AI board and platforms i.MX 7Dual SABRE-SD board and platform   Changes: Compared to the N7.1.2_2.0.0 release, this release has the following major changes: Upgraded the Android code base from android-7.1.2_r9 to android-8.0.0_r25. Removed the device partition and added the vendor partition. Enabled ION-based gralloc and EGL. Feature: For features please consult the release notes.   Known issues For known issues and more details please consult the Release Notes.
View full article
 This article uses i.MX Linux® User's Guide, Rev. L4.1.15_2.1.0-ga, 05/2017 as an example (it may be found as attachment), please refer to section 4.5.12 (How to build U-Boot and Kernel in standalone environment).   First, generate a development SDK, which includes the tools, toolchain, and small rootfs to compile against to put on the host machine.     • Generate an SDK from the Yocto Project build environment with the following command. To set up the Yocto Project build environment, follow the steps in the i.MX Yocto Project User's Guide (IMXLXYOCTOUG). In the following command, set <Target-Machine> to the machine you are building for.   <Target-Machine> may be one of the following :   • imx6qpsabreauto • imx6qpsabresd • imx6ulevk • imx6ull14x14evk • imx6ull9x9evk • imx6dlsabreauto • imx6dlsabresd • imx6qsabreauto • imx6qsabresd • imx6slevk • imx6sllevk • imx6solosabreauto • imx6solosabresd • imx6sxsabresd • imx6sxsabreauto • imx7dsabresd  The «populate_sdk» generates an script file that sets up environment without Yocto Project. This SDK should be updated for each release to pick up the latest headers, toolchain, and tools from the current release.   $ DISTRO=fsl-imx-fb MACHINE=<Target-Machine> source fsl-setup-release.sh -b build-fb   $ DISTRO=fsl-imx-fb MACHINE=<Target-Machine> bitbake core-image-minimal -c populate_sdk   or   $ bitbake meta-toolchain       • From the build directory, the bitbake was run in, copy the sh file in tmp/deploy/sdk to the host machine to build on and execute the script to install the SDK. The default location is in /opt but can be placed anywhere on the host machine.     Note. Each time you wish to use the SDK in a new shell session, you need to source the environment setup script e.g.    $ . /opt/fsl-imx-fb/4.1.15-2.0.0/environment-setup-cortexa9hf-neon-poky-linux-gnueabi   or    $ source /opt/fsl-imx-fb/4.1.15-2.0.0/environment-setup-cortexa9hf-neon-poky-linux-gnueabi   From  Yocto Project Mega-Manual  Note By default, this toolchain does not build static binaries. If you want to use the toolchain to build these types of libraries, you need to be sure your image has the appropriate static development libraries. Use the  IMAGE_INSTALL  variable inside your  local.conf  file to install the appropriate library packages. Following is an example using  glibc  static development libraries:      IMAGE_INSTALL_append = " glibc-staticdev"   On the host machine, these are the steps to build U-Boot and Kernel:  • On the host machine, set the environment with the following command before building.   $ export CROSS_COMPILE=/opt/fsl-imx-fb/4.1.15/environment-setup-cortexa9hf-vfp-neon-pokylinux-gnueabi   $ export ARCH=arm • To build U-Boot, find the configuration for the target boot. In the following example, i.MX 6ULL is the target.     Download source by cloning with   $ git clone http://git.freescale.com/git/cgit.cgi/imx/uboot-imx.git -b imx_v2016.03_4.1.15_2.0.0_ga   $ cd uboot-imx $ make clean $ make mx6ull_14x14_evk_defconfig $ make u-boot.imx   • To build the kernel, execute the following commands:   Download source by cloning with   $ git clone http://git.freescale.com/git/cgit.cgi/imx/linux-imx.git -b imx_4.1.15_2.0.0_ga   $ cd linux-imx $ make defconfig $ make   • To build an application (Hello World) as test.c:   $ source /opt/fsl-imx-fb/4.1.15-2.0.0/environment-setup-cortexa9hf-neon-poky-linux-gnueabi $ cd ~/test/ $ arm-poky-linux-gnueabi-gcc --sysroot=/opt/fsl-imx-fb/4.1.15-2.0.0/sysroots/cortexa9hf-neon-poky-linux-gnueabi -mfloat-abi=hard test.c To check if the the compiled code (a.out) is ARM executable   $ file ./a.out   ./a.out: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), dynamically linked, interpreter /lib/ld-linux-armhf.so.3, for GNU/Linux 2.6.32, BuildID[sha1]=0e5c22dcf021748ead2c0bd51a4553cb7d38f6f2, not stripped   Copy file a.out to target Linux filesystem and before run it check again :   root@imx6ul7d:/unit_tests/1# file a.out   a.out: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), dynamically linked, interpreter /lib/ld-linux-armhf.so.3, for GNU/Linux 2.6.32, BuildID[sha1]=0e5c22dcf021748ead2c0bd51a4553cb7d38f6f2, not stripped   To define what Linux libs are needed to run our application :   root@imx6ul7d:/unit_tests/1# ldd a.out     linux-vdso.so.1 (0x7ee93000)   libc.so.6 => /lib/libc.so.6 (0x76e64000)   /lib/ld-linux-armhf.so.3 (0x76f9d000)   If some libs are not located in the filesystem you can observe the following message :   -sh: root@imx6ul7d:/unit_tests/1#./a.out: No such file or directory   Finally - run a.out:   root@imx6ul7d:/unit_tests/1# ./a.out Hello World root@imx6ul7d:/unit_tests/1#
View full article
MX7D_DDR3_压力测试应用手册_V1_201611108.doc
View full article
Check new updated version for with Morty here Step 1 : Get iMX Yocto AVS setup environment Review the steps under Chapter 3 of the i.MX_Yocto_Project_User'sGuide.pdf on the L4.X LINUX_DOCS to prepare your host machine. Including at least the following essential Yocto packages $ sudo apt-get install gawk wget git-core diffstat unzip texinfo \   gcc-multilib build-essential chrpath socat libsdl1.2-dev u-boot-tools Install the i.MX NXP AVS repo Create/Move to a directory where you want to install the AVS yocto build enviroment. Let's call this as <yocto_dir> $ cd <yocto_dir> $ repo init -u https://source.codeaurora.org/external/imxsupport/meta-avs-demos -b master -m imx7d-pico-avs-sdk_4.1.15-1.0.0.xml Download the AVS BSP build environment: $ repo sync Step 2: Setup yocto for Alexa_SDK image with AVS-SETUP-DEMO script: Run the avs-setup-demo script as follows to setup your environment for the imx7d-pico board: $ MACHINE=imx7d-pico DISTRO=fsl-imx-x11 source avs-setup-demo.sh -b <build_sdk> Where <build_sdk> is the name you will give to your build folder. After acepting the EULA the script will prompt if you want to enable: Sound Card selection The following Sound Cards are supported on the build: SGTL (In-board Audio Codec for PicoPi) 2-Mic Conexant The script will prompt if you are going to use the Conexant Card. If not then SGTL will be assumed as your selection Are you going to use Conexant Sound Card [Y/N]? Install Alexa SDK Next option is to select if you want to pre-install the AVS SDK software on the image. Do you want to build/include the AVS_SDK package on this image(Y/N)? If you select YES, then your image will contain the AVS SDK ready to use (after authentication). Note this AVS_SDK will not have WakeWord detection support, but it can be added on runtime. If your selection was NO, then you can always manually fetch and build the AVS_SDK on runtime. All the packages dependencies will be already there, so only fetching the AVS_SDK source code and building it is required. Finish avs-image configuration At the end you will see a text according with the configuration you select for your image build. Next is an example for a Preinstalled AVS_SDK with Conxant Sound Card support and WiFi/BT not enabled. ==========================================================   AVS configuration is now ready at conf/local.conf             - Sound Card = Conexant                                     - AVS_SDK pre-installed                                       You are ready to bitbake your AVS demo image now:               bitbake avs-image                                        ========================================================== Step 3: Build the AVS image Go to your <build_sdk> directory and start the build of the avs-image There are 2 options Regular Build: $ cd <yocto_dir>/<build_sdk> $ bitbake avs-image With QT5 support included: $ cd <yocto_dir>/<build_sdk> $ bitbake avs-image-qt5 The image with QT5 is useful if you want to add some GUI for example to render DisplayCards. Step 4 : Deploying the built images to SD/MMC card to boot on target board. After a build has succesfully completed, the created image resides at <build_sdk>/tmp/deploy/images/imx7d-pico/ In this directory, you will find the imx7d-pico-avs.sdcard image or imx7d-pico-avs-qt5.sdcard, depending on the build you chose on Step3. To Flash the .sdcard image into the eMMC device of your PicoPi board follow the next steps: Download the bootbomb flasher Follow the instruction on Section 4. Board Reflashing of the Quick Start Guide for AVS kit to setup your board on flashing mode. Copy the built SDCARD file $ sudo dd if=imx7d-pico-avs.sdcard of=/dev/sd bs=1M && sync $ sync Properly eject the pico-imx7d board: $ sudo eject /dev/sd NXP Documentation Refer to the Quick Start Quide for AVS SDK to fully setup your PicoPi board with Synaptics 2Mic and PicoPi i.mx7D For a more comprehensive understanding of Yocto, its features and setup; more image build and deployment options and customization, please take a look at the i.MX_Yocto_Project_User's_Guide.pdf document from the Linux documents bundle mentioned at the beginning of this document. For a more detailed description of the Linux BSP, u-boot use and configuration, please take a look at the i.MX_Linux_User's_Guide.pdf document from the Linux documents bundle mentioned at the beginning of this document.
View full article
Basic Linear Algebra Subprograms (BLAS) is a specification that prescribes a set of low-level routines for performing common linear algebra operations such as vector addition, scalar multiplication, dot products, linear combinations, and matrix multiplication. OpenBLAS is an optimized BLAS library which is uesd for deep learning accelerator in Caffe/Caffe2. I enable it in Yocto (Rocko) by adding bb file. And I build on i.MX6QP, i.MX7ULP and i.MX8MQ and also run its test example successfully. You can find test example(openblas_utest) under folder image/opt/openblas/bin of OpenBLAS work directory. Currently, version 0.3.0 is supported in the bb file. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ update to v 0.3.6 and enable mutli-thread by set USE_OPENMP=1 and USE_THREAD=4 when compiling this library.
View full article
What is a device tree? The device tree is a data structure that is passed to the Linux kernel to describe the physical devices in a system. Before device trees came into use, the bootloader (for example, U-Boot) had to tell the kernel what machine type it was booting. Moreover, it had to pass other information such as memory size and location, kernel command line, etc. Sometimes, the device tree is confused with the Linux Kernel configuration, but the device tree specifies what devices are available and how they are accessed, not whether the hardware is used. The device tree is a structure composed of nodes and properties: Nodes: The node name is a label used to identify the node. Properties: A node may contain multiple properties arranged with a name and a value. Phandle: Property in one node that contains a pointer to another node. Aliases: The aliases node is an index of other nodes. A device tree is defined in a human-readable device tree syntax text file such as .dts or .dtsi. The machine has one or several .dts files that correspond to different hardware configurations. With these .dts files we can compile them into a device tree binary (.dtb) blobs that can either be attached to the kernel binary (for legacy compatibility) or, as is more commonly done, passed to the kernel by a bootloader like U-Boot. What is Devshell? The Devshell is a terminal shell that runs in the same context as the BitBake task engine. It is possible to run Devshell directly or it may spawn automatically. The advantage of this tool is that is automatically included when you configure and build a platform project so, you can start using it by installing the packages and following the setup of i.MX Yocto Project User's Guide on section 3 “Host Setup”. Steps: Now, let’s see how to compile your device tree files of i.MX devices using Devshell. On host machine. Modify or make your device tree on the next path: - 64 bits. ~/imx-yocto-bsp/<build directory>/tmp/work-shared/<machine>/kernel-source/arch/arm64/boot/dts/freescale - 32 bits. ~/imx-yocto-bsp/<build directory>/tmp/work-shared/<machine>/kernel-source/arch/arm/boot/dts To compile, it is needed to prepare the environment as is mentioned on i.MX Yocto Project User's Guide on section 5.1 “Build Configurations”. $ cd ~/imx-yocto-bsp $ DISTRO=fsl-imx-xwayland MACHINE=<machine> source imx-setup-release.sh -b <build directory> $ bitbake -c devshell virtual/kernel (it will open a new window) On Devshell window. $ make dtbs (after finished, close the Devshell window) On host machine. $ bitbake -c compile -f virtual/kernel $ bitbake -c deploy -f virtual/kernel This process will compile all the device tree files linked to the machine declared on setup environment and your device tree files will be deployed on the next path: ~/imx-yocto-bsp/<build directory>/tmp/deploy/images/<machine> I hope this article will be helpful. Best regards. Jorge.
View full article