i.MX处理器知识库

取消
显示结果 
显示  仅  | 搜索替代 
您的意思是: 

i.MX Processors Knowledge Base

讨论

排序依据:
Purpose This is early communication to notify i.MX 8M Dual/8M QuadLite/8M Quad customers of a potential incorrect PCIe power supply configuration on certain NXP BSP Linux and Android versions. Description The PCIE_VPH power supply is selectable in software  between 1.8V and 3.3V. When the PCIE_VPH supply is configured to operate at 3.3V, the 1.8V internal regulator (disabled by default) must be enabled to prevent overstress conditions on the PCIe PHY. If the 1.8V internal regulator is left disabled when the PCIE_VPH supply is configured to operate at 3.3V, it could potentially impact the product lifetime of the device.   Impact •i.MX 8M Dual/8M QuadLite/8M Quad (other i.MX processors are not impacted) •Only Impacts Linux/Android kernel versions earlier than L5.4.70_2.3.2 or Linux 5.10.9_1.0.0 releases MITIGATION •When the PCIE_VPH supply is configured to operate at 3.3V users need to enable the internal regulator by setting the IOMUXC_GPR_GPR14 and IOMUXC_GPR_GPR16 registers - PCIE1_VREG_BYPASS and PCIE2_VREG_BYPASS bit to 0. •There are 3 software patches for each release. Software patch details in the Code Aurora Forum (CAF): •For L5.4.70_2.3.2 patch release, the git log references are: •MLK-25349-3 PCI: imx: clear vreg bypass when pcie vph voltage is 3v3 •MLK-25349-2 arm64: dts: imx8mq-evk: add one regulator used to power up pcie phy •MLK-25349-1 dt-bindings: imx6q-pcie: add one regulator used to power up pcie phy • •The L5.4.70_2.3.2, LF_5.10 Q2 and later BSP releases correctly configure and enable the internal regulator by setting the IOMUXC_GPR_GPR14 and IOMUXC_GPR_GPR16 registers The Patch MLK-25349 which correctly enables the internal regulator is already included in the L5.4.70_2.3.2 patch release and release versions after it. MITIGATION •The following branches of Linux/Android BSP releases contain the MLK-25349 patch. The patch is attached below for each respective release.   •Other branches which are not listed should try to apply the nearest Patch version patch. If a user encounters any conflicts in applying, they should back porting from below nearest patch release version below. imx_4.9.51_ga, imx_4.9.y_android_imx8m_ga_v2                           - Patch attached  imx_4.9.88_ga, imx_4.9.y_android_2.0.0_ga                                   - Patch attached  imx_4.14.y and imx_4.14.98_2.3.0, imx_4.14.98_2.3.0_android     - Patch attached  imx_4.19.y and imx_4.19.35_1.1.0, imx_4.19.35_1.1.0_android     - Patch attached  imx_5.4.y, imx_5.4.3_2.0.0, imx_5.4.3_2.0.0_android                     - Patch attached Documentation Change Description – 1 of 3 for Datasheet Updated Datasheets and Reference Manual will be published to nxp.com. Updated Hardware Design guide and Schematics have already been published on nxp.com.  Updated the descriptions of PCIE_VPH in the Datasheet Table 8, "Operating ranges"     Documentation Change Description – 2 of 3 for Reference Manual (RM) Updated the description of field 12 "PCIE1_VREG_BYPASS" in 8.2.4.15 GPR14 General Purpose Register (IOMUXC_GPR_GPR14)           Documentation Change Description – 3 of 3 for RM Updated the description of field 12 "PCIE2_VREG_BYPASS" in 8.2.4.17 GPR16 General Purpose Register (IOMUXC_GPR_GPR16)   REFERENCES •i.MX 8M Dual / 8M QuadLite / 8M Quad Product Lifetime Usage  •i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Industrial Products •i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products •i.MX 8MDQLQ Hardware Developer’s Guide  •i.MX 8M Dual/8M QuadLite/8M Quad Applications Processors Reference Manual  
查看全文
   
查看全文
In order to improve the speed of compilation, VMWare Player 14.0 is installed on local hard disk, and Ubuntu 18.04 LTS is installed on a SSD with at least 500GB size and USB3.1 specification. When installing ubuntu 18.04 LTS to SSD, it should be allocated at least 350GB of disk space, because compiling this version of android requires a larger disk space. The following are detailed compilation steps: Part l Configuring Ubuntu 18.04 LTS 1. Installing Ubuntu 18.04 on VMplayer 14.0 After installation is done, root user should be set at first. # sudo passwd root Then follow these steps to configuration ubuntu 18.04 for environment of compiliation --Changing sources of ubuntu 18.04 mirror If you are Chinese users, you can do the step, which can improve your system performance. # sudo cp /etc/apt/sources.list /etc/apt/sources.list.bak # sudo geit /etc/apt/source.list Comment I.MX customers outside China do not need to modify Ubuntu source list, or can modify it to local mirror site of Ubuntu 18.04, which can improve the speed of software upgrade.    Delet all sources and copy following lines here, Then save it and exit Changing ubuntu source deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic main restricted universe multiverse # deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic main restricted universe multiverse deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-updates main restricted universe multiverse # deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-updates main restricted universe multiverse deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-backports main restricted universe multiverse # deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-backports main restricted universe multiverse deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-security main restricted universe multiverse # deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-security main restricted universe multiverse # deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-proposed main restricted universe multiverse # deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-proposed main restricted universe multiverse    Then running these 2 commands to update sources and packages    # sudo apt-get update    # sudo apt-get upgrade 2. Installing packages for compiliation Packages for compiliation # sudo apt-get install flex bison gperf build-essential zlib1g-dev lib32ncurses5-dev x11proto-core-dev libx11-dev lib32z1-dev libgl1-mesa-dev tofrodos python-markdown libxml2-utils xsltproc # sudo apt-get install uuid-dev:i386 liblzo2-dev:i386 gcc-multilib g++-multilib subversion openssh-server openssh-client uuid uuid-dev zlib1g-dev liblz-dev lzop liblzo2-2 liblzo2-dev git-core curl # sudo apt-get install u-boot-tools mtd-utils android-tools-fsutils openjdk-8-jdk device-tree-compiler aptitude libcurl4-openssl-dev nss-updatedb # sudo apt-get install chrpath texinfo gawk cpio diffstat gdisk m4 libz-dev libssl-dev Part 2 Compiling Android Q10.0.0_2.1.0 BSP 1. Downloading NXP source code for Android Q10.0.0_2.1.0    File name is imx-android-10.0.0_2.1.0.tar.gz.    Copy the file to ~/, and decompress it.    # cd ~/    # tar zxvf ./imx-android-10.0.0_2.1.0.tar.gz    Then “imx-android-10.0.0_2.1.0” directory is created at ~/, now run the command to download android source code. # source ./imx-android-10.0.0_2.1.0/imx_android_setup.sh Comment imx_android_setup.sh is a script file, which includes all steps needed by the environment of android Q10.0.0_2.1.0 BSP. If network environment is enough good, several hours later, it will be done. 2. Compiling Android Q10.0.0_2.1.0 Referring to steps in Android_User's_Guide.pdf, We summaries steps for compilation here: (1) Preparing cross-compile tool chain    In Android_User's_Guide.pdf, 2 kinds of tool chain are recommended for users. --- gcc-arm-8.3-2019.03-x86_64-aarch64-elf.tar.xz --- gcc-arm-8.3-2019.03-x86_64-aarch64-linux-gnu.tar.xz    Users can select one of them, and then decompress it to /opt/ directory. On how to download them or more details, see Android_User's_Guide.pdf, page 3. Here we will use gcc-arm-8.3-2019.03-x86_64-aarch64-linux-gnu.tar.xz as tool chain. (2) Beginning to Compile Android Q10.0.0_2.1.0 BSP    Since this version of Android BSP requires high memory capacity when compiling, if the memory configuration of the virtual machine is incorrect, it is very likely to cause the compilation to fail. The following is a list of variable tests for user reference: # cd android_build # export AARCH64_GCC_CROSS_COMPILE=/opt/gcc-arm-8.3-2019.03-x86_64-aarch64-linux-gnu/bin/aarch64-linux-gnu- # source build/envsetup.sh # lunch evk_8mp-userdebug # ./imx-make.sh -j2 2>&1 | tee build-log.txt Part 3 Errors During Compilation 1. Allocating 8GB Memory For VMware Player # ./imx-make.sh -j1 2>&1 | tee build-log.txt 2. Allocating 12GB Memory For VMware Player # ./imx-make.sh -j4 2>&1 | tee build-log.txt # ./imx-make.sh -j4 2>&1 | tee build-log.txt (Run it again) # ./imx-make.sh -j4 2>&1 | tee build-log.txt (Run it again)       So if we use 4 thread to compile BSP, command for compilation will have to be run for 3 times. NXP TIC Team Weidong Sun 2020/4/30
查看全文
    Xenomai is real-time framework, which can run seamlessly side-by-side Linux as a co-kernel system, or natively over mainline Linux kernels (with or without PREEMPT-RT patch). The dual kernel nicknamed Cobalt, is a significant rework of the Xenomai 2.x system. Cobalt implements the RTDM specification for interfacing with real-time device drivers. The native linux version, an enhanced implementation of the experimental Xenomai/SOLO work, is called Mercury. In this environment, only a standalone implementation of the RTDM specification in a kernel module is required, for interfacing the RTDM-compliant device drivers with the native kernel. You can get more detailed information from Home · Wiki · xenomai / xenomai · GitLab       I have ported xenomai 3.1 to i.MX Yocto 4.19.35-1.1.0, and currently support ARM64 and test on i.MX8MQ EVK board. I did over night test( 5 real-time threads + GPU SDK test case) and stress test by tool stress-ng on i.MX8MQ EVK board. It looks lile pretty good. Current version (20200730) also support i.MX8MM EVK.     You need git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git, and git checkout xenomai-4.19.35-1.1.0-20200818 (which inlcudes all patches and bb file) and add the following variable in conf/local.conf before build xenomai by command bitbake xenomai.  XENOMAI_KERNEL_MODE = "cobalt"  PREFERRED_VERSION_linux-imx = "4.19-${XENOMAI_KERNEL_MODE}" IMAGE_INSTALL_append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" PREFERRED_VERSION_linux-imx = "4.19-${XENOMAI_KERNEL_MODE}" IMAGE_INSTALL_append += " xenomai" If XENOMAI_KERNEL_MODE = "cobalt", you can build dual kernel version. And If XENOMAI_KERNEL_MODE = "mercury", it is single kernel with PREEMPT-RT patch. The following is test result by the command (/usr/xenomai/demo/cyclictest -p 99 -t 5 -m -n -i 1000  -l 100000😞 //Over normal Linux kernel without GPU SDK test case T: 0 ( 4220) P:99 I:1000 C: 100000 Min: 7 Act: 10 Avg: 9 Max: 23 T: 1 ( 4221) P:99 I:1500 C: 66672 Min: 7 Act: 10 Avg: 10 Max: 20 T: 2 ( 4222) P:99 I:2000 C: 50001 Min: 7 Act: 12 Avg: 10 Max: 81 T: 3 ( 4223) P:99 I:2500 C: 39998 Min: 7 Act: 11 Avg: 10 Max: 29 T: 4 ( 4224) P:99 I:3000 C: 33330 Min: 7 Act: 13 Avg: 10 Max: 26 //Over normal Linux kernel with GPU SDK test case T: 0 ( 4177) P:99 I:1000 C: 100000 Min: 7 Act: 10 Avg: 11 Max: 51 T: 1 ( 4178) P:99 I:1500 C: 66673 Min: 7 Act: 12 Avg: 10 Max: 35 T: 2 ( 4179) P:99 I:2000 C: 50002 Min: 7 Act: 12 Avg: 11 Max: 38 T: 3 ( 4180) P:99 I:2500 C: 39999 Min: 7 Act: 12 Avg: 11 Max: 42 T: 4 ( 4181) P:99 I:3000 C: 33330 Min: 7 Act: 12 Avg: 11 Max: 36   //Cobalt with stress-ng --cpu 4 --io 2 --vm 1 --vm-bytes 512M --timeout 600s --metrics-brief T: 0 ( 4259) P:50 I:1000 C:3508590 Min:      0 Act:    0 Avg:    0 Max:      42 T: 1 ( 4260) P:50 I:1500 C:2338831 Min:      0 Act:    1 Avg:    0 Max:      36 T: 2 ( 4261) P:50 I:2000 C:1754123 Min:      0 Act:    1 Avg:    1 Max:      42 T: 3 ( 4262) P:50 I:2500 C:1403298 Min:      0 Act:    1 Avg:    1 Max:      45 T: 4 ( 4263) P:50 I:3000 C:1169415 Min:      0 Act:    1 Avg:    1 Max:      22   //Cobalt without GPU SDK test case T: 0 ( 4230) P:50 I:1000 C: 100000 Min: 0 Act: 0 Avg: 0 Max: 4 T: 1 ( 4231) P:50 I:1500 C:   66676 Min: 0 Act: 1 Avg: 0 Max: 4 T: 2 ( 4232) P:50 I:2000 C:   50007 Min: 0 Act: 1 Avg: 0 Max: 8 T: 3 ( 4233) P:50 I:2500 C:   40005 Min: 0 Act: 1 Avg: 0 Max: 3 T: 4 ( 4234) P:50 I:3000 C:   33338 Min: 0 Act: 1 Avg: 0 Max: 5 //Cobalt with GPU SDK test case T: 0 ( 4184) P:99 I:1000 C:37722968 Min: 0 Act: 1 Avg: 0 Max: 24 T: 1 ( 4185) P:99 I:1500 C:25148645 Min: 0 Act: 1 Avg: 0 Max: 33 T: 2 ( 4186) P:99 I:2000 C:18861483 Min: 0 Act: 1 Avg: 0 Max: 22 T: 3 ( 4187) P:99 I:2500 C:15089187 Min: 0 Act: 1 Avg: 0 Max: 23 T: 4 ( 4188) P:99 I:3000 C:12574322 Min: 0 Act: 1 Avg: 0 Max: 29 //Mercury without GPU SDK test case T: 0 ( 4287) P:99 I:1000 C:1000000 Min: 6 Act: 7 Avg: 7 Max: 20 T: 1 ( 4288) P:99 I:1500 C:  666667 Min: 6 Act: 9 Avg: 7 Max: 17 T: 2 ( 4289) P:99 I:2000 C:  499994 Min: 6 Act: 8 Avg: 7 Max: 24 T: 3 ( 4290) P:99 I:2500 C:  399991 Min: 6 Act: 9 Avg: 7 Max: 19 T: 4 ( 4291) P:99 I:3000 C:  333322 Min: 6 Act: 8 Avg: 7 Max: 21 //Mercury with GPU SDK test case T: 0 ( 4222) P:99 I:1000 C:1236790 Min: 6 Act: 7 Avg: 7 Max: 55 T: 1 ( 4223) P:99 I:1500 C:  824518 Min: 6 Act: 7 Avg: 7 Max: 44 T: 2 ( 4224) P:99 I:2000 C:  618382 Min: 6 Act: 8 Avg: 8 Max: 88 T: 3 ( 4225) P:99 I:2500 C:  494701 Min: 6 Act: 7 Avg: 8 Max: 49 T: 4 ( 4226) P:99 I:3000 C:  412247 Min: 6 Act: 7 Avg: 8 Max: 53 //////////////////////////////////////// Update for Yocto L5.4.47 2.2.0  /////////////////////////////////////////////////////////// New release for Yocto release L5.4.47 2.2.0 and it supports i.MX8M series (8MQ,8MM,8MN and 8MP). You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git,  and git checkout xenomai-5.4.47-2.2.0. You need to add the following variable in conf/local.conf before build xenomai by command bitbake imx-image-multimedia.  XENOMAI_KERNEL_MODE = "cobalt"  PREFERRED_VERSION_linux-imx = "5-${XENOMAI_KERNEL_MODE}" IMAGE_INSTALL_append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" PREFERRED_VERSION_linux-imx = "5-${XENOMAI_KERNEL_MODE}" IMAGE_INSTALL_append += " xenomai" //////////////////////////////////////// Update for Yocto L5.4.70 2.3.0  /////////////////////////////////////////////////////////// New release  for Yocto release L5.4.70 2.3.0 and it supports i.MX8M series (8MQ,8MM,8MN and 8MP) and i.MX8QM/QXP. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git and git checkout xenomai-5.4.70-2.3.0. Updating: 1, Support i.MX8QM and i.MX8QXP 2, Fix altency's the issue which uses legacy API to get time   //////////////////////////////////////// update for Yocto L5.4.70 2.3.2  /////////////////////////////////////////////////////////// New release for Yocto release L5.4.70 2.3.2. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git, and git checkout xenomai-5.4.70-2.3.2. Updating: 1, Enable Xenomai RTDM driver in Linux Kernel 2, Currently CAN, UART, GPIO,  SPI and Ethernet (in debug for RTNet)  are added in Xenomai. 3, Add KERNEL_DEVICETREE += " freescale/imx8mp-rt-evk.dtb " in sources/meta-imx/meta-bsp/conf/machine/imx8mpevk.conf to enable relative device in Xenomai domain, for example rt-imx8mp-flexcan.   //////////////////////////////////////// Update for Yocto L5.4.70 2.3.4  /////////////////////////////////////////////////////////// New release for Yocto release L5.4.70 2.3.4. You need to git clone  https://gitee.com/zxd2021-imx/xenomai-arm64.git and git checkout xenomai-5.4.70-2.3.4. Updating: 1, Enable RTNet FEC driver 2, Currently CAN, UART, GPIO,  SPI and Ethernet ( FEC Controller)  are added in Xenomai. 3, Add KERNEL_DEVICETREE += " freescale/imx8mp-rt-evk.dtb " in sources/meta-imx/meta-bsp/conf/machine/imx8mpevk.conf and KERNEL_DEVICETREE += " freescale/imx8mm-rt-ddr4-evk.dtb " in sources/meta-imx/meta-bsp/conf/machine/imx8mmddr4evk.conf to enable rt_fec device in Xenomai domain. Verifying the network connection by RTnet Ping Between i.MX8M Mini EVK and i.MX8M Plus EVK a, Setup test environment 1, Connect ENET1 of  i.MX8M Plus EVK (used as a master) and  ENET of i.MX8M Mini EVK (used as a slave) of  to a switch or hub 2, Modify /usr/xenomai/etc/rtnet.conf in i.MX8M Plus EVK board as the following: @@ -16,7 +16,7 @@ MODULE_EXT=".ko" # RT-NIC driver -RT_DRIVER="rt_eepro100" +RT_DRIVER="rt_fec" RT_DRIVER_OPTIONS="" # PCI addresses of RT-NICs to claim (format: 0000:00:00.0) @@ -30,8 +30,8 @@ REBIND_RT_NICS="" # The TDMA_CONFIG file overrides these parameters for masters and backup # masters. Leave blank if you do not use IP addresses or if this station is # intended to retrieve its IP from the master based on its MAC address. -IPADDR="10.0.0.1" -NETMASK="" +IPADDR="192.168.100.101" +NETMASK="255.255.255.0" # Start realtime loopback device ("yes" or "no") RT_LOOPBACK="yes" @@ -65,7 +65,7 @@ TDMA_MODE="master" # Master parameters # Simple setup: List of TDMA slaves -TDMA_SLAVES="10.0.0.2 10.0.0.3 10.0.0.4" +TDMA_SLAVES="192.168.100.102" # Simple setup: Cycle time in microsecond TDMA_CYCLE="5000" 3, Modify /usr/xenomai/etc/rtnet.conf in i.MX8M Mini EVK board as the following: @@ -16,7 +16,7 @@ MODULE_EXT=".ko" # RT-NIC driver -RT_DRIVER="rt_eepro100" +RT_DRIVER="rt_fec" RT_DRIVER_OPTIONS="" # PCI addresses of RT-NICs to claim (format: 0000:00:00.0) @@ -30,8 +30,8 @@ REBIND_RT_NICS="" # The TDMA_CONFIG file overrides these parameters for masters and backup # masters. Leave blank if you do not use IP addresses or if this station is # intended to retrieve its IP from the master based on its MAC address. -IPADDR="10.0.0.1" -NETMASK="" +IPADDR="192.168.100.102" +NETMASK="255.255.255.0" # Start realtime loopback device ("yes" or "no") RT_LOOPBACK="yes" @@ -59,13 +59,13 @@ STAGE_2_CMDS="" # TDMA mode of the station ("master" or "slave") # Start backup masters in slave mode, it will then be switched to master # mode automatically during startup. -TDMA_MODE="master" +TDMA_MODE="slave" # Master parameters # Simple setup: List of TDMA slaves -TDMA_SLAVES="10.0.0.2 10.0.0.3 10.0.0.4" +TDMA_SLAVES="192.168.100.102" # Simple setup: Cycle time in microsecond TDMA_CYCLE="5000" 4, rename imx8mm-rt-ddr4-evk.dtb to imx8mm-ddr4-evk.dtb in /run/media/mmcblk1p1,  rename imx8mp-rt-evk.dtb to imx8mp-evk.dtb in /run/media/mmcblk1p1, and reboot board. 5, Run the below command on i.MX8M Mini EVK board. cd /usr/xenomai/sbin/ ./rtnet start & 5, Run the below command on i.MX8M Plus EVK board. cd /usr/xenomai/sbin/ ./rtnet start & When you see the log (rt_fec_main 30be0000.ethernet (unnamed net_device) (uninitialized): Link is Up - 100Mbps/Full - flow control rx/tx) and you can run command "./rtroute" to check route table if the slave IP (192.168.100.102) is in route.. b, Verify the network connection using the command below: ./rtping -s 1024 192.168.100.102 //////////////////////////////////////// Update for Yocto L5.10.52 2.1.0  /////////////////////////////////////////////////////////// New release for Yocto release L5.10.52 2.1.0. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git and git checkout xenomai-5.10.52-2.1.0. Updating: 1, Upgrade Xenomai to v3.2 2, Enable Dovetail instead of ipipe. Copy xenomai-arm64 to <Yocto folder>/sources/meta-imx/meta-bsp/recipes-kernel, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitbake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL_append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL_append += " xenomai" Notice: If XENOMAI_KERNEL_MODE = "cobalt", you can build dual kernel version. And If XENOMAI_KERNEL_MODE = "mercury", it is single kernel with PREEMPT-RT patch.  Latency testing of Xenomai3.2+Dovetail with isolating CPU 2,3 ( Xenomai 3.2 on 8MM DDR4 EVK with GPU test case (GLES2/S08_EnvironmentMappingRefraction_Wayland) + iperf3 + 2 ping 65000 size + stress-ng --cpu 2 --io 2 --vm 1 --vm-bytes 256M --metrics-brief )😞 The following is test result by the command (/usr/xenomai/demo/cyclictest -a 2,3 -p 50 -t 5 -m -n -i 1000) root@imx8mmddr4evk:~# /usr/xenomai/demo/cyclictest -a 2,3 -p 50 -t 5 -m -n -i 1000 # /dev/cpu_dma_latency set to 0us policy: fifo: loadavg: 5.96 6.04 6.03 7/155 1349 T: 0 ( 615) P:50 I:1000 C:63448632 Min: 0 Act: 0 Avg: 0 Max: 55 T: 1 ( 616) P:50 I:1500 C:42299087 Min: 0 Act: 0 Avg: 1 Max: 43 T: 2 ( 617) P:50 I:2000 C:31724315 Min: 0 Act: 0 Avg: 1 Max: 51 T: 3 ( 618) P:50 I:2500 C:25379452 Min: 0 Act: 0 Avg: 1 Max: 53 T: 4 ( 619) P:50 I:3000 C:21149543 Min: 0 Act: 0 Avg: 1 Max: 47 //////////////////////////////////////// Update for Yocto L5.10.72 2.2.2  /////////////////////////////////////////////////////////// New release for Yocto release L5.10.72 2.2.2. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git and git checkout xenomai-5.10.72-2.2.2. Updating: 1, Upgrade Xenomai to v3.2.1 Copy xenomai-arm64 to <Yocto folder>/sources/meta-imx/meta-bsp/recipes-kernel, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitbake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL_append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL_append += " xenomai" //////////////////////////////////////// Update for Yocto L5.15.71 2.2.0  /////////////////////////////////////////////////////////// New release for Yocto release L5.15.71 2.2.0. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git and git checkout xenomai-5.15.71-2.2.0. Updating: 1, Upgrade Xenomai to v3.2.2 Copy xenomai-arm64 to <Yocto folder>/sources/meta-imx/meta-bsp/recipes-kernel, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitbake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL:append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL:append += " xenomai"   //////////////////////////////////////// Update for Yocto L6.1.55 2.2.0  /////////////////////////////////////////////////////////// New release for Yocto release L6.1.55 2.2.0. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm64.git recipes-rtlinux-xenomai -b Linux-6.1.x Updating: 1, Upgrade Xenomai to v3.2.4 and support i.MX93 2, Enable EVL (aka Xenomai 4) for i.MX93 and legacy i.MX(6/7D/8X/8M) Copy recipes-rtlinux-xenomai to <Yocto folder>/sources/meta-imx/meta-bsp/, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitbake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL:append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL:append += " xenomai" or XENOMAI_KERNEL_MODE = "evl" IMAGE_INSTALL:append += " libevl"  
查看全文
The document to descript change the u-boot environment variables under the Linux rootfs.  Also provide a demo on i.MX6ull evk of sdcard mirror.  Linux fw_printenv fw_setenv to access U-Boot's environment variables.pdf  --- the document fw_printenv_fw_setenv_demo_iMX6ullevk_L4.14.98_2.0.0_ga.sdcard  --- demo sdcard mirror
查看全文
Important: If you have any questions or would like to report any issues with the DDR tools or supporting documents please create a support ticket in the  i.MX community. Please note that any private messages or direct emails are not monitored and will not receive a response. i.MX 8M Family DDR Tools Overview The i.MX 8M Family DDR Tool is a Windows-based software to help users to do LPDDR4/DDR4/DDR3L training, stress test and DDR initial code generation for u-boot SPL. This page contains the latest releases for the i.MX 8M Family DDR Tools and cover the following SoCs : i.MX 8M Quad and its derivatives i.MX 8M Quadlite and i.MX 8M Dual i.MX 8M Mini Quad and its derivatives i.MX 8M Mini Quadlite/Dual/DualLite/Solo/SoloLite  i.MX 8M Nano Quad and its derivatives i.MX 8M Nano Quadlite/Dual/DualLite/Solo/SoloLite  i.MX 8M Plus   NOTE: For the i.MX 8/8X Family of DDR tools please refer to the: i.MX 8/8X Family DDR Tools Release   The purpose of the i.MX 8M Family DDR Tools is to enable users to generate and test a custom DRAM initialization based on their device configuration (density, number of chip selects, etc.) and board layout (data bus bit swizzling, etc.).  This process equips the user to then proceed with the bring-up of a boot loader and an OS.  Once the OS is brought up, it is recommended to run an OS-based memory test (like Linux memtester) to further verify and test the DDR memory interface.     The i.MX 8M Family DDR Tools consist of: DDR Register Programming Aid (RPA) MSCALE DDR Tool   For more details regarding these DDR tools and their usage, refer to the i.MX 8M DDR Tools User Guide.   i.MX 8M Family DDR Tool    The i.MX 8M Family DDR stress test tool is a Windows-based software tool that is used as a mechanism to verify that the DDR initialization is operational for use with u-boot and OS bring-up. To install the DDR Stress Test, save and extract the zip file mscale_ddr_tool_vXXX_setup.exe.zip   (where 'xxx' is the current version number) and follow the on-screen installation instructions.     i.MX 8M Family DDR Tool Requirements   The tool requires access to the Windows registry, hence users must run it in administrator mode. When users design new i.MX 8M Family boards, please make sure to follow the rules outlined in the respective Hardware Developers Guide and the MSCALE_DDR_Tool_User_Guide, which can help users bring up DDR devices on their respective i.MX 8M boards.   i.MX 8M Family DDR Tool User Guide   The i.MX 8M DDR tool includes the document: MSCALE_DDR_Tool_User_Guide NOTE: Please read the MSCALE_DDR_Tool_User_Guide inside the package carefully before you use this tool.   i.MX8M DDR Tool Revision History   Rev Major Changes* (Features) Comments 3.31 Integration of the workaround for 8MQ ERR051273   3.30 Fix DBI enabled issue for all i.MX 8M series Automatically identify ROHM and PCA9450 PMICs on i.MX 8M Nano board Fix 4GB/8GB memory tester issues   3.20 Add support to i.MX 8M Plus   3.10 Fixe UART communication issues for some specific characters between the PC software and the target board. Fine-tune DDRPHY registers in generated C code.   3.00 Add support to i.MX8M-nano Add support to different PMIC or PMIC configuration Add support to stress test for all DDR frequency points RPA tools for Nano include support for DDR3L, DDR4, and LPDDR4.   Note that the DDR3L and LPDDR4 RPAs contain the name preliminary only to denote that these RPAs are based on internal NXP validation boards where the DDR4 RPA is based on the released EVK.   2.10 Change DDR4 capacity computing method   2.00 Add support to i.MX8M-mini   * Further details available in the release notes   Sample configuration in the .ds script for i.MX 8M debug UART2: ################step 0: configure debug uart port. Assumes use of UART IO Pads.   ##### ##### If using non-UART pads (i.e. using other pads to mux out the UART signals), ##### ##### then it is up to the user to overwrite the following IO register settings   ##### memory set 0x3033023C 32 0x00000000 #IOMUXC_SW_MUX_UART2_RXD memory set 0x30330240 32 0x00000000 #IOMUXC_SW_MUX_UART2_TXD memory set 0x303304A4 32 0x0000000E #IOMUXC_SW_PAD_UART2_RXD memory set 0x303304A8 32 0x0000000E #IOMUXC_SW_PAD_UART2_TXD memory set 0x303304FC 32 0x00000000 #IOMUXC_SW_MUX_UART2_SEL_RXD sysparam set debug_uart   1 #UART index from 0 ('0' = UART1, '1' = UART2, '2' = UART3, '3' = UART4)   Sample configuration in the front of the .ds script for i.MX 8M debug UART3  ################step 0: configure debug uart port. Assumes use of UART IO Pads.   ##### ##### If using non-UART pads (i.e. using other pads to mux out the UART signals), ##### ##### then it is up to the user to overwrite the following IO register settings   ##### memory set 0x30330244 32 0x00000000 #IOMUXC_SW_MUX_UART3_RXD memory set 0x30330248 32 0x00000000 #IOMUXC_SW_MUX_UART3_TXD memory set 0x303304AC 32 0x0000000E #IOMUXC_SW_PAD_UART3_RXD memory set 0x303304B0 32 0x0000000E #IOMUXC_SW_PAD_UART3_TXD memory set 0x30330504 32 0x00000002 #IOMUXC_SW_MUX_UART3_SEL_RXD sysparam set debug_uart   2 #UART index from 0 ('0' = UART1, '1' = UART2, '2' = UART3, '3' = UART4)   Sample configuration in the front of the .ds script for i.MX 8M Mini PMIC configuration: ##############step 0.5: configure I2C port IO pads according to your PCB design.   ##### ########### You can modify the following instructions to adapt to your board PMIC ####### memory set 0x30330214 32 0x00000010  #IOMUXC_SW_MUX_I2C1_SCL memory set 0x30330218 32 0x00000010  #IOMUXC_SW_MUX_I2C1_SDA memory set 0x3033047C 32 0x000000C6 #IOMUXC_SW_PAD_I2C1_SCL memory set 0x30330480 32 0x000000C6  #IOMUXC_SW_PAD_I2C1_SDA sysparam set pmic_cfg 0x004B #bit[7:0] = PMIC addr,bit[15:8]=I2C Bus. Bus index from 0 ('0' = I2C1, '1' = I2C2, '2' = I2C3, '3' = I2C4) sysparam set pmic_set 0x2F01 #bit[7:0] = Reg val, bit[15:8]=Reg addr. #REG(0x2F) = 0x01 sysparam set pmic_set 0x0C02   #REG(0x0C) = 0x02 sysparam set pmic_set 0x171E   #REG(0x17) = 0x1E sysparam set pmic_set 0x0C00   #REG(0x0C) = 0x00 sysparam set pmic_set 0x2F11    #REG(0x2F)=0x11     i.MX 8M Family DDR Register Programming Aid (RPA) The i.MX 8M DDR RPA (or simply RPA) is an Excel spreadsheet tool used to develop DDR initialization for a user’s specific DDR configuration (DDR device type, density, etc.). The RPA generates the DDR initialization(in a separate Excel worksheet tab):   DDR Stress Test Script: This format is used specifically with the DDR stress test by first copying the contents in this worksheet tab and then pasting it to a text file, naming the document with the “.ds” file extension. The user will select this file when executing the DDR stress test. The How to Use Excel worksheet tab provides instructions on using the RPA   i.MX 8M Family DDR Register Programming Aid (RPA): Current Versions To obtain the latest RPAs, please refer to the following links (note, existing RPAs have been removed from this main page and moved to the SoC specific links below): i.MX 8M Quad : https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX8M-m850D-DDR-Register-Programming-Aid-RPA/ta-p/1172441 i.MX 8M Mini : https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX8MMini-m845S-DDR-Register-Programming-Aid-RPA/ta-p/1172443 i.MX 8M Nano: https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX8MNano-m815S-DDR-Register-Programming-Aid-RPA/ta-p/1172444 i.MX 8M Plus: https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX-8MPlus-m865S-DDR-Register-Programming-Aids-RPA/ta-p/1235352   Processor Mask Revisions Memory Supported Latest RPA Version * i.MX 8M Quad & Derivatives All LPDDR4 Rev 33 i.MX 8M Quad & Derivatives All DDR4 Rev 18 i.MX 8M Quad & Derivatives All DDR3L Rev 9 i.MX 8M Mini & Derivatives A0 LPDDR4 Rev 22 i.MX 8M Mini & Derivatives A0 DDR4 Rev 21 i.MX 8M Mini & Derivatives A0 DDR3L Rev 10 i.MX 8M Nano & Derivatives A0 LPDDR4 Rev 9 i.MX 8M Nano & Derivatives A0 DDR4 Rev 12 i.MX 8M Nano & Derivatives A0 DDR3L Rev 6 i.MX 8M Plus & Derivatives A1 LPDDR4 Rev 9 i.MX 8M Plus & Derivatives A1 DDR4 Rev 9 * For the details about the updates, please refer to the Revision History tab of the respective RPA.    To modify the DRAM Frequency for a custom setting refer to iMX 8M Mini Register Programming Aid DRAM PLL setting    Related Resources Links: iMX 8M Mini Register Programming Aid DRAM PLL setting  i.MX 8/8X Series DDR Tool Release  i.MX 6/7 DDR Stress test GUI Tool i.MX 8M Application Processor Related Resources i.MX8M (m850D) DDR Register Programming Aid (RPA)  i.MX8MMini (m845S) DDR Register Programming Aid (RPA)  i.MX8MNano (m815S) DDR Register Programming Aid (RPA) i.MX 8MPlus (m865S) DDR Register Programming Aids (RPA)   i.MX 8ULP DDR tools: i.MX Software and Development Tools | NXP Semiconductors Scroll down to “Other Resources --> Tools --> DDR Tools”  
查看全文
  Just sharing some experiences during the development and studying.   Although, it appears some hardwares, it focuses on software to speed up your developing on your  hardware.     杂记共享一下在开发和学习过程中的经验。    虽然涉及一些硬件,但其本身关注软件,希望这些能加速您在自己硬件上的开发。 07/25/2024 iMX secondary boot collection https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/iMX-secondary-boot-collection/ta-p/1916915   07/25/2024 HSM Code-Signing Journey https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/HSM-Code-Signing-Journey/ta-p/1882244 25JUL2024 - add pkcs11 proxy                         HSM Code-Signing Journey_25JUL2024.pdf                          HSM Code-Signing Journey_25JUL2024.txt   06/06/2024 HSM Code-Signing Journey https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/HSM-Code-Signing-Journey/ta-p/1882244     02/07/2024 Device Tree Standalone Compile under Windows https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/Device-Tree-Standalone-Compile-under-Windows/ta-p/1855271   02/07/2024 i.MX8X security overview and AHAB deep dive i.MX8X security overview and AHAB deep dive - NXP Community   11/23/2023 “Standalone” Compile Device Tree https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/Standalone-Compile-Device-Tree/ta-p/1762373     10/26/2023 Linux Dynamic Debug https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/Linux-Dynamic-Debug/ta-p/1746611   08/10/2023 u-boot environment preset for sdcard mirror u-boot environment preset for sdcard mirror - NXP Community   06/06/2023 all(bootloader, device tree, Linux kernel, rootfs) in spi nor demo imx8qxpc0 mek all(bootloader, device tree, Linux kernel, rootfs)... - NXP Community     09/26/2022 parseIVT - a script to help i.MX6 Code Signing parseIVT - a script to help i.MX6 Code Signing - NXP Community   Provide  run under windows   09/16/2022   create sdcard mirror under windows create sdcard mirror under windows - NXP Community     08/03/2022   i.MX8MM SDCARD Secondary Boot Demo https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX8MM-SDCARD-Secondary-Boot-Demo/ta-p/1500011     02/16/2022 mx8_ddr_stress_test without UI   https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/mx8-ddr-stress-test-without-UI/ta-p/1414090   12/23/2021 i.MX8 i.MX8X Board Reset https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX8-i-MX8X-Board-Reset/ta-p/1391130       12/21/2021 regulator userspace-consumer https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/regulator-userspace-consumer/ta-p/1389948     11/24/2021 crypto af_alg blackkey demo crypto af_alg blackkey demo - NXP Community   09/28/2021 u-boot runtime modify Linux device tree(dtb) u-boot runtime modify Linux device tree(dtb) - NXP Community     08/17/2021 gpio-poweroff demo https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/gpio-poweroff-demo/ta-p/1324306         08/04/2021 How to use gpio-hog demo https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/How-to-use-gpio-hog-demo/ta-p/1317709       07/14/2021 SWUpdate OTA i.MX8MM EVK / i.MX8QXP MEK https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/SWUpdate-OTA-i-MX8MM-EVK-i-MX8QXP-MEK/ta-p/1307416     04/07/2021 i.MX8QXP eMMC Secondary Boot https://community.nxp.com/t5/i-MX-Community-Articles/i-MX8QXP-eMMC-Secondary-Boot/ba-p/1257704#M45       03/25/2021 sc_misc_board_ioctl to access the M4 partition from A core side sc_misc_board_ioctl to access the M4 partition fr... - NXP Community     03/17/2021 How to Changei.MX8X MEK+Base Board  Linux Debug UART https://community.nxp.com/t5/i-MX-Community-Articles/How-to-Change-i-MX8X-MEK-Base-Board-Linux-Debug-UART/ba-p/1246779#M43     03/16/2021 How to Change i.MX8MM evk Linux Debug UART https://community.nxp.com/t5/i-MX-Community-Articles/How-to-Change-i-MX8MM-evk-Linux-Debug-UART/ba-p/1243938#M40       05/06/2020 Linux fw_printenv fw_setenv to access U-Boot's environment variables Linux fw_printenv fw_setenv to access U-Boot's env... - NXP Community     03/30/2020 i.MX6 DDR calibration/stress for Mass Production https://community.nxp.com/docs/DOC-346065     03/25/2020 parseIVT - a script to help i.MX6 Code Signing https://community.nxp.com/docs/DOC-345998     02/17/2020 Start your machine learning journey from tensorflow playground Start your machine learning journey from tensorflow playground      01/15/2020 How to add  iMX8QXP PAD(GPIO) Wakeup How to add iMX8QXP PAD(GPIO) Wakeup    01/09/2020 Understand iMX8QX Hardware Partitioning By Making M4 Hello world Running Correctly https://community.nxp.com/docs/DOC-345359   09/29/2019 Docker On i.MX6UL With Ubuntu16.04 https://community.nxp.com/docs/DOC-344462   09/25/2019 Docker On i.MX8MM With Ubuntu https://community.nxp.com/docs/DOC-344473 Docker On i.MX8QXP With Ubuntu https://community.nxp.com/docs/DOC-344474     08/28/2019 eMMC5.0 vs eMMC5.1 https://community.nxp.com/docs/DOC-344265     05/24/2019 How to upgrade  Linux Kernel and dtb on eMMC without UUU How to upgrade Linux Kernel and dtb on eMMC without UUU     04/12/2019 eMMC RPMB Enhance and GP https://community.nxp.com/docs/DOC-343116   04/04/2019 How to Dump a GPT SDCard Mirror(Android O SDCard Mirror) https://community.nxp.com/docs/DOC-343079   04/04/2019 i.MX Create Android SDCard Mirror https://community.nxp.com/docs/DOC-343078   04/02/2019: i.MX Linux Binary_Demo Files Tips  https://community.nxp.com/docs/DOC-343075   04/02/2019:       Update Set fast boot        eMMC_RPMB_Enhance_and_GP.pdf   02/28/2019: imx_builder --- standalone build without Yocto https://community.nxp.com/docs/DOC-342702   08/10/2018: i.MX6SX M4 MPU Settings For RPMSG update    Update slide CMA Arrangement Consideration i.MX6SX_M4_MPU_Settings_For_RPMSG_08102018.pdf   07/26/2018 Understand ML With Simplest Code https://community.nxp.com/docs/DOC-341099     04/23/2018:     i.MX8M Standalone Build     i.MX8M Standalone Build.pdf     04/13/2018:      i.MX6SX M4 MPU Settings For RPMSG  update            Add slide CMA Arrangement  Consideration     i.MX6SX_M4_MPU_Settings_For_RPMSG_04132018.pdf   09/05/2017:       Update eMMC RPMB, Enhance  and GP       eMMC_RPMB_Enhance_and_GP.pdf 09/01/2017:       eMMC RPMB, Enhance  and GP       eMMC_RPMB_Enhance_and_GP.pdf 08/30/2017:     Dual LVDS for High Resolution Display(For i.MX6DQ/DLS)     Dual LVDS for High Resolution Display.pdf 08/27/2017:  L3.14.28 Ottbox Porting Notes:         L3.14.28_Ottbox_Porting_Notes-20150805-2.pdf MFGTool Uboot Share With the Normal Run One:        MFGTool_Uboot_share_with_NormalRun_sourceCode.pdf Mass Production with programmer        Mass_Production_with_NAND_programmer.pdf        Mass_Production_with_emmc_programmer.pdf AndroidSDCARDMirrorCreator https://community.nxp.com/docs/DOC-329596 L3.10.53 PianoPI Porting Note        L3.10.53_PianoPI_PortingNote_151102.pdf Audio Codec WM8960 Porting L3.10.53 PianoPI        AudioCodec_WM8960_Porting_L3.10.53_PianoPI_151012.pdf TouchScreen PianoPI Porting Note         TouchScreen_PianoPI_PortingNote_151103.pdf Accessing GPIO From UserSpace        Accessing_GPIO_From_UserSpace.pdf        https://community.nxp.com/docs/DOC-343344 FreeRTOS for i.MX6SX        FreeRTOS for i.MX6SX.pdf i.MX6SX M4 fastup        i.MX6SX M4 fastup.pdf i.MX6 SDCARD Secondary Boot Demo        i.MX6_SDCARD_Secondary_Boot_Demo.pdf i.MX6SX M4 MPU Settings For RPMSG        i.MX6SX_M4_MPU_Settings_For_RPMSG_10082016.pdf Security        Security03172017.pdf    NOT related to i.MX, only a short memo
查看全文
NXP i.MX 8 series of application processors support running ArmV8a 64-bit and ArmV7a 32-bit user space programs.  A Hello World program that prints the size of a long int is cross-compiled as 32-bit and as 64-bit from an Ubuntu host and then each is copied to MCIMX8MQ-EVK and run. Resources: Ubuntu 18.04 LTS Host i.MX 8M Evaluation Kit|NXP  MCIMX8MQ-EVK Linux Binary Demo Files - i.MX 8MQuad EVK L4.9.88_2.0.0_GA release Source Code: Create a file with contents below using your favorite editor, example name hello-sizeInt.c. #include <stdio.h> int main (int argc, char **argv) { printf ("Hello World, size of long int: %zd\n", sizeof (long int)); return 0; }‍‍‍‍‍‍‍ Ubuntu host packages: $ sudo apt-get install -y gcc-arm-linux-gnueabihf $ sudo apt-get install -y gcc-aarch64-linux-gnu‍‍‍‍ Line 1 installs the ArmV7a cross-compile tools: arm-linux-gnueabihf-gcc is used to cross compile on Ubuntu host Line 2 install the ArmV8a cross-compile tools: aarch64-linux-gnu-gcc is used to cross compile on Ubuntu host Create Linux User Space Applications Build each application and use the static option to gcc to include run time libraries. Build ArmV7a 32-bit application: $ arm-linux-gnueabihf-gcc -static hello-sizeInt.c -o hello-armv7a‍-static‍‍ Build ArmV8a 64-bit application: $ aarch64-linux-gnu-gcc -static  hello-sizeInt.c -o hello-armv8a‍-static‍‍ Copy Hello applications from Ubuntu host and run on MCIMX8MQ-EVK Using a SDCARD written with images from L4.9.88_2.0.0 Linux release (see resources for image link), power on EVK with Ethernet connected to network and Serial Console port which was connected to a windows 10 PC. Launched a terminal client (TeraTerm) to access console port. Login credentials: root and no password needed. Since Ethernet was connected a DHCP IP address was acquired, 192.168.1.241 on the EVK.  On the Ubuntu host, secure copy the hello applications to EVK: $ scp hello-armv7a-static root@192.168.1.241:~/ hello-armv7a-static                           100%  389KB   4.0MB/s   00:00    $ scp hello-armv8a-static root@192.168.1.241:~/ hello-armv8a-static                           100%  605KB   4.7MB/s   00:00 ‍‍‍‍‍‍‍‍‍‍ Run: root@imx8mqevk:~# ./hello-armv8a-static Hello World, sizeof long int: 8 root@imx8mqevk:~# ./hello-armv7a-static Hello World, sizeof long int: 4‍‍‍‍‍‍‍‍
查看全文
Sometimes it is helpful/faster to build a i.MX8MM boot binary outside of the Yocto environment. There are instructions on how to accomplish this on different places, this document tries to provide an example for the i.MX8M Mini LPDDR4 EVK, whenever possible pointing how to build for other boards. For the 8MM SoC a boot image is generated by imx-mkimage tool and requires: - u-boot - ARM trusted firmware image - ddr training firmware 1. Download and Build u-boot: mkdir imx-boot-bin cdimx-boot-bin git clone https://source.codeaurora.org/external/imx/uboot-imx.git cd uboot-imx/ git checkout -b imx_v2019.04_4.19.35_1.1.0 origin/imx_v2019.04_4.19.35_1.1.0 (Optional) Here you can "git log -1" to check that the commit matches SRCREV on the recipe. Next, use the BSP SDK script to setup the cross compilation environment, instructions on how to build it are here. source /opt/fsl-imx-wayland/4.19-warrior/environment-setup-aarch64-poky-linux export ARCH=arm Build make clean Supported boards have configuration files on "configs". Using the LPDDR4 EVK here: make imx8mm_evk_defconfig make 2.   Download and build the ARM Trusted Firmware cd .. git clone https://source.codeaurora.org/external/imx/imx-atf.git cd imx-atf/ git checkout -b imx_4.19.35_1.1.0 origin/imx_4.19.35_1.1.0 (Optional) Again, you can "git log -1" to check that the commit matches SRCREV on the recipe. https://source.codeaurora.org/external/imx/meta-fsl-bsp-release/tree/imx/meta-bsp/recipes-bsp/imx-atf/imx-atf_2.0.bb?h=warrior-4.19.35-1.1.0 Build: make PLAT=imx8mm bl31 If you run into this error: aarch64-poky-linux-ld.bfd: unrecognized option '-Wl,-O1' aarch64-poky-linux-ld.bfd: use the --help option for usage information make: *** [Makefile:712: build/imx8mm/release/bl31/bl31.elf] Error 1 try:  unset LDFLAGS make PLAT=imx8mm bl31 3. Download the LPDDR4 training binaries It is on firmware-imx, recipe is here: https://source.codeaurora.org/external/imx/meta-fsl-bsp-release/tree/imx/meta-bsp/recipes-bsp/firmware-imx?h=warrior-4.19.35-1.1.0 cd .. mkdir firmware-imx cd firmware-imx wget https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/firmware-imx-8.5.bin chmod a+x firmware-imx-8.5.bin ./firmware-imx-8.5.bin 4. Download imx-mkimage and build the boot image cd .. git clone https://source.codeaurora.org/external/imx/imx-mkimage.git cd imx-mkimage/ git checkout -b imx_4.19.35_1.1.0 origin/imx_4.19.35_1.1.0 (Optional) "git log -1" matches SRCREV on: https://source.codeaurora.org/external/imx/meta-fsl-bsp-release/tree/imx/meta-bsp/recipes-bsp/imx-mkimage/imx-mkimage_git.inc?h=warrior-4.19.35-1.1.0 Now, you can check the build targets and required binaries at iMX8M/soc.mak For the flash_evk for the imx8mm we will need binaries: u-boot: u-boot-spl.bin, u-boot-nodtb.bin, fsl-imx8mm-evk.dtb  ARM trusted firmware: bl31.bin LPDDR4 files: lpddr4_pmu_train_1d_imem.bin lpddr4_pmu_train_1d_dmem.bin lpddr4_pmu_train_2d_imem.bin lpddr4_pmu_train_2d_dmem.bin mkimage for mkimage_uboot Copy all these to imx-mkimage/iMX8M/ cp ../uboot-imx/spl/u-boot-spl.bin iMX8M/ cp ../uboot-imx/u-boot-nodtb.bin iMX8M/ cp ../uboot-imx/arch/arm/dts/fsl-imx8mm-evk.dtb iMX8M/ cp ../imx-atf/build/imx8mm/release/bl31.bin iMX8M/ cp ../firmware-imx/firmware-imx-8.5/firmware/ddr/synopsys/lpddr4_pmu_train_* iMX8M/ cp ../uboot-imx/tools/mkimage iMX8M/mkimage_uboot Build: make SOC=iMX8MM flash_evk Output binary is on ./iMX8M/flash.bin 5. Program on the SD Card: sudo dd if=iMX8M/flash.bin of=/dev/<path to your sd> bs=1024 seek=33
查看全文
This knowledge base add imx8ulp swupdate support based on AN13872. Uboot patch: add_swupdate_support_for_imx8ulp_in_uboot.patch swupdate-scripts patch: 0001-add-imx8ulp-support-in-swupdate-scripts.patch Note You must generate new key referring  5.4.3.3 Generating a key before build. Commands 1. base image build command ./assemble_base_image.sh -b imx8ulp -e emmc -d doublecopy -m 2. update image build command ./swu_update_image_build.sh -e -s ./priv.pem -b imx8ulp -g 3. flash command: uuu -b emmc_all .\imx-boot-imx8ulp-lpddr4-evk-sd.bin-flash_singleboot_m33 .\swu_doublecopy_rescue_imx8ulp_emmc_20240914.sdcard     Useful links: https://sbabic.github.io/swupdate/building-with-yocto.html#automatic-sha256-in-sw-description https://sbabic.github.io/swupdate/sw-description.html?highlight=hwrevision   
查看全文
  This guide assumes that the developer has knowledge of the V4L2 API and has worked or is familiar with sensor drivers and their operation within the Linux kernel. This guide does not focus on the details of the sensor driver development that you want to port. It is assumed that you already have an existing driver for your sensor, before making the port. The version of the ISP's was 6.6.36 Linux BSP. If a different version is used, it is the developer's responsibility to review the API documentation for the corresponding version, since there may be changes that affect what is indicated in this guide. To port the camera sensor, the following steps must be taken as described in the following sections: Define sensor attributes and create instances. ISS Driver and ISP Media Server. Sensor Calibration Files. VVCAM Driver Creation. Device Tree Modifications. Define Sensor Attributes and Create Instances The following three steps are already implemented in CamDevice and are included for reference only. Step 1: Define the sensor attributes in the IsiSensor_s data structure. Step 2: Define the IsiSensorInstanceConfig_t configuration structure that will be used to create a new sensor instance. Step 3: Call the IsiCreateSensorIss() function to create a new sensor instance. ISS Driver and ISP Media Server Step 0 - Use a driver template as base code: Drivers can be found in $ISP_SOURCES_TOP/units/isi/drv/. For example, the ISP sources, come with the OV4656 and OS08a20 drivers. $ISP_SOURCES_TOP indicates the path of your working directory, where the respective sources are located. Step 1 - Add your <SENSOR> ISS Driver: Create the driver entry for your sensor in the path $ISP_SOURCES_TOP/units/isi/drv/<SENSOR>/source/<SENSOR>.c. Change all occurrences of the respective sensor name within the code, for instance, OV4656 -> <SENSOR>, respecting capital letters where applicable. Step 2 - Check the information on the IsiCamDrvConfig_s data structure: Data members defined in this data structure include the sensor ID (CameraDriverID) and the function pointer to the IsiSensor data structure. By using the address of the IsiCamDrvConfig_s structure, the driver can then access the sensor API attached to the function pointer. The following is an example of the structure: /***************************************************************************** * Each sensor driver needs to declare this struct for ISI load *****************************************************************************/ IsiCamDrvConfig_t IsiCamDrvConfig = {     .CameraDriverID = 0x0000,     .pIsiHalQuerySensor = <SENSOR>_IsiHalQuerySensorIss,     .pfIsiGetSensorIss = <SENSOR>_IsiGetSensorIss, };   Important Note: Modify the CameraDriverID according to the chip ID of your sensor. Apply this change to any Chip ID occurrence within the code. Step 3 - Check sensor macro definitions: In case there is any macro definition in the ISS Driver code, which involves specific properties of the sensor, you should modify it according to your requirements. For example: #define <SENSOR>_MIN_GAIN_STEP         (1.0f/16.0f)   Step 4 - Modify ISP Media Server build tools: Changes required in this step include: Add a CMakeLists.txt file in $ISP_SOURCES_TOP/units/isi/drv/<SENSOR>/ that builds your sensor module. Modify the CMakeLists.txt located at $ISP_SOURCES_TOP/units/isi/drv/CMakeLists.txt to include and reference your sensor directory. Modify the $ISP_SOURCES_TOP/appshell/ and $ISP_SOURCES_TOP/mediacontrol/ build tools, since by default they refer to the construction of a particular sensor, for example, the OV4656, so it is necessary to change the name of the corresponding sensor. Modify the $ISP_SOURCES_TOP/build-all-isp.sh script to reference the sensor modules and generate the corresponding binaries when building the ISP media server instance.   Step 5 - ISP Media Server run script: You need to add the operation modes defined for your sensor in the script. Each operating mode is associated with an order (mode 0, mode 1 ... mode N), a name used to execute the command in the terminal (e.g <sensor>_custom_mode_1), a resolution, and a specific calibration file for the sensor. The script is located at $ISP_SOURCES_TOP/imx/run.sh .   Step 6 - Sensor<X> config: At $ISP_SOURCES_TOP/units/isi/drv/ you can find the files to configure each sensor entry to the ISP, called Sensor0_Entry.cfg and Sensor1_Entry.cfg. There, the associated calibration files are indicated for each sensor operating mode, including the calibration files in XML format and the Dewarp Unit configuration files in JSON format. In addition, the .drv file generated for your sensor is referenced, creating the association between the respective /dev/video<X> node and the sensor driver module outputted from the ISP Media Server. In case you are using only one ISP channel, just modify Sensor0_Entry.cfg. In case you require both instances of the ISP, you will need to modify both files. Sensor Calibration Files It is a requirement for using the ISP, to have a calibration file in XML format, specific to the sensor you are using and according to the resolution and working mode. To obtain the calibration files in XML format, there are 3 options: Use the NXP ISP tuning tool for this you will need to ask for access or sign a NDA document. Pay NXP professional services to do the tune. Pay a third-party vendor to do the tune   VVCAM Driver Creation The changes indicated below are based on the assumption that there is a functional sensor driver in its base form, and that it is compatible with the V4L2 API. From now on we focus on applying the changes suggested in the NXP documentation, specifically to establish the communication of the VVCAM Driver (kernel side) and the ISI Layer. Step 0 - Create the sensor driver entry: Developers must add the driver code to the file located at $ISP_SOURCES_TOP/vvcam/v4l2/sensor/<sensor>/<sensor>_xxxx.c, along with a Makefile for the sensor driver module. In the same way, as indicated in the ISS Driver section, you can refer to one of the sample drivers that are included as part of the ISP sources, to review details about the implementation of the driver and the structure of the required Makefile.   Step 1 - Add the VVCAM mode info data structure array: This array stores all the supported modes information for your sensor. The ISI layer can get all the modes with the VVSENSORIOC_QUERY command. The following is an example of the structure, please fill in the information using the attributes of your sensor and the modes it supports. #include "vvsensor.h" . . .   static struct vvcam_mode_info_s <sensor>_mode_info[] = {         {         .index = 0,         .width = ... ,         .height = ... ,         .hdr_mode = ... ,         .bit_width = ... ,         .data_compress.enable = ... ,         .bayer_pattern = ... ,         .ae_info = {                        .                        .                        .                        },         .mipi_info = {                        .mipi_lane = ... ,                        },         },         {         .index = 1,         .         .         .         }, }; Step 2 - Define sensor client to i2c : Define the client_to_sensor macro (in case you don't have any already) and check the segments of the driver code that require this macro. #define client_to_<sensor>(client)\         container_of(i2c_get_clientdata(client), struct <sensor>, subdev)   Step 3 - Define the V4L2-subdev IOCTL function: Define and implement the <sensor>_priv_ioctl, which is used to receive the commands and parameters passed down by the user space through ioctl() and control the sensor. long <sensor>_priv_ioctl(struct v4l2_subdev *subdev, unsigned int cmd, void *arg) {         struct i2c_client *client = v4l2_get_subdevdata(subdev);         struct <sensor> *sensor = client_to_<sensor>(client);         struct vvcam_sccb_data_s reg;         uint32_t value = 0;         long ret = 0;           if(!sensor){                return -EINVAL;         }           switch (cmd) {         case VVSENSORIOC_G_CLK: {                ret = custom_implementation();                break;         }         case VIDIOC_QUERYCAP: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_QUERY: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_G_CHIP_ID: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_G_RESERVE_ID: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_G_SENSOR_MODE:{                ret = custom_implementation();                break;         }         case VVSENSORIOC_S_SENSOR_MODE: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_S_STREAM: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_WRITE_REG: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_READ_REG: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_S_EXP: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_S_POWER:         case VVSENSORIOC_S_CLK:         case VVSENSORIOC_RESET:         case VVSENSORIOC_S_FPS:         case VVSENSORIOC_G_FPS:         case VVSENSORIOC_S_LONG_GAIN:         case VVSENSORIOC_S_GAIN:         case VVSENSORIOC_S_VSGAIN:         case VVSENSORIOC_S_LONG_EXP:         case VVSENSORIOC_S_VSEXP:          case VVSENSORIOC_S_WB:         case VVSENSORIOC_S_BLC:         case VVSENSORIOC_G_EXPAND_CURVE:                break;         default:                break;         }           return ret; }   As you can see in the example, some cases are implemented but others are not. Developers are free to implement the features they consider necessary, as long as a minimum base of operation of the driver is guaranteed (query commands, read and write registers, among others). It is the developer's responsibility to implement each custom function, for each case or scenario that may arise when interacting with the sensor. In addition to what was shown previously, a link must be created to make the ioctl connection with the driver in question. Link your priv_ioctl function on the v4l2_subdev_core_ops struct, as in the example below: static const struct v4l2_subdev_core_ops <sensor>_core_ops = {         .s_power       = v4l2_s_power,         .subscribe_event = v4l2_ctrl_subdev_subscribe_event,         .unsubscribe_event = v4l2_event_subdev_unsubscribe,      // IOCTL link         .ioctl = <sensor>_priv_ioctl, };   Step 4 - Verify your sensor's private data structure: After performing the modifications suggested, it would be a good practice to double-check your sensor's private data structure properties, in case there is one missing, and also check that the properties are initialized correctly on the driver's probe.   Step 5 - Modify VVCAM V4L2 sensor Makefile : At $ISP_SOURCES_TOP/vvcam/v4l2/sensor/Makefile, include your sensor object as follows: ... obj-m += <sensor>/ ... Important Note: There is a very common issue that appears when working with camera sensor drivers in i.MX8MP platforms. The kernel log message shows something similar to the following: mxc-mipi-csi2.<X>: is_entity_link_setup, No remote pad found! The link setup callback is required by the Media Controller when performing the linking process of the media entities involved in the capture process of the camera. Normally, this callback is triggered by the imx8-media-dev driver included as part of the Kernel sources. To make sure that the problem is not related to your sensor driver, verify the link setup callback is already created in the code, and if is not, you can add the following template: /* Function needed by i.MX8MP */ static int <sensor>_camera_link_setup(struct media_entity *entity,                                    const struct media_pad *local,                                    const struct media_pad *remote, u32 flags) {     /* Return always zero */         return 0; }   /* Add the link setup callback to the media entity operations struct */ static const struct media_entity_operations <sensor>_camera_subdev_media_ops = {         .link_setup = <sensor>_camera_link_setup, };     /* Verify the initialization process of the media entity ops in the sensor driver's probe function*/ static int <sensor>_probe(struct i2c_client *client, ...) {         /* Initialize subdev */         sd = &<sensor>->subdev;         sd->dev = &client->dev;         <sensor>->subdev.internal_ops = ...         <sensor>->subdev.flags |= ...         <sensor->subdev.entity.function = ...     /* Entity ops initialization */         <sensor->subdev.entity.ops = &<sensor>_camera_subdev_media_ops; } In most cases, adding the link setup function will solve the media controller issue, or at least it discards problems on the driver side. Device Tree Modifications On the Device Tree side, it is necessary to enable the ISP channels that will be used. Likewise, it is necessary to disable the ISI channels, which are normally the ones that connect to the MIPI_CSI2 ports to extract raw data from the sensor (in case the ISP is not used). A MIPI_CSI2 port can be mapped to either an ISI channel or an ISP channel, but not both simultaneously. In this guide, we focus on using the ISP, so any other custom configuration that you want to implement may vary from what is shown. In the code below, ISP channel 0 is enabled, and the connection is made to the port where the sensor is connected (mipi_csi_0). &mipi_csi_0 {         status = "okay";         port@0 {         // Example endpoint to <sensor>_ep                mipi0_sensor_ep: endpoint@1 {                        remote-endpoint = <&<sensor>_ep>;                };         }; };   &cameradev {         status = "okay"; };   &isi_0 {         status = "disabled"; };   &isi_1 {         status = "disabled"; };   &isp_0 {         status = "okay"; };   &isp_1 {         status = "disabled"; };   &dewarp {         status = "okay"; }; What is shown above does not represent a complete device tree file, is only a general skeleton of the points you should pay attention to when working with ISP channels. For simplicity, we omitted all the attributes that are normally defined when working with camera sensor drivers and their respective configurations in the i2c port of the hardware.   Note: Due to hardware restrictions when using ISP channels, it is recommended to use the isp_0 channel, when working with only one sensor. In case you need to use two sensors, you can enable both channels, taking into account the limitations regarding the output resolutions and the clock frequency when both channels are working simultaneously. What is not recommended is to use the isp_1 channel when working with a single sensor.   References ISP Independent Sensor Interface (ISI) API reference, I.MX8M Plus Camera Sensor Porting User guide: https://www.nxp.com/webapp/Download?colCode=IMX8MPCSPUG Sensor Calibration tool: https://www.nxp.com/webapp/Download?colCode=AN13565 i.MX8M Plus reference manual: https://www.nxp.com/webapp/Download?colCode=IMX8MPRM  
查看全文
P3T1755 Demo   In this space I want to show you the things that you can create usign our products.   In  this demo I demostrate a use case creating a GUI for a Temperature Sensor.   We can create modern GUIs and more with LVGL combined with our powerful processors.               CPU USAGE As we can see  the CPU usage for this demo is around 2%   Pictures         This demo is based on the previous publused articles.   References: https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/Adding-support-to-P3T1755-on-Linux/ta-p/1855874 https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/How-to-run-LGVL-on-iMX-using-framebuffer/ta-p/1853768  
查看全文
This guide is a continuation from our latest Debian 12 Installation Guide for iMX8MM, iMX8MP, iMX8MN and iMX93. Here we will describe the process to install the multimedia and hardware acceleration packages, specifically GPU, VPU and Gstreamer on i.MX8M Mini, i.MX8M Plus and i.MX8M Nano. The guide is based on the one provided by our colleague Build Ubuntu For i.MX8 Series Platform - NXP Community, which requires to previously build an image using Yocto Project with the following distro and image name. Distro name - fsl-imx-wayland Image name – imx-image-multimedia For more information please check our BSP documentation i.MX Yocto Project User’s Guide.   Hardware Requirements Linux Host Computer (Ubuntu 20.04 or later) USB Card reader or Micro SD to SD adapter SD Card Evaluation Kit Board for the i.MX8M Nano, i.MX8M Mini, i.MX8M Plus   Software Requirements Linux Ubuntu (20.04 tested) or Debian for Host Computer BSP version 6.1.55 built with Yocto Project   After built the image we can start the installation by following the steps below:   GPU Installation The GPU Installation consists of copy the files from packages imx-gpu-g2d, imx-gpu-viv, libdrm to the Debian system. As our latest installation guide, we will continue naming “mountpoint” to the directory where Debian system is mounted on our host machine. Regarding the path provided on each step, we put labels <build-path> and <machine> that you will need to change based on your environment. These are the paths that Yocto Project uses to save the packages. However, this could change on your environment and you can find the work directory from each package using the following command: bitbake -e <package-name> | grep ^WORKDIR= This command will show you the absolute path of the package work directory. 1. Install GPU Packages $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/imx-gpu-g2d/6.4.11.p2.2-r0/image/* mountpoint $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/imx-gpu-viv/1_6.4.11.p2.2-aarch64-r0/image/* mountpoint $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/libdrm/2.4.115.imx-r0/image/* mountpoint   2. Install Linux IMX Headers and IMX Parser $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/linux-imx-headers/6.1-r0/image/* mountpoint $ sudo cp -Pra <build-path>/tmp/work/armv8a-poky-linux/imx-parser/4.8.2-r0/image/* mountpoint   3. Use chroot $ sudo LANG=C.UTF-8 chroot mountpoint/ qemu-aarch64-static /bin/bash   4. Install Dependencies $ apt install libudev-dev libinput-dev libxkbcommon-dev libpam0g-dev libx11-xcb-dev libxcb-xfixes0-dev libxcb-composite0-dev libxcursor-dev libxcb-shape0-dev libdbus-1-dev libdbus-glib-1-dev libsystemd-dev libpixman-1-dev libcairo2-dev libffi-dev libxml2-dev kbd libexpat1-dev autoconf automake libtool meson cmake ssh net-tools network-manager iputils-ping rsyslog bash-completion htop resolvconf dialog vim udhcpc udhcpd git v4l-utils alsa-utils git gcc less autoconf autopoint libtool bison flex gtk-doc-tools libglib2.0-dev libpango1.0-dev libatk1.0-dev kmod pciutils libjpeg-dev   5. Create a folder for Multimedia Installation. Here we will clone all the multimedia repositories.  $ mkdir multimedia_packages $ cd multimedia_packages   6. Build Wayland $ git clone https://gitlab.freedesktop.org/wayland/wayland.git $ cd wayland $ git checkout 1.22.0 $ meson setup build --prefix=/usr -Ddocumentation=false -Ddtd_validation=true $ cd build $ ninja install   7. Build Wayland Protocols IMX $ git clone https://github.com/nxp-imx/wayland-protocols-imx.git $ cd wayland-protocols-imx $ git checkout wayland-protocols-imx-1.32 $ meson setup build --prefix=/usr -Dtests=false $ cd build $ ninja install   8. Build Weston $ git clone https://github.com/nxp-imx/weston-imx.git $ cd weston-imx $ git checkout weston-imx-11.0.3 $ meson setup build --prefix=/usr -Dpipewire=false -Dsimple-clients=all -Ddemo-clients=true -Ddeprecated-color-management-colord=false -Drenderer-gl=true -Dbackend-headless=false -Dimage-jpeg=true -Drenderer-g2d=true -Dbackend-drm=true -Dlauncher-libseat=false -Dcolor-management-lcms=false -Dbackend-rdp=false -Dremoting=false -Dscreenshare=true -Dshell-desktop=true -Dshell-fullscreen=true -Dshell-ivi=true -Dshell-kiosk=true -Dsystemd=true -Dlauncher-logind=true -Dbackend-drm-screencast-vaapi=false -Dbackend-wayland=false -Dimage-webp=false -Dbackend-x11=false -Dxwayland=false $ cd build $ ninja install   VPU Installation To install VPU and Gstreamer please follow the steps below: 1. Install firmware-imx $ sudo cp -Pra <build-path>/tmp/work/all-poky-linux/firmware-imx/1_8.22-r0/image/lib/* mountpoint/lib/   2. Install VPU Driver $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/imx-vpu-hantro/1.31.0-r0/image/* mountpoint $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/imx-vpuwrap/git-r0/image/* mountpoint   3. Use chroot $ sudo LANG=C.UTF-8 chroot mountpoint/ qemu-aarch64-static /bin/bash   4. Install dependencies for Gstreamer Plugins $ apt install libgirepository1.0-dev gettext liborc-0.4-dev libasound2-dev libogg-dev libtheora-dev libvorbis-dev libbz2-dev libflac-dev libgdk-pixbuf-2.0-dev libmp3lame-dev libmpg123-dev libpulse-dev libspeex-dev libtag1-dev libbluetooth-dev libusb-1.0-0-dev libcurl4-openssl-dev libssl-dev librsvg2-dev libsbc-dev libsndfile1-dev   5. Change directory to multimedia packages. $ cd multimedia-packages   6. Build gstreamer $ git clone https://github.com/nxp-imx/gstreamer -b lf-6.1.55-2.2.0 $ cd gstreamer $ meson setup build --prefix=/usr -Dintrospection=enabled -Ddoc=disabled -Dexamples=disabled -Ddbghelp=disabled -Dnls=enabled -Dbash-completion=disabled -Dcheck=enabled -Dcoretracers=disabled -Dgst_debug=true -Dlibdw=disabled -Dtests=enabled -Dtools=enabled -Dtracer_hooks=true -Dlibunwind=disabled -Dc_args=-I/usr/include/imx $ cd build $ ninja install   7. Build gst-plugins-base $ git clone https://github.com/nxp-imx/gst-plugins-base -b lf-6.1.55-2.2.0 $ cd gst-plugins-base $ meson setup build --prefix=/usr -Dalsa=enabled -Dcdparanoia=disabled -Dgl-graphene=disabled -Dgl-jpeg=disabled -Dopus=disabled -Dogg=enabled -Dorc=enabled -Dpango=enabled -Dgl-png=enabled -Dqt5=disabled -Dtheora=enabled -Dtremor=disabled -Dvorbis=enabled -Dlibvisual=disabled -Dx11=disabled -Dxvideo=disabled -Dxshm=disabled -Dc_args=-I/usr/include/imx $ cd build $ ninja install   8. Build gst-plugins-good $ git clone https://github.com/nxp-imx/gst-plugins-good -b lf-6.1.55-2.2.0 $ cd gst-plugins-good $ meson setup build --prefix=/usr -Dexamples=disabled -Dnls=enabled -Ddoc=disabled -Daalib=disabled -Ddirectsound=disabled -Ddv=disabled -Dlibcaca=disabled -Doss=enabled -Doss4=disabled -Dosxaudio=disabled -Dosxvideo=disabled -Dshout2=disabled -Dtwolame=disabled -Dwaveform=disabled -Dasm=disabled -Dbz2=enabled -Dcairo=enabled -Ddv1394=disabled -Dflac=enabled -Dgdk-pixbuf=enabled -Dgtk3=disabled -Dv4l2-gudev=enabled -Djack=disabled -Djpeg=enabled -Dlame=enabled -Dpng=enabled -Dv4l2-libv4l2=disabled -Dmpg123=enabled -Dorc=enabled -Dpulse=enabled -Dqt5=disabled -Drpicamsrc=disabled -Dsoup=enabled -Dspeex=enabled -Dtaglib=enabled -Dv4l2=enabled -Dv4l2-probe=true -Dvpx=disabled -Dwavpack=disabled -Dximagesrc=disabled -Dximagesrc-xshm=disabled -Dximagesrc-xfixes=disabled -Dximagesrc-xdamage=disabled -Dc_args=-I/usr/include/imx $ cd build $ ninja install   9. Build gst-plugins-bad $ git clone https://github.com/nxp-imx/gst-plugins-bad -b lf-6.1.55-2.2.0 $ cd gst-plugins-bad $ meson setup build --prefix=/usr -Dintrospection=enabled -Dexamples=disabled -Dnls=enabled -Dgpl=disabled -Ddoc=disabled -Daes=enabled -Dcodecalpha=enabled -Ddecklink=enabled -Ddvb=enabled -Dfbdev=enabled -Dipcpipeline=enabled -Dshm=enabled -Dtranscode=enabled -Dandroidmedia=disabled -Dapplemedia=disabled -Dasio=disabled -Dbs2b=disabled -Dchromaprint=disabled -Dd3dvideosink=disabled -Dd3d11=disabled -Ddirectsound=disabled -Ddts=disabled -Dfdkaac=disabled -Dflite=disabled -Dgme=disabled -Dgs=disabled -Dgsm=disabled -Diqa=disabled -Dkate=disabled -Dladspa=disabled -Dldac=disabled -Dlv2=disabled -Dmagicleap=disabled -Dmediafoundation=disabled -Dmicrodns=disabled -Dmpeg2enc=disabled -Dmplex=disabled -Dmusepack=disabled -Dnvcodec=disabled -Dopenexr=disabled -Dopenni2=disabled -Dopenaptx=disabled -Dopensles=disabled -Donnx=disabled -Dqroverlay=disabled -Dsoundtouch=disabled -Dspandsp=disabled -Dsvthevcenc=disabled -Dteletext=disabled -Dwasapi=disabled -Dwasapi2=disabled -Dwildmidi=disabled -Dwinks=disabled -Dwinscreencap=disabled -Dwpe=disabled -Dzxing=disabled -Daom=disabled -Dassrender=disabled -Davtp=disabled -Dbluez=enabled -Dbz2=enabled -Dclosedcaption=enabled -Dcurl=enabled -Ddash=enabled -Ddc1394=disabled -Ddirectfb=disabled -Ddtls=disabled -Dfaac=disabled -Dfaad=disabled -Dfluidsynth=disabled -Dgl=enabled -Dhls=enabled -Dkms=enabled -Dcolormanagement=disabled -Dlibde265=disabled -Dcurl-ssh2=disabled -Dmodplug=disabled -Dmsdk=disabled -Dneon=disabled -Dopenal=disabled -Dopencv=disabled -Dopenh264=disabled -Dopenjpeg=disabled -Dopenmpt=disabled -Dhls-crypto=openssl -Dopus=disabled -Dorc=enabled -Dresindvd=disabled -Drsvg=enabled -Drtmp=disabled -Dsbc=enabled -Dsctp=disabled -Dsmoothstreaming=enabled -Dsndfile=enabled -Dsrt=disabled -Dsrtp=disabled -Dtinyalsa=disabled -Dtinycompress=enabled -Dttml=enabled -Duvch264=enabled -Dv4l2codecs=disabled -Dva=disabled -Dvoaacenc=disabled -Dvoamrwbenc=disabled -Dvulkan=disabled -Dwayland=enabled -Dwebp=enabled -Dwebrtc=disabled -Dwebrtcdsp=disabled -Dx11=disabled -Dx265=disabled -Dzbar=disabled -Dc_args=-I/usr/include/imx $ cd build $ ninja install   10. Build imx-gst1.0-plugin $ git clone https://github.com/nxp-imx/imx-gst1.0-plugin -b lf-6.1.55-2.2.0 $ cd imx-gst1.0-plugin $ meson setup build --prefix=/usr -Dplatform=MX8 -Dc_args=-I/usr/include/imx $ cd build $ ninja install   11. Exit chroot $ exit   Verify Installation For verification process, boot your target from the SD Card. (Review your specific target documentation) 1. Verify Weston For this verification you will need to be root user. # export XDG_RUNTIME_DIR=/run/user/0 # weston   2. Verify VPU and Gstreamer Use the following Gstreamer pipeline for Hardware Accelerated VPU Encode. # gst-launch-1.0 videotestsrc ! video/x-raw, format=I420, width=640, height=480 ! vpuenc_h264 ! filesink location=test.mp4   Then you can reproduce the file with this command: # gplay-1.0 test.mp4   Finally, you have installed and verified the GPU, VPU and Multimedia packages. Now, you can start testing audio and video applications.
查看全文
i.MX93 eMMC Secondary Boot          i.MX93 eMMC Secondary Boot.zip   i.MX8MP eMMC Secondary Boot           i.MX8MP eMMC Secondary Boot.zip i.MX8MM SDCARD Secondary Boot Demo https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX8MM-SDCARD-Secondary-Boot-Demo/ta-p/1500011   i.MX8QXP eMMC Secondary Boot https://community.nxp.com/t5/i-MX-Community-Articles/i-MX8QXP-eMMC-Secondary-Boot/ba-p/1257704#M45    i.MX6 SDCARD Secondary Boot Demo           i.MX6_SDCARD_Secondary_Boot_Demo.pdf      
查看全文
This document is about to build an image by Yocto , and it will disable a function that normal user can’t use command line of “ su ”.
查看全文
Overview The purpose of this document is to provide a guide on how to enable Dual Ethernet with the GKI Development. Reference: How to enable dual ethernet on Android 11 For a better reference how to build Android i.MX image please look at the next chapter 3 Building the Android Platform for i.MX in the Android User's Guide 1. Build the Android Image with the next modifications The 2nd ethernet port is DWMAC from synopsys and phy used is realtek RTL8211F. To add them into the SharedBoardConfig.mk and remove the camera drivers. diff --git a/imx8m/evk_8mp/SharedBoardConfig.mk b/imx8m/evk_8mp/SharedBoardConfig.mk index f68eb49e..3e95708e 100644 --- a/imx8m/evk_8mp/SharedBoardConfig.mk +++ b/imx8m/evk_8mp/SharedBoardConfig.mk @@ -82,7 +82,12 @@ BOARD_VENDOR_KERNEL_MODULES += \ $(KERNEL_OUT)/drivers/rtc/rtc-snvs.ko \ $(KERNEL_OUT)/drivers/pci/controller/dwc/pci-imx6.ko \ $(KERNEL_OUT)/drivers/net/phy/realtek.ko \ - $(KERNEL_OUT)/drivers/net/ethernet/freescale/fec.ko + $(KERNEL_OUT)/drivers/net/ethernet/freescale/fec.ko \ + $(KERNEL_OUT)/drivers/net/phy/micrel.ko \ + $(KERNEL_OUT)/drivers/net/pcs/pcs_xpcs.ko \ + $(KERNEL_OUT)/drivers/net/ethernet/stmicro/stmmac/dwmac-imx.ko \ + $(KERNEL_OUT)/drivers/net/ethernet/stmicro/stmmac/stmmac.ko \ + $(KERNEL_OUT)/drivers/net/ethernet/stmicro/stmmac/stmmac-platform.ko ifeq ($(POWERSAVE),true) BOARD_VENDOR_KERNEL_MODULES += \ $(KERNEL_OUT)/drivers/soc/imx/lpa_ctrl.ko \ @@ -219,15 +224,12 @@ BOARD_VENDOR_RAMDISK_KERNEL_MODULES += \ $(KERNEL_OUT)/drivers/perf/fsl_imx8_ddr_perf.ko \ $(KERNEL_OUT)/drivers/cpufreq/cpufreq-dt.ko \ $(KERNEL_OUT)/drivers/cpufreq/imx-cpufreq-dt.ko \ - $(KERNEL_OUT)/drivers/media/i2c/ov5640.ko \ $(KERNEL_OUT)/drivers/staging/media/imx/imx8-capture.ko \ $(KERNEL_OUT)/drivers/staging/media/imx/imx8-isi-capture.ko \ $(KERNEL_OUT)/drivers/staging/media/imx/imx8-isi-hw.ko \ $(KERNEL_OUT)/drivers/staging/media/imx/imx8-isi-mem2mem.ko \ $(KERNEL_OUT)/drivers/staging/media/imx/imx8-mipi-csi2-sam.ko \ $(KERNEL_OUT)/drivers/dma/imx-sdma.ko \ - $(TARGET_OUT_INTERMEDIATES)/VVCAM_OBJ/basler-camera-driver-vvcam.ko \ - $(TARGET_OUT_INTERMEDIATES)/VVCAM_OBJ/os08a20.ko \ $(KERNEL_OUT)/drivers/staging/media/imx/imx8-media-dev.ko \ $(TARGET_OUT_INTERMEDIATES)/VVCAM_OBJ/vvcam-dwe.ko \ $(TARGET_OUT_INTERMEDIATES)/VVCAM_OBJ/vvcam-isp.ko \​ To let the Android framework's EthernetTracker and EthernetNetworkFactory know which interfaces to manage, the framework level configure config_ethernet_iface_regex config_ethernet_interfaces must be overlay in device/nxp/imx8m/evk_8mp/overlay/frameworks/base/core/res/res/values/config.xml: diff --git a/imx8m/evk_8mp/overlay/frameworks/base/core/res/res/values/config.xml b/imx8m/evk_8mp/overlay/frameworks/base/core/res/res/values/config.xml index 298d50cc..63f6787e 100644 --- a/imx8m/evk_8mp/overlay/frameworks/base/core/res/res/values/config.xml +++ b/imx8m/evk_8mp/overlay/frameworks/base/core/res/res/values/config.xml @@ -22,7 +22,12 @@ <resources> <!--For Android we support eth0 now --> - <string translatable="false" name="config_ethernet_iface_regex">eth0</string> + <string translatable="false" name="config_ethernet_iface_regex">eth\\d</string> + + <string-array translatable="false" name="config_ethernet_interfaces"> + <item>eth0;12,13,14,15,16,18,19</item> + <item>eth1;12,13,14,15,16,18,19</item> + </string-array> <!-- List of regexpressions describing the interface (if any) that represent tetherable USB interfaces. If the device doesn't want to support tething over USB this should -- Apply the patch 0001-PATCH-Add-defines-for-ETH-support-drivers.patch Build the Android Image # Change to the MY_ANDROID Directory $ source build/envsetup.sh $ lunch evk_8mp-userdebug $ ./imx-make.sh -j4 2>&1 | tee build-log.txt​   GKI Development Follow and apply the next community post: Export new symbols of GKI development Android 14 Set the GKI repo $ repo init -u https://android.googlesource.com/kernel/manifest -b common-android14-6.1 $ repo sync $ git remote add device https://github.com/nxp-imx/linux-imx.git $ git remote update $ git fetch device --tags $ git checkout android-14.0.0_1.2.0 $ cd .. #Be sure that symbolic links are created correctly $ ln -s ${MY_ANDROID}/vendor/nxp-opensource/verisilicon_sw_isp_vvcam verisilicon_sw_isp_vvcam $ ln -s ${MY_ANDROID}/vendor/nxp-opensource/nxp-mwifiex nxp-mwifiex $ BUILD_FOR_GKI=yes $ BUILD_CONFIG=common/build.config.imx $ tools/bazel run //common:imx_abi_update_symbol_list Apply the following changes in the GKI Kernel tree: gki/common: Patch: 0001-PATCH-GKI-Kernel-tree-Drivers-for-the-ETH1-Interface.patch Build the GKI Image tools/bazel run //common:kernel_aarch64_dist​ Follow the build android boot.img and system_dlkm.img $ cp out/kernel_aarch64/dist/boot.img ${MY_ANDROID}/vendor/nxp/fsl-proprietary/ gki/boot.img $ cd ${MY_ANDROID} $ TARGET_IMX_KERNEL=true make bootimage # Change directory to the gki folder $ cp out/kernel_aarch64/dist/system_dlkm_staging_archive.tar.gz ${MY_ANDROID}/vendor/nxp/fsl-proprietary/gki/system_dlkm_staging_archive.tar.gz $ cd ${MY_ANDROID}/vendor/nxp/fsl-proprietary/gki $ tar -xzf system_dlkm_staging_archive.tar.gz -C system_dlkm_staging $ cd ${MY_ANDROID} $ make system_dlkmimag​e Create the tar.gz file for flash the android image (*.img, *.bat, *.sh, *.bin, *.imx) Boot the image and type lsmod to ensure the drivers are installed. Regards, Mario    
查看全文
The HSM Coding-Signing is new. When we follow the instructions in Code-Signing Tool User’s Guide , still has something to overcome, most of them are related to the OS. Actually, Code-Signing Tool User’s Guide  can not give detail every “obvious” step. The purpose of this document is to share the experiences on my system. Hope those experience can give you some clues on your system.     25JUL2024 - add pkcs11 proxy                         HSM Code-Signing Journey_25JUL2024.pdf                          HSM Code-Signing Journey_25JUL2024.txt  
查看全文
  Introduction   MATTER chip-tool android APK is a very useful tool for commission, control the MATTER network by smart phone. Vendor can add various features into the APK. It supports build by Android Studio and command line. The official build steps can be found here: https://github.com/project-chip/connectedhomeip/blob/master/docs/guides/android_building.md But the official guide does not cover how to build in a non-GUI linux distribution (without Android Studio installed). This article describes how to build under Ubuntu server. Install Android SDK  Install SDK command line from: https://developer.android.com/studio, And follow the steps: https://developer.android.com/tools/sdkmanager to install.  Install the Android-26 SDK and 23 NDK: $./sdkmanager "platforms;android-26" "ndk;23.2.8568313"  Export env  $export ANDROID_HOME=<SDK path>  $export ANDROID_NDK_HOME=<SDK path>/ndk/23.2.8568313/   Install kotlin (1.8.0)  $curl -s https://get.sdkman.io | bash  $sdk install kotlin 1.8.0  $whereis kotlin  $export PATH=$PATH:<patch of bin of kotlin>    Configure proxy for gradle  $ cat ~/.gradle/gradle.properties  # Set the socket timeout to 5 minutes (good for proxies)  org.gradle.internal.http.socketTimeout=300000  # the number of retries (initial included) (default 3)  org.gradle.internal.repository.max.retries=10  # the initial time before retrying, in milliseconds (default 125)  org.gradle.internal.repository.initial.backoff=500  systemProp.http.proxyHost=apac.nics.nxp.com  systemProp.http.proxyPort=8080  systemProp.http.nonProxyHosts=localhost|*.nxp.com  systemProp.https.proxyHost=apac.nics.nxp.com  systemProp.https.proxyPort=8080  systemProp.https.nonProxyHosts=localhost|*.nxp.com    Configure proxy  Configure proxy for download packages during build export FTP_PROXY="http://apac.nics.nxp.com:8080"  export HTTPS_PROXY="http://apac.nics.nxp.com:8080"  export HTTP_PROXY="http://apac.nics.nxp.com:8080"  export NO_PROXY="localhost,*.nxp.com"  export ftp_proxy="http://apac.nics.nxp.com:8080"  export http_proxy="http://apac.nics.nxp.com:8080"  export https_proxy="http://apac.nics.nxp.com:8080"  export no_proxy="localhost,*.nxp.com"    Patch for gradle java option  This step can be skipped if using OpenJDK16.  Otherwise if you're using OpenJDK 17 (Java 61), you have to upgrade the gradle from 7.1.1 to 7.3, and add java.io open to ALL-UNNAMED:  diff --git a/examples/android/CHIPTool/gradle.properties b/examples/android/CHIPTool/gradle.properties  index 71f72db8c8..5bce4b4528 100644  --- a/examples/android/CHIPTool/gradle.properties  +++ b/examples/android/CHIPTool/gradle.properties  @@ -6,7 +6,8 @@  # http://www.gradle.org/docs/current/userguide/build_environment.html  # Specifies the JVM arguments used for the daemon process.  # The setting is particularly useful for tweaking memory settings.  -org.gradle.jvmargs=-Xmx4096m -XX:MaxPermSize=2048m -XX:+HeapDumpOnOutOfMemoryError -Dfile.encoding=UTF-8  +#org.gradle.jvmargs=-Xmx4096m -XX:MaxPermSize=2048m -XX:+HeapDumpOnOutOfMemoryError -Dfile.encoding=UTF-8  +org.gradle.jvmargs=-Xmx4096m -XX:+HeapDumpOnOutOfMemoryError -Dfile.encoding=UTF-8  --add-opens=java.base/java.io=ALL-UNNAMED  # When configured, Gradle will run in incubating parallel mode.  # This option should only be used with decoupled projects. More details, visit  # http://www.gradle.org/docs/current/userguide/multi_project_builds.html#sec:decoupled_projects  diff --git a/examples/android/CHIPTool/gradle/wrapper/gradle-wrapper.properties b/examples/android/CHIPTool/gradle/wrapper/gradle-wrapper.properties  index 05679dc3c1..e750102e09 100644  --- a/examples/android/CHIPTool/gradle/wrapper/gradle-wrapper.properties  +++ b/examples/android/CHIPTool/gradle/wrapper/gradle-wrapper.properties  @@ -1,5 +1,5 @@  distributionBase=GRADLE_USER_HOME  distributionPath=wrapper/dists  -distributionUrl=https\://services.gradle.org/distributions/gradle-7.1.1-bin.zip  +distributionUrl=https\://services.gradle.org/distributions/gradle-7.3-bin.zip  zipStoreBase=GRADLE_USER_HOME  zipStorePath=wrapper/dists    Build & Install Clone all the modules from github: $git clone --single-branch --recurse-submodules https://github.com/project-chip/connectedhomeip.git Enviroment setup: $source scripts/bootstrap.sh Build: ./scripts/build/build_examples.py --target android-arm64-chip-tool build Install built apk into phone: $adb install out/android-arm64-chip-tool/outputs/apk/debug/app-debug.apk  
查看全文
The document will cover three parts, which include: A brief introduction to RSA algorithm How to compile boot image including OP-TEE-OS for Boot media - QSPI The steps to sign and verification The SoC for this experiment is based on i.MX8MP-EVK
查看全文