i.MX Processors Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

i.MX Processors Knowledge Base

Discussions

Sort by:
The Android P9.0.0_2.0.0 GA (4.14.98 kernel) is now available on IMX software landing page. Overview -> i.MX BSP Updates and Releases -> Android -> Android P9.0.0_2.0.0 (4.14.98 kernel)    Files available:   # Name Description 1 android_p9.0.0_2.0.0-ga_docs.zip Android P9.0.0_2.0.0 Documentation 2 imx-p9.0.0_2.0.0-ga.tar.gz i.MX Android proprietary surce code for Android P9.0.0_2.0.0 3 android_p9.0.0_2.0.0-ga_image_8mmevk.tar.gz Prebuilt images with NXP extended features for the i.MX 8M Mini EVK 4 android_p9.0.0_2.0.0-ga_image_8mqevk.tar.gz Prebuilt images with NXP extended features for the i.MX 8M Quad EVK 5 android_p9.0.0_2.0.0-ga_image_8qmek.tar.gz Prebuilt images with NXP extended features for the i.MX8QMax and 8QXPlus MEK 6 fsl_aacp_dec_p9.0.0_2.0.0-ga.tar.gz AAC Plus Codec for P9.0.0_2.0.0_GA   Supported boards: i.MX 8MMini MEK Board i.MX 8MQuad EVK Board i.MX 8QuadMax MEK i.MX 8QuadXPlus MEK   Features and Known issues For features and known issues, please consult the Release Notes in detail.  ======================================================================================= The Android P9.0.0_2.1.0_AUTO GA (4.14.98 kernel) is now available on IMX software landing page. Overview -> i.MX BSP Updates and Releases -> Android AUTO-> Android P9.0.0_2.1.0_AUTO   Files available:   # Name Description 1 android_p9.0.0_2.1.0-auto-ga_docs.zip Android P9.0.0_2.1.0_AUTO  Documentation 2 imx-p9.0.0_2.1.0-auto-ga.tar.gz i.MX Android Automotive proprietary source code for Android P9.0.0_2.1.0_AUTO 3 android_p9.0.0_2.1.0-auto-ga_image_8qmek.tar.gz Prebuilt images with NXP extended features with the EVS function enabled in the Cortex-M4 CPU core for the i.MX 8QuadMax/8QuadXPlus MEK 4 android_p9.0.0_2.1.0-auto-ga_image_8qmek2.tar.gz Prebuilt images with NXP extended features for the i.MX8QMax and 8QXPlus MEK, without the EVS in M4 Core.   Supported boards: i.MX 8QuadMax MEK i.MX 8QuadXPlus MEK   Features and Known issues For features and known issues, please consult the Release Notes in detail.
View full article
Tips collected from zhaoyang-b49593 and dandouglass-b41520 while enabling redundant boot: Using i.MX 8MQ, same method can be applied for other i.MX devices that support redundant boot, see SoC Reference Manual. As described on the RM, if primary image authentication fails the ROM can reset and try booting a secondary image. This feature is only available on closed mode with properly signed binaries, otherwise the ROM boots the primary image despite the auth failure. For the i.MX 8MQ, the secondary image must start with spl, not HDMI firmware. Note, there is no ROM redundancy for the hdmi fw, if it is corrupt user can store a 2nd copy on a different memory address and update at run time. Steps to generate a dual spl image: 1. Build and Sign bootable binary (spl, u-boot, atf, fw, etc) Use the Yocto BSP or follow this post to build outside the Yocto environment. To sign the binary, follow the documentation on u-boot source: <u-boot>/doc/imx/habv4/guides/mx8m_secure_boot.txt Program image to the SD card: dd if=signed_flash.bin of=<sd path> bs=1024 seek=33 After boot you can use "hab_status" to verify that no events were generated: u-boot=> hab_status Secure boot disabled HAB Configuration: 0xf0, HAB State: 0x66 2. Corrupt spl on your boot image You can corrupt anywhere on the spl signed area. For easier visualization at boot time we can corrupt the SPL banner. First create a copy: cp signed_flash.bin signed_flash_corrupt.bin Find the banner: hexdump -C signed_flash.bin | grep 2019 00020190 26 1c 40 92 04 00 80 d2 05 01 80 52 c4 20 04 aa |&.@........R. ..| 0002eac0 32 30 31 39 2e 30 34 2d 30 30 30 32 39 2d 67 34 |2019.04-00029-g4| 000dde10 3a 20 20 00 55 2d 42 6f 6f 74 20 32 30 31 39 2e |: .U-Boot 2019.| 0002eac3 is on spl area, where "9" for 2019 is, replace by "X" printf "X" > X dd if=X of=signed_flash_corrupt.bin seek=$((0x2eac3)) bs=1 conv=notrunc Verify corrupt binary hexdump -C -s 0x2eac0 -n 64 signed_flash_corrupt.bin 0002eac0 32 30 31 58 2e 30 34 2d 30 30 30 32 39 2d 67 34 |201X.04-00029-g4| 0002ead0 37 63 31 39 32 32 20 28 41 70 72 20 32 37 20 32 |7c1922 (Apr 27 2| Transfer image to SD Card dd if=signed_flash_corrupt.bin of=<sd path> bs=1024 seek=33 Now, you should see hab events after running "hab_status" on u-boot 3. Create a secondary boot image This can be the same content as your primary image without the HDMI fw or it can be a different spl image. For easier visualization, we can change the SPL banner, on the code this time. Modify banner at ./common/spl/spl.c as: - puts("\nU-Boot " SPL_TPL_NAME " " PLAIN_VERSION " (" U_BOOT_DATE " - " + puts("\nSecondary U-Boot " SPL_TPL_NAME " " PLAIN_VERSION " (" U_BOOT_DATE " - " As mentioned above, we want our boot image without the HDMI fw, when running imx-mkimage use the flash_evk_no_hdmi target: make SOC=iMX8MQ flash_evk_no_hdmi Sign the image as in step 1. If you program the new image to the SD you should see the new banner. Make sure to run hab_status to confirm that no HAB events are generated. 4. Program SRK Hash and Close SoC Follow the documentation on u-boot source for SRK programming and closing the device: <u-boot>/doc/imx/habv4/guides/mx8m_secure_boot.txt Before closing the SoC, but after the SRK is programmed, try your images to confirm no HAB events are generated. Be careful with this step, errors could brick your board. This step is irreversible. After closing the SoC it will only boot signed images. 5. Create dual bootloader image We can concatenate our binaries to create a single file, let's use 2MB distance between primary and secondary images: For the working primary image: objcopy -I binary -O binary --pad-to 0x200000 --gap-fill=0x00 signed_flash.bin 1st-spl_pad.bin cat 1st-spl_pad.bin secondary2_nohdmifw_signed_flash.bin > 1st-spl_pad_2nd-spl.bin Or for the corrupt primary image experiment: objcopy -I binary -O binary --pad-to 0x200000 --gap-fill=0x00 signed_flash_corrupt.bin 1st-spl_pad.bin cat 1st-spl_pad.bin secondary2_nohdmifw_signed_flash.bin > 1st-spl_pad_2nd-spl.bin Program it to the SD card on 0x8400 offset (33k) dd if=1st-spl_pad_2nd-spl.bin of=<sd path> bs=1024 seek=33 && sync 6. Add Secondary image table Follow the format on the RM, this is only 20 bytes long. For a 2MB distance between the table and the secondary image we can use "0x1000" on the firstSectorNumber field. 2MB/512 = 4096 (0x1000) The perl script attached, genSecTable.pl, can be used to generate it. perl genSecTable.pl 0x1000 Program it to the SD card on 0x8200 offset dd if=secTable.bin of=<sd path> bs=1 seek=$((0x8200)) && sync 7. Verify secondary image is booting If using the corrupt primary image, you should see the spl with the "Secondary U-Boot SPL..." banner. You can also read the persist secondary boot bit. u-boot=> md.l 0x30390098 1 30390098: 40000000 ...@ The work can be extended patching spl for in case of u-boot authentication failure, spl can try to authenticate and jump to the secondary u-boot.
View full article
Recently I published this i.MX Dev Blog post about the Gateworks plugin gst-variable-rtsp-server support for i.MX 6. Now, you can check how to use it on i.MX 8 SoCs as well. 1. Preparing the image In order to use gst-variable-rtsp-server plugin, prepare your machine and distro: Add the following line to conf/local.conf: IMAGE_INSTALL_append += "gstreamer1.0-rtsp-server gst-variable-rtsp-server" Download the attached patch and apply it by doing: $ cd <yocto_path>/sources/meta-fsl-bsp-release/ $ git am ~/Download/0001-Add-RTSP-support-for-i.MX-8-L4.14.78_ga1.0.0-or-olde.patch Note: This patch is not necessary for L4.14.98_ga2.0.0 BSP! Then, build the image with bitbake and deploy it to the SD card. 2. Video Test Source Example Server $ gst-variable-rtsp-server -p 9001 -u "videotestsrc ! v4l2h264enc ! rtph264pay name=pay0 pt=96" Client 2. Camera Example Server $ gst-variable-rtsp-server -p 9001 -u "v4l2src device=/dev/video0 ! video/x-raw,width=640,height=480 ! v4l2h264enc ! rtph264pay name=pay0 pt=96" Client In order to use VLC or other application as the client, just enter the URL as shown in the image below:
View full article
[中文翻译版] 见附件   原文链接: Enable GmSSL which supports OSCCA Algorithm Toolbox on i.MX 
View full article
Some of Chinese customer couldn’t normally download android source code from google site, here give a way to download android source from Mirror site of Tsinghua University. Preparations 1. Installing Ubuntu16.04.2 LTS Customer can download ubuntu-16.04.2-desktop-amd64.iso from https://www.ubuntu.com/download/desktop Then install it to VMware workstation player v12 or PC, after finishing installation, use “Software Update” to update system. In order to compile android9.0.0-2.0.0 BSP, necessary packages should also be installed on Ubuntu 16.04. $ sudo apt-get install gnupg $ sudo apt-get install flex $ sudo apt-get install bison $ sudo apt-get install gperf $ sudo apt-get install build-essential $ sudo apt-get install zip $ sudo apt-get install zlib1g-dev $ sudo apt-get install libc6-dev $ sudo apt-get install lib32ncurses5-dev $ sudo apt-get install x11proto-core-dev $ sudo apt-get install libx11-dev $ sudo apt-get install lib32z1-dev $ sudo apt-get install libgl1-mesa-dev $ sudo apt-get install tofrodos $ sudo apt-get install python-markdown $ sudo apt-get install libxml2-utils $ sudo apt-get install xsltproc $ sudo apt-get install uuid-dev:i386 liblzo2-dev:i386 $ sudo apt-get install gcc-multilib g++-multilib $ sudo apt-get install subversion $ sudo apt-get install openssh-server openssh-client $ sudo apt-get install uuid uuid-dev $ sudo apt-get install zlib1g-dev liblz-dev $ sudo apt-get install liblzo2-2 liblzo2-dev $ sudo apt-get install lzop $ sudo apt-get install git-core curl $ sudo apt-get install u-boot-tools $ sudo apt-get install mtd-utils $ sudo apt-get install android-tools-fsutils $ sudo apt-get install openjdk-8-jdk $ sudo apt-get install device-tree-compiler $ sudo apt-get install gdisk $ sudo apt-get install liblz4-tool $ sudo apt-get install m4 $ sudo apt-get install libz-dev More detail, see Android_User’s_Guide.pdf ( android 9.0.0-2.0.0 BSP documents) 2. Downloading and unpacking Android release package [ For android 9.0.0_2.2.0, see commemts, please!] https://www.nxp.com/support/developer-resources/evaluation-and-developmentboards/ sabre-development-system/android-os-for-i.mx-applicationsprocessors: IMXANDROID?tab=Design_Tools_Tab -- P9.0.0_2.0.0_GA_ANDROID_SOURCE File name is imx-p9.0.0_2.0.0-ga.tar.gz # cd ~ # tar xzvf imx-p9.0.0_2.0.0-ga.tar.gz Downloading Android 9.0.0-2.0.0 source code 1. Getting repo # cd ~ # mkdir bin # cd bin # curl https://mirrors.tuna.tsinghua.edu.cn/git/git-repo > ~/bin/repo # chmod a+x ~/bin/repo # export PATH=${PATH}:~/bin 2. Modifying repo File Open ~/bin/repo file with 'gedit' and Change google address From REPO_URL = 'https://gerrit.googlesource.com/git-repo' To REPO_URL = ' https://mirrors.tuna.tsinghua.edu.cn/git/git-repo/ ' 3、Setting email address # git config --global user.email "xxxx@nxp.com" # git config --global user.name "xxxx" [ Email & Name should be yours] 4、Modifying android setup script and Running it Open ~/imx-p9.0.0_2.0.0-ga/imx_android_setup.sh and add a line like below: ... ... if [ "$rc" != 0 ]; then echo "---------------------------------------------------" echo "-----Repo Init failure" echo "---------------------------------------------------" return 1 fi find -name 'aosp-p9.0.0_2.0.0-ga.xml'| \ xargs perl -pi -e 's|https://android.googlesource.com/|https://aosp.tuna.tsinghua.edu.cn/|g' fi ... ... Then save it and exit. # cd ~/ # source ~/imx-p9.0.0_2.0.0-ga/imx_android_setup.sh Then android_build directory is created at ~/ If fetching errors occur, like below, run “repo sync” again. # repo sync # export MY_ANDROID=~/android_build [Note] imx_android_setup.sh will be in charge of downloading all android source code. 5.Begin to compile android 9.0.0-2.0.0 BSP $ export ARCH=arm64 $ export CROSS_COMPILE=${MY_ANDROID}/prebuilts/gcc/linuxx86/aarch64/aarch64-linuxandroid-4.9/bin/aarch64-linux-android- $ cd ~/android_build/vendor $ cp -r ~/imx-p9.0.0_2.0.0-ga/vendor/* ./ $ cd ~/android_build $ source build/envsetup.sh $ lunch evk_8mm-userdebug $ make –j4 NXP TIC team Weidong sun 2019-05-05
View full article
Descriptions on the issue: running “uuu uuu-android-mx8mq-evk-emmc.lst” No any problem, downloading images is OK. running “uuu_imx_android_flash.bat -f imx8mq -a -e” Below lines will be showed on windows console: flash the file of u-boot-imx8mq.imx to the partition of bootloader0 <waiting for any devices>             Then downloading operation stopped. ------------------------------------------------------------------------                 In order to help uses save development time, I tested above 2 commands for downloading images on windows 7 64bit and windows 10 64bit respectively.                 Below is detailed steps for the operation: Hardware Preparations (1) Switch SW802 on i.MX8MQ EMEK, set 1-4 off, 2-3 on i.MX8MQ is at usb serial download mode. (2) Connecting J1701 to PC USB by a USB OTG cable. (3) Connecting J901(usb type c) to PC USB by a USB 3.0 cable. (4) Plugging 12V@3.5A adapter into Power Jack (J902) (5) Power on I.MX8MQ board via SW701 Switch Software Preparations (1) Related windows drivers for i.MX8MQ MEK                 Windows 7 64bit or windows 10 64bit will find new devices and begin to search and install corresponding drivers, like below:                 Probably windows 10 64bit can’t automatically install CP2105 driver from official website of manufacture: https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers                 Then installed it manually. (2) Power off i.MX8MQ MEK (3) Installing winusb driver by zadig                 According to method described in uuu.pdf, download zadig tool from https://zadig.akeo.ie/, and install it to windows 7 64bit . [Note] windows 10 64bit doesn’t need to install winusb driver. Press “Install WCID Driver” Button (4) Downloading Android SDK Manager Download SDK Manager from : http://visualgdb.com/android/install_redir?item=SDK After downloading it, decompress it, and run SDK Manager application: Press OK. Then press “Close” Close SDK Manager Installation Guide . Find the directory of SDK Manager installation, and enter into “platform-tools”, like below: D:\i.MX8-Projects\IMX8MQ-MEK-windows-drivers\android-sdk_r24.4.1-windows\android-sdk-windows\platform-tools Copy items in blue rectangle to C:\windows\system Copy items in red rectangle to C:\windows\system32     Beginning to download android images to I.MX8MQ MEK via UUU Tool (1) Downloading android DEMO images for i.MX8MQ MEK https://www.nxp.com/support/developer-resources/software-development-tools/i.mx-developer-resources/evaluation-kit-for-the-i.mx-8m-applications-processor:MCIMX8M-EVK?tab=Design_Tools_Tab After downloading it, decompress it to a directory.  Like below: (2) Downloading UUU Tool https://github.com/NXPmicro/mfgtools/releases After downloading uuu.exe,  copy it to the directory of android 9.0 demo image , see above. (3) Run command “uuu_imx_android_flash.bat -f imx8mq -a -e” ----Power on i.MX8MQ MEK. ----open a command line window ---open Hyper terminal ( set it 115200 bps) ---run “uuu_imx_android_flash.bat -f imx8mq -a -e”           For windows 10 64bit, downloading images will be done without any errors.    But for windows 7 64bit, downloading images will stop at “ waiting for any devices”.    It means Android ADB driver will be needed. Follow the steps below to solve the problem. Right button, click “update driver” Close it.           Then downloading operations will be automatically continued. OK, done. NXP TIC team Weidong Sun 02-25-2019
View full article
The Register Programming Aid (RPA) provides a default DRAM PLL setting (DRAM frequency) based on the default setting supported in u-boot.  It is highly recommended to use the default DRAM frequency settings in the RPA for ease of use and to align with u-boot.  Otherwise, in addition to updating the RPA for the new DRAM frequency, the u-boot SPL code itself will need to be manually updated with the new DRAM PLL setting.   Should the user wish to change the DRAM frequency, the following steps are required:   First, the user needs to update the RPA Register Configuration worksheet tab Device Information table “Clock Cycle Freq (MHz)“ setting to the desired DRAM frequency       2. Next, in the RPA DDR stress test file worksheet tab search for “memory set 0x30360054”.  The address “0x30360054” is for the DRAM PLL register address and its setting needs to be updated to the desired frequency.        Note that there is another place where the DRAM frequency is also updated “freq0 set 0x30360054” but it is automatically updated based on the setting above.    Below is a table of various frequencies to choose from.  For frequencies not listed in the table below, it is up to the user to calculate a new register setting based on the formula:     (24MHz x m)/(p x 2^s)   Where “m” represents the PLL_MAIN_DIV, “p” represents the PLL_PRE_DIV, and “s” represents the PLL_POST_DIV.  NOTE:  The DRAM frequency is double the DRAM PLL frequency DRAM_freq = DRAM_PLL x 2   The DRAM PLL register and bit settings are shown below:          The following table provides examples of the various settings to create the desired frequency:       For example, in the i.MX 8M Mini LPDDR4 RPA where the default DRAM frequency is 1500MHz, let’s assume that the user instead wants 1200MHz.    First, the user changes the RPA Register Configuration worksheet tab Device Information table “Clock Cycle Freq (MHz)“ setting to 1200.   Next, in the RPA DDR stress test file worksheet tab search for “memory set 0x30360054” and replace “0xFA080” (original setting from DRAM frequency 1500MHz) with “0x000C8022” (updated for DRAM frequency 1200MHz).  Note that for a DRAM frequency of 1200MHz, the DRAM PLL is configured for 600MHz, as the DRAM frequency is double the DRAM_PLL.   The steps outlined above are sufficient in order to create a DDR script for use with the DDR stress test tool to run the calibration and execute the DDR stress test.  However, to deploy the generated code in SPL, more steps are needed as the u-boot SPL DDR driver does not automatically change the DRAM PLL according to the generated code. Hence the user will need to manually modify related code in u-boot.  It is highly recommended to work with a software engineer familiar with u-boot when making the following modifications.    3. Modify DRAM PLL configuration in uboot-imx/drivers/ddr/imx8m.c, specifically the code highlighted below (function call dram_pll_init).  Note that the files and file paths in u-boot change frequently, so if this particular file (or file path) does not exist in the current u-boot, simply search for dram_pll_init or ddr_init.   void ddr_init(struct dram_timing_info *dram_timing) { ……    debug("DDRINFO: cfg clk\n");      if (is_imx8mq())           dram_pll_init(DRAM_PLL_OUT_800M);      else          dram_pll_init(DRAM_PLL_OUT_750M); ……  }   In the above code, the user should update the macro “DRAM_PLL_OUT_750M” with the new DRAM PLL value.  Note that the default DRAM_PLL_OUT_750M results in the DRAM frequency of 1500MHz, where the DRAM frequency is double the DRAM PLL (as previously stated above).   For example, if the user desires to run the DRAM at 1200MHz, they would change the above to: dram_pll_init(DRAM_PLL_OUT_600M);   Note that DRAM_PLL_OUT_600M is a supported macro in the dram_pll_init() API.  If the desired DRAM PLL configuration does not exist in dram_pll_init(), you will need to add support in uboot-imx/arch/arm/mach-imx/imx8m.c  (as stated above, if this file path does not exist in the current u-boot simply search for dram_pll_init):   void dram_pll_init(enum dram_pll_out_val pll_val) { …… }   Related Links i.MX8 MSCALE SERIES DDR Tool Release (V3.10) 
View full article
For the board imx8M Quad EVK running the Linux 4.14.78-1.0.0_ga version BSP, the resolutions 3840x2160,1920x1080, 1280x720, 720x480 are support in our default BSP. For the other resolutions how to make it work? This patch used to do support for a non-default resolution on i.MX 8MQ EVK. Basically, the customer needs to change the clocks accordingly to the display requirements,  it to be used as a base to the display support.
View full article
Summary: The i.MX 8M-Mini can boot from QSPI flash using a dedicated boot image. The boot config settings are not correctly documented in the EVK Board Hardware User's Guide Rev 0 from 02/2019. In the document i.MX_Linux_User's_Guide.pdf  in the BSP documentation 4.14.98 the settings are correctly given in Table 38 Details: To generate a bootable file for the QSPI with Yocto, you need to include the following setting into local.conf: UBOOT_CONFIG = "fspi" If you don't want/need to make a complete build, just rebuild u-boot: bitbake -c deploy u-boot-imx Alternatively the file imx-boot-imx8mmevk-fspi.bin-flash_evk_flexspi included already in the BSP demo packages will work as well Program the image into QSPI: With UUU:   uuu -b qspi imx-boot-imx8mmevk-fspi.bin-flash_evk_flexspi With u-boot: u-boot=> fatls mmc 0:1 14557696   Image    …   1446848   imx-boot-imx8mmevk-fspi.bin-flash_evk_flexspi 11 file(s), 0 dir(s) u-boot=> sf probe SF: Detected n25q256a with page size 256 Bytes, erase size 4 KiB, total 32 MiB u-boot=> fatload mmc 0:1 0x40480000 imx-boot-imx8mmevk-fspi.bin-flash_evk_flexspi 1446848 bytes read in 79 ms (17.5 MiB/s) u-boot=> sf erase 0x0 0x200000 SF: 2097152 bytes @ 0x0 Erased: OK u-boot=> sf write 0x40480000 0x0 0x200000 device 0 offset 0x0, size 0x200000 SF: 2097152 bytes @ 0x0 Written: OK u-boot=> sf read 0x50000000 0x0 0x200000 device 0 offset 0x0, size 0x200000 SF: 2097152 bytes @ 0x0 Read: OK u-boot=> cmp.b 0x40480000 0x50000000 0x200000 Total of 2097152 byte(s) were the same u-boot=> Set boot config jumpers correctly and power on the board (no SD-card in the slot) 8M-Mini Rev A and Rev B boards:  01xxxxx0 0000x001 8M-Mini Rev C boards: 0110xxxxxx 00100x0010
View full article
Important: If you have any questions or would like to report any issues with the DDR tools or supporting documents please create a support ticket in the  i.MX community. Please note that any private messages or direct emails are not monitored and will not receive a response. i.MX 8M Family DDR Tools Overview The i.MX 8M Family DDR Tool is a Windows-based software to help users to do LPDDR4/DDR4/DDR3L training, stress test and DDR initial code generation for u-boot SPL. This page contains the latest releases for the i.MX 8M Family DDR Tools and cover the following SoCs : i.MX 8M Quad and its derivatives i.MX 8M Quadlite and i.MX 8M Dual i.MX 8M Mini Quad and its derivatives i.MX 8M Mini Quadlite/Dual/DualLite/Solo/SoloLite  i.MX 8M Nano Quad and its derivatives i.MX 8M Nano Quadlite/Dual/DualLite/Solo/SoloLite  i.MX 8M Plus   NOTE: For the i.MX 8/8X Family of DDR tools please refer to the: i.MX 8/8X Family DDR Tools Release   The purpose of the i.MX 8M Family DDR Tools is to enable users to generate and test a custom DRAM initialization based on their device configuration (density, number of chip selects, etc.) and board layout (data bus bit swizzling, etc.).  This process equips the user to then proceed with the bring-up of a boot loader and an OS.  Once the OS is brought up, it is recommended to run an OS-based memory test (like Linux memtester) to further verify and test the DDR memory interface.     The i.MX 8M Family DDR Tools consist of: DDR Register Programming Aid (RPA) MSCALE DDR Tool   For more details regarding these DDR tools and their usage, refer to the i.MX 8M DDR Tools User Guide.   i.MX 8M Family DDR Tool    The i.MX 8M Family DDR stress test tool is a Windows-based software tool that is used as a mechanism to verify that the DDR initialization is operational for use with u-boot and OS bring-up. To install the DDR Stress Test, save and extract the zip file mscale_ddr_tool_vXXX_setup.exe.zip   (where 'xxx' is the current version number) and follow the on-screen installation instructions.     i.MX 8M Family DDR Tool Requirements   The tool requires access to the Windows registry, hence users must run it in administrator mode. When users design new i.MX 8M Family boards, please make sure to follow the rules outlined in the respective Hardware Developers Guide and the MSCALE_DDR_Tool_User_Guide, which can help users bring up DDR devices on their respective i.MX 8M boards.   i.MX 8M Family DDR Tool User Guide   The i.MX 8M DDR tool includes the document: MSCALE_DDR_Tool_User_Guide NOTE: Please read the MSCALE_DDR_Tool_User_Guide inside the package carefully before you use this tool.   i.MX8M DDR Tool Revision History   Rev Major Changes* (Features) Comments 3.31 Integration of the workaround for 8MQ ERR051273   3.30 Fix DBI enabled issue for all i.MX 8M series Automatically identify ROHM and PCA9450 PMICs on i.MX 8M Nano board Fix 4GB/8GB memory tester issues   3.20 Add support to i.MX 8M Plus   3.10 Fixe UART communication issues for some specific characters between the PC software and the target board. Fine-tune DDRPHY registers in generated C code.   3.00 Add support to i.MX8M-nano Add support to different PMIC or PMIC configuration Add support to stress test for all DDR frequency points RPA tools for Nano include support for DDR3L, DDR4, and LPDDR4.   Note that the DDR3L and LPDDR4 RPAs contain the name preliminary only to denote that these RPAs are based on internal NXP validation boards where the DDR4 RPA is based on the released EVK.   2.10 Change DDR4 capacity computing method   2.00 Add support to i.MX8M-mini   * Further details available in the release notes   Sample configuration in the .ds script for i.MX 8M debug UART2: ################step 0: configure debug uart port. Assumes use of UART IO Pads.   ##### ##### If using non-UART pads (i.e. using other pads to mux out the UART signals), ##### ##### then it is up to the user to overwrite the following IO register settings   ##### memory set 0x3033023C 32 0x00000000 #IOMUXC_SW_MUX_UART2_RXD memory set 0x30330240 32 0x00000000 #IOMUXC_SW_MUX_UART2_TXD memory set 0x303304A4 32 0x0000000E #IOMUXC_SW_PAD_UART2_RXD memory set 0x303304A8 32 0x0000000E #IOMUXC_SW_PAD_UART2_TXD memory set 0x303304FC 32 0x00000000 #IOMUXC_SW_MUX_UART2_SEL_RXD sysparam set debug_uart   1 #UART index from 0 ('0' = UART1, '1' = UART2, '2' = UART3, '3' = UART4)   Sample configuration in the front of the .ds script for i.MX 8M debug UART3  ################step 0: configure debug uart port. Assumes use of UART IO Pads.   ##### ##### If using non-UART pads (i.e. using other pads to mux out the UART signals), ##### ##### then it is up to the user to overwrite the following IO register settings   ##### memory set 0x30330244 32 0x00000000 #IOMUXC_SW_MUX_UART3_RXD memory set 0x30330248 32 0x00000000 #IOMUXC_SW_MUX_UART3_TXD memory set 0x303304AC 32 0x0000000E #IOMUXC_SW_PAD_UART3_RXD memory set 0x303304B0 32 0x0000000E #IOMUXC_SW_PAD_UART3_TXD memory set 0x30330504 32 0x00000002 #IOMUXC_SW_MUX_UART3_SEL_RXD sysparam set debug_uart   2 #UART index from 0 ('0' = UART1, '1' = UART2, '2' = UART3, '3' = UART4)   Sample configuration in the front of the .ds script for i.MX 8M Mini PMIC configuration: ##############step 0.5: configure I2C port IO pads according to your PCB design.   ##### ########### You can modify the following instructions to adapt to your board PMIC ####### memory set 0x30330214 32 0x00000010  #IOMUXC_SW_MUX_I2C1_SCL memory set 0x30330218 32 0x00000010  #IOMUXC_SW_MUX_I2C1_SDA memory set 0x3033047C 32 0x000000C6 #IOMUXC_SW_PAD_I2C1_SCL memory set 0x30330480 32 0x000000C6  #IOMUXC_SW_PAD_I2C1_SDA sysparam set pmic_cfg 0x004B #bit[7:0] = PMIC addr,bit[15:8]=I2C Bus. Bus index from 0 ('0' = I2C1, '1' = I2C2, '2' = I2C3, '3' = I2C4) sysparam set pmic_set 0x2F01 #bit[7:0] = Reg val, bit[15:8]=Reg addr. #REG(0x2F) = 0x01 sysparam set pmic_set 0x0C02   #REG(0x0C) = 0x02 sysparam set pmic_set 0x171E   #REG(0x17) = 0x1E sysparam set pmic_set 0x0C00   #REG(0x0C) = 0x00 sysparam set pmic_set 0x2F11    #REG(0x2F)=0x11     i.MX 8M Family DDR Register Programming Aid (RPA) The i.MX 8M DDR RPA (or simply RPA) is an Excel spreadsheet tool used to develop DDR initialization for a user’s specific DDR configuration (DDR device type, density, etc.). The RPA generates the DDR initialization(in a separate Excel worksheet tab):   DDR Stress Test Script: This format is used specifically with the DDR stress test by first copying the contents in this worksheet tab and then pasting it to a text file, naming the document with the “.ds” file extension. The user will select this file when executing the DDR stress test. The How to Use Excel worksheet tab provides instructions on using the RPA   i.MX 8M Family DDR Register Programming Aid (RPA): Current Versions To obtain the latest RPAs, please refer to the following links (note, existing RPAs have been removed from this main page and moved to the SoC specific links below): i.MX 8M Quad : https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX8M-m850D-DDR-Register-Programming-Aid-RPA/ta-p/1172441 i.MX 8M Mini : https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX8MMini-m845S-DDR-Register-Programming-Aid-RPA/ta-p/1172443 i.MX 8M Nano: https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX8MNano-m815S-DDR-Register-Programming-Aid-RPA/ta-p/1172444 i.MX 8M Plus: https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX-8MPlus-m865S-DDR-Register-Programming-Aids-RPA/ta-p/1235352   Processor Mask Revisions Memory Supported Latest RPA Version * i.MX 8M Quad & Derivatives All LPDDR4 Rev 33 i.MX 8M Quad & Derivatives All DDR4 Rev 18 i.MX 8M Quad & Derivatives All DDR3L Rev 9 i.MX 8M Mini & Derivatives A0 LPDDR4 Rev 22 i.MX 8M Mini & Derivatives A0 DDR4 Rev 21 i.MX 8M Mini & Derivatives A0 DDR3L Rev 10 i.MX 8M Nano & Derivatives A0 LPDDR4 Rev 9 i.MX 8M Nano & Derivatives A0 DDR4 Rev 12 i.MX 8M Nano & Derivatives A0 DDR3L Rev 6 i.MX 8M Plus & Derivatives A1 LPDDR4 Rev 9 i.MX 8M Plus & Derivatives A1 DDR4 Rev 9 * For the details about the updates, please refer to the Revision History tab of the respective RPA.    To modify the DRAM Frequency for a custom setting refer to iMX 8M Mini Register Programming Aid DRAM PLL setting    Related Resources Links: iMX 8M Mini Register Programming Aid DRAM PLL setting  i.MX 8/8X Series DDR Tool Release  i.MX 6/7 DDR Stress test GUI Tool i.MX 8M Application Processor Related Resources i.MX8M (m850D) DDR Register Programming Aid (RPA)  i.MX8MMini (m845S) DDR Register Programming Aid (RPA)  i.MX8MNano (m815S) DDR Register Programming Aid (RPA) i.MX 8MPlus (m865S) DDR Register Programming Aids (RPA)   i.MX 8ULP DDR tools: i.MX Software and Development Tools | NXP Semiconductors Scroll down to “Other Resources --> Tools --> DDR Tools”  
View full article
The D-PHY PLL (in the red circle in the picture below) is the PLL that drives the MIPI Clock lane. It must be set in accordance with the video to be sent to the display.   Calculating the video bandwidth The video bandwidth is calculated with the following equation: Pixels per second = Horizontal res. x Vertical res. x Frame rate x Bits per pixel Taking as example the 1080p60 OLED display RM67191: Pixels per second = 1920 x 1080 x 60 x 24 Pixels per second = 2985984000 = 2,98Gpixels/sec Pixel clock calculation The Display pixel clock can be obtained on the display driver. In this example for RM67191, the pixel clock is 132Mpixel/sec, see file: panel-raydium-rm67191.c\panel\drm\gpu\drivers - linux-imx - i.MX Linux kernel  Line 530: .pixelclock = { 66000000, 132000000, 132000000 }, Or the number can be obtained with the following equation: pixel clock = (hactive + hfront_porch + hsync_len + hback_porch) x (vactive + vfront_porch + vsync_len + vback_porch) x frame rate pixel clock = (1080 + 20 + 2 +34) × (1920 + 10 + 2 + 4) x 60 pixel clock = 132000000 (rounded up) Bit clock calculation (clock lane) The mipi-dphy bit_clk is the output clock and is calculated on file sec-dsim.c (line 1283): sec-dsim.c\bridge\drm\gpu\drivers - linux-imx - i.MX Linux kernel  Bit clock can be calculated with the following equation: bit_clk = Pixel clock * Bits per pixel / Number of lanes In the case of 1980p60 (Raydium display), It is:   bit_clk = pixel clock * bits per pixel / number of lanes bit_clk = 132000000 * 24 / 4 bit_clk = 792000000 Other important timing parameters like 'p', 'm', 's' are obtained on the table in the following header file: sec_mipi_dphy_ln14lpp.h\imx\drm\gpu\drivers - linux-imx - i.MX Linux kernel 
View full article
L5.4.3_1.0.0 release is now available on IMX_SW landing page: BSP Updates and Releases -> Linux ->Linux L5.4.3_1.0.0. Documentation -> Linux -> Linux 5.4.3_1.0.0 Documentation Files available: # Name Description 1 imx-yocto-LF_L5.4.3_1.0.0.zip i.MX L5.4.3_1.0.0 for Linux BSP Documentation. Includes Release Notes, User Guide. 2 LF_v5.4.y-1.0.0_images_MX6QPDLSOLOX.zip i.MX 6QuadPlus, i.MX 6Quad, i.MX 6DualLite, i.MX 6Solox Linux Binary Demo Files 3 LF_v5.4.y-1.0.0_images_MX6SLLEVK.zip i.MX 6SLL EVK Linux Binary Demo Files 4 LF_v5.4.y-1.0.0_images_MX6UL7D.zip i.MX 6UltraLite EVK, 7Dual SABRESD, 6ULL EVK Linux Binary Demo Files 5 LF_v5.4.y-1.0.0_images_MX7ULPEVK.zip i.MX 7ULP EVK Linux Binary Demo Files  6 LF_v5.4.y-1.0.0_images_MX8MMEVK.zip i.MX 8M Mini EVK Linux Binary Demo Files  7 LF_v5.4.y-1.0.0_images_MX8MNEVK.zip i.MX 8M Nano EVK Linux Binary Demo Files  8 LF_v5.4.y-1.0.0_images_MX8MQEVK.zip i.MX 8M Quad EVK Linux Binary Demo files 9 LF_v5.4.y-1.0.0_images_MX8QMMEK.zip i.MX 8QMax MEK Linux Binary Demo files 10 LF_v5.4.y-1.0.0_images_MX8QXPMEK.zip i.MX 8QXPlus MEK Linux Binary Demo files 11 imx-scfw-porting-kit-1.2.10.1.tar.gz System Controller Firmware (SCFW) porting kit v1.2.10.1 for L5.4.3_1.0.0   Target board: MX 8 Series MX 8QuadXPlus MEK Board MX 8QuadMax MEK Board MX 8M Quad EVK Board MX 8M Mini EVK Board MX 8M Nano EVK Board MX 7 Series MX 7Dual SABRE-SD Board MX 7ULP EVK Board MX 6 Series MX 6QuadPlus SABRE-SD and SABRE-AI Boards MX 6Quad SABRE-SD and SABRE-AI Boards MX 6DualLite SDP SABRE-SD and SABRE-AI Boards MX 6SoloX SABRE-SD MX 6UltraLite EVK Board MX 6ULL EVK Board MX 6ULZ EVK Board MX 6SLL EVK Board   What’s New/Features: Please consult the Release Notes.   Known Issues: For known issues and more details please consult the Release Notes.   More information on changes of Yocto, see: README: https://source.codeaurora.org/external/imx/imx-manifest/tree/README?h=imx-linux-zeus ChangeLog: https://source.codeaurora.org/external/imx/imx-manifest/tree/ChangeLog?h=imx-linux-zeus      
View full article
This document is a user guide for the GStreamer version 1.0 based accelerated solution included in all the i.MX 8 family SoCs supported by NXP BSP L5.4.24_1.1.0. Some instructions assume a host machine running a Linux distribution, such as Ubuntu, connected to i.MX 8 device. These commands were tested using Ubuntu 18.04 LTD, and while Ubuntu is not required on the host machine, other distributions have not been tested. These instructions are targeted for use with the following hardware: • i.MX 8MQ EVK • i.MX 8MN EVK • i.MX 8MN EVK • i.MX 8QXP MEK B0 • i.MX 8QM MEK B0   Release History v1.0 - Mar 2020 - Initial release. v2.0 - Sep 2020: Added the following content: - Mux/Demux Examples - Audio Examples - Image Examples - Transcode Examples - Streaming Examples - Multi-Display Examples - Scaling and Rotation Examples - Zero-copy Examples - Debug Examples Maintainers: . Marco Franchi . Pedro Jardim
View full article
  This guide assumes that the developer has knowledge of the V4L2 API and has worked or is familiar with sensor drivers and their operation within the Linux kernel. This guide does not focus on the details of the sensor driver development that you want to port. It is assumed that you already have an existing driver for your sensor, before making the port. The version of the ISP's was 6.6.36 Linux BSP. If a different version is used, it is the developer's responsibility to review the API documentation for the corresponding version, since there may be changes that affect what is indicated in this guide. To port the camera sensor, the following steps must be taken as described in the following sections: Define sensor attributes and create instances. ISS Driver and ISP Media Server. Sensor Calibration Files. VVCAM Driver Creation. Device Tree Modifications. Define Sensor Attributes and Create Instances The following three steps are already implemented in CamDevice and are included for reference only. Step 1: Define the sensor attributes in the IsiSensor_s data structure. Step 2: Define the IsiSensorInstanceConfig_t configuration structure that will be used to create a new sensor instance. Step 3: Call the IsiCreateSensorIss() function to create a new sensor instance. ISS Driver and ISP Media Server Step 0 - Use a driver template as base code: Drivers can be found in $ISP_SOURCES_TOP/units/isi/drv/. For example, the ISP sources, come with the OV4656 and OS08a20 drivers. $ISP_SOURCES_TOP indicates the path of your working directory, where the respective sources are located. Step 1 - Add your <SENSOR> ISS Driver: Create the driver entry for your sensor in the path $ISP_SOURCES_TOP/units/isi/drv/<SENSOR>/source/<SENSOR>.c. Change all occurrences of the respective sensor name within the code, for instance, OV4656 -> <SENSOR>, respecting capital letters where applicable. Step 2 - Check the information on the IsiCamDrvConfig_s data structure: Data members defined in this data structure include the sensor ID (CameraDriverID) and the function pointer to the IsiSensor data structure. By using the address of the IsiCamDrvConfig_s structure, the driver can then access the sensor API attached to the function pointer. The following is an example of the structure: /***************************************************************************** * Each sensor driver needs to declare this struct for ISI load *****************************************************************************/ IsiCamDrvConfig_t IsiCamDrvConfig = {     .CameraDriverID = 0x0000,     .pIsiHalQuerySensor = <SENSOR>_IsiHalQuerySensorIss,     .pfIsiGetSensorIss = <SENSOR>_IsiGetSensorIss, };   Important Note: Modify the CameraDriverID according to the chip ID of your sensor. Apply this change to any Chip ID occurrence within the code. Step 3 - Check sensor macro definitions: In case there is any macro definition in the ISS Driver code, which involves specific properties of the sensor, you should modify it according to your requirements. For example: #define <SENSOR>_MIN_GAIN_STEP         (1.0f/16.0f)   Step 4 - Modify ISP Media Server build tools: Changes required in this step include: Add a CMakeLists.txt file in $ISP_SOURCES_TOP/units/isi/drv/<SENSOR>/ that builds your sensor module. Modify the CMakeLists.txt located at $ISP_SOURCES_TOP/units/isi/drv/CMakeLists.txt to include and reference your sensor directory. Modify the $ISP_SOURCES_TOP/appshell/ and $ISP_SOURCES_TOP/mediacontrol/ build tools, since by default they refer to the construction of a particular sensor, for example, the OV4656, so it is necessary to change the name of the corresponding sensor. Modify the $ISP_SOURCES_TOP/build-all-isp.sh script to reference the sensor modules and generate the corresponding binaries when building the ISP media server instance.   Step 5 - ISP Media Server run script: You need to add the operation modes defined for your sensor in the script. Each operating mode is associated with an order (mode 0, mode 1 ... mode N), a name used to execute the command in the terminal (e.g <sensor>_custom_mode_1), a resolution, and a specific calibration file for the sensor. The script is located at $ISP_SOURCES_TOP/imx/run.sh .   Step 6 - Sensor<X> config: At $ISP_SOURCES_TOP/units/isi/drv/ you can find the files to configure each sensor entry to the ISP, called Sensor0_Entry.cfg and Sensor1_Entry.cfg. There, the associated calibration files are indicated for each sensor operating mode, including the calibration files in XML format and the Dewarp Unit configuration files in JSON format. In addition, the .drv file generated for your sensor is referenced, creating the association between the respective /dev/video<X> node and the sensor driver module outputted from the ISP Media Server. In case you are using only one ISP channel, just modify Sensor0_Entry.cfg. In case you require both instances of the ISP, you will need to modify both files. Sensor Calibration Files It is a requirement for using the ISP, to have a calibration file in XML format, specific to the sensor you are using and according to the resolution and working mode. To obtain the calibration files in XML format, there are 3 options: Use the NXP ISP tuning tool for this you will need to ask for access or sign a NDA document. Pay NXP professional services to do the tune. Pay a third-party vendor to do the tune   VVCAM Driver Creation The changes indicated below are based on the assumption that there is a functional sensor driver in its base form, and that it is compatible with the V4L2 API. From now on we focus on applying the changes suggested in the NXP documentation, specifically to establish the communication of the VVCAM Driver (kernel side) and the ISI Layer. Step 0 - Create the sensor driver entry: Developers must add the driver code to the file located at $ISP_SOURCES_TOP/vvcam/v4l2/sensor/<sensor>/<sensor>_xxxx.c, along with a Makefile for the sensor driver module. In the same way, as indicated in the ISS Driver section, you can refer to one of the sample drivers that are included as part of the ISP sources, to review details about the implementation of the driver and the structure of the required Makefile.   Step 1 - Add the VVCAM mode info data structure array: This array stores all the supported modes information for your sensor. The ISI layer can get all the modes with the VVSENSORIOC_QUERY command. The following is an example of the structure, please fill in the information using the attributes of your sensor and the modes it supports. #include "vvsensor.h" . . .   static struct vvcam_mode_info_s <sensor>_mode_info[] = {         {         .index = 0,         .width = ... ,         .height = ... ,         .hdr_mode = ... ,         .bit_width = ... ,         .data_compress.enable = ... ,         .bayer_pattern = ... ,         .ae_info = {                        .                        .                        .                        },         .mipi_info = {                        .mipi_lane = ... ,                        },         },         {         .index = 1,         .         .         .         }, }; Step 2 - Define sensor client to i2c : Define the client_to_sensor macro (in case you don't have any already) and check the segments of the driver code that require this macro. #define client_to_<sensor>(client)\         container_of(i2c_get_clientdata(client), struct <sensor>, subdev)   Step 3 - Define the V4L2-subdev IOCTL function: Define and implement the <sensor>_priv_ioctl, which is used to receive the commands and parameters passed down by the user space through ioctl() and control the sensor. long <sensor>_priv_ioctl(struct v4l2_subdev *subdev, unsigned int cmd, void *arg) {         struct i2c_client *client = v4l2_get_subdevdata(subdev);         struct <sensor> *sensor = client_to_<sensor>(client);         struct vvcam_sccb_data_s reg;         uint32_t value = 0;         long ret = 0;           if(!sensor){                return -EINVAL;         }           switch (cmd) {         case VVSENSORIOC_G_CLK: {                ret = custom_implementation();                break;         }         case VIDIOC_QUERYCAP: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_QUERY: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_G_CHIP_ID: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_G_RESERVE_ID: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_G_SENSOR_MODE:{                ret = custom_implementation();                break;         }         case VVSENSORIOC_S_SENSOR_MODE: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_S_STREAM: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_WRITE_REG: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_READ_REG: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_S_EXP: {                ret = custom_implementation();                break;         }         case VVSENSORIOC_S_POWER:         case VVSENSORIOC_S_CLK:         case VVSENSORIOC_RESET:         case VVSENSORIOC_S_FPS:         case VVSENSORIOC_G_FPS:         case VVSENSORIOC_S_LONG_GAIN:         case VVSENSORIOC_S_GAIN:         case VVSENSORIOC_S_VSGAIN:         case VVSENSORIOC_S_LONG_EXP:         case VVSENSORIOC_S_VSEXP:          case VVSENSORIOC_S_WB:         case VVSENSORIOC_S_BLC:         case VVSENSORIOC_G_EXPAND_CURVE:                break;         default:                break;         }           return ret; }   As you can see in the example, some cases are implemented but others are not. Developers are free to implement the features they consider necessary, as long as a minimum base of operation of the driver is guaranteed (query commands, read and write registers, among others). It is the developer's responsibility to implement each custom function, for each case or scenario that may arise when interacting with the sensor. In addition to what was shown previously, a link must be created to make the ioctl connection with the driver in question. Link your priv_ioctl function on the v4l2_subdev_core_ops struct, as in the example below: static const struct v4l2_subdev_core_ops <sensor>_core_ops = {         .s_power       = v4l2_s_power,         .subscribe_event = v4l2_ctrl_subdev_subscribe_event,         .unsubscribe_event = v4l2_event_subdev_unsubscribe,      // IOCTL link         .ioctl = <sensor>_priv_ioctl, };   Step 4 - Verify your sensor's private data structure: After performing the modifications suggested, it would be a good practice to double-check your sensor's private data structure properties, in case there is one missing, and also check that the properties are initialized correctly on the driver's probe.   Step 5 - Modify VVCAM V4L2 sensor Makefile : At $ISP_SOURCES_TOP/vvcam/v4l2/sensor/Makefile, include your sensor object as follows: ... obj-m += <sensor>/ ... Important Note: There is a very common issue that appears when working with camera sensor drivers in i.MX8MP platforms. The kernel log message shows something similar to the following: mxc-mipi-csi2.<X>: is_entity_link_setup, No remote pad found! The link setup callback is required by the Media Controller when performing the linking process of the media entities involved in the capture process of the camera. Normally, this callback is triggered by the imx8-media-dev driver included as part of the Kernel sources. To make sure that the problem is not related to your sensor driver, verify the link setup callback is already created in the code, and if is not, you can add the following template: /* Function needed by i.MX8MP */ static int <sensor>_camera_link_setup(struct media_entity *entity,                                    const struct media_pad *local,                                    const struct media_pad *remote, u32 flags) {     /* Return always zero */         return 0; }   /* Add the link setup callback to the media entity operations struct */ static const struct media_entity_operations <sensor>_camera_subdev_media_ops = {         .link_setup = <sensor>_camera_link_setup, };     /* Verify the initialization process of the media entity ops in the sensor driver's probe function*/ static int <sensor>_probe(struct i2c_client *client, ...) {         /* Initialize subdev */         sd = &<sensor>->subdev;         sd->dev = &client->dev;         <sensor>->subdev.internal_ops = ...         <sensor>->subdev.flags |= ...         <sensor->subdev.entity.function = ...     /* Entity ops initialization */         <sensor->subdev.entity.ops = &<sensor>_camera_subdev_media_ops; } In most cases, adding the link setup function will solve the media controller issue, or at least it discards problems on the driver side. Device Tree Modifications On the Device Tree side, it is necessary to enable the ISP channels that will be used. Likewise, it is necessary to disable the ISI channels, which are normally the ones that connect to the MIPI_CSI2 ports to extract raw data from the sensor (in case the ISP is not used). A MIPI_CSI2 port can be mapped to either an ISI channel or an ISP channel, but not both simultaneously. In this guide, we focus on using the ISP, so any other custom configuration that you want to implement may vary from what is shown. In the code below, ISP channel 0 is enabled, and the connection is made to the port where the sensor is connected (mipi_csi_0). &mipi_csi_0 {         status = "okay";         port@0 {         // Example endpoint to <sensor>_ep                mipi0_sensor_ep: endpoint@1 {                        remote-endpoint = <&<sensor>_ep>;                };         }; };   &cameradev {         status = "okay"; };   &isi_0 {         status = "disabled"; };   &isi_1 {         status = "disabled"; };   &isp_0 {         status = "okay"; };   &isp_1 {         status = "disabled"; };   &dewarp {         status = "okay"; }; What is shown above does not represent a complete device tree file, is only a general skeleton of the points you should pay attention to when working with ISP channels. For simplicity, we omitted all the attributes that are normally defined when working with camera sensor drivers and their respective configurations in the i2c port of the hardware.   Note: Due to hardware restrictions when using ISP channels, it is recommended to use the isp_0 channel, when working with only one sensor. In case you need to use two sensors, you can enable both channels, taking into account the limitations regarding the output resolutions and the clock frequency when both channels are working simultaneously. What is not recommended is to use the isp_1 channel when working with a single sensor.   References ISP Independent Sensor Interface (ISI) API reference, I.MX8M Plus Camera Sensor Porting User guide: https://www.nxp.com/webapp/Download?colCode=IMX8MPCSPUG Sensor Calibration tool: https://www.nxp.com/webapp/Download?colCode=AN13565 i.MX8M Plus reference manual: https://www.nxp.com/webapp/Download?colCode=IMX8MPRM  
View full article
P3T1755 Demo   In this space I want to show you the things that you can create usign our products.   In  this demo I demostrate a use case creating a GUI for a Temperature Sensor.   We can create modern GUIs and more with LVGL combined with our powerful processors.               CPU USAGE As we can see  the CPU usage for this demo is around 2%   Pictures         This demo is based on the previous publused articles.   References: https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/Adding-support-to-P3T1755-on-Linux/ta-p/1855874 https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/How-to-run-LGVL-on-iMX-using-framebuffer/ta-p/1853768  
View full article
This guide is a continuation from our latest Debian 12 Installation Guide for iMX8MM, iMX8MP, iMX8MN and iMX93. Here we will describe the process to install the multimedia and hardware acceleration packages, specifically GPU, VPU and Gstreamer on i.MX8M Mini, i.MX8M Plus and i.MX8M Nano. The guide is based on the one provided by our colleague Build Ubuntu For i.MX8 Series Platform - NXP Community, which requires to previously build an image using Yocto Project with the following distro and image name. Distro name - fsl-imx-wayland Image name – imx-image-multimedia For more information please check our BSP documentation i.MX Yocto Project User’s Guide.   Hardware Requirements Linux Host Computer (Ubuntu 20.04 or later) USB Card reader or Micro SD to SD adapter SD Card Evaluation Kit Board for the i.MX8M Nano, i.MX8M Mini, i.MX8M Plus   Software Requirements Linux Ubuntu (20.04 tested) or Debian for Host Computer BSP version 6.1.55 built with Yocto Project   After built the image we can start the installation by following the steps below:   GPU Installation The GPU Installation consists of copy the files from packages imx-gpu-g2d, imx-gpu-viv, libdrm to the Debian system. As our latest installation guide, we will continue naming “mountpoint” to the directory where Debian system is mounted on our host machine. Regarding the path provided on each step, we put labels <build-path> and <machine> that you will need to change based on your environment. These are the paths that Yocto Project uses to save the packages. However, this could change on your environment and you can find the work directory from each package using the following command: bitbake -e <package-name> | grep ^WORKDIR= This command will show you the absolute path of the package work directory. 1. Install GPU Packages $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/imx-gpu-g2d/6.4.11.p2.2-r0/image/* mountpoint $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/imx-gpu-viv/1_6.4.11.p2.2-aarch64-r0/image/* mountpoint $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/libdrm/2.4.115.imx-r0/image/* mountpoint   2. Install Linux IMX Headers and IMX Parser $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/linux-imx-headers/6.1-r0/image/* mountpoint $ sudo cp -Pra <build-path>/tmp/work/armv8a-poky-linux/imx-parser/4.8.2-r0/image/* mountpoint   3. Use chroot $ sudo LANG=C.UTF-8 chroot mountpoint/ qemu-aarch64-static /bin/bash   4. Install Dependencies $ apt install libudev-dev libinput-dev libxkbcommon-dev libpam0g-dev libx11-xcb-dev libxcb-xfixes0-dev libxcb-composite0-dev libxcursor-dev libxcb-shape0-dev libdbus-1-dev libdbus-glib-1-dev libsystemd-dev libpixman-1-dev libcairo2-dev libffi-dev libxml2-dev kbd libexpat1-dev autoconf automake libtool meson cmake ssh net-tools network-manager iputils-ping rsyslog bash-completion htop resolvconf dialog vim udhcpc udhcpd git v4l-utils alsa-utils git gcc less autoconf autopoint libtool bison flex gtk-doc-tools libglib2.0-dev libpango1.0-dev libatk1.0-dev kmod pciutils libjpeg-dev   5. Create a folder for Multimedia Installation. Here we will clone all the multimedia repositories.  $ mkdir multimedia_packages $ cd multimedia_packages   6. Build Wayland $ git clone https://gitlab.freedesktop.org/wayland/wayland.git $ cd wayland $ git checkout 1.22.0 $ meson setup build --prefix=/usr -Ddocumentation=false -Ddtd_validation=true $ cd build $ ninja install   7. Build Wayland Protocols IMX $ git clone https://github.com/nxp-imx/wayland-protocols-imx.git $ cd wayland-protocols-imx $ git checkout wayland-protocols-imx-1.32 $ meson setup build --prefix=/usr -Dtests=false $ cd build $ ninja install   8. Build Weston $ git clone https://github.com/nxp-imx/weston-imx.git $ cd weston-imx $ git checkout weston-imx-11.0.3 $ meson setup build --prefix=/usr -Dpipewire=false -Dsimple-clients=all -Ddemo-clients=true -Ddeprecated-color-management-colord=false -Drenderer-gl=true -Dbackend-headless=false -Dimage-jpeg=true -Drenderer-g2d=true -Dbackend-drm=true -Dlauncher-libseat=false -Dcolor-management-lcms=false -Dbackend-rdp=false -Dremoting=false -Dscreenshare=true -Dshell-desktop=true -Dshell-fullscreen=true -Dshell-ivi=true -Dshell-kiosk=true -Dsystemd=true -Dlauncher-logind=true -Dbackend-drm-screencast-vaapi=false -Dbackend-wayland=false -Dimage-webp=false -Dbackend-x11=false -Dxwayland=false $ cd build $ ninja install   VPU Installation To install VPU and Gstreamer please follow the steps below: 1. Install firmware-imx $ sudo cp -Pra <build-path>/tmp/work/all-poky-linux/firmware-imx/1_8.22-r0/image/lib/* mountpoint/lib/   2. Install VPU Driver $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/imx-vpu-hantro/1.31.0-r0/image/* mountpoint $ sudo cp -Pra <build-path>/tmp/work/armv8a-<machine>-poky-linux/imx-vpuwrap/git-r0/image/* mountpoint   3. Use chroot $ sudo LANG=C.UTF-8 chroot mountpoint/ qemu-aarch64-static /bin/bash   4. Install dependencies for Gstreamer Plugins $ apt install libgirepository1.0-dev gettext liborc-0.4-dev libasound2-dev libogg-dev libtheora-dev libvorbis-dev libbz2-dev libflac-dev libgdk-pixbuf-2.0-dev libmp3lame-dev libmpg123-dev libpulse-dev libspeex-dev libtag1-dev libbluetooth-dev libusb-1.0-0-dev libcurl4-openssl-dev libssl-dev librsvg2-dev libsbc-dev libsndfile1-dev   5. Change directory to multimedia packages. $ cd multimedia-packages   6. Build gstreamer $ git clone https://github.com/nxp-imx/gstreamer -b lf-6.1.55-2.2.0 $ cd gstreamer $ meson setup build --prefix=/usr -Dintrospection=enabled -Ddoc=disabled -Dexamples=disabled -Ddbghelp=disabled -Dnls=enabled -Dbash-completion=disabled -Dcheck=enabled -Dcoretracers=disabled -Dgst_debug=true -Dlibdw=disabled -Dtests=enabled -Dtools=enabled -Dtracer_hooks=true -Dlibunwind=disabled -Dc_args=-I/usr/include/imx $ cd build $ ninja install   7. Build gst-plugins-base $ git clone https://github.com/nxp-imx/gst-plugins-base -b lf-6.1.55-2.2.0 $ cd gst-plugins-base $ meson setup build --prefix=/usr -Dalsa=enabled -Dcdparanoia=disabled -Dgl-graphene=disabled -Dgl-jpeg=disabled -Dopus=disabled -Dogg=enabled -Dorc=enabled -Dpango=enabled -Dgl-png=enabled -Dqt5=disabled -Dtheora=enabled -Dtremor=disabled -Dvorbis=enabled -Dlibvisual=disabled -Dx11=disabled -Dxvideo=disabled -Dxshm=disabled -Dc_args=-I/usr/include/imx $ cd build $ ninja install   8. Build gst-plugins-good $ git clone https://github.com/nxp-imx/gst-plugins-good -b lf-6.1.55-2.2.0 $ cd gst-plugins-good $ meson setup build --prefix=/usr -Dexamples=disabled -Dnls=enabled -Ddoc=disabled -Daalib=disabled -Ddirectsound=disabled -Ddv=disabled -Dlibcaca=disabled -Doss=enabled -Doss4=disabled -Dosxaudio=disabled -Dosxvideo=disabled -Dshout2=disabled -Dtwolame=disabled -Dwaveform=disabled -Dasm=disabled -Dbz2=enabled -Dcairo=enabled -Ddv1394=disabled -Dflac=enabled -Dgdk-pixbuf=enabled -Dgtk3=disabled -Dv4l2-gudev=enabled -Djack=disabled -Djpeg=enabled -Dlame=enabled -Dpng=enabled -Dv4l2-libv4l2=disabled -Dmpg123=enabled -Dorc=enabled -Dpulse=enabled -Dqt5=disabled -Drpicamsrc=disabled -Dsoup=enabled -Dspeex=enabled -Dtaglib=enabled -Dv4l2=enabled -Dv4l2-probe=true -Dvpx=disabled -Dwavpack=disabled -Dximagesrc=disabled -Dximagesrc-xshm=disabled -Dximagesrc-xfixes=disabled -Dximagesrc-xdamage=disabled -Dc_args=-I/usr/include/imx $ cd build $ ninja install   9. Build gst-plugins-bad $ git clone https://github.com/nxp-imx/gst-plugins-bad -b lf-6.1.55-2.2.0 $ cd gst-plugins-bad $ meson setup build --prefix=/usr -Dintrospection=enabled -Dexamples=disabled -Dnls=enabled -Dgpl=disabled -Ddoc=disabled -Daes=enabled -Dcodecalpha=enabled -Ddecklink=enabled -Ddvb=enabled -Dfbdev=enabled -Dipcpipeline=enabled -Dshm=enabled -Dtranscode=enabled -Dandroidmedia=disabled -Dapplemedia=disabled -Dasio=disabled -Dbs2b=disabled -Dchromaprint=disabled -Dd3dvideosink=disabled -Dd3d11=disabled -Ddirectsound=disabled -Ddts=disabled -Dfdkaac=disabled -Dflite=disabled -Dgme=disabled -Dgs=disabled -Dgsm=disabled -Diqa=disabled -Dkate=disabled -Dladspa=disabled -Dldac=disabled -Dlv2=disabled -Dmagicleap=disabled -Dmediafoundation=disabled -Dmicrodns=disabled -Dmpeg2enc=disabled -Dmplex=disabled -Dmusepack=disabled -Dnvcodec=disabled -Dopenexr=disabled -Dopenni2=disabled -Dopenaptx=disabled -Dopensles=disabled -Donnx=disabled -Dqroverlay=disabled -Dsoundtouch=disabled -Dspandsp=disabled -Dsvthevcenc=disabled -Dteletext=disabled -Dwasapi=disabled -Dwasapi2=disabled -Dwildmidi=disabled -Dwinks=disabled -Dwinscreencap=disabled -Dwpe=disabled -Dzxing=disabled -Daom=disabled -Dassrender=disabled -Davtp=disabled -Dbluez=enabled -Dbz2=enabled -Dclosedcaption=enabled -Dcurl=enabled -Ddash=enabled -Ddc1394=disabled -Ddirectfb=disabled -Ddtls=disabled -Dfaac=disabled -Dfaad=disabled -Dfluidsynth=disabled -Dgl=enabled -Dhls=enabled -Dkms=enabled -Dcolormanagement=disabled -Dlibde265=disabled -Dcurl-ssh2=disabled -Dmodplug=disabled -Dmsdk=disabled -Dneon=disabled -Dopenal=disabled -Dopencv=disabled -Dopenh264=disabled -Dopenjpeg=disabled -Dopenmpt=disabled -Dhls-crypto=openssl -Dopus=disabled -Dorc=enabled -Dresindvd=disabled -Drsvg=enabled -Drtmp=disabled -Dsbc=enabled -Dsctp=disabled -Dsmoothstreaming=enabled -Dsndfile=enabled -Dsrt=disabled -Dsrtp=disabled -Dtinyalsa=disabled -Dtinycompress=enabled -Dttml=enabled -Duvch264=enabled -Dv4l2codecs=disabled -Dva=disabled -Dvoaacenc=disabled -Dvoamrwbenc=disabled -Dvulkan=disabled -Dwayland=enabled -Dwebp=enabled -Dwebrtc=disabled -Dwebrtcdsp=disabled -Dx11=disabled -Dx265=disabled -Dzbar=disabled -Dc_args=-I/usr/include/imx $ cd build $ ninja install   10. Build imx-gst1.0-plugin $ git clone https://github.com/nxp-imx/imx-gst1.0-plugin -b lf-6.1.55-2.2.0 $ cd imx-gst1.0-plugin $ meson setup build --prefix=/usr -Dplatform=MX8 -Dc_args=-I/usr/include/imx $ cd build $ ninja install   11. Exit chroot $ exit   Verify Installation For verification process, boot your target from the SD Card. (Review your specific target documentation) 1. Verify Weston For this verification you will need to be root user. # export XDG_RUNTIME_DIR=/run/user/0 # weston   2. Verify VPU and Gstreamer Use the following Gstreamer pipeline for Hardware Accelerated VPU Encode. # gst-launch-1.0 videotestsrc ! video/x-raw, format=I420, width=640, height=480 ! vpuenc_h264 ! filesink location=test.mp4   Then you can reproduce the file with this command: # gplay-1.0 test.mp4   Finally, you have installed and verified the GPU, VPU and Multimedia packages. Now, you can start testing audio and video applications.
View full article
i.MX93 eMMC Secondary Boot          i.MX93 eMMC Secondary Boot.zip   i.MX8MP eMMC Secondary Boot           i.MX8MP eMMC Secondary Boot.zip i.MX8MM SDCARD Secondary Boot Demo https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX8MM-SDCARD-Secondary-Boot-Demo/ta-p/1500011   i.MX8QXP eMMC Secondary Boot https://community.nxp.com/t5/i-MX-Community-Articles/i-MX8QXP-eMMC-Secondary-Boot/ba-p/1257704#M45    i.MX6 SDCARD Secondary Boot Demo           i.MX6_SDCARD_Secondary_Boot_Demo.pdf      
View full article
This document is about to build an image by Yocto , and it will disable a function that normal user can’t use command line of “ su ”.
View full article
Overview The purpose of this document is to provide a guide on how to enable Dual Ethernet with the GKI Development. Reference: How to enable dual ethernet on Android 11 For a better reference how to build Android i.MX image please look at the next chapter 3 Building the Android Platform for i.MX in the Android User's Guide 1. Build the Android Image with the next modifications The 2nd ethernet port is DWMAC from synopsys and phy used is realtek RTL8211F. To add them into the SharedBoardConfig.mk and remove the camera drivers. diff --git a/imx8m/evk_8mp/SharedBoardConfig.mk b/imx8m/evk_8mp/SharedBoardConfig.mk index f68eb49e..3e95708e 100644 --- a/imx8m/evk_8mp/SharedBoardConfig.mk +++ b/imx8m/evk_8mp/SharedBoardConfig.mk @@ -82,7 +82,12 @@ BOARD_VENDOR_KERNEL_MODULES += \ $(KERNEL_OUT)/drivers/rtc/rtc-snvs.ko \ $(KERNEL_OUT)/drivers/pci/controller/dwc/pci-imx6.ko \ $(KERNEL_OUT)/drivers/net/phy/realtek.ko \ - $(KERNEL_OUT)/drivers/net/ethernet/freescale/fec.ko + $(KERNEL_OUT)/drivers/net/ethernet/freescale/fec.ko \ + $(KERNEL_OUT)/drivers/net/phy/micrel.ko \ + $(KERNEL_OUT)/drivers/net/pcs/pcs_xpcs.ko \ + $(KERNEL_OUT)/drivers/net/ethernet/stmicro/stmmac/dwmac-imx.ko \ + $(KERNEL_OUT)/drivers/net/ethernet/stmicro/stmmac/stmmac.ko \ + $(KERNEL_OUT)/drivers/net/ethernet/stmicro/stmmac/stmmac-platform.ko ifeq ($(POWERSAVE),true) BOARD_VENDOR_KERNEL_MODULES += \ $(KERNEL_OUT)/drivers/soc/imx/lpa_ctrl.ko \ @@ -219,15 +224,12 @@ BOARD_VENDOR_RAMDISK_KERNEL_MODULES += \ $(KERNEL_OUT)/drivers/perf/fsl_imx8_ddr_perf.ko \ $(KERNEL_OUT)/drivers/cpufreq/cpufreq-dt.ko \ $(KERNEL_OUT)/drivers/cpufreq/imx-cpufreq-dt.ko \ - $(KERNEL_OUT)/drivers/media/i2c/ov5640.ko \ $(KERNEL_OUT)/drivers/staging/media/imx/imx8-capture.ko \ $(KERNEL_OUT)/drivers/staging/media/imx/imx8-isi-capture.ko \ $(KERNEL_OUT)/drivers/staging/media/imx/imx8-isi-hw.ko \ $(KERNEL_OUT)/drivers/staging/media/imx/imx8-isi-mem2mem.ko \ $(KERNEL_OUT)/drivers/staging/media/imx/imx8-mipi-csi2-sam.ko \ $(KERNEL_OUT)/drivers/dma/imx-sdma.ko \ - $(TARGET_OUT_INTERMEDIATES)/VVCAM_OBJ/basler-camera-driver-vvcam.ko \ - $(TARGET_OUT_INTERMEDIATES)/VVCAM_OBJ/os08a20.ko \ $(KERNEL_OUT)/drivers/staging/media/imx/imx8-media-dev.ko \ $(TARGET_OUT_INTERMEDIATES)/VVCAM_OBJ/vvcam-dwe.ko \ $(TARGET_OUT_INTERMEDIATES)/VVCAM_OBJ/vvcam-isp.ko \​ To let the Android framework's EthernetTracker and EthernetNetworkFactory know which interfaces to manage, the framework level configure config_ethernet_iface_regex config_ethernet_interfaces must be overlay in device/nxp/imx8m/evk_8mp/overlay/frameworks/base/core/res/res/values/config.xml: diff --git a/imx8m/evk_8mp/overlay/frameworks/base/core/res/res/values/config.xml b/imx8m/evk_8mp/overlay/frameworks/base/core/res/res/values/config.xml index 298d50cc..63f6787e 100644 --- a/imx8m/evk_8mp/overlay/frameworks/base/core/res/res/values/config.xml +++ b/imx8m/evk_8mp/overlay/frameworks/base/core/res/res/values/config.xml @@ -22,7 +22,12 @@ <resources> <!--For Android we support eth0 now --> - <string translatable="false" name="config_ethernet_iface_regex">eth0</string> + <string translatable="false" name="config_ethernet_iface_regex">eth\\d</string> + + <string-array translatable="false" name="config_ethernet_interfaces"> + <item>eth0;12,13,14,15,16,18,19</item> + <item>eth1;12,13,14,15,16,18,19</item> + </string-array> <!-- List of regexpressions describing the interface (if any) that represent tetherable USB interfaces. If the device doesn't want to support tething over USB this should -- Apply the patch 0001-PATCH-Add-defines-for-ETH-support-drivers.patch Build the Android Image # Change to the MY_ANDROID Directory $ source build/envsetup.sh $ lunch evk_8mp-userdebug $ ./imx-make.sh -j4 2>&1 | tee build-log.txt​   GKI Development Follow and apply the next community post: Export new symbols of GKI development Android 14 Set the GKI repo $ repo init -u https://android.googlesource.com/kernel/manifest -b common-android14-6.1 $ repo sync $ git remote add device https://github.com/nxp-imx/linux-imx.git $ git remote update $ git fetch device --tags $ git checkout android-14.0.0_1.2.0 $ cd .. #Be sure that symbolic links are created correctly $ ln -s ${MY_ANDROID}/vendor/nxp-opensource/verisilicon_sw_isp_vvcam verisilicon_sw_isp_vvcam $ ln -s ${MY_ANDROID}/vendor/nxp-opensource/nxp-mwifiex nxp-mwifiex $ BUILD_FOR_GKI=yes $ BUILD_CONFIG=common/build.config.imx $ tools/bazel run //common:imx_abi_update_symbol_list Apply the following changes in the GKI Kernel tree: gki/common: Patch: 0001-PATCH-GKI-Kernel-tree-Drivers-for-the-ETH1-Interface.patch Build the GKI Image tools/bazel run //common:kernel_aarch64_dist​ Follow the build android boot.img and system_dlkm.img $ cp out/kernel_aarch64/dist/boot.img ${MY_ANDROID}/vendor/nxp/fsl-proprietary/ gki/boot.img $ cd ${MY_ANDROID} $ TARGET_IMX_KERNEL=true make bootimage # Change directory to the gki folder $ cp out/kernel_aarch64/dist/system_dlkm_staging_archive.tar.gz ${MY_ANDROID}/vendor/nxp/fsl-proprietary/gki/system_dlkm_staging_archive.tar.gz $ cd ${MY_ANDROID}/vendor/nxp/fsl-proprietary/gki $ tar -xzf system_dlkm_staging_archive.tar.gz -C system_dlkm_staging $ cd ${MY_ANDROID} $ make system_dlkmimag​e Create the tar.gz file for flash the android image (*.img, *.bat, *.sh, *.bin, *.imx) Boot the image and type lsmod to ensure the drivers are installed. Regards, Mario    
View full article
  Introduction   MATTER chip-tool android APK is a very useful tool for commission, control the MATTER network by smart phone. Vendor can add various features into the APK. It supports build by Android Studio and command line. The official build steps can be found here: https://github.com/project-chip/connectedhomeip/blob/master/docs/guides/android_building.md But the official guide does not cover how to build in a non-GUI linux distribution (without Android Studio installed). This article describes how to build under Ubuntu server. Install Android SDK  Install SDK command line from: https://developer.android.com/studio, And follow the steps: https://developer.android.com/tools/sdkmanager to install.  Install the Android-26 SDK and 23 NDK: $./sdkmanager "platforms;android-26" "ndk;23.2.8568313"  Export env  $export ANDROID_HOME=<SDK path>  $export ANDROID_NDK_HOME=<SDK path>/ndk/23.2.8568313/   Install kotlin (1.8.0)  $curl -s https://get.sdkman.io | bash  $sdk install kotlin 1.8.0  $whereis kotlin  $export PATH=$PATH:<patch of bin of kotlin>    Configure proxy for gradle  $ cat ~/.gradle/gradle.properties  # Set the socket timeout to 5 minutes (good for proxies)  org.gradle.internal.http.socketTimeout=300000  # the number of retries (initial included) (default 3)  org.gradle.internal.repository.max.retries=10  # the initial time before retrying, in milliseconds (default 125)  org.gradle.internal.repository.initial.backoff=500  systemProp.http.proxyHost=apac.nics.nxp.com  systemProp.http.proxyPort=8080  systemProp.http.nonProxyHosts=localhost|*.nxp.com  systemProp.https.proxyHost=apac.nics.nxp.com  systemProp.https.proxyPort=8080  systemProp.https.nonProxyHosts=localhost|*.nxp.com    Configure proxy  Configure proxy for download packages during build export FTP_PROXY="http://apac.nics.nxp.com:8080"  export HTTPS_PROXY="http://apac.nics.nxp.com:8080"  export HTTP_PROXY="http://apac.nics.nxp.com:8080"  export NO_PROXY="localhost,*.nxp.com"  export ftp_proxy="http://apac.nics.nxp.com:8080"  export http_proxy="http://apac.nics.nxp.com:8080"  export https_proxy="http://apac.nics.nxp.com:8080"  export no_proxy="localhost,*.nxp.com"    Patch for gradle java option  This step can be skipped if using OpenJDK16.  Otherwise if you're using OpenJDK 17 (Java 61), you have to upgrade the gradle from 7.1.1 to 7.3, and add java.io open to ALL-UNNAMED:  diff --git a/examples/android/CHIPTool/gradle.properties b/examples/android/CHIPTool/gradle.properties  index 71f72db8c8..5bce4b4528 100644  --- a/examples/android/CHIPTool/gradle.properties  +++ b/examples/android/CHIPTool/gradle.properties  @@ -6,7 +6,8 @@  # http://www.gradle.org/docs/current/userguide/build_environment.html  # Specifies the JVM arguments used for the daemon process.  # The setting is particularly useful for tweaking memory settings.  -org.gradle.jvmargs=-Xmx4096m -XX:MaxPermSize=2048m -XX:+HeapDumpOnOutOfMemoryError -Dfile.encoding=UTF-8  +#org.gradle.jvmargs=-Xmx4096m -XX:MaxPermSize=2048m -XX:+HeapDumpOnOutOfMemoryError -Dfile.encoding=UTF-8  +org.gradle.jvmargs=-Xmx4096m -XX:+HeapDumpOnOutOfMemoryError -Dfile.encoding=UTF-8  --add-opens=java.base/java.io=ALL-UNNAMED  # When configured, Gradle will run in incubating parallel mode.  # This option should only be used with decoupled projects. More details, visit  # http://www.gradle.org/docs/current/userguide/multi_project_builds.html#sec:decoupled_projects  diff --git a/examples/android/CHIPTool/gradle/wrapper/gradle-wrapper.properties b/examples/android/CHIPTool/gradle/wrapper/gradle-wrapper.properties  index 05679dc3c1..e750102e09 100644  --- a/examples/android/CHIPTool/gradle/wrapper/gradle-wrapper.properties  +++ b/examples/android/CHIPTool/gradle/wrapper/gradle-wrapper.properties  @@ -1,5 +1,5 @@  distributionBase=GRADLE_USER_HOME  distributionPath=wrapper/dists  -distributionUrl=https\://services.gradle.org/distributions/gradle-7.1.1-bin.zip  +distributionUrl=https\://services.gradle.org/distributions/gradle-7.3-bin.zip  zipStoreBase=GRADLE_USER_HOME  zipStorePath=wrapper/dists    Build & Install Clone all the modules from github: $git clone --single-branch --recurse-submodules https://github.com/project-chip/connectedhomeip.git Enviroment setup: $source scripts/bootstrap.sh Build: ./scripts/build/build_examples.py --target android-arm64-chip-tool build Install built apk into phone: $adb install out/android-arm64-chip-tool/outputs/apk/debug/app-debug.apk  
View full article