i.MX Processors Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

i.MX Processors Knowledge Base

Discussions

Sort by:
Here are two patches to support BT656 and BT1120 output for i.MX6 ipuv3. With this patch, the i.MX6 can support the CVBS output on TV encoder. It is useful for a TV box. "L3.0.35_1.1.0_GA_bt656_output_patch.zip" is the patch for Freescale L3.0.35_1.1.0_GA_iMX6DQ BSP. "r13.4.1_bt656_output_patch.zip" is the patch for Freescale Android R13.4.1 BSP. 1. Features supported:     1) Support BT656(8 bits) and BT1120 (16 bits)interlaced output on display port.     2) Support both RGB and YUV frame buffer for BT656/BT1120 output.     3) Support PAL and NTSC mode.     4) Support on the fly switch between PAL and NTSC mode.     5) Support CVBS output based on adv7391 TV encoder. 2. Hardware link between iMX6 and adv7391 TV encoder chip.     IPU1_DI0_DISP_CLK connected to adv7391 CLKIN pin.     IPU1_DISP0_DAT_23~DISP0_DAT_16 connected to adv7391 P7~P0 pins.     IPU1_DI0_PIN2 connected to adv7391 HSYNC pin. (option)     IPU1_DI0_PIN4 connected to adv7391 VSYNC pin. (option)   - Android R13.4.1 kernel. 3. How to use -- Copy the two patch files to kernel folder.     $ git apply ./0001-Support-BT656-and-BT1120-output-for-iMX6-ipuv3.patch     $ git apply ./0002-Support-adv739x-TV-encoder-for-BT656-output.patch -- Select them in kernel config and build the new kernel image:                     Device Drivers  --->                       Graphics support  --->                           [*]   MXC BT656 and BT1120 output                           [*]   ADV7390/7391 TV Output Encoder -- Uboot parameters for video mode    Output BT656 NTSC data to display port with UVYV frame buffer mode:       "video=mxcfb0:dev=bt656,BT656-NTSC,if=BT656,fbpix=UYVY16"    Output BT656 NTSC data to display port with RGB565 frame buffer mode:       "video=mxcfb0:dev=bt656,BT656-NTSC,if=BT656,fbpix=RGB565"    Output BT656 PAL data to display port with RGB24 frame buffer mode:       "video=mxcfb0:dev=bt656,BT656-PAL,if=BT656,fbpix=RGB24"    Output CVBS NTSC signal on adv7391 with UYVY frame buffer mode:       "video=mxcfb0:dev=adv739x,BT656-NTSC,if=BT656,fbpix=UYVY16"    Output CVBS PAL signal on adv7391 with RGB565 frame buffer mode:       "video=mxcfb0:dev=adv739x,BT656-PAL,if=BT656,fbpix=RGB565" -- Switch between PAL and NTSC    $ echo D:720x480i-60 > /sys/class/graphics/fb0/mode    $ echo D:720x576i-50 > /sys/class/graphics/fb0/mode 4. Note     1) For 8 bits BT656 interface, the default data pins are "DISP0_DAT_23~DISP0_DAT_16", it can also        be any other continued display data pins, for example if "DISP0_DAT_7~DISP0_DAT_0" are used, the        macro "BT656_IF_DI_MSB" in "kernel_imx/drivers/mxc/ipu3/ipu_disp.c" should be changed from "23"        to "7".     2) For 16 bits BT1120 interface, the default data pins are "DISP0_DAT_23~DISP0_DAT_8", it can also        be any other continued display data pins, the macro "BT656_IF_DI_MSB" should be modified if the        hardware pins are changed.     3) When bt656 interface is the second display for each IPU,1-layer-fb (it can be checked with command        "$ cat /sys/class/graphics/fbx/fsl_disp_propperty"), the frame buffer can only be YUV format. In this        case, the IPU DC channel was used for BT656 display, it has no CSC function, so RGB frame buffer was        not supported. 2013-08-09 updated: The new release package "L3.0.35_1.1.0_GA_bt656_output_patch_2013-08-09.zip" had fixed the BT656 dual display issue on iMX6S/DL. Removed the old release package. 2013-09-04 updated: The new release package "r13.4.1_bt656_output_patch_2013-09-04.zip" had fixed the BT656 dual display issue on iMX6S/DL. For default, the dual display was tested with HDMI + CVBS, HDMI is the main display and adv739x CVBS output is the second display. For iMX6DQ which has two IPUs, please assign dual display to two IPUs, for example adv739x is on IPU1 DI0, it is fixed, because hardware pins used for it is fixed. Then we can assign HDMI or LVDS to another IPU (IPU2). For iMX6S/DL which has only one IPU, since adv739x had used IPU1 DI0, another display should be IPU1 DI1. 2013-09-30 updated: Added patch for L3.0.35_4.1.0_GA BSP, the file is "L3.0.35_4.1.0_GA_bt656_output_patch_2013-09-30.zip". 2014-07-21 updated: Added patch for L3.10.17_1.0.0_GA BSP, the file is "L3.10.17_1.0.0_GA_bt656_output_patch_2014-07-21.zip". 2015-01-26 updated: Updated the IPU microcode for 1080i50 and 1080i60 BT1120 output, the parameters "N" for command BMA is a 8 bits parameters, so its max value is 255, but for 1080i50 and 1080i60 output, it needs more blank data in each line, the "N" will be bigger than 255, the updated IPU microcode can fix this limitation. The updated file is "IPU_Microcode_Update_for_BT1120_1080i_20150126.zip". You can update the macro "DC_MCODE_BT656_xxx"  and function _ipu_dc_setup_bt656_interlaced() to the old patch if you used BT1120 mode to support 1080i display. The verified 1080i display mode is: {    /* 1080I60 Interlaced output */   "BT1120-1080I60", 30, 1920, 1080, 13468,   20, 3,   20, 2,   280, 1,   FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,   FB_VMODE_INTERLACED,   FB_MODE_IS_DETAILED,}, {   /* 1080I50 Interlaced output */   "BT1120-1080I50", 25, 1920, 1080, 13468,   20, 3,   20, 2,   720, 1,   FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,   FB_VMODE_INTERLACED,   FB_MODE_IS_DETAILED,}, 2016-01-28 updated: Updated IPU microcode to align with BT656.4 specification for NTSC output. For other BSP version with NTSC format support, please reference to ipu_disp_update.c for the final microcode. File "L3.0.35_4.1.0_GA_bt656_output_patch_20160128.zip"., Details, please reference to the readme.txt file in the package. 2016-06-24 update: Added BT656 and BT1120 progressive mode support. File "L3.0.35_4.1.0_GA_bt656_output_patch_20160624.zip". Details, please reference to the readme.txt file in the package. The patch for 3.14.52 GA1.1.0 BSP will be released in next week. 2016-06-27 update: Add BT656 and BT1120 display patch for 3.14.52 BSP. File "L3.14.52_1.1.0_GA_bt656_output_patch_2016-06-27.zip", details, please reference to the readme.txt in the package. 2017-03-10 update: Fixed a hard coding DC macro issue for progressive mode. Added patch "0008-Fixed-a-hard-coding-DC-macro-issue-for-progressive-m.patch" in L3.0.35_4.1.0_GA_bt656_output_patch_2017-03-10.zip. The code in patch "L3.14.52_1.1.0_GA_bt656_output_patch_2016-06-27" is correct.
View full article
This patch made the display no interrupt from uboot to kernel to Android. The IPU and related hardware display interface will only be initialized once in Uboot, the kernel code will skip the IPU initialization.   1. Description     1) Support HDMI, LVDS and LCD output in UBoot.     2) Support UBoot logo keep from uboot to kernel to Android.     3) For HDMI, both 720P and 1080P mode were supported.     4) For LVDS, 1024x768 and 1080P dual channel panels were supported.     5) The logo file is a 32 bpp bmp file. 2. File List -- kernel_imx\0001-Keep-uboot-logo-for-Android-boot-supports-HDMI-LCD-a.patch -- kernel_imx\0002-Bug-fix-for-uboot-logo-keep-patch.patch    Kernel patch to support the logo keep feature. -- uboot-imx\0001-Enable-uboot-logo-for-HDMI-LCD-and-LVDS.patch    Uboot patch to support the logo display. -- logo.bmp    Example 32bpp logo file. -- readme.txt    this file, please refer to it before use the patches 3. Requirement - iMX6 SabreSD board. - Android JB4.2.2_1.1.0-GA UBoot and kernel. 4. How to use -- Copy the two patch files to Android kernel_imx and uboot-imx folder and apply them.     $ cd ~/myandroid/kernel_imx/     $ git apply ./0001-Keep-uboot-logo-for-Android-boot-supports-HDMI-LCD-a.patch     $ cd ~/myandroid/bootable/bootloader/uboot-imx/     $ git apply ./0001-Enable-uboot-logo-for-HDMI-LCD-and-LVDS.patch     $ git apply ./0002-Bug-fix-for-uboot-logo-keep-patch.patch   -- Build the new uboot image:     $ cd ~/myandroid/bootable/bootloader/uboot-imx     $ export CROSS_COMPILE=~/myandroid/prebuilt/gcc/linux-x86/arm/arm-eabi-4.6/bin/arm-eabi-     $ export ARCH=arm     $ make mx6q_sabresd_android_config     $ make   -- Before build new UBoot image, the display type can be selected from file uboot-imx\include\configs\mx6q_sabresd.h // Select one of the output mode #define IPU_OUTPUT_MODE_HDMI //#define IPU_OUTPUT_MODE_LVDS //#define IPU_OUTPUT_MODE_LCD   -- Build the new kernel image:     $ cd ~/myandroid/kernel_imx     $ export CROSS_COMPILE=~/myandroid/prebuilt/gcc/linux-x86/arm/arm-eabi-4.6/bin/arm-eabi-     $ export ARCH=arm     $ make imx6_android_defconfig     $ make uImage   -- Before "make uImage", make menuconfig can be used to select the display type.                 System Type  --->                    Freescale MXC Implementations  --->                       MX6 clk setting for smooth UI transtion from bootloader to kernel  --->                           Select Display Interface                              ( )  Smooth UI transtion on LCD, IPU1, DI0                              ( )  Smooth UI transtion on LVDS, IPU1, DI1                              (X)  Smooth UI transtion on HDMI, IPU2, DI0   -- Uboot parameters for video mode    1080P HDMI:       "video=mxcfb0:dev=hdmi,1920x1080M@60,if=RGB24,bpp=32 fb0base=0x27b00000 fbmem=28M hdmi_audio_clk=148500000"      720P HDMI:       "video=mxcfb0:dev=hdmi,1920x1080M@60,if=RGB24,bpp=32 fb0base=0x27b00000 fbmem=28M hdmi_audio_clk=74250000"      1024x768 LVDS:       "video=mxcfb0:dev=ldb,LDB-XGA,if=RGB666,bpp=32 fb0base=0x27b00000 fbmem=28M"      800x480 LCD:       "video=mxcfb0:dev=lcd,CLAA-WVGA,if=RGB565,bpp=32 fb0base=0x27b00000 fbmem=28M" -- dd the logo.bmp to SD card address 0x100000 and skip the 54 bytes bmp file header.    sudo dd if=logo.bmp of=/dev/sdc bs=1 seek=1048576 skip=54 5. Note     1) The logo.bmp file should be 32bpp or 16bpp, and it should be synced with video mode parameters "bpp=xx",          and uboot config file mx6q_sabresd.h (#define DISPLAY_BPP  xx).       2) The IPU number and DI number are hard coded in kernel file "board-mx6q_sabresd.c". static struct fsl_mxc_hdmi_core_platform_data hdmi_core_data = {   .ipu_id = 1,   .disp_id = 0, }; static struct fsl_mxc_lcd_platform_data lcdif_data = {   .ipu_id = 0,   .disp_id = 0,   .default_ifmt = IPU_PIX_FMT_RGB565, }; static struct fsl_mxc_ldb_platform_data ldb_data = {   .ipu_id = 0,   .disp_id = 1,   .ext_ref = 1,   .mode = LDB_SEP1,   .sec_ipu_id = 0,   .sec_disp_id = 0, };       3) The IPU number and DI number are defined by Macro in Uboot file "include\configs\mx6q_sabresd.h" #define IPU_NUM   2  // 1 for IPU1, 2 for IPU2. #define DI_NUM   0  // 0 for DI0, 1 for DI1.       4) The display type used in uboot and kernel must be same, same type, same IPU number, same DI port and        same resolution.     [2015-06-29 Update]: JB4.2.2_1.1.0_uboot_logo_keep_patch_2015-06-29.zip Fix some LVDS issues for iMX6DL. Also given an example for LVDS0 with DI0. New Uboot patches:      0002-Updated-lvds-clock-source-to-pll2_pfd0.-Same-as-kern.patch      0003-Add-support-for-iMX6DL.patch   New kernel patches      0003-Skip-lvds-re-initialization-for-logo-keep.patch      0004-Add-examlpe-for-LVDS0-logo-keep.patch     [2015-08-07 Update]: JB4.2.2_1.1.0_uboot_logo_keep_patch_2015-08-07.zip Added the new Uboot patch 0004-Correct-the-sequence-to-set-LDB-clock.patch It can correct the LVDS clock set sequence whch is a known issue that caused no LVDS display sometimes.   [2015-09-18 Update]: JB4.3_1.1.1_uboot_logo_keep_patch_2015-09-18.zip Added the patch for Android JB4.3_GA1.1.1 release. Updated clock usecount, after blank the display, the related clock can be gated off correctly. Support LVDS clock from PLL5.   [2015-12-21 Update]: Added 3.10.53_GA1.1.0 patch: L3.10.53_GA1.1.0_uboot_logo_keep_patch_2015-12-21.zip. Verified on iMX6DL/Q SabreSD board. It supports LCD and LVDS panels, HDMI patch will be released later.   [2016-01-04 Update]: Added 3.10.53_GA1.1.0 patch: L3.10.53_GA1.1.0_uboot_logo_keep_patch_2016-01-04.zip. Added HDMI display support. Now it supports LCD, LVDS and HDMI displays. Fixed the video playback issue for boot up.   [2016-05-18 Update]: 0001-Fix-the-split-mode-LVDS-panel-no-TX3-signal-issue.patch An issue was founded, when dual channel 4 lanes LVDS panel was used, in uboot there will be no LVDS TX3 signa on one LVDS port, the attach "0001-Fix-the-split-mode-LVDS-panel-no-TX3-signal-issue.patch" was used to fix this issue, it is based on JB4.3_1.1.1_uboot_logo_keep_patch_2015-09-18.zip, for other BSP, please port it manually.   [2016-08-29 Update]: 0001-After-reset-IPU-in-SRC-Control-Register-wait-for-res.patch On some iMX6 chip, after reset the IPU in SRC Control Register, enable IPU at once will cause system hang up, to avoid such issue, software needs wait for IPU reset done by polling the SRC register. The attach "0001-After-reset-IPU-in-SRC-Control-Register-wait-for-res.patch" was used to fix this issue, it is based on JB4.3_1.1.1_uboot_logo_keep_patch_2015-09-18.zip + "0001-Fix-the-split-mode-LVDS-panel-no-TX3-signal-issue.patch", for other BSP, please port it manually.   [2017-01-06 Update] Added patch for L4.1.15_GA1.2.0 BSP and Android M6.0.1_GA2.1.0 BSP. Files: L4.1.15_GA1.2.0_uboot_logo_keep_patch_2017-01-06.zip; M6.0.1_2.1.0_uboot_logo_keep_patch_2017-01-06.zip
View full article
Graphics are a big topic in the Android platform, containing java/jni graphic framework and 2d/3d graphic engines (skia, OpenGL-ES, renderscript). This document describes the general Android graphic stack and UI features on Freescale devices. 1. Android Graphic Stacks All Android 3D apps and games have the following graphic stack: Android system UI and all Apps UI follow 2D graphic stack as below, the hardware render will accelerate Android 2D UI with GPU HW OpenGL-ES 2.0 to improve the whole UI performance. Hardware acceleration can be disabled on i.mx6 in device/fsl/imx6/soc/imx6dq.mk USE_OPENGL_RENDERER := false Then rebuild frameworks/base/core/jni, and replace libandroid_runtime.so Surfaceflinger is responsible of all surface layers composition, and  then generate the framebuffer pixmap for display devices. these graphic surface layers are from 2D/3D apps. Hwcomposer is the alternative module of Surfaceflinger with OpenGL-ES. Hwcomposer is used to combine the specific surface layers supported by specific vendor devices. Freescale i.MX6 devices use GPU 2D to combine most surface layers, and the system power can be reduced with GPU 2D instead of GPU 3D. The typical power saving case is video playback. Hwcomposer with GPU 2D can offload GPU 3D task when running game and benchmarks, it is proved to improve the overall system performance about 20%. 2. Performance measurment Show FPS for Android system performance For NFS boot you can set “debug.sf.showfps” to 1 in init.freescale.rc (“setprop debug.sf.showfps 1”) and then reboot the system. For SD or EMMC boot, you can issue command “setprop debug.sf.showfps 1” in console, then find system_server thread by top and kill it to reset the system. Graphic benchmarks for 3D capability measurement Quadrant Full test benchmark cover CPU, Memory, IO, 2D and 3D GLBenchmark http://www.glbenchmark.com/ NenaMark2 https://market.android.com/details?id=se.nena.nenamark2 An3DBench http://www.androidzoom.com/android_applications/tools/an3dbench_hnog.html AnTutu http://www.antutu.com/software.html 3DMark http://www.futuremark.com/benchmarks/3dmark06/introduction/ Browser benchmarks http://www.webkit.org/perf/sunspider/sunspider.html http://v8.googlecode.com/svn/data/benchmarks/current/run.html http://www.craftymind.com/guimark2/ http://www.craftymind.com/factory/guimark/GUIMark_HTML4.html http://themaninblue.com/writing/perspective/2010/03/22/ 3.  Android UI features Dual display with same content This feature is supported in the default image in Android i.MX 6 release package. In this feature, LVDS panel and HDMI output can be supported simultaneously. It is only enabled when the HDMI TV has been connected with the board. Overscan for TV devices Some TVs may miss display the contents in overscan area. To avoid the contents in overscan area being lost, the common implement is by underscanning with an adjustable black border and letitng the viewer adjust the width of the black border. The downscan operation is done by surfaceflinger when it does surface composition through HW OpenGL ES. There is no performance impact since all the work is done by GPU HW. Overscan can be configured in display setting in visual mode: 32 bits color depth 32bpp UI can be supported by adding “bpp=32” in uboot as below: setenv bootargs ‘… video=mxcdi1fb:RGB666,XGA,bpp=32 …’, also can configure it in display setting. Enable 32bpp frame buffer and application surface buffer will be allocate to RGBA8888 format instead of default RGB565 format, that means more system memory is allocated. After enabling 32bpp, if some applications still don't have better UI quality, check to see if  there is hard code to request RGB565 format surface (should request RGBA8888 format to get better quality). Sample code is attached to test for 32bpp (left is on 16bpp, right is on 32bpp) Display Visual Setting The display setting is the add-on feature in FSL Android release, it is very convenient for end-users to change display property, mostly for the following features: Dual display enablement Display color depth setting(16bpp, 32bpp) Overscan adjustment in horizontal and vertical orientation 4. Issue Diagnosis Application Compatibility Some Android applications may not run correctly on some Android releases. It may cause application compatibility, so check the application in other platforms. For example Neocore and Asphalt 5 can run on Eclair, Froyo, and Gingerbread, but will not correctly run on Honeycomb. GPU Compatibility Some game UIs may not correctly display on our Android release. When encountering this kind of issue, the customer can check whether it is caused by the game using an OpenGL extension which our GPU does not support. They can download another data package (for example not extension data package) to have a check. Others Enlarge GPU memory if you encounter UI abnormally displaying after running an application for a while. Some applications need Wifi connections, so monitor the console log to see whether there are any error reports.
View full article
The attached patch enables HDMI overscan for Android JB, and tested by MX6Q SabreSD with Android_4.2.2_1.0.0-ga. The bootargs includes "video=mxcfb0:dev=ldb,bpp=32 video=mxcfb1:dev=hdmi,1920x1080M@60,if=RGB24,bpp=32 video=mxcfb2:off".
View full article
This is the prototype solution to enable second display showing different things on JB4.2.2 SabreSD. Make use of Class Presentation provided by android to be embedded into Status bar. When unlock the screen, the Presentation will show on second display. Now, the solution requires one .mp4 video placed in root sdcard. Of course, you may change it to show anything. The attached Files are a layout xml file, a patch and a recorded video. The layout file should be put into android/frameworks/base/packages/SystemUI/res/layout/ folder. The patch should be applied to frameworks/base.git. The recorded video shows the dual display demo as a reference.
View full article
  Test environment   i.MX8MP EVK LVDS0 LVDS-HDMI  bridge(it6263) L5.15.5_1.0.0 Background   Some customers need show logo using LVDS panel. Current BSP doesn't support LVDS driver in Uboot. This patch provides i.MX8MPlus LVDS driver support in Uboot. If you want to connect it to LVDS panel , you need port your lvds panel driver like  simple-panel.c   Update [2022.9.19] Verify on L5.15.32_2.0.0  0001-L5.15.32-Add-i.MX8MP-LVDS-driver-in-uboot 'probe device is failed, ret -2, probe video device failed, ret -19' is caused by below code. It has been merged in attachment. // /* Only handle devices that have a valid ofnode */ // if (dev_has_ofnode(dev) && !(dev->driver->flags & DM_FLAG_IGNORE_DEFAULT_CLKS)) { // /* // * Process 'assigned-{clocks/clock-parents/clock-rates}' // * properties // */ // ret = clk_set_defaults(dev, CLK_DEFAULTS_PRE); // if (ret) // goto fail; // }   [2023.3.14] Verify on L5.15.71 0001-L5.15.71-Add-i.MX8MP-LVDS-support-in-uboot   [2023.9.12] For some panel with low DE, you need uncomment CTRL_INV_DE line and set this bit to 1. #include <linux/string.h> @@ -110,9 +111,8 @@ static void lcdifv3_set_mode(struct lcdifv3_priv *priv, writel(CTRL_INV_HS, (ulong)(priv->reg_base + LCDIFV3_CTRL_SET)); /* SEC MIPI DSI specific */ - writel(CTRL_INV_PXCK, (ulong)(priv->reg_base + LCDIFV3_CTRL_CLR)); - writel(CTRL_INV_DE, (ulong)(priv->reg_base + LCDIFV3_CTRL_CLR)); - + //writel(CTRL_INV_PXCK, (ulong)(priv->reg_base + LCDIFV3_CTRL_CLR)); + //writel(CTRL_INV_DE, (ulong)(priv->reg_base + LCDIFV3_CTRL_CLR)); }      
View full article
Overview The purpose of this document is to demonstrate how to enable USB Bluetooth Dongle based on i.MX6 Android ICS. Hardware i.MX6Dual/Quad or i.MX6DualLite SabreSD board USB Bluetooth Dongle Software i.MX6DQ/MX6DL Android ICS R13.4 or R13.4.1 Release Changes 0001-enable-usb-dongle-BT.patch: Update bluedroid to disable RFKILL and enable HCIATTACH property for USB Bluetooth Dongle. diff --git a/bluedroid/Android.mk b/bluedroid/Android.mk index 17df49b..569be44 100644 --- a/bluedroid/Android.mk +++ b/bluedroid/Android.mk @@ -5,6 +5,13 @@ LOCAL_PATH:= $(call my-dir) include $(CLEAR_VARS) +ifeq ($(BOARD_BLUETOOTH_DOES_NOT_USE_RFKILL),true) +  LOCAL_CFLAGS := $(LOCAL_CFLAGS) -DBLUETOOTH_DOES_NOT_USE_RFKILL +endif + +ifeq ($(BOARD_BLUETOOTH_USES_HCIATTACH_PROPERTY),true) +  LOCAL_CFLAGS := $(LOCAL_CFLAGS) -DBLUETOOTH_HCIATTACH_USING_PROPERTY +endif LOCAL_SRC_FILES := \   bluetooth.c diff --git a/bluedroid/bluetooth.c b/bluedroid/bluetooth.c index 4cc9204..2636942 100644 --- a/bluedroid/bluetooth.c +++ b/bluedroid/bluetooth.c @@ -44,7 +44,7 @@ static int rfkill_id = -1; static char *rfkill_state_path = NULL; - +#ifndef BLUETOOTH_DOES_NOT_USE_RFKILL static int init_rfkill() {      char path[64];      char buf[16]; @@ -135,6 +135,7 @@ out:      if (fd >= 0) close(fd);      return ret; } +#endif static inline int create_hci_sock() {      int sk = socket(AF_BLUETOOTH, SOCK_RAW, BTPROTO_HCI); @@ -151,13 +152,20 @@ int bt_enable() {      int ret = -1;      int hci_sock = -1;      int attempt; - +#ifndef BLUETOOTH_DOES_NOT_USE_RFKILL      if (set_bluetooth_power(1) < 0) goto out; - +#endif +#ifndef BLUETOOTH_HCIATTACH_USING_PROPERTY      LOGI("Starting hciattach daemon"); -    if (property_set("ctl.start", "hciattach") < 0) { +    if (property_set("ctl.start", "hciattach") < 0) +#else +    if (property_set("bluetooth.hciattach", "true") < 0) +#endif +    {          LOGE("Failed to start hciattach"); +#ifndef BLUETOOTH_DOES_NOT_USE_RFKILL          set_bluetooth_power(0); +#endif          goto out;      } @@ -186,14 +194,18 @@ int bt_enable() {          if (property_set("ctl.stop", "hciattach") < 0) {              LOGE("Error stopping hciattach");          } +#ifndef BLUETOOTH_DOES_NOT_USE_RFKILL          set_bluetooth_power(0); +#endif          goto out;      }      LOGI("Starting bluetoothd deamon");      if (property_set("ctl.start", "bluetoothd") < 0) {          LOGE("Failed to start bluetoothd"); +#ifndef BLUETOOTH_DOES_NOT_USE_RFKILL          set_bluetooth_power(0); +#endif          goto out;      } @@ -222,14 +234,20 @@ int bt_disable() {      ioctl(hci_sock, HCIDEVDOWN, HCI_DEV_ID);      LOGI("Stopping hciattach deamon"); -    if (property_set("ctl.stop", "hciattach") < 0) { +#ifndef BLUETOOTH_HCIATTACH_USING_PROPERTY +    if (property_set("ctl.stop", "hciattach") < 0) +#else +   if (property_set("bluetooth.hciattach", "false") < 0) +#endif +   {          LOGE("Error stopping hciattach");          goto out;      } - +#ifndef BLUETOOTH_DOES_NOT_USE_RFKILL      if (set_bluetooth_power(0) < 0) {          goto out;      } +#endif      ret = 0; out: @@ -246,9 +264,10 @@ int bt_is_enabled() {      // Check power first +#ifndef BLUETOOTH_DOES_NOT_USE_RFKILL      ret = check_bluetooth_power();      if (ret == -1 || ret == 0) goto out; - +#endif      ret = -1;      // Power is on, now check if the HCI interface is up 0002-usb_dongle-on-SabreSD.patch: Update MX6 board configuration files to enable USB Bluetooth dongle feature. diff --git a/imx6/imx6.mk b/imx6/imx6.mk @@ -63,6 +63,7 @@ PRODUCT_PACKAGES += \ PRODUCT_PACKAGES += \   audio.tinyalsa.freescale   \   audio.legacy.freescale    \ +        audio.a2dp.default                      \   alsa_aplay                \   alsa_arecord    \   alsa_amixer        \ diff --git a/imx6/sabresd/SabreSDBoardConfigComm.mk b/imx6/sabresd/SabreSDBoardConfigComm.mk index 03d8ce5..1a8a6bd 100755 --- a/imx6/sabresd/SabreSDBoardConfigComm.mk +++ b/imx6/sabresd/SabreSDBoardConfigComm.mk -# atheros 3k BT -BOARD_USE_AR3K_BLUETOOTH := true +# Default use USB BT dongle for imx6, so should enable below +BOARD_BLUETOOTH_DOES_NOT_USE_RFKILL := true +BOARD_BLUETOOTH_USES_HCIATTACH_PROPERTY := true + USE_ION_ALLOCATOR := false USE_GPU_ALLOCATOR := true diff --git a/imx6/sabresd/init.rc b/imx6/sabresd/init.rc index ff9f0ff..f127177 100755 --- a/imx6/sabresd/init.rc +++ b/imx6/sabresd/init.rc @@ -84,9 +84,12 @@ on boot      # No bluetooth hardware present      setprop hw.bluetooth 0      setprop wlan.interface wlan0 +    setprop hw.bluetooth 1 diff --git a/imx6/sabresd/required_hardware.xml b/imx6/sabresd/required_hardware.xml index c9a2271..f7db37b 100644 --- a/imx6/sabresd/required_hardware.xml +++ b/imx6/sabresd/required_hardware.xml @@ -22,6 +22,7 @@      <feature name="android.hardware.camera.flash" />      <feature name="android.hardware.camera.front" />      <feature name="android.hardware.location" /> +    <feature name="android.hardware.bluetooth" />      <feature name="android.hardware.location.network" />      <feature name="android.hardware.location.gps" />      <feature name="android.hardware.telephony" />
View full article
HW: i.MX7 SabreSD SW: Android N7.1.1_1.0.0   There is KPP module on i.MX7, but NXP reference board didn't have it. We reworked a "keypad" and has the demo. Signal: For testing, launch an app in Android that can accept text input. KPP also supports multiple input, the "A" is showed by pressing "shift" + "a".   As a side note, 1. The input device driver is drivers/input/keyboard/imx_keypad.c 2. The input event driver is drivers/tty/vt/keyboard.c Original Attachment has been moved to: 0001-Enable-KPP-on-i.MX7.patch.zip
View full article
                                                                                         Watch the Freescale i.MX team boot up Android 5.0 Lollipop in i.mx6 application processors—在线播放—优酷网,视频高清在线观看 The Freescale i.MX Android team has booted up Android 5.0 Lollipop in the SABRE platform for i.mx6 series. Google pushed all of the latest source for its Android release to AOSP on Nov. 5, and the Freescale Android Team started their work. With the previous 6 days to boot Android Lollipop up, the Freescale i.MX Android team enabled the basic features like connectivity, audio/video playback, sensors, inputs and display on day 7! You can see the some changes in the demo video at the beginning of the post. The Freescale i.MX Android team has closely followed almost every version of Android since it is released by AOSP and has good experience on it. Below are some snapshots and pictures for the Android Lollipop.
View full article
The i.MX Android O8.0.0_1.0.0 GA release is now available from IMX_SW page. Overview -> BSP Updates and Releases -> Android 8.0.0 Oreo (O8.0.0_1.0.0, 4.9 kernel)   Files available: # Name Description 1 android_O8.0.0_1.0.0_docs.tar.gz i.MX Android O8.0.0_1.0.0 BSP Documentation 2 imx-o8.0.0_1.0.0_ga.tar.gz i.MX Android O8.0.0_1.0.0 proprietary surce code for i.MX 6QuadPlus, i.MX 6Quad, i.MX 6DualPlus, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo  i.MX 6Sololite, i.MX6SX and i.MX7D 3 android_O8.0.0_1.0.0_image_6dqpsabreauto.tar.gz Binary Demo Files of Android O8.0.0_1.0.0 BSP - SABRE for Automotive Infotainment based on i.MX 6QuadPlus, i.MX 6Quad, and i.MX 6DualLite 4 android_O8.0.0_1.0.0_image_6dqpsabresd.tar.gz Binary Demo Files of Android O8.0.0_1.0.0 BSP - SABRE Platform and SABRE Board based on i.MX 6QuadPlus, i.MX 6Quad and i.MX 6DualLite. 5 android_O8.0.0_1.0.0_image_6slevk.tar.gz Binary Demo Files of Android O8.0.0_1.0.0 BSP - i.MX 6Sololite evaluation kit. 6 android_O8.0.0_1.0.0_image_6sxsabresd.tar.gz Binary Demo Files of Android O8.0.0_1.0.0 BSP - SABRE Board based on i.MX 6SoloX 7 android_O8.0.0_1.0.0_image_6sxsabreauto.tar.gz Binary Demo Files of Android O8.0.0_1.0.0 BSP - SABRE for Automotive infotainment based on i.MX 6SoloX 8 android_O8.0.0_1.0.0_image_7dsabresd.tar.gz Binary Demo Files of Android O8.0.0_1.0.0 BSP - SABRE Board based on i.MX 7Dual 9 fsl_aacp_dec_O8.0.0_1.0.0.tar.gz AAC Plus Codec for O8.0.0_1.0.0 10 android_O8.0.0_1.0.0_tools.tar.gz Manufacturing Toolkit and VivanteVTK for O8.0.0_1.0.0   Supported Hardware SoC/Boards: i.MX 6Quad, i.MX 6QuadPlus, and i.MX 6DualLite SABRE-SD board and platform i.MX 6Quad, i.MX 6QuadPlus, and i.MX 6DualLite SABRE-AI board and platform i.MX 6SoloLite EVK platform i.MX 6SoloX SABRE-SD board and platforms i.MX 6SoloX SABRE-AI board and platforms i.MX 7Dual SABRE-SD board and platform   Changes: Compared to the N7.1.2_2.0.0 release, this release has the following major changes: Upgraded the Android code base from android-7.1.2_r9 to android-8.0.0_r25. Removed the device partition and added the vendor partition. Enabled ION-based gralloc and EGL. Feature: For features please consult the release notes.   Known issues For known issues and more details please consult the Release Notes.
View full article
The i.MX Android N7.1.2_2.0.0 GA release is now available on IMX_SW page.   Files available: # Name Description 1 android_N7.1.2_2.0.0_docs.tar.gz i.MX Android N7.1.2_2.0.0 BSP Documentation 2 android_N7.1.2_2.0.0_source.tar.gz Source Code of Android N7.1.2_2.0.0 BSP (4.1 kernel) for i.MX 6QuadPlus, i.MX 6Quad, i.MX 6DualPlus, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo i.MX 6Sololite, i.MX6SX and i.MX7D 3 android_N7.1.2_2.0.0_image_6dqpsabreauto.tar.gz Binary Demo Files of Android N7.1.2_2.0.0 BSP - SABRE for Automotive Infotainment based on i.MX 6QuadPlus, i.MX 6Quad, and i.MX 6DualLite 4 android_N7.1.2_2.0.0_image_6dqpsabresd.tar.gz Binary Demo Files of Android N7.1.2_2.0.0 BSP - SABRE Platform and SABRE Board based on i.MX 6QuadPlus, i.MX 6Quad and i.MX 6DualLite. 5 android_N7.1.2_2.0.0_image_6slevk.tar.gz Binary Demo Files of Android N7.1.2_2.0.0 BSP - i.MX 6Sololite evaluation kit. 6 android_N7.1.2_2.0.0_image_6sxsabresd.tar.gz Binary Demo Files of Android N7.1.2_2.0.0 BSP - SABRE Board based on i.MX 6SoloX 7 android_N7.1.2_2.0.0_image_6sxsabreauto.tar.gz Binary Demo Files of Android N7.1.2_2.0.0 BSP - SABRE for Automotive infotainment based on i.MX 6SoloX 8 android_N7.1.2_2.0.0_image_7dsabresd.tar.gz Binary Demo Files of Android N7.1.2_2.0.0 BSP - SABRE Board based on i.MX 7Dual 9 fsl_aacp_dec.tar.gz AAC Plus Codec for N7.1.2_2.0.0 10 android_N7.1.2_2.0.0_tools.tar.gz Manufacturing Toolkit and VivanteVTK for N7.1.2_2.0.0   Supported Hardware SoC/Boards: i.MX 6Quad, i.MX 6QuadPlus, and i.MX 6DualLite SABRE-SD board and platform i.MX 6Quad, i.MX 6QuadPlus, and i.MX 6DualLite SABRE-AI board and platform i.MX 6SoloLite EVK platform i.MX 6SoloX SABRE-SD board and platforms i.MX 6SoloX SABRE-AI board and platforms i.MX 7Dual SABRE-SD board and platform   Changes: Compared to the N7.1.1_1.0.0 release, this release has the following major changes: Upgraded the Android code base from android-7.1.1_r13 to android-7.1.2_r9. Upgraded U-Boot from v2015.04 to v2017.03. Upgraded the kernel from v4.1.15 to v4.9.17. Upgraded the GPU driver from 6.2.0.p2 to 6.2.2.p1. Upgraded the Wi-Fi BCMDHD release version to 1.141.100.6. Refine the Gralloc and HWC HAL. Enable the GPT partition to replace the MBR partition.   Feature: For features please consult the release notes.   Known issues For known issues and more details please consult the Release Notes.
View full article
Overview The purpose of this doument is to introduce how to enable PCIe WiFi into i.MX6 Android release. Environment Setup Hardware: i.MX6 SABRE-SD board Software: Android Jelly Bean 4.2 Software Configurations The source codes of Intel PCIe WiFi have been integrated for i.MX6 SABRE-SD board into i.MX6 Android release. However it's disabled by default. To enable it for i.MX6 SABRE-SD board, you can do the following: Change BOARD_WLAN_VENDOR to INTEL in device/fsl board configuration files. For example, diff --git a/sabresd_6dq/BoardConfig.mk b/sabresd_6dq/BoardConfig.mk index 9c8a32d..912e752 100755 --- a/sabresd_6dq/BoardConfig.mk +++ b/sabresd_6dq/BoardConfig.mk @@ -11,7 +11,7 @@ TARGET_BOOTLOADER_BOARD_NAME := SABRESD PRODUCT_MODEL := SABRESD-MX6DQ # Wifi -BOARD_WLAN_VENDOR                       := ATHEROS +BOARD_WLAN_VENDOR                       := INTEL # for atheros vendor ifeq ($(BOARD_WLAN_VENDOR),ATHEROS) BOARD_WLAN_DEVICE                       := ar6003 @@ -30,6 +30,7 @@ WIFI_COMPAT_MODULE_ARG                         := "" endif #for intel vendor ifeq ($(BOARD_WLAN_VENDOR),INTEL) +BOARD_WLAN_DEVICE                       := INTEL BOARD_HOSTAPD_PRIVATE_LIB               ?= private_lib_driver_cmd BOARD_WPA_SUPPLICANT_PRIVATE_LIB        ?= private_lib_driver_cmd WPA_SUPPLICANT_VERSION                  := VER_0_8_X After changing BOARD_WLAN_VENDOR as "INTEL", the following files will be compiled for intel WiFi: device/fsl-proprietary/pcie-wifi/ external/wpa_supplicant_8 hardware/imx/wlan/intel/ hardware/libhardware_legacy/wifi/wifi_intel.c Enable PCIe WiFi driver in kernel_imx by running "make menuconfig" command: Select "System Type -> Freescale MXC Implementations -> PCI Express support" as "*" Select "Networking support -> Wireless ->  cfg80211 - wireless configuration API" as "*". Then select "Networking support -> Wireless -> Generic IEEE 802.11 Networking Stack (mac80211)" as "*" Select "Device Drivers ->  Network device support -> Wireless LAN -> Intel Wireless WiFi 4965AGN (iwl4965)" as "*" Then run "make" command to build kernel. The followings are the dependencies files to enable above configuration: Kernel configuration: * -> System Type -> Freescale MXC Implementations Select the PCI Express support. Then config intel WIFI driver: Generic IEEE 802.11 Networking Stack (mac80211) used by WIFI devices Symbol: MAC80211 [=y] Type : tristate Prompt: Generic IEEE 802.11 Networking Stack (mac80211) Defined at net/mac80211/Kconfig:1 Depends on: NET [=y] && WIRELESS [=y] && CFG80211 [=y] Location: -> Networking support (NET [=y]) -> Wireless (WIRELESS [=y]) Intel iwl4965 or iwl6300 card driver Symbol: IWL4965 [=y] Type : tristate Prompt: Intel Wireless WiFi 4965AGN (iwl4965) Defined at drivers/net/wireless/iwlegacy/Kconfig:65 Depends on: NETDEVICES [=y] && WLAN [=y] && PCI [=y] && MAC80211 [=y] Location: -> Device Drivers -> Network device support (NETDEVICES [=y]) Then you can follow up the instructions into Android User guide to build Android image. Known Limitation PCIe low power mode is not supported according to BSP release note. So when building in PCIe, the system suspend/resume should be disabled now.
View full article
I've done some research in Android boot optimization in the past months and have some getting. This page is for recording and sharing purpose only. It's target to provide some hints and directions for Android optimization. It's NOT a Freescale official document or patch release. The code/doc inside is only for reference. Background:      1. I've used SabreSD + Android KK 4.4.2 GA 1.0 as a reference platform.      2. I'm not doing some popular optimization way such as "hibernation", "suspend". I'm trying to "optimize" the boot process by re-arranging the boot process and make GUI related process run earlier and fine tune some boot code for running faster.      3. It's target to the Android IVI product. So, some features that will never be used in a IVI environment will be disabled or removed. Minor of them. I've come out with a patch package (latest is milestone 4 which is "_m4" in the version for short) and  a training document. I didn't find any confidential information from the patch or doc, so I'm open the sharing here. Updated on 2016/01/08 for new version (milestone m5): --------------------------------------------------------------------------------------- Change log against previous (milestone 4) version:      1. BSP base changed to Android KK 4.4.3 GA 2.0 which has a Linux kernel 3.10.53      2. Linux kernel and uboot optimization added. Kernel boot time (POR -> Android init entry) is less than 1.5s.      3. Some bug fixes.      4. Document updated accordingly. Total boot time tested on SabreSDP is about 8s.
View full article
Default Ethernet feature is removed for Android Auto (both Android_Pie9.0 and Android10) Below are the patched to bring Ethernet feature back to Android Auto. Please try to apply the according patches if you want to enable Ethernet. For Android_Pie9.0_Auto(example with car2 build): --- a/arch/arm64/configs/android_car2_defconfig +++b/arch/arm64/configs/android_car2_defconfig @@ -245,7 +245,7 @@ CONFIG_DM_VERITY_FEC=y CONFIG_NETDEVICES=y CONFIG_MACVTAP=m CONFIG_TUN=y -# CONFIG_ETHERNET is not set +CONFIG_ETHERNET=y CONFIG_MDIO_BUS_MUX_MMIOREG=m CONFIG_AT803X_PHY=m CONFIG_MARVELL_PHY=m @@ -517,7 +517,7 @@ CONFIG_SQUASHFS=y CONFIG_SQUASHFS_DECOMP_MULTI=y CONFIG_SQUASHFS_XATTR=y CONFIG_SQUASHFS_LZ4=y -# CONFIG_NETWORK_FILESYSTEMS is not set +CONFIG_NETWORK_FILESYSTEMS=y   --- a/imx8q/mek_8q/mek_8q.mk +++ b/imx8q/mek_8q/mek_8q.mk @@ -46,6 +46,7 @@ PRODUCT_COPY_FILES += \      $(IMX_DEVICE_PATH)/fstab.freescale.car:$(TARGET_COPY_OUT_VENDOR)/etc/fstab.freescale \      $(IMX_DEVICE_PATH)/early.init_car.cfg:$(TARGET_COPY_OUT_VENDOR)/etc/early.init.cfg \      $(IMX_DEVICE_PATH)/required_hardware_auto.xml:$(TARGET_COPY_OUT_VENDOR)/etc/permissions/required_hardware.xml \ +    frameworks/native/data/etc/android.hardware.ethernet.xml:$(TARGET_COPY_OUT_VENDOR)/etc/permissions/android.hardware.ethernet.xml \      device/fsl/imx8q/init.recovery.freescale.car.rc:root/init.recovery.freescale.rc   For Android10_Auto,(example with car build): --- a/arch/arm64/configs/android_car_defconfig +++ b/arch/arm64/configs/android_car_defconfig @@ -23,6 +23,8 @@ CONFIG_SCHED_AUTOGROUP=y CONFIG_SCHED_TUNE=y CONFIG_RELAY=y CONFIG_BLK_DEV_INITRD=y +CONFIG_FEC=y +CONFIG_AT803X_PHY=y # CONFIG_RD_BZIP2 is not set # CONFIG_RD_LZMA is not set # CONFIG_RD_XZ is not set @@ -246,7 +248,6 @@ CONFIG_DM_VERITY=y CONFIG_DM_VERITY_FEC=y CONFIG_NETDEVICES=y CONFIG_TUN=y -# CONFIG_ETHERNET is not set   --- a/imx8q/mek_8q/mek_8q.mk +++ b/imx8q/mek_8q/mek_8q.mk @@ -46,6 +46,7 @@ PRODUCT_COPY_FILES += \      $(IMX_DEVICE_PATH)/fstab.freescale.car:$(TARGET_COPY_OUT_VENDOR)/etc/fstab.freescale \      $(IMX_DEVICE_PATH)/early.init_car.cfg:$(TARGET_COPY_OUT_VENDOR)/etc/early.init.cfg \      $(IMX_DEVICE_PATH)/required_hardware_auto.xml:$(TARGET_COPY_OUT_VENDOR)/etc/permissions/required_hardware.xml \ +    frameworks/native/data/etc/android.hardware.ethernet.xml:$(TARGET_COPY_OUT_VENDOR)/etc/permissions/android.hardware.ethernet.xml \      device/fsl/imx8q/init.recovery.freescale.car.rc:root/init.recovery.freescale.rc   Note: Please also check for below file, if fec1 is disabled, please also apply below diff. --- a/arch/arm64/boot/dts/freescale/imx8qm-mek-car2.dts +++ b/arch/arm64/boot/dts/freescale/imx8qm-mek-car2.dts @@ -147,10 +147,6 @@ status = "disabled"; }; -&fec1 { - status = "disabled"; -}; - &fec2 { status = "disabled"; };
View full article
Hi all, I shared my test results and solutions in attachments. Best regards, Carl
View full article
The following are a couple of recommendations for setting up a Host machine for building the Android Nougat 7.1.1_1.0.0 BSP. Some of these recommendations are not exclusive of the Nougat release and may help in other scenarios. These also apply to using Virtual Machines as Host. Installing Open JDK 8 on Ubuntu 14.04 As mentioned on the Android guide for Establishing a Build Environment (http://source.android.com/source/initializing.html) there are no available supported OpenJDK 8 packages for Ubuntu 14.04, which is the version recommended and tested on the Nougat Android BSP. An alternative is downloading the Ubuntu 15.04 Open JDK 8 packages and installing them manually, which can be done by following this procedure: Download the .deb packages for 64-bit architecture from archive.ubuntu.com: openjdk-8-jre-headless_8u45-b14-1_amd64.deb with SHA256 0f5aba8db39088283b51e00054813063173a4d8809f70033976f83e214ab56c0 http://archive.ubuntu.com/ubuntu/pool/universe/o/openjdk-8/openjdk-8-jre-headless_8u45-b14-1_amd64.deb  openjdk-8-jre_8u45-b14-1_amd64.deb with SHA256 9ef76c4562d39432b69baf6c18f199707c5c56a5b4566847df908b7d74e15849 http://archive.ubuntu.com/ubuntu/pool/universe/o/openjdk-8/openjdk-8-jre_8u45-b14-1_amd64.deb  openjdk-8-jdk_8u45-b14-1_amd64.deb with SHA256 6e47215cf6205aa829e6a0a64985075bd29d1f428a4006a80c9db371c2fc3c4c http://archive.ubuntu.com/ubuntu/pool/universe/o/openjdk-8/openjdk-8-jdk_8u45-b14-1_amd64.deb  Once you have downloaded these three packages and checked the checksum for them install the packages (optional) install them by running: $ sudo apt-get update $ sudo dpkg -i openjdk-8-jre-headless_8u45-b14-1_amd64.deb $ sudo dpkg -i openjdk-8-jre_8u45-b14-1_amd64.deb $ sudo dpkg -i openjdk-8-jdk_8u45-b14-1_amd64.deb‍‍‍‍   Increasing SWAP to compensate for the lack of RAM Having insufficient RAM especially on the linking part of the image build may cause a number of issues that are difficult to troubleshoot. In these cases it’s good to take a look at the resource monitor to see if indeed the RAM was depleted. One way to make up for the limited RAM is using a bigger swap. Google recommends at least 16GB of RAM/swap so it’s not uncommon to create a 10GB swap when working in VM, to do this please use the following commands.    $ sudo fallocate -l 10g /mnt/10GB.swap $ sudo chmod 600 /mnt/10GB.swap $ sudo mkswap /mnt/10GB.swap $ sudo swapon /mnt/10GB.swap‍‍‍‍   Increasing heap size to avoid out of memory errors It is possible to encounter an out of memory error with the recommendation “try increasing heap size witj java option ‘-Xmx<size>’. If you encounter this error or would like to proactively avoid it you may run the following commands that will increase heap size to four gigabytes and then reset the Jack Server by killing it and starting it again. With the android environment initialized: $ cd my android $ export JACK_SERVER_VM_ARGUMENTS="-Dfile.encoding=UTF-8 -XX:+TieredCompilation -Xmx4g" $ jack-admin kill-server && jack-admin start-server‍‍‍‍‍‍  Fixing Jack Servers errors due to multiple users on the Host Android Nougat uses Jack Server as mono-user by default. If this is not the case for your host you would need to choose different port numbers for each user and adjust SERVER_NB_COMPILE accordingly. You can also disable the Jack server by setting SERVER=false in your $HOME/.jack. Alternatively, you may also use the patch available on the following link to myandroid/prebuilts/sdk. It will help to fix the mono-user build restriction. When installing the jack-server, it will detect if Jack server is running in the same build machine and then generate a random ports for my build instead of using the default one. https://groups.google.com/forum/#!topic/android-building/UWhJrXH8Vig
View full article
Ramdisk is unnecessary thing for some embedded systems, but it's required for Android . You can develop an Android system with no ramdisk (initrd/initramfs), just follow these steps: 1) Remove RAMDISK support from kernel: General setup  --->             [ ] Initial RAM filesystem and RAM disk (initramfs/initrd) support Create a single rootfs: cd myandroid/out/target/product/imx51_BBG mkdir rootfs sudo cp -a system rootfs/ sudo cp -a root/* rootfs/ sudo cp -a recovery rootfs/ Since you are using a single filesystem, then comment out these lines from rootfs/init.rc: #mount ext3 /dev/block/mmcblk0p2 /system #mount ext3 /dev/block/mmcblk0p2 /system ro remount #mount ext3 /dev/block/mmcblk0p5 /data nosuid nodev #mount ext3 /dev/block/mmcblk0p6 /cache nosuid nodev Create just one partition into your MMC or Flash memory: Partition 1: 200MB+ as EXT3 will be used as system(rootfs). Remember to skip 4MB to save kernel. It is a good idea to create a second partition (VFAT) to mount as /data to save user files. Mount that "system" partition and copy all content of rootfs: sudo mount /dev/sdb1 -t ext3 /mnt sudo cp -a .../target/product/imx51_BBG/rootfs/* /mnt sudo umount /mnt Now just setup your bootloader parameter correctly (i.e. MMC Partition 1): setenv bootargs_base 'setenv bootargs root=/dev/mmcblk0p1 rootfstype=ext3 console=ttymxc0,115200 noinitrd'
View full article
Linphone is an internet phone or Voice Over IP phone (VoIP). With Linphone you can communicate freely with people over the internet, with voice, video, and text instant messaging. Linphone makes use of the SIP protocol, an open standard for internet telephony. You can use Linphone with any SIP VoIP operator, including our free SIP audio/video service. Linphone is free software (or open-source), you can download and redistribute it freely. Linphone is available for desktop computers: Linux, Windows, Mac OSX, and for mobile phones: Android, iPhone, Blackberry. Linphone-android is a good example to show the integration of Java code based on Android SDK with native CODEC, network protocols. Not like XBMC-Android that is almost total c++/c project. Perform the following steps to build a linphone-android project: 1. git clone git://git.linphone.org/linphone-android.git --recursive 2. sudo apt-get install autoconf automake libtool pkg-config 3. "cd" to the root of "git clone" : cd /home/user/linphne-android // wherver git'ed linphone-android is 4. export PATH=/home/user/android-ndk:$PATH //wherever your android-ndk, android-sdk tools, and platform-tools, and ANT are stored in.             For example on my PC.      export PATH=/home/alanz/android-ndk-r8d:/home/alanz/android-sdk-linux/tools:/home/alanz/android-sdk-linux/platform-     tools:/home/alanz/bin/apache-ant-1.8.4/bin:$PATH             Note: PATH contains the ndk, sdk, and ant. 5. Make sure the network is working, then execute "./prepare_sources.sh" at the linphone-android root 6. Then, execute "/home/alanz/android-ndk-r8d/ndk-build", it will take a while to be finished 7. Modify Makefile as following example, modify it accordingly.      NDK_PATH=/home/alanz/android-ndk-r8d      SDK_PATH=/home/alanz/android-sdk-linux/tools      SDK_PLATFORM_TOOLS_PATH=/home/alanz/android-sdk-linux/platform-tools      .....................      generate-libs:           $(NDK_PATH)/ndk-build ....... (remove -j$(NUMCPUS) by the end of this command line) 8. execute "make", after finish, the apk file can be found under bin/ subdirectory.
View full article
When to improve kernel booting using hibernation [1], I found kernel initialized each component [2] took too much time. One solution is to remove unnecessary module to save time. Another approach is to delay those modules until user space up. Then it won’t lost some features just because hopes to gain benefit on booting speed. This is very useful since hibernation’s trigger point is at the late_initcall [3]. Kernel doesn't need do much module initialize since hibernate will restore those module status later. The detailed implementation is in the attached patch. [1]: hibernation is a technique to store system memory content to storage. Then the device can be shutdown and read the content back after power on. [2]: component means subsystem or driver. [3]: Consult kernel/power/hibernate.c, software_resume
View full article
Description about VPU & IPU usage in Android R13.4 GA release for i.MX6DQ
View full article