无线连接知识库

取消
显示结果 
显示  仅  | 搜索替代 
您的意思是: 

Wireless Connectivity Knowledge Base

讨论

排序依据:
Blue Ravens (Bluetooth Ranging Access Vehicle Enablement System) is a system solution developed by NXP to assist customers in designing their own BLE-based car access solutions using NXP products. It is designed to support a variety of car access use cases through a modular approach. The main objective (but not limited) is to present all the capabilities and advantages of the Channel Sounding technology and NXP BLE Handover in an automotive use case. Channel Sounding is part of the new Bluetooth Low Energy (BLE) standard (BLE 6.0) as a highly accurate distance measurement solution, and available on the NXP KW47 chip. BLE Handover is an NXP proprietary feature developed by NXP to seamlessly transfer a BLE connection from one device to another, without disconnection, using and out of band channel (e.g. CAN). This transfer does not impact the peer device so interoperability is guaranteed. This feature can also be used to enable BLE connection RSSI sniffing to increase RSSI based system security. (KW45 & KW47) Thanks to its modularity, this system can be used to address multiple use-cases, from simple BLE connection system, up to a full BLE Channel Sounding positioning system. Please, note that Channel Sounding is only supported on KW47 chip. KW45 can only be used for simple BLE system. By default, the system on KW47 covers a basic use of Channel Sounding to measure the distance between one remote device (Digital Key) and alternatively several different fixed devices (Car Anchor). At each instant in time, only one anchor is connected to the Digital Key. The other anchors (not connected) can be set in Connection RSSI Sniffing mode (based on Handover). This mode increase the system security by accessing the RSSI value of a connection instead of an advertising packet. These RSSI values can be used to estimated which anchor can be used in the round-robin or to keep the best BLE link around the Car.     The system is composed of multiple KW4x boards, each with a specific role. On board is used as Digital Key, to be caried by the user, the other represent the Car sub-system. On this Car Sub-system, all boards are connected to each other using the CAN bus. The CAN bus fulfills the purpose to power all boards with 12V and to allow communication between the boards: Control Unit (KW4x EVK-Board) Car Anchors (KW4x LOC-Board) Digital Key (KW4x LOC-Board) Role: Central decision-making node Functionality: - Coordinates BLE anchors. - Triggers actions based on received data   Role: BLE devices connected to the Control Unit via CAN bus Functionality: - Advertise BLE presence. - Wait for a Digital Key to connect. - Act as CS initiators during the session. Role: Acts as the remote BLE device Functionality: - Scans for BLE anchors. - Initiates connection with a Car Anchor. - Once connected, behaves as a CS reflector.     A Desktop application is used to monitor the states and monitor the measurement done by the system:   Using the successive measurement on each anchors, the Car sub-system is able to estimate the Digital Key position (Disclaimer: this solution is not consider accurate in dynamic environments)       Features   BLE connection Supporting 1 connection only for now (multiple peer plan) BLE Channel Sounding (KW47 only) Yes RSSI Sniffing Yes – All not connected anchors Automatic exclusion of suboptimal anchors Yes BLE Handover with CS context (No CS repeat) Yes Trilateration algorithm Yes Measurement filtering (real time) Yes Detection area triggering action (e.g. Welcome zone) Yes Car Anchor CAN Synchronization (radio core sync) No (planned for next release) Channel Sounding Sniffing No (feasibility study ongoing)   KPIs   Number of Anchor From 2 to 8 Number of Digital Key 1 BLE Connection Interval 7.5ms – 4s (Default = 30ms) BLE Handover connection transfer time (+CS context transfer) <60ms (CI=30ms) <50ms (CI=10ms) CS start Delay (2+7)*CI CS measurement and data transfer (Real Time) <70ms (CI=30ms) CS Algo <30ms Full cycle time (CS + Handover) [Algorithm runs asynchronously on the anchor after the handover is finished] 390ms (CI=30ms) 190ms (CI=10ms) Line Of Sight CS measurement range 100m Max (at 10dBm) Back Pocket CS measurement range 10m (at 10dB)   This solution is under development and improvement will be added in the future releases.
查看全文
As documented in the MCX W23 [ERRATA] for WLCSP packaged devices, Tx modulation quality can potentially be violated on 2 data channels
查看全文
This article introduces the Wi-Fi automatic recovery feature as well as how to enable and verify it on RW61x SDK. 1. Introduction Wi-Fi automatic recovery is a NXP proprietary feature that monitors Wi-Fi running status and recovers Wi-Fi out of exception state when running into one of the following cases: Driver fails to wakeup Wi-Fi MCU for commands/Tx Driver fails to receive command response from Wi-Fi MCU Driver detects Wi-Fi firmware is in abnormal state Once Wi-Fi automatic recovery is triggered, Wi-Fi middleware and driver will clean up the running states, reset Wi-Fi MCU power, reload Wi-Fi firmware and restart Wi-Fi initialization. It will not impact the ongoing Bluetooth LE/802.15.4 activities. Figure 1 is the Wi-Fi software architecture. Figure 1: Wi-Fi Software Architecture Figure 2 shows the work flow of Wi-Fi automatic recovery: Figure 2: Wi-Fi Automatic Recovery Work Flow Wi-Fi driver detects command timeout/wakeup card timeout/FW exception   Wi-Fi driver triggers WLAN reset to Stop Wi-Fi activities and de-initialize Wi-Fi Reset Wi-Fi power Reload the Wi-Fi only firmware and wait for the firmware to be active Send an event to notify the application before resetting it   2. SDK Configuration The Wi-Fi automatic recovery feature is not enabled by default in RW61x SDK. It needs to be enabled explicitly: Add below line in <example>/source/wifi_config.h to enable the feature  #define CONFIG_WIFI_RECOVERY 1 Besides, please also make sure the "CONFIG_WIFI_RESET" macro is defined as "1" in the SDK.   3. Automatic Recovery Verification This section introduces how to verify the Wi-Fi automatic recovery feature on RW61x SDK. wifi_cli application is used as example here together with the RW612 RD board. Refer to UM11799: NXP Wi-Fi and Bluetooth Demo Applications for RW61x for steps to flash and run Wi-Fi applications. Below are the steps to verify the Wi-Fi automatic recovery feature: Step 1: Define CONFIG_WIFI_RECOVERY in wifi_cli/source/wifi_config.h     #define CONFIG_WIFI_RECOVERY 1 Step 2: Build and flash the wifi_cli application onto RW612 RD board Step 3: Connect RW612 RD board to a serial terminal Step 4: Reset the power of RW612 RD board Step 5: Trigger Wi-Fi MCU into hung-up state with the following command to mimic a command timeout     # wlan-recovery-test Step 6: Wi-Fi recovery background task detects Wi-Fi FW hang and starts recovery process [wifi] Warn: Command response timed out. command 0x8b, len 12, seqno 0x1c timeout happends. # app_cb: WLAN: FW hang Event: 14 --- Disable WiFi --- [wifi] Warn: Recovery in progress. command 0x10 skipped [wifi] Warn: Recovery in progress. command 0x10 skipped [wifi] Warn: Recovery in progress. command 0xaa skipped [dhcp] Warn: server not dhcpd_running. --- Enable WiFi --- Initialize WLAN Driver [wifi] Warn: WiFi recovery mode done! Wi-Fi cau temperature : 31 STA MAC Address: C0:95:DA:01:1D:A6 board_type: 2, board_type mapping: 0----QFN 1----CSP 2----BGA app_cb: WLAN initialized ======================================== WLAN CLIs are initialized ======================================== ENHANCED WLAN CLIs are initialized ======================================== HOST SLEEP CLIs are initialized ======================================== CLIs Available: ======================================== help clear wlan-version wlan-mac wlan-thread-info wlan-net-stats wlan-set-mac <MAC_Address> wlan-scan wlan-scan-opt ssid <ssid> bssid ... wlan-add <profile_name> ssid <ssid> bssid... wlan-remove <profile_name> wlan-list wlan-connect <profile_name> wlan-connect-opt <profile_name> ... wlan-reassociate wlan-start-network <profile_name> wlan-stop-network wlan-disconnect wlan-stat wlan-info wlan-address wlan-uap-disconnect-sta <mac address> wlan-get-uap-channel wlan-get-uap-sta-list wlan-ieee-ps <0/1> wlan-set-ps-cfg <null_pkt_interval> wlan-deep-sleep-ps <0/1> wlan-get-beacon-interval wlan-get-ps-cfg wlan-set-max-clients-count <max clients count> wlan-get-max-clients-count wlan-rts <sta/uap> <rts threshold> wlan-frag <sta/uap> <fragment threshold> wlan-host-11k-enable <0/1> wlan-host-11k-neighbor-req [ssid <ssid>] wlan-host-11v-bss-trans-query <0..16> wlan-mbo-enable <0/1> wlan-mbo-nonprefer-ch <ch0> <Preference0: 0/1/255> <ch1> <Preference1: 0/1/255> wlan-get-log <sta/uap> <ext> wlan-roaming <0/1> <rssi_threshold> wlan-multi-mef <ping/arp/multicast/del> [<action>] wlan-wakeup-condition <mef/wowlan wake_up_conds> wlan-auto-host-sleep <enable> <mode> <rtc_timer> <periodic> wlan-send-hostcmd wlan-ext-coex-uwb wlan-set-uap-hidden-ssid <0/1/2> wlan-eu-crypto-rc4 <EncDec> wlan-eu-crypto-aes-wrap <EncDec> wlan-eu-crypto-aes-ecb <EncDec> wlan-eu-crypto-ccmp-128 <EncDec> wlan-eu-crypto-ccmp-256 <EncDec> wlan-eu-crypto-gcmp-128 <EncDec> wlan-eu-crypto-gcmp-256 <EncDec> wlan-set-antcfg <ant_mode> <evaluate_time> <evaluate_mode> wlan-get-antcfg wlan-scan-channel-gap <channel_gap_value> wlan-wmm-stat <bss_type> wlan-reset wlan-set-regioncode <region-code> wlan-get-regioncode wlan-11d-enable <sta/uap> <0/1> wlan-uap-set-ecsa-cfg <block_tx> <oper_class> <new_channel> <switch_count> <bandwidth> wlan-csi-cfg wlan-set-csi-param-header <sta/uap> <csi_enable> <head_id> <tail_id> <chip_id> <band_config> <channel> <csi_monitor_enable> <ra4us> wlan-set-csi-filter <opt> <macaddr> <pkt_type> <type> <flag> wlan-txrx-histogram <action> <enable> wlan-subscribe-event <action> <type> <value> <freq> wlan-reg-access <type> <offset> [value] wlan-uapsd-enable <uapsd_enable> wlan-uapsd-qosinfo <qos_info> wlan-uapsd-sleep-period <sleep_period> wlan-tx-ampdu-prot-mode <mode> wlan-rssi-low-threshold <threshold_value> wlan-rx-abort-cfg wlan-set-rx-abort-cfg-ext enable <enable> margin <margin> ceil <ceil_thresh> floor <floor_thresh> wlan-get-rx-abort-cfg-ext wlan-cck-desense-cfg wlan-net-monitor-cfg wlan-set-monitor-filter <opt> <macaddr> wlan-set-monitor-param <action> <monitor_activity> <filter_flags> <radio_type> <chan_number> wlan-set-tsp-cfg <enable> <backoff> <highThreshold> <lowThreshold> <dutycycstep> <dutycycmin> <highthrtemp> <lowthrtemp> wlan-get-tsp-cfg wlan-get-signal wlan-set-bandcfg wlan-get-bandcfg wlan-set-ips <option> wlan-enable-disable-htc <option> wlan-set-su <0/1> wlan-set-forceRTS <0/1> wlan-set-mmsf <enable> <Density> <MMSF> wlan-get-mmsf wlan-set-multiple-dtim <value> wlan-set-country <country_code_str> wlan-set-country-ie-ignore <0/1> wlan-single-ant-duty-cycle <enable/disable> [<Ieee154Duration> <TotalDuration>] wlan-dual-ant-duty-cycle <enable/disable> [<Ieee154Duration> <TotalDuration> <Ieee154FarRangeDuration>] wlan-external-coex-pta enable <PTA/WCI-2/WCI-2 GPIO> ExtWifiBtArb <enable/disable> PolGrantPin <high/low> PriPtaInt <enable/disable> StateFromPta <state pin/ priority pin/ state input disable> SampTiming <Sample timing> InfoSampTiming <Sample timing> TrafficPrio <enable/disable> CoexHwIntWic <enable/disable> wlan-sta-inactivityto <n> <m> <l> [k] [j] wlan-get-temperature wlan-auto-null-tx <sta/uap> <start/stop> wlan-detect-ant <detect_mode> <ant_port_count> channel <channel> ... wlan-recovery-test wlan-get-channel-load <set/get> <duration> wlan-get-txpwrlimit <subband> wlan-set-chanlist wlan-get-chanlist wlan-set-txratecfg <sta/uap> <format> <index> <nss> <rate_setting> <autoTx_set> wlan-get-txratecfg <sta/uap> wlan-get-data-rate <sta/uap> wlan-get-pmfcfg wlan-uap-get-pmfcfg wlan-set-ed-mac-mode <interface> <ed_ctrl_2g> <ed_offset_2g> <ed_ctrl_5g> <ed_offset_5g> wlan-get-ed-mac-mode <interface> wlan-set-tx-omi <interface> <tx-omi> <tx-option> <num_data_pkts> wlan-set-toltime <value> wlan-set-rutxpwrlimit wlan-11ax-cfg <11ax_cfg> wlan-11ax-bcast-twt <dump/set/done> [<param_id> <param_data>] wlan-11ax-twt-setup <dump/set/done> [<param_id> <param_data>] wlan-11ax-twt-teardown <dump/set/done> [<param_id> <param_data>] wlan-11ax-twt-report wlan-get-tsfinfo <format-type> wlan-set-clocksync <mode> <role> <gpio_pin> <gpio_level> <pulse width> wlan-suspend <power mode> ping [-s <packet_size>] [-c <packet_count>] [-W <timeout in sec>] <ipv4/ipv6 address> iperf [-s|-c <host>|-a|-h] [options] dhcp-stat ======================================== --- Done --- Step 7: Run other Wi-Fi shell commands to confirm Wi-Fi resumes to normal state  
查看全文
Introduction: Bluetooth Low Energy offers the ability to broadcast data in format of non-connectable advertising packets while not being in a connection. This GAP Advertisement is widely known as a beacon.   In this post we will explore some of the features of the beacon_freertos example included in the SDK package of the KW45B41Z Evaluation Kit for MCUXpresso, for updating a counter every 5 seconds and broadcasting its value with the beacon, so the user can see it using the IoT Toolbox application.    Setup: 1 – SDK installation Download the latest version of the KW45B41Z-EVK SDK package from MCUXpresso SDK Builder Drag and drop the SDK zip file into the Installed SDKs window:   2 – Importing the project In the QuickStart Panel, click on Import SDK example From wireless_examples, select beacon_freertos. It is recommended to select UART for Debug Console when using BLE projects.  Click on finish   App Customization  1 – app_preinclude.h file: Set the following definitions to "0" in order to disable Extended Advertising and Low Power functionality.   2 – app_advertiser.h file: Add these aux prototypes that will allow to get and set the value of some flags.   /*Functions for data exchanging with beacon application*/ bool_t GetBleAppStarted(void); bool_t GetmAdvertisingOn(void); void SetmAdvertisingOn(bool_t value);   3 – app_advertiser.c file: Include fsl_component_timer_manager.h Add the macro UPDATE_BEACON_TIMER (5) to set the update timer to 5 seconds Create a timer ID by using TIMER_MANAGER_HANDLE_DEFINE Declare the callback for the timer Declare and define the "flag" BleAppStarted Include extern variable gAppAdvertisingData   Define the aux functions that will allow to get and set the value of BleAppStarted and mAdvertisingOn flags.   Define the timer callback, which will add the value of the counter into "A" field of the Beacon packet. #include "fsl_component_timer_manager.h" #define UPDATE_BEACON_TIMER (5) //in seconds /*Create timer ID*/ static TIMER_MANAGER_HANDLE_DEFINE(BeaconUpdateDataTimerID); /*Callback prototype*/ static void UpdateBeaconTimerCallback(void * pParam); /*Define the variables*/ static bool_t BleAppStarted = FALSE; static bool_t mAdvertisingOn = FALSE; /*Declare variable as external*/ extern gapAdvertisingData_t gAppAdvertisingData; /*Define functions for data echange*/ bool_t GetBleAppStarted(void) { return BleAppStarted; } bool_t GetmAdvertisingOn(void) { return mAdvertisingOn; } void SetmAdvertisingOn(bool_t value) { mAdvertisingOn = value; } /*define the timer callback*/ static void UpdateBeaconTimerCallback(void * pParam) { /*Value that will be advertised*/ static int32_t count = 1; /* Stop ADV and handle the update on the callbacks*/ Gap_StopAdvertising(); mAdvertisingOn = !mAdvertisingOn; /* On ADV data 0-1 = company ID, 2 = Beacon ID, 3 -18 = UUID, /* 19-20: A Data, 21-22: B Data, 23-24: C Data */ gAppAdvertisingData.aAdStructures[1].aData[19] = (uint8_t)((count >> 8) & 0xFF); gAppAdvertisingData.aAdStructures[1].aData[20] = (uint8_t)(count & 0xFF); count++; }   Inside App_AdvertiserHandler function, gAdvertisingParametersSetupComplete_c event is triggered when the advertising parameters setup is complete. Here, Advertising Data is set, and we are going to use this event to start the timer. Once the Advertising Data Setup is complete, we are going to use gAdvertisingDataSetupComplete_c event in App_AdvertiserHandler function to start advertising and update the timer. Every time the Data Setup is complete, the timer will start again.  case gAdvertisingParametersSetupComplete_c: { (void)Gap_SetAdvertisingData(mpAdvParams->pGapAdvData, mpAdvParams->pScanResponseData); if (!BleAppStarted) { BleAppStarted = TRUE; /*Allocate timer*/ (void) TM_Open(BeaconUpdateDataTimerID); /* Start data update timer */ (void) TM_InstallCallback((timer_handle_t) BeaconUpdateDataTimerID, UpdateBeaconTimerCallback, NULL); (void) TM_Start((timer_handle_t) BeaconUpdateDataTimerID, (uint8_t) kTimerModeSingleShot | (uint8_t) kTimerModeLowPowerTimer, TmSecondsToMilliseconds(UPDATE_BEACON_TIMER)); } } break; case gAdvertisingDataSetupComplete_c: { (void) Gap_StartAdvertising(App_AdvertisingCallback, App_ConnectionCallback); /* Start data update timer */ (void) TM_InstallCallback((timer_handle_t) BeaconUpdateDataTimerID, UpdateBeaconTimerCallback, NULL); (void) TM_Start((timer_handle_t) BeaconUpdateDataTimerID, (uint8_t) kTimerModeSingleShot | (uint8_t) kTimerModeLowPowerTimer, TmSecondsToMilliseconds(UPDATE_BEACON_TIMER)); } break;   4 – beacon.c file:  Wrap the mAppExtAdvParams structure inside gBeaconAE_c definition macro to avoid problems with the declaration of the extended advertising parameters  #if defined(gBeaconAE_c) && (gBeaconAE_c) static appExtAdvertisingParams_t mAppExtAdvParams = { &gExtAdvParams, &gAppExtAdvertisingData, NULL, mBeaconExtHandleId_c, gBleExtAdvNoDuration_c, gBleExtAdvNoMaxEvents_c }; #endif /*gBeaconAE_c */   BleApp_AdvertisingCallback handles BLE Advertising callback from the host stack. Every time advertising state changes, we are going to update Advertising Data when the device is not advertising and BleApp has already started. Replace the existing content of gAdvertisingStateChanged_c event.  case gAdvertisingStateChanged_c: { /* update ADV data when is disabled */ if((!GetmAdvertisingOn()) && GetBleAppStarted()) { Gap_SetAdvertisingData(&gAppAdvertisingData, NULL); SetmAdvertisingOn(true); } if(GetmAdvertisingOn()) { Led1On(); } else { Led1Off(); #if defined(gBeaconAE_c) && (gBeaconAE_c) if(mAppTargetState == mAppState_ExtAdv_c) { if (gBleSuccess_c != BluetoothLEHost_StartExtAdvertising(&mAppExtAdvParams, BleApp_AdvertisingCallback, NULL)) { panic(0, 0, 0, 0); } } #endif } } break;   Testing the application: The IoT Toolbox is an all-in-one application that demonstrates NXP’s BLE functionalities, the implementation of BLE and custom profiles and the compatibility with different smartphones. This mobile application can be downloaded from the App Store and Google Play Store.  Please, refer to the IoT Toolbox Mobile Application User Manual for more information on features, requirements and how to install the application.  Select Beacons  Press scan Press the USERINTERFACE Button (carrier board) to start advertising  In the IoT Toolbox app, you should be able to see the counter increasing its value every 5 seconds in the field "A"
查看全文
Using the Signal Frequency Analyzer (SFA) to Measure the FRO 6M Frequency Overview The Signal Frequency Analyzer (SFA) is a specialized hardware peripheral available in NXP’s KW45, MCXW71, KW47, and MCXW72 microcontrollers. It is designed to provide precise, real-time measurement and analysis of digital signal characteristics, including frequency, period, and timing intervals. This makes it a valuable tool for applications requiring accurate timing diagnostics, signal validation, and system debugging. By utilizing internal 32-bit counters and configurable trigger mechanisms, the SFA enables high-resolution capture of signal transitions, supporting robust system monitoring and fault detection. Functional Capabilities of the SFA The SFA module supports the following measurements: Clock signal frequency of a Clock Under Test (CUT) Clock signal period It operates using two 32-bit counters: One for the Reference Clock (REF) One for the Clock Under Test (CUT) Measurement is performed by comparing the counts of both clocks until predefined target values are reached. FRO 6M Frequency Failure Scenarios The 6 MHz Free Running Oscillator (FRO6M) may occasionally output an incorrect frequency under certain conditions: When the device exits reset When the device wakes from low-power modes To mitigate potential issues caused by incorrect FRO6M output, it is the application developer’s responsibility to verify the oscillator’s frequency and apply corrective measures as needed. Monitoring the FRO 6M Using the SFA To monitor the FRO6M signal, the following configuration is recommended: SFA Configuration Parameters Reference Clock (REF): CPU Clock (e.g., 96 MHz) Clock Under Test (CUT): FRO6M routed via CLKOUT Interrupt Mode: Enabled for asynchronous measurement completion Code Implementation The presented functions are meant to be implemented in users application, the inner functions are part of the implementations of the SFA driver from the NXP’s SDK. It can be used on MCXW71, MCXW72, KW45, kKW47, just make sure SFA Peripheral Initialization  void init_SFA_peripheral(void) { /* Enable SFA interrupt. */ EnableIRQ(SFA_IRQn); /* Set SFA interrupt priority. */ NVIC_SetPriority(SFA_IRQn, 1); SFA_Init(DEMO_SFA_BASEADDR); SFA_InstallCallback(DEMO_SFA_BASEADDR, EXAMPLE_SFA_CALLBACK); } SFA Callback Function void EXAMPLE_SFA_CALLBACK(status_t status) { if (status == kStatus_SFA_MeasurementCompleted) { SfaMeasureFinished = true; } sfa_callback_status = status; } Frequency Measurement Function This function sets up the measurement of the FRO6M signal using the CPU clock as the reference. uint8_t SFA_freq_measurement_6M_FRO(void) { uint8_t ratio = 0; uint32_t freq = 0UL; sfa_config_t config; CLOCK_SetClkOutSel(kClockClkoutSelSirc); //set clokout to SIRC SFA_GetDefaultConfig(&config); //Get SFA default config config.mode = kSFA_FrequencyMeasurement0; config.refSelect = kSFA_REFSelect1; //Set CPU clk as ref clk config.cutSelect = kSFA_CUTSelect1; //Set clkout as CUT config.refTarget = 0xFFFFFFUL; config.cutTarget = 0xFFFFUL; config.enableCUTPin = true; freq = get_ref_freq_value(CPU_CLK); SFA_SetMeasureConfig(DEMO_SFA_BASEADDR, &config); SFA_MeasureNonBlocking(DEMO_SFA_BASEADDR); while (1) { if (SfaMeasureFinished) { SfaMeasureFinished = false; if(kStatus_SFA_MeasurementCompleted == sfa_callback_status) { freq = SFA_CalculateFrequencyOrPeriod(DEMO_SFA_BASEADDR, freq);//Calculate the FRO freq if(FREQ_6MHZ + TOLERANCE <= freq ) { ratio = 1; } else { if(FREQ_3MHZ + TOLERANCE <= freq) { ratio = 2; } else { if(FREQ_2MHZ + TOLERANCE <= freq) { ratio = 3; } else { ratio = 4; } } } break; } } else { __WFI(); } } return ratio; } Result Interpretation and Usage To test the FRO 6M after adding the above functions the FRO can be tested after executing: init_SFA_peripheral(); SFA_freq_measurement_6M_FRO(); The measured FRO6M frequency is printed to the serial terminal for human-readable diagnostics. Developers can use this result to: Adapt peripheral clocking if the FRO6M frequency is incorrect Trigger corrective actions such as  switching to an alternate clock source Steps to Reconfigure Peripheral Clocking When FRO6M output frequency is lower Detect the Faulty FRO6M Output Use the SFA measurement as described earlier to determine if the FRO6M is operating below its expected frequency (6 MHz). If the result is significantly lower, proceed to reconfigure. Choose an Alternative Clock Source Most NXP MCUs offer multiple internal and external clock sources. Common alternatives include: FRO 192M OSC RF 32M Sys OSC RTC OSC Choose one that is: Stable Available in your current power mode Compatible with the peripheral’s timing requirements You can add more clock divers if needed to make a higher frequency clock reach a certain lower frequency. Reconfigure the Peripheral Clock Source Use the SDK’s CLOCK_Set... APIs to change the clock source. You may also need to: Adjust dividers to match the required baud rate or timing Reinitialize the peripheral with the new clock settings Example Scenario: Measuring the FRO and Adjusting UART Based on Frequency Ratio Imagine your application relies on the 6 MHz Free Running Oscillator (FRO), and its accuracy directly affects UART communication. To ensure reliable operation, you can use the System Frequency Adjustment (SFA) feature to monitor the FRO output and dynamically adjust the UART configuration. After measuring the 6 MHz FRO using the recommended method, the system returns a frequency ratio value. This value ranges from 1 to 4, where: 1 indicates the frequency is within expected limits (no issues), 2 to 4 represent varying degrees of deviation from the expected frequency. Using this ratio, you can initialize and configure the UART peripheral and its driver to compensate for any frequency variation, ensuring stable and accurate communication. */ int main(void) { BOARD_InitHardware(); uint8_t ch = 0; uint8_t FRO_ratio = 0; init_SFA_peripheral(); /*Measure FRO6M output frequency*/ FRO_ratio = SFA_freq_measurment_6M_FRO(); /*Init debug console and compensate in case a different frequency is output */ if(0 == FRO_ratio) { assert(0);//this user defined return value means something went wrong while measuring 6Mz FRO } uint32_t uartClkSrcFreq = BOARD_DEBUG_UART_CLK_FREQ/FRO_ratio;//Compensate the src frequency set for uart module CLOCK_EnableClock(kCLOCK_Lpuart1); CLOCK_SetIpSrc(kCLOCK_Lpuart1, kCLOCK_IpSrcFro6M); DbgConsole_Init(BOARD_DEBUG_UART_INSTANCE, BOARD_DEBUG_UART_BAUDRATE, BOARD_DEBUG_UART_TYPE, uartClkSrcFreq); ...... } SDK 25.0.00 Enhancements for FRO6M Calibration To address known reliability issues with the 6 MHz Free Running Oscillator (FRO6M), particularly during transitions from low-power modes, SDK version 25.06.00 introduces a set of software enhancements aimed at improving oscillator validation and calibration. Key Features Introduced FRO6M Calibration API Two new functions have been added to facilitate runtime verification of the FRO6M frequency: PLATFORM_StartFro6MCalibration() Initializes the calibration process by enabling the cycle counter, capturing a timestamp, and preparing the system to measure elapsed time using both the CPU and the FRO6M-based timestamp counter. PLATFORM_EndFro6MCalibration() Completes the calibration by comparing the time measured via CPU cycles and the FRO6M timestamp counter. This comparison determines whether the oscillator is operating at the expected 6 MHz or has erroneously locked to a lower frequency (e.g., 2 MHz). The result is stored in a global ratio variable (fwk_platform_FRO6MHz_ratio) for use by the system. These functions provide a lightweight and efficient mechanism to detect and respond to oscillator misbehavior, ensuring system stability and timing accuracy. Configuration Macro gPlatformEnableFro6MCalLowpower_d This macro enables automatic FRO6M frequency verification upon exiting low-power modes. When defined, the system will invoke the calibration functions to validate the oscillator before resuming normal operation. Default Integration The calibration mechanism is enabled by default in the SDK configuration file fwk_config.h, ensuring that all applications benefit from this safeguard without requiring manual setup. Use Case and Benefits These enhancements are particularly valuable in applications where: Precise timing is critical (e.g., wireless communication, sensor sampling). The system frequently enters and exits low-power states. Clock source integrity must be guaranteed to avoid peripheral misbehavior or timing faults. By integrating these calibration routines, developers can proactively detect and correct FRO6M frequency anomalies, improving overall system robustness and reducing the risk of runtime errors due to clock instability.  
查看全文
The MCX W23 is a family of devices. All devices are Arm Cortex®-M33 based wireless microcontrollers for embedded applications supporting Bluetooth Low Energy 5.3. It can be used to develop IoT solutions. MCX W23xA supports LV_SM mode. MCX W23xB supports HV_SM and XR_SM mode. These devices include: • Up to 128 kB of on-chip SRAM • Up to 1024 kB on-chip flash • Quad SPI interface for operation from external SPI NVM • Five general-purpose timers (CTIMER) • One SCTimer/PWM • One RTC/alarm timer • One 24-bit multirate timer (MRT) • Windowed watchdog timer (WWDT) • Three flexible serial communication peripherals (each of which can be a USART, SPI, or I2C interface) Building on NXP's strong history of providing industrial edge solutions, the MCX W series offers a wide operating temperature range from -40 °C to 125 °C . The Arm Cortex-M33 provides a security foundation, offering isolation to protect valuable IP and data with TrustZone technology. It simplifies the design and software development of digital signal control systems with the integrated digital signal processing (DSP) instructions. To support security requirements, the MCX W23 also offers support for SHA-1, SHA2-256, AES, RSA, ECC, UUID, dynamic encryption, and decryption of the flash data using a PRINCE engine, debug authentication, and TBSA-M compliance.   Bluetooth Specifications The MCX W23 is compatible with the Bluetooth Low Energy 5.3 specification: – Bluetooth Low Energy 5.3 controller subsystem (QDID 200592) – Bluetooth Low Energy 5.3 host subsystem (QDID 226395) – Includes a 48-bit unique bluetooth device address – Up to 4 simultaneous connections supported The MCX W23 supports the following Bluetooth Low Energy features: – Device privacy and network privacy modes (version 5.0) – Advertising extension PDUs (version 5.0) – Anonymous device address type (version 5.0) – Up to 2 Mbps data rate (version 5.0) – Long range (version 5.0) – High-duty cycle, nonconnectable advertising (version 5.0) – Channel selection algorithm #2 (version 5.0) – High output power (version 5.0) – Advertising channel index (version 5.1) – Periodic advertising sync transfer (PAST) (version 5.1) – Supports LE power control feature (version 5.2) RF antenna: 50 Ω single-ended RF receiver characteristics: – Sensitivity −94 dBm in Bluetooth Low Energy 2 Mbps – Sensitivity −97 dBm in Bluetooth Low Energy 1 Mbps – Sensitivity −100 dBm in Bluetooth Low Energy 500 kbps – Sensitivity −102 dBm in Bluetooth Low Energy 125 kbps – Accurate RSSI measurement with ±3 dB accuracy Flexible RF transmitter level configurability: – TX mode 1 (TXM1): Range from −31 dBm to +2 dBm when VDD_RF exceeds 1.1 V – TX mode 2 (TXM2): Range from −28 dBm to +6 dBm when VDD_RF exceeds 1.7   Bluetooth_5.0_Feature_Overview  Bluetooth_5.1_Feature_Overview  Bluetooth_5.2_Feature_Overview Bluetooth_5.3_Feature_Overview   Training MCX W Series Training - NXP Community   Equipment Wireless Equipment: This article provides the links to the Equipment that helps to the project development    Useful Links Transmitter Maximum Output Power Override Application Note   Development Tools  NXP MCUXpresso: MCUXpresso IDE offers advanced editing, compiling and debugging features with the addition of MCU-Specific debugging. Supports connections with all general-purpose Arm Cortex-M.  VSCode: MCUXpresso for Visual Studio Code (VS Code) provides an optimized embedded developer experience for code editing and development. Zephyr RTOs  NXP Application Code Hub: Application Code Hub (ACH) repository enables engineers to easily find microcontroller software examples, code snippets, application software packs and demos developed by our in-house experts. This space provides a quick, easy and consistent way to find microcontroller applications. NXP SPSDK: Is a unified, reliable, and easy to use Python SDK library working across the NXP MCU portfolio providing a strong foundation from quick customer prototyping up to production deployment. NXP SEC Tool: The MCUXpresso Secure Provisioning Tool us a GUI-based application provided to simplify generation and provisioning of bootable executables on NCP MCU devices. NXP OTAP Tool: Is an application that helps the user to perform an over the air firmware update of an NXP development board. Support If you have questions regarding MCX W23, please leave your question in our Wireless MCU Community! here
查看全文
The customer wanted to update the FW of the PN7462 to an NFC cockpit. In general, we recommend that customers use MASS STORAGE MODE to update two files (including Flash and EEPROM) into memory. But there will always be customers who don’t know or how to successfully access MASS STORAGE MODE. They cannot succeed in doing so. Therefore, it is recommended to use the GUI FLASH tool to upgrade the FW to the NFC cabin. In order to clearly indicate the user how to use the GUI FLASH tool, this document describes this step by step.
查看全文
The customer submitted a case through DFAE to seek support from NXP. They designed the product using PN5180, and according to feedback, about 10% of the boards could not read the card. The specific manifestation of the problem is: after the host issues the RF_ON command, RF field seems cannot be turned on and then fails to detect the card. Therefore, it can be seen that the problem should be on TX, not RX. The customer's device does not enable DPC and LPCD.
查看全文
Generality on the Oscillation Margin Outline It is a margin to the oscillation stop and the most important item in the oscillation circuit. This margin is indicated by ratio based on the resistance of crystal, and it shows how amplification oscillation capability the circuit has. The oscillation circuit can theoretically operate if the oscillation margin is 1 or more. However, if oscillation margin is close to 1, the risk of operation failure will increase on module due to a too long oscillation start up time and so on. Such problems will be able to be solved by a larger oscillation margin. It is recommended to keep 3 times or more as oscillation margin during the startup of the oscillation. Factor of 10 is commonly requested for Automotive at startup and steady state. 5 is enough for IoT market. However, some providers accept to have 3 times as oscillation margin for steady state. Here below is an oscillation example to explain better the phenomenon: At start up, the configuration is set internally by the hardware in order to be sure to start the oscillation, the load capacitor is 0pF. After this time, it is the steady state and the load capacitor from the internal capabank is taken into account.   If load capacitor is not set correctly with the right oscillator gain, the oscillation will not be maintained after the start up.   The oscillator gain value will also depend on the resisting path on the crystal track.  A good way to evaluate it is to add a resistor on the crystal path and try to launch the oscillation. In the SDK, the gain and the load capacitor can set directly in the application code. Calculation The oscillation margin is able to be calculated as follows: The oscillation margin calculation is based on the motional resistor Rm by formula below : ESR: Crystal Equivalent Series Resistance C0: Shunt Capacitance Rm1: Motional resistor Cm1: Motional Capacitance Lm1: Motional Inductance fosc: oscillation frequency, measured with Rs_Max mounted fr: resonance frequency of the Rm1Lm1Cm1 of the crystal from (1) :    Oscillation margin is:                     Example: for the EVK board’s 32kHz crystal (NX2012SE) ESR    80000,0 Ω Rm1    79978,2 Ω Lm1    3900 H Cm1   6,00E-15 F C0      1,70E-12 F CL      1,25E-08 F fr        32901,2 Hz fosc    32771 Hz Series Resistor Rsmax        7,50E+05 Ω Oscillation Margin   10,3   Measurement Requirements for measurement PCB (for the test, it is recommended to add a series resistor on the EXTAL32k trace) Crystal unit (with equivalent circuit constants data) Resistors (SMD) Measurement equipment (Oscilloscope, Frequency counter or others capable to observe oscillation) Add a resistor to the resonator in serial and check if the oscillation circuit works or not.   If the oscillation is confirmed by 2), change the resistor to larger. If there is no oscillation, change the resistor to smaller. Find out the maximum resistor (=Rs_max) which is the resistor just before the oscillation stops. Measure the oscillating frequency with Rs_max. Calculate the oscillation margin based on the Rs_max.   Notes The Oscillation margin is affected not only by crystal characteristics but also parts that compose the oscillation circuit (MCU, capacitor and resistor). Therefore, it is recommended to check the oscillation margin after the MCU functionality is checked on your module. The series resistor is only for evaluation. Please do not use this resistor in actual usage. It is recommended to check the functionality of your module also. It is possible that the module does not work correctly due to a frequency shift on oscillation circuit and so on. A test jig and socket could be used in measurement but stray of them will give influence for oscillation margin.   KW47/MCX W72 product oscillation margin overview 32MHz crystal NXP recommends to use the quartz NDK NX1612SA 32MHz (EXS00A-CS15781) to be compliant with the +/-50ppm required in Bluetooth LE. Using the current SDK, NXP guarantees an oscillation margin of 10 for startup and steady state commonly used by Automotive customers. Higher oscillation margin can be reached by using higher ISEL and CDAC parameters with some drawback respectively on the power consumption and the clock accuracy. ( the load capacitance bank (CDAC) and the oscillator amplifier current (ISEL)) NDK recommended / target values for oscillation margin is informed case by case. On a general basis, the requested oscillation margin has to be between the recommended value and 3 times this value. "NDK quartz provider (FR) explains this oscillation margin specification is only mandatory at the start-up phase, not at the steady state. Starting the oscillation is the phase that needs more energy. That's why the gain of the oscillator gain is at the maximum value which means not optimal consumption. When the oscillation stability is reached, the gain could be reduced to save power. The oscillation will not be affected.  Keep in mind a quartz oscillates by mechanical effect. So, when the oscillation is starting you need the highest energy to emulate it. By its own inertial, you need less energy to maintain the mechanical oscillation. NDK provides a good picture of this. Starting up a crystal into oscillation is like a train what you would like to start moving. At the beginning the train is stopped and you need a lot of energy to start running. When the train is running at its nominal speed, you need less effort to maintain that movement and a very big effort to stop it completely."   Example: for the oscillation margin 10 (Series Resistor Rs_max = 560 Ω) The CDAC/ISEL area where the oscillation starts and propagates in the internal blocks is defined (green color raws) in the table below. The frequency accuracy is indicated for some of them:     32kHz crystal NXP recommends to use the quartz NDK NX2012SE (EXS00A-MU01517) or NDK NX2012SA (EXS00A-MU00801) to be compliant with the +/-500ppm required in Bluetooth LE. using the current SDK, the oscillation margin with this quartz is 10 with some limitation on the Crystal load capacitance selection (Cap_Sel) and the Oscillator coarse gain amplifier (ESR_Range) values, with some drawback respectively on the power consumption and the clock accuracy. For an oscillation margin at 10 for instance, the Capacitor value from the databank (Cap_Sel) is limited (green area) as shown in the graph below:   Example: for an oscillation margin at 6.3, if the load cap is set at 12pF and the ESR_Range to 3, the 32kHz frequency accuracy will be around -23ppm. From this point, the oscillation margin can be enlarged to 10.3 by decreasing the load cap to 6pF but the accuracy will be degraded (110ppm).   For an Oscillation margin at 10, the graph below is showing the ESR_Range versus the load cap. The possible load cap variation range (in green) is larger when the ESR_Range increases:   Example: at oscillation margin 10.3, the clock accuracy can be improved from 111ppm to 21ppm by setting the ESR_range 2 to an ESR_Range 3 but the current consumption will be increased to 169.5nA. Another important point is that for a given ESR_Range value, getting higher the load cap is much more increasing the current than in the example above.   Remark: Under a high oscillation margin condition, the crystal voltage will be smaller.   Other possible ways to improve the oscillation margin exist: - Use external capacitor instead of internal capacitor banks. Oscillation margin goes up to 10. - Use the internal 32kFRO is supported for BLE (target:+/-500ppm)              
查看全文
Content
查看全文
The MCX W72x family features a 96 MHz Arm® Cortex®-M33 core coupled with a multiprotocol radio subsystem supporting Matter, Thread, Zigbee and Bluetooth LE. The independent radio subsystem, with a dedicated core and memory, offloads the main CPU, preserving it for the primary application and allowing firmware updates to support future wireless standards. The MCX W72x also offers advanced security with an integrated EdgeLock® Secure Enclave Core Profile and will be supported by NXP's EdgeLock 2GO cloud services for credential sharing. The MCX W72x family includes Bluetooth Channel Sounding capabilities, with a dedicated on-chip Localization Compute Engine to reduce ranging latency. It incorporates additional memory to support application-specific code, connectivity stacks and over-the-air firmware updates. In addition, the radio subsystem can run the full Thread or Zigbee stack alongside the Bluetooth Low Energy stack. This delivers reliable wireless performance, as the real-time activities of the radio run on a separate core from the application. Building on NXP's strong history of providing industrial edge solutions, the MCX W series offers a wide operating temperature range from -40 °C to 125 °C and peripherals for industrial applications, including an optional CAN interface and will be part of NXP's 15-year Product Longevity program to support long-term industrial use. The MCX W series is supported by the MCUXpresso Developer Experience to optimize, ease and help accelerate embedded system development. The MCX W72x is in pre-production, developers can get started today with the MCX W71x, which is pin and software compatible.       Channel Sounding  Channel Sounding Introduction presentation   Bluetooth Specifications Bluetooth_5.0_Feature_Overview  Bluetooth_5.1_Feature_Overview  Bluetooth_5.2_Feature_Overview Bluetooth_5.3_Feature_Overview Bluetooth_5.4_Feature_Overview Bluetooth_6_Feature_Overview   Bluetooth Training Bluetooth Low energy 6.0 NXP Introduction   Training MCX W Series Training - NXP Community   Equipment Wireless Equipment: This article provides the links to the Equipment that helps to the project development    Useful Links Clock Measuring using the Signal Frequency Analyzer (SFA) module for KW45/KW47/MCXW71/MCXW72 - NXP Community : this community provides the steps on how to use the Signal Frequency Analyzer  The best way to build a PCB first time right with KW45 (Automotive) or K32W1/MCXW71 (IoT/Industrial)... Community : In this community provides the important link to build a PCB using a KW45 or K32W148 and MCXW71 and all concerning the radio performances, low power and radio certification (CE/FCC/ICC) How to use the HCI_bb on Kinetis family products and get access to the DTM mode:  This article is presenting two parts: How to flash the HCI_bb binary into the Kinetis product. Perform RF measurement using the R&S CMW270 BLE HCI Application to set transmitter/receiver test commands: This article provides the steps to show how user could send serial commands to the device.Bluetooth LE HCI Black Box Quick Start Guide : This article describes a simple process for enabling the user controls the radio through serial commands. Kinetis (K32/38/KW45 & K32W1/MCXW71) Power Profile Tools:  This page is dedicated to the Kinetis (KW35/KW38/KW45) and MCX W7x (MCX W71) Power Profile Tools. It will help you to estimate the power consumption in your application (Automotive or IoT) and evaluate the battery lifetime of your solution. KW47/MCXW72 32MHz & 32kHz Oscillation margins: this article provides the properly configuration for the Oscillation margins for the circuit.
查看全文
KW47 family features a 96 MHz Arm® Cortex®-M33 core coupled with a Bluetooth LE subsystem. The independent radio subsystem, with a dedicated core and memory, offloads the main CPU, preserving it for the primary application and allowing firmware updates to support future wireless standards. The KW47 also offers advanced security with an integrated EdgeLock® Secure Enclave Core Profile and will be supported by NXP's EdgeLock 2GO cloud services for credential sharing. The KW47 family includes Bluetooth Channel Sounding capabilities, with a dedicated on-chip Localization Compute Engine to reduce ranging latency. It incorporates additional memory to support application-specific code, connectivity stacks and over-the-air firmware updates. This delivers reliable wireless performance, as the real-time activities of the radio run on a separate core from the application. Building on NXP's strong history of providing automotive solutions, the KW47 family offers a wide operating temperature range from -40 °C to 125 °C and peripherals for automotive applications, KW47 will be part of NXP's 15-year Product Longevity program to support long-term use. The KW47 series is supported by the MCUXpresso Developer Experience to optimize, ease and help accelerate embedded system development. The KW47 is in pre-production, developers can get started today with the KW45, which is pin and software compatible.       Early access program Join KW47 early access program here: KW47 Early Access you can request access contacting NXP sales team    Channel Sounding  Channel Sounding Introduction presentation CCC CS power estimator tool available (excel file attached)   Bluetooth Specifications Bluetooth_5.0_Feature_Overview  Bluetooth_5.1_Feature_Overview  Bluetooth_5.2_Feature_Overview Bluetooth_5.3_Feature_Overview Bluetooth_5.4_Feature_Overview Bluetooth_6_Feature_Overview   Training Bluetooth Low energy 6.0 NXP Introduction RF Switch Comparison Absorptive/Reflective Standards Comparison ETSI / FCC / ARIB requirements BLE Channel Sounding  - Overview BLE Channel Sounding - RF Hardware BLE Channel Sounding - ANSYS Modeling Tools  BLE Channel Sounding - Antenna Prototypes Validation Measurements   Equipment Wireless Equipment: This article provides the links to the Equipment that helps to the project development    Useful Links How to run KW47-M2 standalone - NXP Community Reference Designs - NXP Community Clock Measuring using the Signal Frequency Analyzer (SFA) module for KW45/KW47/MCXW71/MCXW72 - NXP Community : this community provides the steps on how to use the Signal Frequency Analyzer  [MCUXSDK] How to use GitHub SDK for KW4x, MCXW7x, MCXW2x - NXP Community this community post provides step by step how to use GitHub SDK [MCUXSDK] GitHub SDK - Documentation for Bluetooth LE platforms - NXP Community this community post provides the documentation for BLE platforms.  The best way to build a PCB first time right with KW47 (Automotive) or MCX W72 (IoT/Industrial) - NXP Community : In this community provides the important link to build a PCB using a KW47 and MCX W72 and all concerning the radio performances, low power and radio certification (CE/FCC/ICC). How to use the HCI_bb on Kinetis family products and get access to the DTM mode:  This article is presenting two parts: How to flash the HCI_bb binary into the Kinetis product. Perform RF measurement using the R&S CMW270 BLE HCI Application to set transmitter/receiver test commands: This article provides the steps to show how user could send serial commands to the device. Bluetooth LE HCI Black Box Quick Start Guide : This article describes a simple process for enabling the user controls the radio through serial commands. Kinetis (K32/38/KW45 & K32W1/MCXW71) Power Profile Tools:  This page is dedicated to the Kinetis (KW35/KW38/KW45) and MCX W7x (MCX W71) Power Profile Tools. It will help you to estimate the power consumption in your application (Automotive or IoT) and evaluate the battery lifetime of your solution. Refer to the KW45_WK47_MCXW71_MCXW72_BLE_power_profile_calculator_v1.33.xlsx attached for the KW47 & MCX W72 power profile tool. KW45 & MCX W71 kinetis products are also included for power consumption comparison. KW47/MCXW72 32MHz & 32kHz Oscillation margins: this article provides the properly configuration for the Oscillation margins for the circuit.  
查看全文
Matter support in Visual Studio Code (VS Code) is now open to all developers. MCUXpresso extension for VS Code v24.12.71 integrates the Matter toolchain for development on Windows, macOS and Linux.  It can be installed by visiting Microsoft’s Marketplace for VS Code. The following steps will set up your Windows system to develop Matter on NXP devices. This Getting Started process takes ~1 hour.  This is similar time it takes with flawless CLI setup. Import Matter repo takes ~30 minutes (Clone Matter repo; run bootstrap setup script)  Import first project for a board takes @~10 minutes (SDK repo download - 1st time every board) Additional projects can then be quickly imported/built. 1. Install Pigweed Project Automation Tool Pigweed is used for easier automation of building, testing, and linting GN and CMake projects.  Matter uses GN, so Pigweed is used by the maintainers of the project.  Complete the following to allow the Matter Bootstrap to properly modify/install the repository. Launch a Terminal in Administrator mode to allow operations to complete successfully. Ensure that Developer Mode is enabled. This can also be done by running the following command as an administrator: REG ADD HKLM\Software\Microsoft\Windows\CurrentVersion\AppModelUnlock /t REG_DWORD /v AllowDevelopmentWithoutDevLicense /d 1 /f\"" Enable long file paths. This can be done using  regedit  or by running the following command as an administrator: REG ADD HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem /v LongPathsEnabled /t REG_DWORD /d 1 /f  Enable Git symlinks: git config --global core.symlinks true For more information on these settings visit Get started with Pigweed - Pigweed  2. Install Visual Studio Code (VS Code) Microsoft allows users to quickly install VS Code from https://code.visualstudio.com/download. The link allows the user to select the appropriate download for their OS.  The following instructions are for a Windows installation.  However, most of the following steps also apply to Mac and Linux users. It can be helpful for new users to directly install VS Code and the NXP extension.  This can be done by sharing one of two links:  vscode:extension/NXPSemiconductors.mcuxpresso https://marketplace.visualstudio.com/items?itemName=NXPSemiconductors.mcuxpresso  If VS Code exists on the system, the user will be taken to the NXP MCUXpresso for VS Code extension in the Microsoft Marketplace.  If VS Code is NOT installed on the system the user will be guided through the install of VS Code.  At this point the VS Code application should be installed on the laptop. 3. Install MCUXpresso for VS Code Extension The user can install or update the MCUXpresso for VS Code extension from within VS Code.  The following steps outline how.  A short clip is included to show the steps. Open VS Code.  Launch program from desktop. Open the Extensions Marketplace.  Click on Icon of 4 blocks in left navigation  or use Ctrl-Shft-X. Search "NXP" or "Mcuxpresso" in the Extension search window at the top left. MCUXpresso for VS Code extension will be displayed.  Click on listing. Click on blue Install button in the Extension Overview that is opened in the editor. The Extension is properly installed when the following NXP icon is shown in left navigation.  At this point the VS Code application now includes the NXP MCUXpresso extension. 4. Run MCUXpresso Installer for Tool Dependencies It is now necessary to install other tool dependencies to properly use VS Code for MCUXpresso, Zephyr and/or Matter. NXP provides the MCUXpresso Installer utility to simplify properly meeting these tool dependencies.  The following steps list how to use the installer for a Matter system.  A short clip is included to show the steps. Click on "Open MCUXpresso Installer" found under Quickstart Panel in upper left. The MCUXpresso Installer will launch if already installed.  NOTE: If the Installer is not found, the user should select the blue "Download" button in the bottom right notification. Select the following from the MCUXpresso Installer list of available tools: Matter Developer Arm GNU Toolchain Standalone Toolchain Add-ons LinkServer Click the blue "Install" button and wait until installation progress shows complete Restart VS Code so that new settings are active At this point the VS Code application now includes the NXP MCUXpresso extension, and the laptop has any other tools required to begin Matter installation. 5. Import NXP Matter Repository The MCUXpresso for VS Code extension simplifies how the user can add Matter to their workspace.  The repository import wizard automates most of the steps required for a user to get started with Matter. The following steps show how to add Matter Repository.  2 short clips are included to show the steps. Click on "Import Repository" found under Quickstart Panel in upper left. Click Repository found in the wizard's Remote tab. Select "NXP Matter".  This automatically targets the NXP/Matter repo found on GitHub. Enter a desired location to clone/store the NXP Matter repository.  Closer to C:/ is better. Select "release/v1.4.0" listed as an available version under Revision: Click Import The import process can take ~30 minutes depending on network bandwidth and IT software. NOTE: This is similar amount of time when using CLI in a terminal.   After the repo is cloned, the Matter Bootstrap script is used to setup matter environment. At this point the user laptop has a valid Matter workspace.  The workspace is now capable of importing and building Matter projects. 6. Import First Matter Project The MCUXpresso for VS Code extension includes an Import Example wizard that simplifies adding Matter projects to a workspace.  The following instructions show how to import a project from the NXP Matter repository.   A short clip is included to show the steps. Click "Import Example from Repository" from the Quickstart Panel in the upper left. Select the Matter Repository from the drop-down options for Repository. Select the desired Toolchain from the drop-down options for Toolchain.  A GNU Toolchain should be available from previous MCUXpresso Installer steps. Select the target board from the drop-down options for Board.  The listed boards are supported in the NXP Matter repo. Select the desired project from the Template drop-down options.  Currently there are "contact-sensor-app" and "lighting-app". Click Create blue button. At this point there is a Matter project in the workspace.  The project can be explored with the provided project properties and file explorer views. 7. Build Matter Project Building the project is the final step for Getting Started with a Matter project in VS Code.  The extension has properly setup the project toolchain and will build successfully.  The NXP extension reduces the setup time by not importing the SDK for all supported boards.  The board SDK is automatically imported/cloned when it is not located on the 1st build for a board.  Successive projects for the same board will not require this additional step/delay. The following steps show how to build a matter project in the workspace.  A short clip is included to show the steps.  Select the Matter project listed under the Projects pane located in the primary left sidebar.  When selected, project control icons are revealed to the left of the project name. Click on the Build icon.   Verify the build was successful by viewing the binary files with File Explorer.  Click the File Explorer icon to the right of project name or in the upper left of the side bar navigation.  The binary is found under the project's \out\debug folder. This exercise on "Getting Started with Matter" is completed.  At this point the Matter project imported to the workspace was successfully built. 
查看全文
Wireless Equipment: Ellisys:  Ellisys is a leading worldwide supplier of advanced protocol test solutions for Bluetooth®, Wi-Fi, WPAN, USB 2.0, SuperSpeed USB 3.1, USB Power Delivery, USB Type-C, DisplayPort and Thunderbolt technologies.  USB, Bluetooth and WiFi Protocol Test Solutions  Bluetooth Vanguard - Advanced Bluetooth Analysis System Bluetooth Qualifier - Bluetooth Qualification System   RFcreations:     RFcreations is a core team of highly skilled and knowledgeable, professional engineers with decades of experience across the design and development of both RF and digital hardware, embedded, protocol stacks and UI software mini-moreph morephCS   Teledyne Lecroy:    offers an extensive range of test solutions to help with design, development, and deployment of devices and systems frontline-x240 Wireless Protocol Analyzer  frontline-x500e Wireless Protocol Analyzer  Rohde&Schwarz:        is a global technology group striving for a safer and connected world. Offers Test & Measurement, Technology Systems and Networks & Cybersecurity Divisions R&S CMW270 wireless connectivity tester Useful links:  Top Online Bluetooth LE learning Resource Ellisys Bluetooth Video Series RFcreations Bluetooth Sniffers and Test Tools Learn Bluetooth Low Energy in a single weekend
查看全文
The wireless examples feature many common Bluetooth, zigbee and thread configurations. This article describes each SDK example.  MCUs: KW45 K32W1 KW47 MXCW71/72 Category SDK Example Name Description comments BLE Controller hci_bb the HCI black box demo gives access to the BLE controller via serial interface using commands and events.    Bluetooth adv_ext_central the adv_ext_central implements a custom GATT based temperature Profile. After pairing with the peripheral, it configures notifications and displays temperature values on a terminal.  Board to Board Bluetooth adv_ext_peripheral the adv_ext_peripheral implements a custom GATT based temperature Profile. it begins with a general discoverable mode and waits for the central node to connect and configure notifications for the temperature value.  Board to Board Bluetooth ancs_c the demo acts as a peripheral that advertises a service solicitation for custom ANCS service. Also, can acts as a client once connected to the device offering the ANCS service. The application displays information about ANCS notifications received from the mobile. this service is available on iOS mobile devices.   Bluetooth beacon the demo has non-connectable advertising packets that are sent on the three advertising channels. From the info sent by the beacon we can see: company identifier.  beacon identifier.  UUID, by default this value is a random value based on the UI of the board.  some beacon application data  RSSI IoT toolbox app Bluetooth ble_fscibb implements a custom GATT based wireless UART profile. it can be possible to interact with the device through a serial terminal.    Serial Terminal  Bluetooth ble_shell implements a console application that allows the user to interact with a full feature BLE stack library. implements GAP roles and both client and server, to enabling these roles can be done using some commands. this demo allows the user to add, erase or modify services.  Serial Terminal Bluetooth eatt_central the application behaves as a GAP central node. It scans for an EATT peripheral to connect to. Once connected it performs service discovery, initiates an EATT connection and configures indications on the peripheral for services A and B.  The central reports the received service data and steps taken during the setup on a serial terminal.  Board to Board Bluetooth eatt_peripheral the application behaves as a GAP peripheral node. it works a as general discoverable mode and waits for a GAP central node to connect. This application implements two services, Service A and Service B. After the EATT connection in completed, the peer must enable indications for the two services to periodically receive profile data over EATT.   Board to Board Bluetooth hid_device (Mouse) the demo moves the cursor in a square pattern between a min and max axis. this demo behaves as a GAP peripheral node with a general discoverable mode that waits for a GAP central node to connect.    Bluetooth hid_host the application behaves as a GAP central node. it works as a GAP limited discovery Procedure and searches for HID devices to connect to. After connecting with the peripheral node, it configures notifications and displays the received HID reports on a serial terminal.  Serial Terminal Bluetooth loc_reader the application behaves as a GAP peripheral node. This application has the RASP profile implemented; it advertises for compatible devices, once it connected begins to send ranging data to the central device.  Board to Board Bluetooth loc_user_device the application behaves as a GAP central node. it scans for compatible devices, once it connected begins to send ranging commands to the peripheral device and calculates the distance estimation based on the information received.  Board to Board Bluetooth otac_att the over the air programming client is a GAP peripheral which advertising the BLE OTAP service and waits for a connection from an OTAP server. After an OTAP server connects, the OTAP client waits for it to write the OTAP control point CCCD and then starts sending commands via ATT indications.  over the air programming tool //IoT toolbox app Bluetooth otac_I2cap (different transfer method) The over the air programming client is a GAP peripheral which advertising the BLE OTAP service and waits for a connection from an OTAP server. After an OTAP server connects, the OTAP client waits for it to write the OTAP control point CCCD and then starts sending commands via ATT indications.  over the air programming tool // IoT toolbox app Bluetooth otas the Over the air programming server application is a GAP central which scans for devices advertising the BLE OTAP service. After it finds one, it connects to it and configures the OTAP control point CCC descriptor to receive ATT indications from the device then it waits fir OTAP commands from the device.  over the air programming tool // IoT toolbox app Bluetooth temp_coll the application behaves as a GAP central node, it enters GAP limited discovery procedure and searches for sensor devices to pair with. After pairing with the peripheral, it configures notifications and displays temperature values on a serial terminal.  Board to Board Bluetooth temp_sens the application behaves as a GAP peripheral node. it enters GAP general discoverable mode and waits for a GAP central node to connect and configure notifications for the temperature value.  Board to Board Bluetooth w_uart implements a custom GATT based wireless UART profile. it can be possible to interact with the device through a serial terminal.  IoT toolbox app Bluetooth wireless_ranging Is used to perform secure and highly accurate distance estimation between two BLE device.  the application is made of two parts: The embedded firmware, that can be controlled manually via serial connection. the host application (python) running on a PC and controlling the firmware using serial link. Wireless Ranging application allows to: Configure most of the parameters required for measurement. Select what type of measurement to be performed.  Trigger CS measurements using range or test command. Log system debug information but also raw IQ data information in MatLab. Board to Board  genfsk connectivity_test   Board to Board ieee_802.15.4 connectivity_test   Board to Board reference design bluetooth this application is based on a GATT temperature Service and demonstrates power consumption optimization in BLE. The power consumption is optimized during advertising, connected and no activity states.   
查看全文
The MCX W71 Wireless Microcontroller features a 96 MHz Arm® Cortex®-M33 core coupled with a multiprotocol radio subsystem supporting Matter™, Thread®, Zigbee® and Bluetooth® Low Energy. The independent radio subsystem, with a dedicated core and memory, offloads the main CPU, preserving it for the primary application and allowing firmware updates to support future wireless standards. The MCX W71x also offers advanced security with an integrated EdgeLock® Secure Enclave Core Profile and will be supported by NXP's EdgeLock 2GO cloud services for credential sharing. The MCX W71x family supports industrial and IoT devices as a single chip solution or by acting as a coprocessor in a hosted architecture.   MCX W71 Block Diagram   Documents MCX W71 Reference Manual MCX W71 Data Sheet Errata Secure Reference manual** Certifications   Evaluation boards FRDM-MCXW71 Page FRDM-MCXW71 Schematic FRDM-MCXW71 Design Files FRDM-MCXW71 User Manual FRDM-MCXW71 Getting Started   Application Notes   Software, Hardware and Peripherals: AN14398: How to use RTC on FRDM-MCXW71 This application note describes how to configure and use the RTC peripheral in a BLE demo. AN14416: Enabling Watchdog Timer Module on FRDM-MCXW71 Bluetooth Low Energy Connectivity Stack This application note describes the process to implement the WDOG timer in a Connectivity Stack demo.  AN14396: MCX W71 Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device This Application note provides the steps and process for integrating the Over the Air Programming Client Service into a BLE peripheral device. AN14394: Creating Firmware Update Image for MCX W71 using OTAP tool This application note provides the steps to create and upgrade the image on the MCX W71 board via OTAP.  AN14645: How to use Random Static Device Address for Bluetooth Application This document introduces how to enable Random Static Device Address for a Bluetooth Low Energy application. The default device address type in the SDK is Public Device Address. Power Management: AN14391: MCX W71 Loadpull Report This application note describes measurement methodology and associated results on the load-pull characteristics. AN14389: MCXW71 Bluetooth LE Power Consumption Analysis This application note provides information about the power consumption of MCXW71 wireless MCXs, the hardware design and optimized for low power operation.  AN14387: MCXW71 Power Management Hardware This application note describes the usage of the different modules dedicated to power management in the MCXW71 MCU. RF: AN14399: MCXW71 Connectivity test for 802.15.4 Application This application note describes how to use the connectivity test tool to perform MCXW71 802.15.4 RF performance. AN14374: FRDM-MCXW71 RF System Evaluation Report for Bluetooth LE and IEEE 802.15.4 Applications This application note provides the radio frequency evaluation test results of the FRDM-MCXW71 board for BLE (2FSK modulation) and for IEEE 802.15.4 (OQPSK modulation) applications. Also describes the setup and tools that can be used to perform the tests.  AN14514: MCX W71 RF System Evaluation for IEEE 802.15.4 Applications with Interferer Coexistence The document describes test setup and provides steps to perform the RF system evaluation test of NXP MCX W71 MCU for IEEE 802.15.4 applications with coexistence of these interferers: noise, sinewave, Bluetooth audio, and Wi-Fi. AN14515: FRDM-MCXW71 RF System Evaluation Report for Bluetooth Low Energy Applications with interferer Coexistence The document describes test setup and provides steps to perform the RF system evaluation test of FRDM-MCXW71 for Bluetooth LE applications (2FSK modulation) with coexistence of the following interferers: noise, Sinewave, Bluetooth audio, and Wi-Fi. AN2731: Compact Planar Antennas for 2.4 GHz Communication This document is not an exhaustive inquiry into antenna design. It is instead focused on helping the customers understand enough board layout and antenna basics to select a correct antenna type for their application, as well as avoiding typical layout mistakes that cause performance issues that lead to delays. Also, several popular antennas are presented as possible solutions for some of the IEEE 802.15.4 and Bluetooth low energy applications AN14476: NXP Dual PAN Feature and Performance Results This document provides a comprehensive exploration of the Dual Personal Area Network (Dual-PAN) feature on NXP Wireless Connectivity products implementing IEEE 802.15.4 low rate wireless protocol area network standard   Security: AN14427: MCXW71 In-System Programming Utility This application note provides steps to boot MCXW71 MCU in ISP mode and establish various serial connections to communicate with the MCU. AN14397: Programming the MCXW71 Flash for Application and Radio Firmware via Serial Wire Debug during mass production This application note describes the steps to write, burn and programming all the necessary settings via SWD in mass production.  AN14370: MCXW71 Flash Encryption using NPX This application note uses the Secure Provisioning SDK (SPSDK) which is a unified, reliable, and easy to use Python SDK library working across the NXP MCU portfolio providing a strong foundation from quick customer prototyping up to production deployment. AN14371: MCXW71 Secure Boot using SEC Tool This application note describes how to configure an image for secure boot and updates using the Secure Provisioning GUI Tool. AN14373: Secure Boot for MCXW71 Secure boot guarantees that unauthorized code cannot be executed on a given product AN14568: Debug Authentication on MCXW71 This application note describes the steps for debug authentication using the Secure Provisioning SDK tool. AN14379: Managing Lifecycles on MCXW71 The purpose of this application note is to describe the lifecycle stages that are available to the user, how to access them, the limitations of the lifecycles, and how to transition to the next lifecycle AN14544: EdgeLock 2GO Services for MPU and MCU This application note introduces various methods that the EdgeLock 2GO service can be used with MCU and MPU devices and the features available for each method. AN14624: EdgeLock 2GO Provisioning via Secure Provisioning Tool (SEC) for MCUs EdgeLock 2GO is a fully managed cloud platform operated by NXP that provides secure provisioning services for easy deployment and maintenance of IoT devices that integrate NXP MCU, MPU, and EdgeLock SE05x secure elements. AN14670: EdgeLock 2GO Provisioning via SPSDK for MCUs EdgeLock 2GO is a fully managed cloud platform operated by NXP that provides secure provisioning services for easy deployment and maintenance of IoT devices that integrate NXP MCU, MPU, and EdgeLock SE05x secure elements.   Zigbee Protocol Zigbee 3.0 Getting Started: This Application Note provides guidance towards the best starting point for the development of your own Zigbee 3.0 device firmware. Zigbee 3.0 Base Device Template: This Application Note provides example applications to demonstrate the features and operation of the Base Device in a Zigbee 3.0 network that employs the NXP DK006 Zigbee 3.0 microcontrollers. Zigbee 3.0 Developing Devices: This Application Note describes how to develop a Zigbee 3.0 On/Off Sensor using the Base Device Template End Device application as a starting point. The On/Off Sensor described in this Application Note is based on Zigbee device types from the Zigbee Lighting and Occupancy (ZLO) Device Specification Zigbee 3.0 Light Bulbs: This Application Note provides example applications for light bulbs in a Zigbee 3.0 network that employs the NXP DK006 wireless microcontrollers. Zigbee 3.0 IoT Control Bridge: This guide provides information to allow users to connect to the Control Bridge using a Graphical User Interface (GUI), which simulates a host, to operate the Zigbee network. It also describes the serial protocol used to interface with the Control Bridge, as well as the payloads of all relevant commands and responses. Zigbee 3.0 Green Power Devices: This Application Note provides guidance towards the best starting point for the development of your own Zigbee 3.0 device firmware. Zigbee 3.0 Sensors: This Application Note provides example applications for sensors in a Zigbee 3.0 network that employs the NXP DK006 Zigbee 3.0 wireless microcontrollers. Zigbee 3.0 Controller and Switch: his Application Note provides example applications for a controller and a switch in a Zigbee 3.0 network that employs the NXP DK006 wireless microcontrollers. The Application Note also includes an example of a typical Zigbee Green Power (GP) Energy Harvesting switch in a Zigbee 3.0 network. Zigbee 3.0Developing Clusters: This Application Note describes how to develop a Zigbee 3.0 Window Covering Device using the Base Device Template Router Device application as a starting point. This Application Note can be used in two ways: As a starting point for creating a Window Covering device using the functional example created in the final step. As a guide to creating devices and clusters not included in the NXP ZCL implementation including manufacturer-specific devices and cluster. Support If you have questions regarding MCX W71, please leave your question in our Wireless MCU Community! here   Useful Links Clock Measuring using the Signal Frequency Analyzer (SFA) module for KW45/KW47/MCXW71/MCXW72 - NXP Community : this community provides the steps on how to use the Signal Frequency Analyzer  The best way to build a PCB first time right with KW45 (Automotive) or K32W1/MCXW71 (IoT/Industrial) - NXP Community : In this community provides the important link to build a PCB using a KW45 or K32W148 and MCXW71 and all concerning the radio performances, low power and radio certification (CE/FCC/ICC) How to use the HCI_bb on Kinetis family products and get access to the DTM mode:  This article is presenting two parts: How to flash the HCI_bb binary into the Kinetis product. Perform RF measurement using the R&S CMW270 BLE HCI Application to set transmitter/receiver test commands: This article provides the steps to show how user could send serial commands to the device. Bluetooth LE HCI Black Box Quick Start Guide : This article describes a simple process for enabling the user controls the radio through serial commands.   Training MCX W71 Training, Secure MCUs for Matter, Zigbee, BLE MCX W Series Training - NXP Community   Equipment Wireless Equipment: This article provides the links to the Equipment that helps to the project development  Development Tools  NXP MCUXpresso: MCUXpresso IDE offers advanced editing, compiling and debugging features with the addition of MCU-Specific debugging. Supports connections with all general-purpose Arm Cortex-M.  VSCode: MCUXpresso for Visual Studio Code (VS Code) provides an optimized embedded developer experience for code editing and development. Zephyr RTOs  NXP Application Code Hub: Application Code Hub (ACH) repository enables engineers to easily find microcontroller software examples, code snippets, application software packs and demos developed by our in-house experts. This space provides a quick, easy and consistent way to find microcontroller applications. NXP SPSDK: Is a unified, reliable, and easy to use Python SDK library working across the NXP MCU portfolio providing a strong foundation from quick customer prototyping up to production deployment. NXP SEC Tool: The MCUXpresso Secure Provisioning Tool us a GUI-based application provided to simplify generation and provisioning of bootable executables on NCP MCU devices. NXP OTAP Tool: Is an application that helps the user to perform an over the air firmware update of an NXP development board.   **For secure files is necessary to request additional access. 
查看全文
Aiming to increase the reach of card and mobile payment, Europay, Mastercard and Visa (EMV) point of sale (POS) terminals are getting more lightweight, replacing hardware security with software and back-end security. Off-the-shelf mobile devices, like your smart phone, can become an acceptance point for payment cards, a so-called SoftPOS.
查看全文
MIFARE DESFire EV1 supports the APDU message structure according to ISO/IEC 7816-4 for an optional wrapping of the native MIFARE DESFire EV1 APDU format and for the additionally implemented 7816-4 commands from a practical point of view.
查看全文
 Introduction The KW45-EVK & FRDM-MCX W71 include an RSIM (Radio System Integration Module) module with an external 32 MHz crystal oscillator and 32kHz external oscillator. 32MHz clock source reference is mainly intended to supply the Bluetooth LE Radio peripheral, but it can be used as the main clock source of the MCU as well. This oscillator includes a set of programmable capacitors to support crystals with different load capacitance needs. Changing the value of these capacitors can modify the frequency the oscillator provides, that way, the central frequency can be tuned to meet the wireless protocol standards. This configurable capacitance range is from C: 3.74pF to C: 10.67pF and it is configured through the RFMC Register XO_Test field at the CDAC. The KW45 comes preprogrammed with a default load capacitance value (0x1Eh). However, since there is variance in devices due to tolerances and parasite effects, the correct load capacitance should be checked by verifying that the optimal central frequency is attained.  You will need a spectrum analyzer to measure the central frequency. To find the most accurate value for the load capacitance, it is recommended to use the Connectivity Test demo application. 32kHz clock source reference is mainly intended to run in low power when the 32MHz clock is switched off. This 32kHz clock enable to leave the low power mode and enter in Bluetooth LE events. Adjusting 32MHz Frequency Example   Program the KW45 /MCX W71 Connectivity Test software on the device. This example can be found in SDK_2_15_000_KW45B41Z-EVK_MR5\boards\kw45b41zevk\wireless_examples\genfsk\connectivity_test folder from your SDK package. Baremetal and FreeRTOS versions are available. In case that KW45-EVK board is being used to perform the test, you should move the 15pF capacitor populated in C3 to C4, to direct the RF signal on the SMA connector.                                   3. Connect the board to a serial terminal software. When you start the application,              you will be greeted by the NXP logo screen: Press the enter key to start the test. Then press "1" to select "Continuous tests":          5. Finally, select "6" to start a continuous unmodulated RF test. At this point, you should be able to measure the signal in the spectrum analyzer. You can change the RF channel from 0 to 127 ("q" Ch+ and "w" Ch- keys), which represents the bandwidth from 2.360GHz to 2.487GHz, stepping of 1MHz between two consecutive channels. To demonstrate the trimming procedure, this document will make use of channel 42 (2.402GHz) which corresponds to the Bluetooth LE channel 37. In this case, with the default capacitance value, our oscillator is not exactly placed at the center of the 2.402GHz, instead, it is slightly deflected to 2.40200155 GHz, as depicted in the following figure:         6. The capacitance can be adjusted with the "d" XtalTrim+ and "f" XtalTrim- keys. Increasing the capacitance bank means a lower frequency. In our case, we need to increase the capacitance to decrease the frequency. The nearest frequency of 2.402 GHz was 2.40199940 GHz        7. Once the appropriate XTAL trim value has been found, it can be programmed as default in any Bluetooth LE example, changing the BOARD_32MHZ_XTAL_CDAC_VALUE constant located in the board_platform.h file:   Adjusting 32kHz Frequency Example   You could adjust the capacitor bank on the 32kHz oscillator. You need to observe the 32kHz frequency at pin 45 (PTC7) using an spectrum analyzer or a frequency meter. Inserting this below code in the main(void) in your application: Hello_world application in this example. 32kHz frequency is not active by default on pin45(PTC7). You need to configure the OSC32K_RDY at 1 in the CCM32K register Status Register (STATUS) field to observe the 32kHz frequency at pin 45 (PTC7). Configure the CAP_SEL, XTAL_CAP_SEL and EXTAL_CAP_SEL field available in the CCM32K register 32kHz Oscillator Control Register (OSC32K_CTRL).       XTAL_CAP_SEL and EXTAL_CAP_SEL values are from 0pF (0x00h) to 30pF (0x0Fh). You could configure those 2 registers in the clock_config.c file. Default values are 8pF for both registers.        
查看全文
Some users want to use SDIO signals on M.2 connector for WiFi card. In default linux bsp, there is no problem using imx8mp-evk-usdhc1-m2.dts, usdch1 driver can normally loaded, and detect WiFi module, But default android bsp doesn't support it, even if using corresponding device tree, usdch1 driver can NOT be loaded correctly, Because default android bsp doesn't load pwrseq_simple.ko, which is used by usdhc1 node. Detailed steps on enabling usdhc1 in the attached document, hope it can help users who wants to use M.2 SDIO WiFi card. [Note] For other android bsp version, users can also refer to the steps in attached document.   Thanks! Regards, Weidong Sun
查看全文