S32K Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

S32K Knowledge Base

Labels

Discussions

Sort by:
Often we need to implement a SENT receiver in order to read the information sent by some sensors. It is useful to have the possibility of transmitting different message patterns in order to test your implementation. With this project you can transmit via a computer terminal a group of messages (up to 64). The project runs on a S32K144 EVB board, the output signal goes through J206 pin.
View full article
*******************************************************************************  The purpose of this demo application is to present a usage of the  FlexCAN IP Driver for the S32K3xx MCU.  The example uses FLEXCAN-0 for transmit & receive Tusing following Message buffer :-- #define RX_MB_IDX_0 10U #define RX_MB_IDX 11U #define TX_MB_IDX 12U FIFO Receive Message from range :-- 0x01 to 0x16 BAUDRATE : 500 KBPS  ------------------------------------------------------------------------------ * Test HW: S32K3X2EVB-Q172 * MCU: S32K312 * Compiler: S32DS3.5 * SDK release: RTD 3.0.0 * Debugger: PE micro * Target: internal_FLASH ********************************************************************************    
View full article
******************************************************************************** * File: main.c * Owner: David Tosenovjan * Version: 0.0 * Date: Mar-12-2021 * Classification: General Business Information ******************************************************************************** * Detailed Description: * Example code configures the whole 4kB FlexRAM area for SRAM use. * By default or after mass erase, S32K1 device has only address range * 0x1400_0000-0x1400_0DFF (3.5kB) accessible for SRAM use. * To enable remaining 0.5kB it is needed to perform Program Partition Command * (with the setting shown in the example), but only once with the blank new * device (or previously mass erased). It sets up address range * 0x1400_0000-0x1400_0FFF for SRAM use. * ------------------------------------------------------------------------------ * Test HW: S32K146EVB-Q144 * MCU: PS32K146UAVLQ 0N73V QAC1735D * Fsys: default * Debugger: Lauterbach Trace32, OpenSDA * Target: Debug_RAM * Terminal: none * EVB connection: default ********************************************************************************
View full article
Some customers inquire about the FreeMASTER JumpStart Project mentioned in the Get Started with the S32K1xxEVB. So here to talk about the problems you may encounter and how to solve them. Where to download FreeMASTER JumpStart Project Customers may not find where to download FreeMASTER JumpStart Project at the moment. It should be downloaded from the Embedded Software under Design Resources of the development board. But the download link of S32K142EVB \ S32K144EVB \ S32K146EVB is missing. We can search the keywords “* JumpStart” at www.nxp.com download embedded application software and PC host application software that you need. Which version of S32 Design Studio should be used The readme file will tell us which version of S32 Design Studio the project was created. For example: the readme in the S32K144_EVB_JumpStart_Firmware package shows that the project for S32K14x EVB JumpStart SW was created in S32 Design Studio for ARM v2.0. Which version of SDK should be used You may get the Validation of S32K144_EVB_JumpStart_Firmware Kinetis SDK project when import the project : The project S32K144_EVB_JumpStart_Firmware was created for Kinetis SDK SDK_S32K14x_08 which is not installed in this product (repository SDK_S32K14x_08 not found).  The chapter Version Tracking of S32SDK_for_S32K1xx_RTM_3.0.3_ReleaseNotes shows that the SDK_S32K14x_08 means EAR 0.8.5. By default only S32 SDK EAR 0.8.4 is installed in S32DS for ARM 2.0, so we need to update the S32 Design Studio for Arm® v2.0 Update 2 – S32 SDK 0.8.5 EAR & MQX by refer S32 Design Studio for Arm v2.0 - Update 2 available Incorrect UART baud rate setting The baud rate selected for LPUART in Processor Expert is 600 by default, which does not match the description in the readme file. 600 is not in the FreeMASTER serial port baud rate support list, so let us reconfigure the baud rate to 115200 and then click Generate Processor Expert Code. When connect S32K144EVB with FreeMASTER by UART, you can see that the Baud rate 300 is not in the support list. This is the reason why using the default configuration of S32K144_EVB_JumpStart_Firmware is not able to connect with FreeMASTER.       
View full article
Hi,        ARM Cortex-M have a DWT (Data Watchpoint and Trace) unit implemented, and it has a nice feature in that unit which counts the execution cycles. The DWT is usually implemented on most Cortex-M3, M4 and M7 devices, including e.g. the NXP S32K14x.      Attachment is the sample project on S32K142 to measure the running time of a function.     Password of extraction is nxp.     Enjoy the measuring!   Cheers! Oliver BTW, Measure the running time of one function on PowerPC could also be gotten through the link.
View full article
*******************************************************************************  The purpose of this demo application is to present a usage of the  FlexCAN IP Driver for the S32K3xx MCU.  The example uses FLEXCAN-0 for transmit & receive using following Message buffer :-- #define RX_MB_IDX_0 10U #define RX_MB_IDX 11U #define TX_MB_IDX 12U BAUDRATE : 500 KBPS  ------------------------------------------------------------------------------ * Test HW: S32K3X2EVB-Q172 * MCU: S32K312 * Compiler: S32DS3.5 * SDK release: RTD 3.0.0 * Debugger: PE micro * Target: internal_FLASH ********************************************************************************        
View full article
******************************************************************************** * Detailed Description: * The example adds DTCM_1 backdoor access for CM7_0. * int_dtcm_1_bd memory region and section dtcm1_bd_data added to the linker file. * DTCM1 ECC initialized in startup_cm7.s * MPU on DTMC1 enabled in system.c * Global variables decleared with __attribute__ ((section(".dtcm1_bd_data"))) in main.c * ------------------------------------------------------------------------------ * Test HW: S32K314EVB-Q172 * MCU: S32K314 * Debugger: S32DS_ARM_3.4 * Target: internal_FLASH ********************************************************************************
View full article
*******************************************************************************  The purpose of this demo application is to present a usage of the Printf Semihosting for the S32K3xx MCU.  ------------------------------------------------------------------------------ * Test HW: S32K3X2EVB-Q172 * MCU: S32K312 * Compiler: S32DS3.5 * SDK release: RTD 3.0.0 * Debugger: PE micro * Target: internal_FLASH ******************************************************************************** Create New project :-- Select Semi hosting library in project Properties :-- In Debugger setting :--- Include file :-- #include <stdio.h> Output :--    
View full article
************************************************************************************************ * Detailed Description: * The example shows how to skip an instruction * that causes uncorrectable ECC fault exception during C40_Ip_Read(). * ----------------------------------------------------------------------------------------------- * Test HW: S32312EVB-Q172 * MCU: S32K312 * Debugger: S32DS 3.4, PEMicro Multilink * Target: internal_FLASH *************************************************************************************************
View full article
The purpose of this demo application is to show you the usage of the FlexCAN module configured to use CAN FD and Enhance RXFIFO using the S32 RTD API. - This demo application requires two boards, or single board connected with CAN tool. - CAN FD is enabled with bitrate 500/2000 kbps - MB0 is configured to transmit either std. or ext ID - MB1 is configured to receive ext ID 0xFACE and MB2 to receive std ID 0x1 - Enhanced RXFIFO is enabled and 3 enhanced RXFIFO filter elements (filter + mask scheme) are defined ext ID 0xABCD with mask 0x1FFFFFFF std ID 0x123 with mask 0x7FF std ID 0x456 with mask 0x7FF - DMA is used to read enhanced RXFIFO, watermark is set to 5 - Callback function is used as well to handle TX and RX process in MBs and Enhanced RXFIFO after DMA complete 5 reading of RXFIFO  ------------------------------------------------------------------------------  Test HW: S32K3444EVB-Q172  MCU: PS32K344EHVPBS 1P55A  Compiler: S32DS.ARM.3.5  SDK release: S32K3_RTD_4_0_0_D2311  Debugger: Lauterbach  Target: internal_FLASH
View full article
/******************************************************************************** Detailed Description: Example shows possible implementation of multiple ADC conversions using SDK. Here 7 channels are sampled periodically. 2 ADC modules and 2 PDBs are used. ADC0 is configured to sample 3 channels, ADC1 4 channels. PDBs are set to back-to-back mode to perform chain conversion as shown in RM's Figure 46-3. PDB back-to-back chain forming PDB0-PDB1 ring. Within ADC component you need to select ADC input to be measured for each item in configuration list. For ADC0 ch5 External input channel 28 is selected, as it is connected to potentiometer on the EVB. PDB0 is triggered by LPIT ch0 at 500ms rate. Two DMA channels are configured to read result registers from both ADCs. * ------------------------------------------------------------------------------ * Test HW: S32K148EVB-Q144 * MCU: FS32K144UAVLQ 0N20V * Target: Debug_FLASH * EVB connection: UART terminal 115200, 8N1 * Compiler: S32DS.ARM.3.4 * SDK release: S32SDK_S32K1XX_RTM_4.0.3 * Debugger: S32DS ******************************************************************************** Revision History: Ver Date Author Description of Changes 1.0 Feb-21-2023 Petr Stancik Initial version, based on adc_hwtrigger_s32k148 *******************************************************************************/
View full article
******************************************************************************** * Detailed Description: * * FlexIO module is configured for UART RX and TX function. * Timer 0 and Shifter 0 is used for UART TX function. * Timer 1 and Shifter 1 is used for UART RX function. * Timer 2 is used for idle detection. * Baud rate = 115200 * HW connection: PTA0 - TX, PTA1 - RX, PTA7 is used to signalize idle detection. * Connect PTA0 and PTA1 to create external loopback for this test. * ------------------------------------------------------------------------------ * Test HW: S32K144EVB * MCU: FS32K144HAMLL 0N57U * Fsys: 80MHz * Debugger: Lauterbach Trace32 * Target: internal_FLASH ********************************************************************************
View full article
This example code brief  :-- 1> Tested without the SL of BMS, so no dependency on the BMS Safety library. 2> Its tested on 2 AFE MC33774 board connected in TPL 3> Change following macro in mc33774_cfg.h file  to change the numbers of AFE connected in TPL. RTD : 3.0.0 P07 BMS SDK : 1.0.2 This example does this task :-- Application Measurement. SYNC measurement Periodic Measurement. Read AFE temperature. Cell balancing timer method. Reading the Cell balancing status register & fault registers. =================== Setup used ============ Attached code is tested with TWO MC33774 AFE connected in TPL mode.         =============== MCU Pins used =========== TPL1-TX :-- TPL1TXCSB  --> PTC6/LPSPI0_PCS1 TPL1TXSCLK --> TPL12TXCLK --> PTE1/LPSPI0_SCK    TPL1TXDATA --> TPL12TXDATA --> PTE2/LPSPI0_SOUT    TPL1-RX :-- TPL1RXCSB  --> PTB17/LPSPI1_PCS3 TPL1RXCLK  --> PTB14/LPSPI1_SCK TPL1RXDATA --> PTB15/LPSPI1_SIN     ================= EVB Link ================== https://www.nxp.com/design/design-center/development-boards-and-designs/18-cell-battery-pack-emulator-to-supply-mc33774-bcc-evbs:BATT-18EMULATOR https://www.nxp.com/design/design-center/development-boards-and-designs/analog-toolbox/evaluation-board-for-mc33664atl-isolated-network-high-speed-transceiver:FRDMDUALK3664EVB https://www.nxp.com/design/design-center/development-boards-and-designs/mc33774ata-evaluation-board-with-isolated-daisy-chain-communication:RD33774ADSTEVB https://www.nxp.com/design/design-center/development-boards-and-designs/automotive-development-platforms/s32k-mcu-platforms/s32k3x4evb-t172-evaluation-board-for-automotive-general-purpose:S32K3X4EVB-T172   ================== Measurement types used in example ===== Periodic measurement is done by 33774 , this is cyclic Other Two : application , sync  need send command to start Application measurement , need send app_capture command twice , and then read the result. Synchronous measurement take out the Primary adc result(VC)and secondary result(VB) .But the VC and VB result comes from different adc. Period measurement start when you send  API "MSR_StartMeasurement" and then 774 will do period measurement automatically periodically :--   Why we need to measure Vc & Vb both :-- ASIL-D ,yes we can measurement VC channel by primary ADC and measurement VB by secondary ADC from hardware VC and VB are come from same point of battery cell. Now 2 ADC compare with each other, that lead to high safety (ASIL D). Primary & Secondary Device temperature reading :-- This API is used for it MC33774_CDD_BCC_SWC_Running_Slot4(). ============= Cell Balancing =========== Cell Balancing method used :-- MC33774 balance will switch between odd channel (1,3,5,7,... 17) and even channel (2,4,6,8,..18) by 500ms period , (250ms for odd and then switch to even 250ms and then odd 250ms...)it is because of IC design and cannot change by software.   MC33774 have lots of balance method  this example uses "timer method ". How to check Balancing is enabled :-- Following function MC33774_CDD_BCC_SWC_Running_Slot5() read the : Balance status & fault registers BAL_SWITCH_STAT0, BAL_SWITCH_STAT1 represent the balancing MOSFET current status.   Measure the voltage drop across the balancing register is the best approach. You will see the voltage drop appears every 250ms if PWM is 100%.  Please check the schematic of the 33774 EVB, find the balancing resistor on which channel balancing is enabled.     ======= How much time to wait to extract the measurements results ======= 240 us is the time of one SCAN Time between each Application measurement sequence. Min App measure time for 16 sample :-- 4.08ms = (16+1) *240 Min 1 SYNC measurement time, for 16 samples = 18 cycle ≈ 18 * (16*240us) ≈ 69 ms ============= Using Debugger ============ Debugger breakpoint will cause the communication timeout at the AFE, which will RESET the AFE. To use the debugger while development you need to disable the communication timeout. In S32DS MEX file you cannot disable the timeout function ( limit the value of 0~255) Disable Communication timeout in code :--   ================= Results for FIRST AFE =========================== Application Measurement : Cell voltage result :-- SYNC measurement : VC, VB same for both primary & Secondary  measure :--      
View full article
  1. Abstract This article also explains the S32DS+EB configuration, RTD400. The MCAL training of other modules will be based on this structure in the future. However, this article will provide a command line version of the code. If you need the command line mode, you can directly copy one under the RTD MCAL code package and use VScode to compile it. The hardware of this article is based on K312-miniEVB, and the board situation is as follows:      Fig 1 Function: In the K312 MCAL code, the UART transceiver function is implemented using DMA. Since RTD400 does not have K312 routines, there is also a process of porting from RTD400 to K312 MCAL. Of course, the previous article has explained it very clearly, and also provided the S32DS project template. This article will be based on the previous S32DS EB project template.  2. Function Implementation 2.1 K312 MINIEVB hardware configuration For the hardware configuration, since this article only uses UART, the structure is very simple, using the pins: LPUART3_TX: PTD2 LPUART3_RX: PTD3 and an external TTL-USB tool to achieve signal communication. 2.2 EB Configuration     Here we list all the modules used in EB tresos related to this article, and focus on the modules that require specific configuration. Fig 2 2.2.1 Mcl module The Dma Logic Channel interface needs to be configured. The main purpose is to configure two DMA channels for LPUART3_TX and RX. (1)dmalogicChannel_Type_0 Fig 3 (2)dmalogicChannel_Type_2 Fig 4 The callback registered here can also be called directly in the code. 2.2.2 Mcu module Mcu->McuClockSettingConfig->McuClockReferencePoint->Lpuart3_clk Fig 5 In fact, it configures the clock source frequency of LPUART to 24Mhz, which comes from AIPS_SLOW_CLK. 2.2.3 Platform module Platform->Interrupt Controller->IntCtrlConfig,Configure 3 channels: Fig 6 Here we only need to pay attention to the LPUART3 interrupt, as well as the DMA0 channel 6 and channel 7 interrupts, because these two DMA channels are configured for UART TX and RX. FlexIO is ignored, it is just a matter of whether it is deleted in the original routine. 2.2.4 Port module Port->PortContainer, add PTD2,PTD3 pins: Fig 7 Fig 8 2.2.5 Uart module There are two places to configure: (1)uart->General Fig 9 (2)uart->uartChannel Fig 10 There are 4 points to note here: Point 1: Select the clock source configured in the mcu Point 2: Configure the baud rate to 115200 Point 3: Select the asynchronous mode as DMA Point 4: Select the two DMA channels configured in the mcl, and you need to match TX and RX to the corresponding DMA channels. 2.2.6 Rm module Rm->DMA MUX Configure 2 DMA_MUX channels: Fig 11 Fig 12 2.3 main code     #include "Mcl.h" #include "Mcu.h" #include "CDD_Uart.h" #include "CDD_Rm.h" #include "Port.h" #include "Platform.h" #include "Lpuart_Uart_Ip_Irq.h" #include "Flexio_Uart_Ip_Irq.h" //#include "check_example.h" #include <string.h> #include "Port_Cfg.h" #define UART_LPUART_INTERNAL_CHANNEL 0U #define UART_FLEXIO_TX_CHANNEL 1U #define UART_FLEXIO_RX_CHANNEL 2U /* Welcome messages displayed at the console */ #define WELCOME_MSG "MCAL UART DMA Helloworld for automotive with S32K312!\r\n" /* Error message displayed at the console, in case data is received erroneously */ #define ERROR_MSG "An error occurred! The application will stop!\r\n" /* Length of the message to be received from the console */ #define MSG_LEN 50U #define UART_BUFFER_LENGTH ((uint32)10U) Std_ReturnType T_Uart_Status; //uint8 Rx_Buffer[UART_BUFFER_LENGTH]; #define UART_START_SEC_VAR_CLEARED_UNSPECIFIED_NO_CACHEABLE #include "Uart_Memmap.h" __attribute__(( aligned(32) )) uint8 Rx_Buffer[UART_BUFFER_LENGTH]; #define UART_STOP_SEC_VAR_CLEARED_UNSPECIFIED_NO_CACHEABLE #include "Uart_Memmap.h" uint32 g_Uart_CallbackCounter = 0U; uint32 g_DmaCh16_ErrorCallbackCounter = 0U; uint32 g_DmaCh17_ErrorCallbackCounter = 0U; //void Uart_Callback (void); void Uart_Callback(const uint8 HwInstance, const Lpuart_Uart_Ip_EventType Event, void *UserData); void Mcl_DmaCh16_ErrorCallback (void); void Mcl_DmaCh17_ErrorCallback (void); void Uart_Callback(const uint8 HwInstance, const Lpuart_Uart_Ip_EventType Event, void *UserData) { if(Event == LPUART_UART_IP_EVENT_END_TRANSFER) { __asm volatile ("nop"); __asm volatile ("nop"); __asm volatile ("nop"); __asm volatile ("nop"); __asm volatile ("nop"); __asm volatile ("nop"); } else if (Event == LPUART_UART_IP_EVENT_TX_EMPTY) { __asm volatile ("nop"); __asm volatile ("nop"); } else if (Event == LPUART_UART_IP_EVENT_RX_FULL) { __asm volatile ("nop"); } else if (Event == LPUART_UART_IP_EVENT_ERROR) { __asm volatile ("nop"); } else { __asm volatile ("nop"); } } void Mcl_DmaCh6_ErrorCallback (void) { g_DmaCh16_ErrorCallbackCounter++; } void Mcl_DmaCh7_ErrorCallback (void) { g_DmaCh17_ErrorCallbackCounter++; } boolean User_Str_Cmp(const uint8 * pBuffer1, const uint8 * pBuffer2, const uint32 length) { uint32 idx = 0; for (idx = 0; idx < length; idx++) { if(pBuffer1[idx] != pBuffer2[idx]) { return FALSE; } } return TRUE; } /** * @brief Main function of the example * @details Initializez the used drivers and uses the Icu * and Dio drivers to toggle a LED on a push button */ int main(void) { Std_ReturnType UartStatus = E_NOT_OK; uint32 RemainingBytes; uint32 Timeout = 0xFFFFFF; Uart_StatusType UartReceiveStatus = UART_STATUS_TIMEOUT; Uart_StatusType UartTransmitStatus = UART_STATUS_TIMEOUT; /* Initialize the Mcu driver */ Mcu_Init(NULL_PTR); Mcu_InitClock(McuClockSettingConfig_0); Mcu_SetMode(McuModeSettingConf_0); /* Initialize Mcl module */ Mcl_Init(NULL_PTR); /* Initialize Rm driver for using DmaMux*/ Rm_Init (NULL_PTR); /* Initialize all pins using the Port driver */ Port_Init(NULL_PTR); /* Initialize IRQs */ Platform_Init(NULL_PTR); /* Initializes an UART driver*/ Uart_Init(NULL_PTR); T_Uart_Status = Uart_AsyncSend(UART_LPUART_INTERNAL_CHANNEL, (const uint8 *)WELCOME_MSG, strlen(WELCOME_MSG)); if (E_OK == T_Uart_Status) { do { /* Get transmission status */ UartTransmitStatus = Uart_GetStatus (UART_LPUART_INTERNAL_CHANNEL, &RemainingBytes, UART_SEND); } while (UART_STATUS_NO_ERROR != UartTransmitStatus && 0 < Timeout--); Timeout = 0xFFFFFF; UartTransmitStatus = UART_STATUS_TIMEOUT; } for(;;) { /* Receive data from the PC - Get 10 bytes in total */ UartStatus = Uart_AsyncReceive (UART_LPUART_INTERNAL_CHANNEL, Rx_Buffer, UART_BUFFER_LENGTH); if (E_OK == UartStatus) { do { /* Get receive status */ UartReceiveStatus = Uart_GetStatus (UART_LPUART_INTERNAL_CHANNEL, &RemainingBytes, UART_RECEIVE); } while (UART_STATUS_NO_ERROR != UartReceiveStatus && 0 < Timeout--); Timeout = 0xFFFFFF; UartReceiveStatus = UART_STATUS_TIMEOUT; } UartStatus = E_NOT_OK; /* Send data to the PC - Echo back the received data */ UartStatus = Uart_AsyncSend (UART_LPUART_INTERNAL_CHANNEL, Rx_Buffer, UART_BUFFER_LENGTH); if (E_OK == UartStatus) { do { /* Get transmission status */ UartTransmitStatus = Uart_GetStatus (UART_LPUART_INTERNAL_CHANNEL, &RemainingBytes, UART_SEND); } while (UART_STATUS_NO_ERROR != UartTransmitStatus && 0 < Timeout--); Timeout = 0xFFFFFF; UartTransmitStatus = UART_STATUS_TIMEOUT; } UartStatus = E_NOT_OK; } Uart_Deinit(); Mcl_DeInit(); // Exit_Example((T_Uart_Status1 == E_OK) && (T_Uart_Status2 == E_OK)); return (0U); }     It should be noted here that according to RTD C:\NXP\SW32K3_S32M27x_RTD_R21-11_4.0.0\eclipse\plugins\Uart_TS_T40D34M40I0R0\doc的RTD_UART_IM.pdf, RTD_UART_UM.pdf. Fig 13 When doing DMA transfer, the buffer needs to be placed in the noncacheable area. That's why this article is:     #define UART_START_SEC_VAR_CLEARED_UNSPECIFIED_NO_CACHEABLE #include "Uart_Memmap.h" __attribute__(( aligned(32) )) uint8 Rx_Buffer[UART_BUFFER_LENGTH]; #define UART_STOP_SEC_VAR_CLEARED_UNSPECIFIED_NO_CACHEABLE #include "Uart_Memmap.h"     3. Test Result Use UART3, pin UART3_TX:PTD2, UART3_RX:PTD3 After the chip is reset, send first: Helloworld for automotive with S32K344! Then wait for reception. After receiving 10 bytes of data, generate uart_callback interrupt and enter LPUART_UART_IP_ENET_END_TRANSFER. You can see that the data received in RX_Buffer is consistent with the data sent. Then, the code will loop back the received data. The test situation is as follows: The figure below shows two groups of tests: PC sends: 1234567890, after MCU receives it, loop it back. PC sends: 0987654321, after MCU receives it, debug stops at the breakpoint, you can check the received buffer situation, you can see that the buffer data is correct. Fig 14 Fig 15 Attached are two code packages: (1) Uart_TS_T40D34M40I0R0_miniK312_3.zipEB MCAL command line method After unzip the code, put it in: C:\NXP\SW32K3_S32M27x_RTD_R21-11_4.0.0\eclipse\plugins, and then you can compile it directly using the command line : Fig 16 (2)Mcal_UARTDMA_S32K312_RTD400_S32DS.zip:The way to import into S32DS, of course, it already contains the EB project: Fig 17 PS: Add another code, it add the IDLE function, based on the RTD400,  Mcal_UARTDMA_IDLE_S32K312_RTD400_S32DS.zip Test result is:      
View full article
[S32K3 Tools Part] How to use VScode to compile EB MCAL project       For EB configured MCAL code, it is usually based on RTD and then compiled using the command line. When I first started learning, I always opened the relevant files directly to modify them, and then used the window cmd method to type commands. This method is very clumsy. Therefore, this article will show how to use VScode to open and compile a RTD4.0.0 S32K344 MCAL project. Of course, for MCAL EB projects, before compiling, you need to use the EB tool to open the configuration file of the corresponding project, and then close it after the project is generated. 1 VScode tool and configuration VScode download link: https://code.visualstudio.com/Download After downloading, install it. Here are some installation plug-ins I often use:   Fig 1 Fig 2 You can search in extensions and install it directly. 2. Use VScode to compile the RTD MCAL project This article takes RTD4.0.0, SW32K3_S32M27x_RTD_R21-11_4.0.0 as an example, and the platform is the official S32K344-EVB board. The code takes Dio_TS_T40D34M40I0R0 project as an example. In order not to affect the original routine, Dio_TS_T40D34M40I0R0 is copied and saved as Dio_TS_T40D34M40I0R0_vscode 2.1 Use EB tresos generate the configuration Open EB tools, import the project in path: C:\NXP\SW32K3_S32M27x_RTD_R21-11_4.0.0\eclipse\plugins\Dio_TS_T40D34M40I0R0_vscode\examples\EBT\S32K3XX\Dio_Example_S32K344\TresosProject Fig 3 Double-click someId, then right-click. If you do not need to make custom configurations, just click generate project. Wait for the generation to complete without errors and close the EB IDE. Fig 4 2.2 VScode  open project    First open VScode and select the project path in open Folder: C:\NXP\SW32K3_S32M27x_RTD_R21-11_4.0.0\eclipse\plugins\Dio_TS_T40D34M40I0R0_vscode\examples\EBT\S32K3XX\Dio_Example_S32K344 Fig 5 After opening, you can see that all the files in the path have been put in: Fig 6 You can save the workspace so you don't need to open the folder every time. File->Save workspace as, save to the path: C:\NXP\SW32K3_S32M27x_RTD_R21-11_4.0.0\eclipse\plugins\Dio_TS_T40D34M40I0R0_vscode\examples\EBT\S32K3XX\Dio_Example_S32K344   2.3 Modify mk file The project mk file needs to be modified to specify gcc, tresos paths, etc. Modify points:project_parameters.mk GCC_DIR = C:/NXP/S32DS.3.5_RTD400/S32DS/build_tools/gcc_v10.2/gcc-10.2-arm32-eabi TRESOS_DIR = C:/EB/tresos_29_0_0 PLUGINS_DIR = C:/NXP/SW32K3_S32M27x_RTD_R21-11_4.0.0/eclipse/plugins Fig 7 Modify points: check_build_params.mk Delete ifeq ("$(wildcard $(T32_DIR)/bin/windows/t32marm.exe)","") $(error Invalid path set to Trace32. \ The provided path: from project_parameters.mk T32_DIR=$(T32_DIR) is invalid!) Endif Fig 8 Then save all files:File->save all 2.4 Compile the file Terminal->New Terminal Enter the following command: >make generate >make build Fig 9 Fig 10 As you can see, after make build, an elf file has been generated in the out folder. This elf file can be directly downloaded using two methods: (1) S32DS empty project link to elf to download (2) Lauderbach directly download elf file   2.5 debug the generated elf file Since the S32K344-EVB has an onboard opensda tool, we directly use the S32DS empty project to link to the generated main.elf file to download and debug. Create a new S32DS project, and the interface is PE Multilink, then directly change the elf file to main.elf in the debug configuration, and then put the previously generated elf file into the folder of the new S32DS project:  \Debug_FLASH Fig 11 Then, enter debug mode, the results are as follows: Fig 12 As you can see, the chip has entered debug mode and can run successfully. Running at full speed, you can see the onboard red light flashing, so at this point, VSCode has compiled the MCAL code and run successfully.  
View full article
This example for S32K312 is based on this, example on S32K344 :-- https://community.nxp.com/t5/S32K-Knowledge-Base/Example-S32K344-PIT-BTCU-parallel-ADC-FIFO-DMA-DS3-5-RTD300/ta-p/1732444 *******************************************************************************  The purpose of this demo application is to present a usage of the  ADC_SAR and BCTU IP Driver for the S32K3xx MCU.  The example uses the PIT0 trigger to trigger BCTU conversion list to  perform parallel conversions on ADC0/ADC1. Three ADC channels  are selected to be converted on each ADC:  ADC0: S8 , P0, S8  ADC1: S10, S13, S17  Converted results from BCTU FIFO are moved by DMA into result array.  ADC channel S10 is connected to board's potentiometer.  ------------------------------------------------------------------------------ * Test HW: S32K3X4EVB-Q172 * MCU: S32K312 * Compiler: S32DS3.5 * SDK release: RTD 3.0.0 * Debugger: PE Micro * Target: internal_FLASH ******************************************************************************** Set PIT Freeze Enable :--- BCTU will be do the parallel conversion for channel mentioned in BCTU list :--       "NEW DATA DMA enable mask" :-- controls These bit field in MCR register     "ADC target mask" :-- It controls "ADC_SEL " bit field in "Trigger Configuration (TRGCFG_0 - TRGCFG_71)" for single conversions you can enable only one instance so the possible values for target mask: 1 (0b001) ADC0 2 (0b010) ADC1 3 (0b100) ADC2| for list of conversions we can enable also parallel con version for example 3 (0b011) parallel conversion of ADC0 and ADC1 The trigger is configured as a list of parallel conversions ADC0, ADC1 in “Adc Target Mask”. List of ADC channels is defined in “BCTU List Items” while order is given by the “Adc Target Mask”: BctuListItems_0 is ADC0, BctuListItems_1 is ADC1 etc.     Result :-- I connected VDD from board on adc_0_p0 (PTD1 : J412-1)  and adc_1_p2 (PTE0 J412-13). Also POT value on S10 of ADC-1 & ADC-0-VREFH value coming correct & STABLE.     =========================Using  FIFO-2 ================= FIFO-2 Trigger & LIST Index :-- ADC channel conversion :--
View full article
[S32K3 Tools Part] How to port RTD's existing MCAL demo to other K3 chips  1. Abstract     From the release notes of NXP's RTD4.0.0, we can see that the supported chip models are very complete: Fig 1 From this point, we can know that RTD4.0.0 can cover all S32K3 series chips. But if you want a ready-made demo, such as MCAL demo, you can see it under the ready-made demo path, for example: C:\NXP\SW32K3_S32M27x_RTD_R21-11_4.0.0\eclipse\plugins\Dio_TS_T40D34M40I0R0\examples\EBT Just S32K344,S32K358,S32K388,S32K396,S32M276。 Therefore, if you use other S32 chips, such as K312, in actual use, although it is within the range supported by RTD, but there is no ready-made demo to use, you need to do the porting by yourself. This article will explain how to port the RTD4.0.0 K344 MCAL demo to S32K312 and configure the corresponding EB project. First, implement the execution in the command line. After success, port the working MCAL code EB project to S32DS. 2. Platform and migration steps 2.1 Platform Description This article is based on RTD4.0.0: SW32K3_S32M27x_RTD_R21-11_4.0.0 For other versions with patch or HF, the operation process is the same! Hardware platform: S32K312 mini EVB or S32K312EVB Other official EVBs, such as S32K31XEVB, or the customer's own S32K3 hardware board also have the same steps. Due to the lack of official EVB boards, this article is based on S32K312 mini EVB, combined with P&E Multilink simulator download simulation. The platform situation is as follows: Fig 2 2.2 Migration steps The reference demo can be any existing demo in RTD4.0.0. In order to simplify the process, this article takes DIO as an example: C:\NXP\SW32K3_S32M27x_RTD_R21-11_4.0.0\eclipse\plugins\Dio_TS_T40D34M40I0R0\examples\EBT\S32K3XX\Dio_Example_S32K344 2.2.1 Copy the project and configure 2.2.1.1 Copy the project In order not to affect the original RTD default demo, here we directly copy a Dio_TS_T40D34M40I0R0 and open the path: C:\NXP\SW32K3_S32M27x_RTD_R21-11_4.0.0\eclipse\plugins Copy Dio_TS_T40D34M40I0R0 and save it in a folder named: Dio_TS_T40D34M40I0R0_miniK312_doc The process for other chips is similar. You only need to change the chip name and related configuration to the required chip. Open folder: C:\NXP\SW32K3_S32M27x_RTD_R21-11_4.0.0\eclipse\plugins\Dio_TS_T40D34M40I0R0_miniK312_doc\examples\EBT\S32K3XX Copy Dio_Example_S32K344 to Dio_Example_S32K312 Fig 3    Open path: C:\NXP\SW32K3_S32M27x_RTD_R21-11_4.0.0\eclipse\plugins\Dio_TS_T40D34M40I0R0_miniK312_doc\examples\EBT\S32K3XX\Dio_Example_S32K312\TresosProject  Modify the EB project Dio_Example_S32K344 to Dio_Example_S32K312 Fig 4 2.2.1.2 Configure the project Enter the newly created Dio_Example_S32K312, open the path with VScode, and save the VScode workspace to this path. Modify project_parameters.mk: GCC_DIR = C:/NXP/S32DS.3.5_RTD400/S32DS/build_tools/gcc_v10.2/gcc-10.2-arm32-eabi TRESOS_DIR = C:/EB/tresos_29_0_0 PLUGINS_DIR = C:/NXP/SW32K3_S32M27x_RTD_R21-11_4.0.0/eclipse/plugins EXAMPLE_DERIVATIVE = S32K312 TRESO_PROJECT_NAME = Dio_Example_S32K312 ​ Fig 5 Fig 6 Check_build_params.mk, delete the following code: ifeq ("$(wildcard $(T32_DIR)/bin/windows/t32marm.exe)","") $(error Invalid path set to Trace32. \ The provided path: from project_parameters.mk T32_DIR=$(T32_DIR) is invalid!) endif This part is used for lauterbach trace32. If it is not deleted, an error will be reported. 2.2.2 EB project configuration The following is the configuration of the EB project. Open the EB tresos Studio 29.0 software and import the project. File->Import->General->Existing Projects into Workspace, add the EB project path: C:\NXP\SW32K3_S32M27x_RTD_R21-11_4.0.0\eclipse\plugins\Dio_TS_T40D34M40I0R0_miniK312_doc\examples\EBT\S32K3XX\Dio_Example_S32K312\TresosProject\Dio_Example_S32K312 Note, do not click copy projects into workspace!!! Select the project Dio_Example_S32K344, right-click the mouse, and rename it to: Dio_Example_S32K312 Fig 7 Double-click someId to open the configuration module. Open the Resource module, General->ResourceSubderivative select the target chip partbumber, here select: s32k312_hdqfp172 Fig 8 After saving, you will find many errors reported as follows: Fig 9 There is no need to worry too much here, because if you analyze it carefully, you will find that it is actually because there are many modules on K344 that K312 does not have. So enter the error prompt location and delete the missing K312 module. Mcu->McuModeSettingConf->McuPeripheral If you click in, you can find that if the K312 does not have a module, there is a red cross in front of the peripheral Name. Fig 10 The direct method is to delete all the error items, a total of 41. After deleting, you can find that all the problems are gone: Fig 11 Select someId in the project, right-click, and click Generate Code. You can see that the project can be generated without any errors. Fig12 Don't take it lightly here. Although the code can be generated without error, there is still a place that needs to be modified. Here, we can firstly close the EB tresos tool, then open terminal->new terminal in VScode and enter: Fig13 We can see the error content is : mcucgm0_clockMux0/McuClockMux0Divider5, McuClockMux0Divider6, McuClkMux0Div5_En, McuClkMux0Div6_En. Open S32KRM here, and you can see that K312 actually does not have MUX_0_5,6. Fig 14 At this time, when I opened the EB tresos software again, there was indeed such an error on the interface, and there was no divider 5,6 option in mcucgmClockMux0. Fig 15 Don't worry at this time, there is a way to fix this problem. Close the EB tresos tool and open the text: C:\NXP\SW32K3_S32M27x_RTD_R21-11_4.0.0\eclipse\plugins\Dio_TS_T40D34M40I0R0_miniK312_doc\examples\EBT\S32K3XX\Dio_Example_S32K312\TresosProject\Dio_Example_S32K312\config\ Mcu.xdm file. Directly turn off the enablement and value configuration of divider 5 and 6 in the file. Modify the following code:Modified to:The main thing is to change the enable and frequency value of Mux0Divider5,6 hidden in the file. Reopen it and you can see that the error disappears. Right-click on the EB project someId, generate project, and the code can be generated normally without error. Here is a little trick: In order to prevent the mismatch between the previously generated code and the latest EB project, you can also change: C:\NXP\SW32K3_S32M27x_RTD_R21-11_4.0.0\eclipse\plugins\Dio_TS_T40D34M40I0R0_miniK312_doc\examples\EBT\S32K3XX\Dio_Example_S32K312\generate Folder:src,include clean it,then regenerate in EB tresos when generating a project. Close the EB software and enter make generate again in the terminal of the Vscode project You can see that there are no problems at this time: Fig 16  3.Command line compilation and result testing From the above steps, the code and EB configuration migration of an existing RTD K344 project to a K312 MCAL project has been completed. Now, through VScode, command line form, generate main.elf, and then download and test. Command: make generate make build the main.elf can be found in the following folder path: C:\NXP\SW32K3_S32M27x_RTD_R21-11_4.0.0\eclipse\plugins\Dio_TS_T40D34M40I0R0_miniK312_doc\examples\EBT\S32K3XX\Dio_Example_S32K312\out Regarding testing, because there is a main.elf file and PE Multilink, you can create a new K312 project in S32DS. The debug interface is PE Multilink. After compiling and generating the code, copy main.elf to the Debug_FLASH folder of the new project. In the S32DS debug configuration, directly replace the C/C++ application with main.elf and download it for testing.  Fig 17 As you can see, you can enter the debug interface, and the LED light on the actual test board can flash successfully. This means that the MCAL code has been successfully ported to K312. 4. S32DS project migration and testing       In the previous document: https://community.nxp.com/t5/S32K-Knowledge-Base/S32K3-Tools-Part-How-to-import-RTD-EB-project-into-S32DS/ta-p/1966207 Previously, the RTD MCAL EB project was transplanted to the K344 project of S32DS. Simply modify the project name, project chip model, ld file, driver file inclusion, etc., then clean the project and compile the project.      It is assumed here that you already have an RTD MCAL project imported into the S32DS project, and then modify it based on this. 4.1 S32DS Project Configuration     Because the folder was copied under the original RTD folder, there is a newly created folder in the S32DS project Mcal_Plugins->Link_Source. This folder needs to be excluded from compilation: Select Dio_TS_T40D34M40I0R0_minik312_doc, right-click Build path->remove from->Debug_FLASH.      Fig 18 Rename the project from Mcal_Dio_S32K344_RTD400 to Mcal_Dio_S32K312_RTD400. Modify the following project configuration, project->properties: (1)preprocessor S32K344->S32K312 Fig 19   (2) Sstandard S32DS C Linker->General Modify "${MCAL_PLUGIN_PATH}/Platform${MCAL_MODULE_NAME_SUFFIX}/build_files/gcc/linker_flash_s32k344.ld" To "${MCAL_PLUGIN_PATH}/Platform${MCAL_MODULE_NAME_SUFFIX}/build_files/gcc/linker_flash_s32k312.ld" After modification, click apply and close Now, change the main.c content to the content in path:  C:\NXP\SW32K3_S32M27x_RTD_R21-11_4.0.0\eclipse\plugins\Dio_TS_T40D34M40I0R0_miniK312_doc\examples\EBT\S32K3XX\Dio_Example_S32K312\src\main.c Add header file: #include "Port_Cfg.h" Comment code: // #include "check_example.h" // Exit_Example(TRUE);   4.2 EB project replacement Copy: C:\NXP\SW32K3_S32M27x_RTD_R21-11_4.0.0\eclipse\plugins\Dio_TS_T40D34M40I0R0_miniK312_doc\examples\EBT\S32K3XX\Dio_Example_S32K312\TresosProject\Dio_Example_S32K312\config All the .xdm file to the S32DS EB folder, replace the old file: Mcal_Dio_S32K312_RTD400\Tresos_Project\Mcal_Dio_S32K344_RTD400\config Use the EB tresos open the above project, then Generate project,after the code is generated, close the EB project, back to the S32DS side. 4.3 MCAL S32DS project testing clean project:project->clean project,  then build the project Fig 20 You can see that it can be compiled successfully, then RUN->debug configuration selects the downloaded code xxx_Debug_FLASH_PNE. Note that you need to change the Device from S32K344 to S32K312 Fig 21 After successful configuration, click debug, download the code and simulate. The results are as follows: Fig 22 As you can see, we can successfully enter debug, and the light on the board is actually blinking, which means that the RTD MCAL project demo can be successfully ported to S32K312 S32DS. Video: 1.MCAL demo porting K344 to K312 based on RTD500     2.S32DS CT MCAL demo porting K344 to K312 based on RTD500  
View full article
*******************************************************************************  The purpose of this demo application is to present a usage of the  ADC_SAR IP Driver for the S32K3xx MCU.  The example uses the PIT0 trigger to trigger  conversions on ADC1.  ADC channels  are selected to be converted on  ADC-1:  ADC channel S10 is connected to board's potentiometer. #define ADC_SAR_USED_CH_BANDGAP 48U /* Internal Bandgap Channel */ #define ADC_SAR_USED_CH_POT_0 34U  ------------------------------------------------------------------------------ * Test HW: S32K3X2EVB-Q172 * MCU: S32K312 * Compiler: S32DS3.5 * SDK release: RTD 3.0.0 * Debugger: PE micro * Target: internal_FLASH ********************************************************************************      
View full article
Using S32k144 ISELD SDK driver and adding Touch Sensor software, a demo is created to show different light combinations when electrodes of S32K144 EVB are touched. ADK ISELED board is attached to S32K144 EVB.
View full article
****************************************************************************************************  Detailed Description:  The current RTD RTM 2.0.0 does not support overflow notification  if EMIOS ICU is used in the Edge Detect mode.  Workaround is to use another channel in ECU mode  clocked by the same counter bus as the ICU channel.  Emios_0 input clock: 48MHz CORE_CLK  MCL EMIOS_0_Ch_23 (BUS_A)  Global clock devider: 48  MCB prescaler: 1  MCB clock: 1MHz  MCB tick: 1us  MCB period: 65_535 ticks  Both OCU (Emios_0_Ch0) and ICU (Emios_0_ch3) use the same BUS_A counter clock.  GPIO generated PWM period: ~0.5s  That's 500_000 ticks  ICU routed to PTB0  GPIO PWM to PTB1  -----------------------------------------------------------------------------------------------  Test HW: S32K3X4EVB-Q172  MCU: S32K344  Debugger: S32DS 3.4, PEMicro Multilink rev.C  Target: internal_FLASH ****************************************************************************************************
View full article