S32K Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

S32K Knowledge Base

Labels

Discussions

Sort by:
Some customers inquire about the FreeMASTER JumpStart Project mentioned in the Get Started with the S32K1xxEVB. So here to talk about the problems you may encounter and how to solve them. Where to download FreeMASTER JumpStart Project Customers may not find where to download FreeMASTER JumpStart Project at the moment. It should be downloaded from the Embedded Software under Design Resources of the development board. But the download link of S32K142EVB \ S32K144EVB \ S32K146EVB is missing. We can search the keywords “* JumpStart” at www.nxp.com download embedded application software and PC host application software that you need. Which version of S32 Design Studio should be used The readme file will tell us which version of S32 Design Studio the project was created. For example: the readme in the S32K144_EVB_JumpStart_Firmware package shows that the project for S32K14x EVB JumpStart SW was created in S32 Design Studio for ARM v2.0. Which version of SDK should be used You may get the Validation of S32K144_EVB_JumpStart_Firmware Kinetis SDK project when import the project : The project S32K144_EVB_JumpStart_Firmware was created for Kinetis SDK SDK_S32K14x_08 which is not installed in this product (repository SDK_S32K14x_08 not found).  The chapter Version Tracking of S32SDK_for_S32K1xx_RTM_3.0.3_ReleaseNotes shows that the SDK_S32K14x_08 means EAR 0.8.5. By default only S32 SDK EAR 0.8.4 is installed in S32DS for ARM 2.0, so we need to update the S32 Design Studio for Arm® v2.0 Update 2 – S32 SDK 0.8.5 EAR & MQX by refer S32 Design Studio for Arm v2.0 - Update 2 available Incorrect UART baud rate setting The baud rate selected for LPUART in Processor Expert is 600 by default, which does not match the description in the readme file. 600 is not in the FreeMASTER serial port baud rate support list, so let us reconfigure the baud rate to 115200 and then click Generate Processor Expert Code. When connect S32K144EVB with FreeMASTER by UART, you can see that the Baud rate 300 is not in the support list. This is the reason why using the default configuration of S32K144_EVB_JumpStart_Firmware is not able to connect with FreeMASTER.       
View full article
Some customers inquire how to use FreeMASTER with S32K3. But there is no exists example projects which demonstrate usage of the FreeMASTER serial communication driver in S32K3 Real Time Drivers at the moment. So this article will introduce how to use FreeMaster SDKs in S32K3 RTD 0.9.0. Download S32DS \ S32K3 Development Package \ RTD (SDK) \ FreeMASTER Driver Login your account on NXP website, and download the S32K3 Standard software from TOOLS &SOFTWARE of S32K3 webpage. If you have already installed the S32DS3.4 \ S32K3 Development Package 3.4.0 \ RTD 0.9.0, then you can skip the following part and start directly from 4.Install FreeMASTER Driver 3.0 for S32K3 Install S32K3 Development Package 3.4.0 After install the S32 Design Studio v3.4, we should install S32K3 Development Package 3.4.0(SW32K3_S32DS_3.4.0_D2012.zip): go to menu "Help" -> "Install New Software" and click on "Add..." button Here we uncheck S32 Design Studio S32K3 SDK (RTD S32K3 0.8.1), because we will install the newer version S32K3 RTD 0.9.0 later. Install S32K3 Real Time Drivers Version 0.9.0 S32K3 Real Time Drivers Version 0.9.0 can be installed by refer the Offline Package Installation Setup of S32DS Extensions & Updates: Explanation and How To Use. Install FreeMASTER Driver 3.0 for S32K3 Attach FreeMASTER_S32K3 to S32K344_UART_Printf_Sample_090_34 The reason for choosing the S32K344_UART_Printf_Sample_090_34 project to demonstrate the combination of FreeMaster SDKs is that the project has already configured the LPUART of the S32K3X4EVB-Q257 development board. Select LPUART peripheral as host communication Through the description in the Requirements and Release Description chapter of FreeMASTER Driver Release Notes(FMSTRS32K3RN), we can see that currently only UART interface is supported. The S32K3 FreeMASTER 3.0 version 1.0.0 only support NXP GCC 6.3 or 9.2 for ARM at the moment, but the latest S32K3 Real Time Drivers Version 1.0.0 is based on NXP GCC 10.2.0. This is the reason why RTD 0.9.0 is selected in this article.  The README.txt also shows that: Current package provides FreeMASTER Communication Driver support for S32K344 over LPUART module   LPUART13 is selected in this project for S32K3X4EVB-Q257, so we need to define the base address for FreeMASTER: #define FMSTR_LPUART_BASE           0x404A0000 Modify the main function according to the README.txt: Connect FreeMASTER3.1 to S32K3X4EVB-Q257 board Here we can see that the FreeMASTER3.1 is connected to S32K3X4EVB-Q257 board.  
View full article
Due to K3 hasn't been mass-produced yet, this content is moved to S32K3 Internal forum: https://community.nxp.com/t5/S32K3-Internal-Community/S32K3-Low-power-lab/ta-p/1280219 Any question, pls contact Jeremy.he@nxp.com.
View full article
******************************************************************************** * File: main.c * Owner: David Tosenovjan * Version: 0.0 * Date: Mar-12-2021 * Classification: General Business Information ******************************************************************************** * Detailed Description: * Example code configures the whole 4kB FlexRAM area for SRAM use. * By default or after mass erase, S32K1 device has only address range * 0x1400_0000-0x1400_0DFF (3.5kB) accessible for SRAM use. * To enable remaining 0.5kB it is needed to perform Program Partition Command * (with the setting shown in the example), but only once with the blank new * device (or previously mass erased). It sets up address range * 0x1400_0000-0x1400_0FFF for SRAM use. * ------------------------------------------------------------------------------ * Test HW: S32K146EVB-Q144 * MCU: PS32K146UAVLQ 0N73V QAC1735D * Fsys: default * Debugger: Lauterbach Trace32, OpenSDA * Target: Debug_RAM * Terminal: none * EVB connection: default ********************************************************************************
View full article
********************************************************************************  Detailed Description:  Example shows FlexCAN 0 usage in RUN/VLPR modes using SDK.  CAN bitrate is set to 250bit/s.  MCU enters VLPR mode by pressing SW3 button. CAN std message is sent with data VLPRmode"  MCU exits VLPR to RUN mode when one of following happens:  - CAN std message with RX_MSG_ID is received and MCU is in VLPR  - SW2 button is pressed (PTC12 interrupt). CAN std message is sent with data "RUN mode"  Blue LED is dimming and the rate is different for each power mode due to different  system clock (48Mhz vs 4MHz)  ------------------------------------------------------------------------------  Test HW: S32K116EVB-Q48  MCU: PS32K116LAM 0N96V  Compiler: S32DS.ARM.2.2  SDK release: S32SDK_S32K1xx_RTM_3.0.3  Debugger: Lauterbach, OpenSDA  Target: internal_FLASH ********************************************************************************
View full article
Hello everyone, SEGGER's Real Time Transfer (RTT) is the new technology for interactive user I/O in embedded applications. It combines the advantages of SWO and semihosting at very high performance. Bi-directional communication with the target application Very high transfer speed without affecting real-time behavior Uses debug channel for communication No additional hardware or pin on target required Supported by any J-Link model Supported by ARM Cortex-M0/M0+/M1/M3/M4/M7/M23/M33 and Renesas RX100/200/600 Complete implementation code providing functionality and freedom Here, I'd like to share you the SEGGER RTT porting project on S32K144 as attached. SW requirements: S32DS for ARM v2.2 IDE + S32K1xx SDK RTM 3.0 HW requirements: S32K144-EVB  + J-LINK debugger   For SEGGER RTT, you can refer to: About Real-Time Transfer: https://www.segger.com/products/debug-probes/j-link/technology/about-real-time-transfer/   RTT SEGGER Wiki: https://wiki.segger.com/RTT#SEGGER_RTT_TerminalOut.28.29;   Using Segger Real Time Terminal (RTT) with Eclipse: https://mcuoneclipse.com/2015/07/07/using-segger-real-time-terminal-rtt-with-eclipse/   Hope this project can help you, and enjoy the RTT! Best regard, Enwei Hu.
View full article
******************************************************************************************************** Detailed Description: LPUART1 echoes RX signal at 115200 bps When an 's' char is received, the MCU enters VLPS. A falling edge of the RX signal brings the MCU from VLPS via LPUART RXEDGIF interrupt. BUS_CLK can be monitored at CLKOUT PTD14. In VLPS, BUS_CLK is gated off. -------------------------------------------------------------------------------------------------------------------------- Test HW: S32K144EVB-Q100 MCU: S32K 0N57U Debugger: S32DS_ARM_2.2, OpenSDA Target: internal_FLASH ********************************************************************************************************    
View full article
Hi,      The draft time gap, from power-on to clock output of S32K14x, is as below.    You can take a reference. Cheers! Oliver
View full article
Often we need to implement a SENT receiver in order to read the information sent by some sensors. It is useful to have the possibility of transmitting different message patterns in order to test your implementation. With this project you can transmit via a computer terminal a group of messages (up to 64). The project runs on a S32K144 EVB board, the output signal goes through J206 pin.
View full article
Example of usage of AIPS-lite, Protects the access to GPIO port. This example can be used with UART terminal, 115200 bps. The interface menu shows like this: AIPS example has started Please press 0 + enter to set red LED in GPIO port Please press 1 + enter to set red LED in GPIO port Please press 2: GPIO peripheral will only accept accesses from trusted master, M0 (Core) is set as untrusted when a write access, AIPS cannot longer be modified from core and a reset will occur in the next GPIO access Please press 3: GPIO access is write protected, any write access to GPIO will produce a hard fault
View full article
Hello,      NXP does a big change on document structure.     Generally, you can find pin assignment table, interrupt mapping and memory map table in RM. But now, these information change to Excel files and attached in RM.   For example on S32K.    You will find the words in RM, like 'For reset values per port, see IO Signal Description Input Multiplexing sheet(s) attached to the Reference Manual.'    Then, please go to attachment tab of your PDF file viewer, like Adobe Acrobat Reader DC.     These steps are also fit for MPC57xx , S32R family. Cheers! Oliver
View full article
Hi,     If you try to compile the sample project within S32K14X_MCAL4_2_RTM_1_0_0, you should take care of the command if you use Linaro.    After you set the environment of compiling and run the command under command window, you should enter     "launch.bat MODE=USER TOOLCHAIN=linaro"    NOT    "launch.bat MODE=USER TOOLCHAIN=LINARO"      The command is case sensitivity.   Hope you can compile the project successfully.  Cheers! Oliver
View full article
Hi,        ARM Cortex-M have a DWT (Data Watchpoint and Trace) unit implemented, and it has a nice feature in that unit which counts the execution cycles. The DWT is usually implemented on most Cortex-M3, M4 and M7 devices, including e.g. the NXP S32K14x.      Attachment is the sample project on S32K142 to measure the running time of a function.     Password of extraction is nxp.     Enjoy the measuring!   Cheers! Oliver BTW, Measure the running time of one function on PowerPC could also be gotten through the link.
View full article
******************************************************************************** * Detailed Description: * This simple example shows how to force function to RAM memory in S32 Design * Studio and how to perform flash functions (Erase flash sector and Program * phrase command in this case). * * ------------------------------------------------------------------------------ * Test HW:         FRDM-S32K144 * MCU:             PS32K144HFVLL 0N77P * Fsys:            default * Debugger:        Lauterbach Trace32 * Target:          internal_FLASH * ********************************************************************************
View full article
******************************************************************************** * Detailed Description: * RAM self-test is performed after reset in startup_S32K144.s file. * The RAM self-test should be executed right after reset, so it does not destroy * data loaded to RAM by init functions. The code is inserted after * initialization of core registers. RAM initialization is commented out because * the same operation is done by the self-test. * The test flow is: * 1. Write pattern 0x55AA55AA to first word in RAM * 2. Read the data back * 3. Compare the data and increment error counter if not equal * 4. Write inverse pattern 0xAA55AA55 to first word in RAM * 5. Read the data back * 6. Compare the data and increment error counter if not equal * 7. Clear the first word in RAM to leave whole RAM erased to ‘0’ at the end of test * This procedure is repeated for whole RAM. * If the error counter is different from zero at the end, the program stays in * endless loop until watchdog reset. * * ------------------------------------------------------------------------------ * Test HW:         S32K144EVB-Q100 * MCU:             FS32K144UAVLL 0N57U * Fsys:            Default * Debugger:        Lauterbach Trace32 * Target:          internal_FLASH * ********************************************************************************
View full article