NXP Designs ナレッジベース

キャンセル
次の結果を表示 
表示  限定  | 次の代わりに検索 
もしかして: 

NXP Designs Knowledge Base

ディスカッション

ソート順:
In BLE spec there is no standard wireless pass through profile, so different chip vendors have their own implementations, which is also called Proprietary Profile, the compatibility is a big challenge. There are two wireless pass through demos in NXP BLE demos. For QN90XX chip, it’s called QPP. For KW3X, it’s called wireless UART. The wireless UART is more complex. It doesn’t support always-connection and have many limitations for the app. The common BLE debug tool app on phone side cannot communicate with it, while the QPP can work well.  This demo code is target to port the QPP profile to KW3X SDK, which can simplify user’s development.
記事全体を表示
Overview The 3-phase PMSM Vector Control using Quadrature Encoder on based on Kinetis® K40 MCUs reference design demonstrates the ability of the Kinetis K40 Arm® Cortex®-M4 MCU to drive the advanced motor control application. Targeted at the NXP® Tower® rapid prototyping system as a hardware development platform. Together with available embedded source code, you can quickly build own industrial drive application. For the successful execution of the vector control algorithm, the information on the motor shaft position is critical. The quadrature encoder position information is known in the entire motor speed range, allowing the motor start with full torque at zero speed. Features Vector control of the PMSM using the quadrature encoder as a position sensor Targeted at the Tower ®  rapid prototyping system (K40 tower board, Tower 3-phase low voltage power stage) Vector control with a speed closed loop Rotation in both directions Application speed range from 0% to 100% of nominal speed (no field weakening) Operation via the user buttons on the Kinetis ®  K40 Tower board or via FreeMASTER software Block Diagram Design Resources
記事全体を表示
Overview The LCD reference design is developed using the Kinetis KL28Z through the standalone peripheral module FlexIO. The polling method is used to copy data from SRAM or flash to FlexIO's shifter buffer. Image Kinetis board is powered by an Arm ®  Cortex ® -M0, providing up to 96 MHz CPU performance besides supporting ultra-low power. KL28Z's FlexIO emulates 8080 interface, and drives a 320x240 TFT LCD module. DAM or displaying applications, such as HMI, can be built based on this demo. The refresh rate is up to 128 fps with 16-bit width data bus and 48MHz core clock. Features Features the Kinetis KL2828Z512 Board, the interaction between a LCD display by FlexIO, a highly configurable module capable of emulating a wide range of different communication protocols. The important feature of this peripheral is that it enables the user to build their own peripheral directly in the MCU. Developed using Kinetis Software Development Kit (SDK), comprehensive software support for Kinetis MCUs and drivers for each MCU peripheral, middleware, real-time OS and example applications designed to simplify and accelerate application development on Kinetis MCUs. Block Diagram Board Design Resources
記事全体を表示
Overview The Bluetooth® Low Energy heart rate monitor reference design demonstrates the implementation of a wireless electrocardiogram (ECG) acquisition system. It features the Kinetis® KW40Z system on chip (SoC) which includes an Arm® Cortex® M0+ processor together with a 2.4 GHz radio for Bluetooth Low Energy and 802.15.4. The ECG signal is obtained from the finger tips and processed by the Kinetis KW40Z SoC. Then, the user’s heart rate is calculated and transmitted to a smartphone application using Bluetooth Low Energy. The reference design can be powered by a Li-Ion coin-cell battery. Due to the low-power features of Kinetis KW40Z MCU, a 3.6V 200mA/h Li-Ion coin-cell rechargeable battery can provide the power of up to 40 hours of continuous use. The NXP® MC34671 is in used as a battery charger solution for the device. Features Includes the NXP ®  ultra-low-power Kinetis ®  KW40Z SoC Bluetooth Low Energy/ZigBee platform. The low-power features of this solution allow up to 40 hours of continuous operation using a small coin-cell battery. Fully compliant Bluetooth v4.1 Low Energy Differential input/output port used with external balun for single port operation Block Diagram Board Design Resources
記事全体を表示
Overview NXP® and Tongji University jointly developed the anti-pinch window lift reference design featuring the MagniV® S12VR MCU, ideal for the development of power windows and sun roof systems. Includes hardware for real door/window in-vehicle applications, as well as software including anti-pinch algorithms and low-level S12VR drivers Aimed at reducing time to market, this design leverages unique features of the MagniV S12VR MCU Reduces unnecessary external components, lowers the total bill of material (BOM), improves system quality and saves space in automotive applications through a smaller PCB Features Window manual/automatic up/down, automatic up/down with stop function Anti-pinch in both manual/automatic mode, anti-pinch region and force can be adjusted Stuck detection out of anti-pinch region, motor overload protection Soft stop when window is close to the top/bottom Fault diagnosis, indicating low voltage, over voltage/current/temperature etc. Low power mode (leveraging S12VR low power mode) to reduce power consumption Self learning, calibration by updating the window/motor parameters stored in EEPROM Use hall sensor as well as current sense to judge anti-pinch in algorithm Easy-to-control Graphics User Interface (GUI), set the parameters and get the status Window lift can be controlled either by multiple LIN salve nodes or LIN master node (through GUI) Able to comply with relevant content in US Federal Motor Vehicle Safety Standard (FMVSS No. 118) Block Diagram Design Resources
記事全体を表示
Overview The Sub-GHz Remote Control Dimmer reference design based on the MKW01Z128 MCU operates in a custom IEEE 802.15.4 star network for home automation applications. Users can control various RGB bulbs connected to a network using the KW01-RCD-RD board as a remote control. Controlled devices are USB-KW019032 boards, and each board simulates an RGB bulb in a GUI. Features Low-cost MKW01Z128 sub-1GHz wireless node solution with an FSK, GFSK, MSK or OOK modulation-capable transceiver Reference design area with small footprint, low-cost RF node Unbalanced input/output port Flexible RF-Front End for different bands operation Programmable output power from -18 dBm to +13 dBm in 1dB steps (RFIO output) Integrated dual band chip antenna for 800MHz and 900MHz ISM bands Micro-miniature coaxial connector (MMCX) for conducted RF measurements Block Diagram Board Design Resources
記事全体を表示
Overview The Occupancy Sensor Node reference design is a compact form factor, open source design. It enables low power nodes based on IEEE 802.15.4 protocols such as Thread and ZigBee to communicate data to a wireless sensor network. NXP supplements the Kinetis KW2xD with tools and software that include hardware evaluation and development boards, software development IDE and demo applications and drivers. Features MKW24D512 802.15.4 Kinetis MCU Full IEEE 802.15.4 compliant wireless node for Thread network Integrated PCB meander horizontal antenna 2 Interrupt push button switches (LLWU) 1 FXOS87000CQ Combo sensor 1 Coin cell battery holder 1 EEPROM 1 Battery charger Block Diagram Board Design Resources
記事全体を表示
Overview The NXP Quick Charge 4+ power bank with 15-watt Qi-certified wireless power output supports all of the latest wired and wireless technologies. Equipped with Qualcomm™ Quick Charge 4+ technology, our power bank provides lightning-fast simultaneous multichannel charging of smartphones, watches, tablets, 2-in-1 products, notebooks and other devices featuring Qualcomm Snapdragon™ mobile platforms and processors. A mere 5 minutes of charging on the NXP power bank delivers 5 hours of battery life. New Power Delivery (PD 3.0) technology combines with a programmable power supply (PPS) in the NXP power bank to support Quick Charge 4+ devices and provide backward compatibility with Quick Charge 2.0 and 3.0 technologies. NXP power bank system software integration also includes wireless power and battery management, PD stacks and more programmable APIs for a fully customizable application. This new power solution leverages the many advantages and standards of USB-C with dual-way USB power delivery for input and output with Quick Charge. Anti-counterfeit and OEM-specific authentication, as well as accurate voltage, current and temperature protection deliver enhanced safety and security. Features Dual-way USB Type-C supports input & output Quick Charge for input and output, PD+PPS, QC2, QC3,QC4 2S battery supported (capability~10,000 mAh), output > 50 W Integrated wireless 15W transmitter supports fast charging for Samsung ®  and Apple ®  devices Digital control buck-boost converter One control IC controls buck-boost converter, charge, Qualcomm algorithm, PD communication and wireless power management Board
記事全体を表示
Overview This drive application allows vector control of an AC Induction Motor (ACIM) running in a closed-speed loop without a speed/position sensor at a low cost and serves as an example of AC induction vector control drive design using an NXP ®  56F8013 with Processor Expert ®  software support. ACIM is ideal for appliance and industrial applications This design uses sensorless FOC to control an ACIM using the 56F8013 device, which can accommodate the sensorless FOC algorithm The motor control system is flexible enough to implement complex motion protocols while it drives a variable load. The system illustrates the features of the 56F8013 in motor control Features General: The motor control algorithm employs Stator-Flux-Oriented Control (SFOC) Power stage switches are controlled by Space Vector Pulse Width Modulation (SVPWM) No position information devices or stator flux measurement are used, a sensorless speed method is employed The motor is capable of forward and reverse rotation and has a speed range from 50rpm to 3000rpm The user controls motion profiles, rotation direction, and speed. The RS-232 communication supports further R&D by enabling the easy tuning of control parameters The motor drive system is designed to create minimal acoustic noise Active power factor correction which reduces the negative effects of the load on the power grid in conducted noise and imaginary power Design is low cost General Benefits: Improved End System Performance Energy savings Quieter operation Improved EMI performance System Cost savings Enhanced Reliability Performance: Input voltage: 85 ~265VAC Input frequency: 45 ~65HZ Rating bus voltage: 350V Rating output power: 500W Switch frequency of PFC switch: 100KHZ Switch frequency of inverter: 10KHZ Power factor: >95% Efficiency: >90% Communications: RS232 port for communication with optoisolation Visual Interface: Multi-segment LED indicators Block Diagram Board Design Resources
記事全体を表示
Overview NXP brings a broad portfolio of proven PowerQUICC ®  network communications products, firmware and reference designs that support multiple network interfaces. These reference designs have the flexibility to integrate new features and are adaptable across product lines to protect your investment and maintain an edge over the competition. The NXP ®  MPC8323E-RDB is a turnkey hardware/software reference platform designed to rapidly provide the core elements of tomorrow's multiservice gateway products. Built on Power Architecture technology, the MPC8323E-RDB leverages the processing power of the MPC8323E PowerQUICC II Pro integrated communications processor. Features MPC8323E Integrated Multiservice Gateway features: Flexible WAN interfaces RJ45 100BT Ethernet and connectors for ADSL2+/VDSL2, WiMAX IPv4 Router with VPN capability RJ45 100BT Ethernet and connectors for ADSL2+/VDSL2, WiMAX Up to 640 DMIPS e300 CPU QUICC Engine ®  technology acceleration, 200 MHz Bridging/Routing with NAP/NAPT Firewall support (ACL) QoS for IPTV, VoIP and high-speed data VPN termination and pass-through Board Interfaces: Flexible network interfaces 10/100 Ethernet ADSL2+/VDSL2 WiMAX FXS ports (2) for analog phones 4-port 10/100 Ethernet LAN Two USB 2.0 host (480 Mbps) type A MiniPCI slots (2) Development Environment Our well established vertical ecosystem provides customers with the exact development flow they desire. The MPC8323E-RDB is kitted with: Encased CPE form factor board Linux ®  2.6 (LTIB) Design Resources
記事全体を表示
Overview The NXP ®  S12G automotive HVAC platform reference solution uses the scalable S12G 16-bit MCU family with MC33905, MC33932 and MC33937 analog devices to drive stepper, DC and BLDC motors and provide a feature-rich solution for automotive HVAC applications. Consists of a central control board with (HMI, a motor control board, flap and blower motors Enables basic functions of an auto HVAC using temperature, light, humidity and air quality sensing interfaces with configurable automatic climate control software algorithm to efficiently control vehicle climate Reduces overall design effort, shortens time to market and can be tailored for both 12V and 24V systems Features Three types of motor control sensorless BLDC DC stepper motor Automatic climate control Supports multiple temperature zones Ultra low power mode, can be woken up by HMI or LIN CAN bus CAN and LIN communication interfaces 3x3 matrix keypad and two encoder knob inputs 4x37 segment LCD and adjustable backlighting Sensor interfaces for temperature, light, humidity and air quality available Two logic relay interfaces to compressor defrost module Real-time clock and date display, adjustment for calendar Extensible with touch keyboard or touchscreen board Suitable for both 12 volt and 24 volt HVAC systems Block Diagram Design Resources
記事全体を表示
Overview This reference design is based on 32-bit DSC MC56F84789, to demo a micro-step stepper motor control solution. This reference design jump-starts your ability to leverage the NXP ®  DSCs' advanced feature sets via complete software, tools and hardware platform. Two phases four wires stepper motor Motor self-adaptive function, auto motor parameters identification and control system adjustment Rated peak current selection by switch, the maximum current is up to 8 A Speed ratio: 1 : 1000 with position and speed closed loop control Current PID regulator Micro-step resolution selection by switch, the maximum resolution is up to 25600 steps/rev The maximum speed is up to 3000RPM with loading capability Pulse command mode: single pulse plus direction control Maximum 1 MHz pulse command input Smooth filter function for pulse command, enabled by switch Stop with half rated current FreeMASTER software control interface and monitor Features MC56F84789 Micro-Step Stepper Motor Control MAPS-56F84000 EVK Board MAPS-MC-LV3PH Motor Control Power Stage Block Diagram Design Resources
記事全体を表示
Overview This reference design is based on 32-bit DSC MC56F82748, to demo a BPM Sensorless FOC Washing Machine. This reference design jump-starts your ability to leverage the NXP ®  DSCs' advanced feature sets via complete software, tools and hardware platform. Three-Phase BPM/PMASR drive with sensorless FOC IEC60730 certified controller Speed range 200RPM – 18000RPM (motor speed), 20RPM – 1600RPM (drum speed) Position and speed detection using extended Flux observer and DQ Back-EMF observer and tracking observer Non-recuperative braking and deceleration control Ultra low speed operation with rated torque, and ultra high speed operation with advanced field-weakening algorithm Over-current, over-temperature, over-voltage and under-voltage protection Serial RS232 control interface FreeMASTER GUI for easy debugging Features MC56F82748 BPM Sensorless FOC Washing Machine HVP-MC3PH HVP-56F82748 Block Diagram Design Resources
記事全体を表示
Overview This reference design is based on 32-bit DSC MC56F84789, to demo a 3in1 Air-Conditioner Outdoor Unit. This reference design jump-starts your ability to leverage the NXP ®  DSCs' advanced feature sets via complete software, tools and hardware platform. High performance, low cost all DC VF air-conditioner outdoor unit control system Three control objectives (interleaved single-phase PFC converter, fan and compressor) with one MCU device Input voltage range of 85 – 265VAC/40 – 70H Single-phase two channels interleaved PFC converter compatible with global mains input, 99.9% power factor, 8% input current THDi Sensorless FOC algorithm for both compressor and fan Anti-typhoon startup for fan, and on-line load torque compensation control for compressor to reduce system vibration and noise Reliable startup performance under full load and input voltage range Extreme low/high speed (from 1Hz to 150Hz) performance with extended flux observer Over-/under-voltage, over-current, over-temperature, over-input power protection and lock of rotor detection FreeMASTER GUI for easy debugging Features MC56F84789 3in1 Air-Conditioner Outdoor Unit Block Diagram Board Design Resources
記事全体を表示
Overview Security is an increasingly key concern in the Smart Metering market. Coupled with the need for greater control over energy expenditure and ease of recharging credits for energy usage, NXP® has the perfect market requirement for secure prepayment via an electricity meter with near field communications (NFC) technology. This reference design provides a secure prepaid electricity meter with the ability to securely reload an energy balance Firmware for this reference design is based on MQX™ RTOS A variety of communication interfaces are available for remote data collecting, making this an ideal solution for residential metering Features Rich in Security features (Authentication, Secure storage) Physically secure due to Hermetic Sealing Energy balance reload through near field communications Remote secure interfacing (through smartphone) Ability to reload the meter’s balance Anti-counterfeiting check Integrated Metrology Solution based on Arm ®  Cortex ® -M4 Core MQX™ RTOS based design is suitable for advanced markets Cost-effect BoM Block Diagram Design Resources
記事全体を表示
Overview This reference design offers both metering and WiFi capabilities: Metering - used to measure electronic power in single-phase and, WiFi - used for wireless control. Plug status can be checked via a smart-phone application, including current active power, reactive power, grid frequency, history runtime. On/Off setting timer available as well. Features Based on Kinetis MKM14Z64 MCU WIFI module based on QFM2202 220V input voltage, 10A max current Phase current sampling with 25ppm 5 mΩ current sampler by 24Bit SD ADC Phase voltage sampling with 25ppm resistor voltage divider network by 24Bit SD ADC On-chip voltage comparator (for precision grid frequency detection) Single 32.788K crystal input for 5ppm RTC External extendable 64Mb SPI Flash Low-power modes including the use of built-in RTC 3 channel LED pulse outputs for calibration(kWh, kVarh) Provide android application to get active power, reactive power, apparent power, grid frequency and history runtime Android application to set plug ON/Off, set timer for ON/Off at fixed time and set RTC time Android application to set plug wifi module to power save mode Cost-effective bill of materials External extendable WIFI module with UART connection Block Diagram Design Resources
記事全体を表示
Overview The Sensorless High-Speed SR Motor Control Reference Design based on the NXP® low-cost MC56F8013 digital signal controller (DSC) deals with a 2-phase switch reluctance (SR) motor sensorless drive for vacuum cleaners and other air movement applications. The application is a speed-open loop SR drive without any position or speed sensor needs Uses a sensorless control method based on current peak detection and a patented start-up algorithm (Patent No. US6448736 B1) The control technique allows the SR motor more than 100 000 RPM The application is primarily for vacuum cleaners, although it can be used for any application with a high-speed drive (50 000 RPM) Features High-speed 2-phase SR motor sensorless control based on a current peak detection Designed for vacuum cleaner applications Capable of running SR motors at more than 100.000 RPM (tested with SR motor designed for 60 000 RPM) Single direction rotation enabled by asymmetric of 2-phase SR motor Speed open loop Start-up from any position using alignment and patented algorithm (Patent No. US6448736 B1) Start-up time and maximum speed depends on SR motor parameters Manual interface and FreeMASTER control page for monitoring, control and tuning Block Diagram Design Resources
記事全体を表示
Overview QorIQ® P2020 UTM/Security Appliance Solution enables OEMs to develop a range of security applications including UTM appliances, IPS/IDS appliances, content security appliances, secure routers, VPN routers, secured switches and business gateways. The QorIQ P2020-based UTM appliance enables ODMs and customers to develop a production-ready, BOM optimized, certified, off-the-shelf UTM appliance solution. It allows our customers to leverage high-performance multicore QorIQ silicon and VortiQa® software optimized for multicore for UTM security appliances. Features NXP’s high-performance QorIQ ®  P2020 processor in 45 nm SOI technology VortiQa ®  software for enterprise equipment optimized for multicore processors Integrated security engine: protocol support includes SNOW, ARC4, 3DES, AES, RSA/ECC, RNG, single-pass SSL/TLS, Kasumi Cost-optimized bill of materials by hardware ODMs FCC, UL and CE certified—ready to ship Complete appliance portfolio from low to high end Block Diagram Board Design Resources
記事全体を表示
Overview The QorIQ® P1025 Data Concentrator reference design will instantly discover and connect with multiple smart energy meters. Featuring an Advanced Metering Infrastructure (AMI), the data concentrator enables bi-directional real-time monitoring and control The data concentrator also enables real-time metering and monitoring on multiple meters and transfers real-time information back to the utility server via a 3G uplink Features High-performance QorIQ ®  P1025 processor with up to 1300 DMIPS available to implement complex usage cases Discovers and interfaces to smart metering devices; implements device machine message specification (DLMS) protocol to standardize communications Broadcast capability to the utility server using a 3G uplink card and Power Line Communications (future development) Board Design Resources
記事全体を表示
Overview The NXP® P1020 multi-service Business Gateway (MSBG) solution integrates VortiQa® Secure SMB Software with D2 Technologies vPort VoIP software to provide a production-ready solution in a single product. Designed to quickly and cost-effectively create a range of MSBG applications including unified threat management (UTM) appliances, secured routers, VoIP gateway, VPN routers and secured switches Designed to deliver outstanding performance-to-price ratios and dramatically shorten development cycles, the solution tightly integrates optimized low-level software and production-ready boards with NXP's VortiQa application software and multicore PowerQUICC® and QorIQ® processors Features P1020 in 45nm SOI operating at 533-800MHz dual-core e500 processor with 256KB L2 cache with ECC 256MB to 512MB DDR3 SDRAM 4 FXS ports 1 FXO port 1 GbE RGMII port 1 GbE SGMII port 1 GbE port connected to RGMII 5-port switch 2 mini-USB 2.0 ports 1 mini-PCI Express connector 1 PCI Express VortiQa ®  software with Stateful Packet Inspection Firewall and NAT - performance optimized IPsec Virtual Private Network (VPN) with Quality of Service (QoS) and Traffic Management (TM) D2 Technologies optimized voice G.711-Alaw G.711-MuLaw G.729AB G.726 Voice Compression G.168 Echo Cancellation Advanced telephony Full Distributed Unicast Conferencing Call forwarding Call Waiting/ Caller ID Block Diagram Board Design Resources
記事全体を表示