NXP Designs Knowledge Base

cancel
Showing results for 
Search instead for 
Did you mean: 

NXP Designs Knowledge Base

Discussions

i.MXRT系列具有内部ROM,并且ROM中暴露出了一些功能接口可供用户直接使用。 本文介绍了Flexspi Nor ROM APIs, 并且列举了API相关的参数及示例程序。 通过这些API可以很方便的操作外部Flexspi Nor Flash。用户无需关系细节。   Products Product Category NXP Part Number URL MCU MIMXRT1060 https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt1060-crossover-mcu-with-arm-cortex-m7-core:i.MX-RT1060 MCU MIMXRT600 https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt600-crossover-mcu-with-arm-cortex-m33-and-dsp-cores:i.MX-RT600   Tools NXP Development Board URL i.MX RT1060 Evaluation Kit https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/mimxrt1060-evk-i-mx-rt1060-evaluation-kit:MIMXRT1060-EVK i.MX RT600 Evaluation Kit https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt600-evaluation-kit:MIMXRT685-EVK   SDK SDK Version URL MCUXpresso SDK Builder https://mcuxpresso.nxp.com/en/welcome
View full article
iMXRT eLCDIF 时钟参数计算工具,能够根据用户输入的RGB接口LCD Panel的规格书时序数据,快速计算eLCDIF模块和相应的PLL时钟配置参数,并直接用于RT105x和RT106x的SDK代码中,用于方便用户在iMXRT平台上快速适配新的LCD屏幕。 Products Product Category NXP Part Number URL MCU MIMXRT1050 MIMXRT1060 https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-... https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt1060-crossover-mcu-with-arm-cortex-m7-core:i.MX-RT1060   SDK SDK Version URL MCUXpresso SDK mcuxpresso.nxp.com
View full article
        YAFFS是第一个在GPL协议下发布的、基于日志的、专门为NAND Flash存储器设计的、适用于大容量的存储设备的嵌入式文件系统。一般MCU系统使用YAFFS系统要求的性能及资源比较多,高性能的i.MXRT系列正好能够满足此要求。     本文基于野火i.MXRT 1052核心板及其上的NandFlash探讨Nand文件系统的原理及实现方式,并探讨了在此基础上如何建立Yaffs文件系统。 Products Product Category NXP Part Number URL MCU MIMXRT1050 https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt1050-crossover-mcu-with-arm-cortex-m7-core:i.MX-RT1050   Tools NXP Development Board URL 野火i.MXRT核心板/开发板 https://ebf-products.readthedocs.io/zh_CN/latest/i.mx-rt/ebf_i.mx-rt1052.html   SDK SDK Version URL Yaffs file system https://yaffs.net/ MCUXpresso SDK mcuxpresso.nxp.com  
View full article
ARM's Ronan Synnott demonstrates the Keil Microcontroller Development Kit (MDK) at the 2014 FTF-Americas. The MDK is a complete software development environment for the Kinetis device family.   Features Demonstrating Keil's Microcontroller Development Kit (full feature debug IDE from ARM) solution Connecting via Ulink Pro JTAG connector ARMCC (ARM compiler) View registers, view memory, etc. Values update on the fly, logic analyzer to visualize values in a system and display on a timeline format   Featured NXP Products Kinetis Microcontrollers Links ARM  
View full article
Demo Owner Brian Gildon   Timesys Vice President of Business Development, Brian Gildon demonstrates various NXP based applications for optimized performance devices. Demonstrations include  NXP's Vybrid TWR-VF65GS10 board on Linux, a fast boot demonstration using i.MX 6 platform on Linux and finally a Sabre SDP a multi-touch interface design for designers who want simple branding.   Features Timesys - Linux tools services and training First demo: Vybrid tower board demo RTOS and Linux running simultaneously Second demo: Boot up Android quickly from a cold boot Third demo: Accelerated video demo vs non-accelerated video comparison Fourth demo: QT widget support on a multi-touch interface   Product Link SABRE Board for Smart Devices Based on the i.MX 6Quad Applications Processors i.MX 6Quad SABRE Development Board | NXP  VFxxx Controller Solutions VFxxx Controller Solutions based on Arm® Cortex® A5 and M4 Cores | NXP  Links Tymesys  
View full article
Demo Owner: Juan Antonio Gutierrez Rosas Juan Gutierrez, applications engineer at NXP Semiconductor, demonstrates the 2D graphics responsiveness and versatility of the Vybrid controller.     Features 2D graphics responsiveness and versatility of the Vybrid Processor controller Single Vybrid driving the LCD controller running using interface to control settings for 2 different zones Entire demo does not use any graphics processing unit. The graphics seen are rendered and animated using the Vybrid's display control unit memory accesses done using Direct memory Accesses (DMA) to free most of the ARM core to focus on other tasks Easier to program than a typical graphic processor 1.5 MB of on chip static RAM. The demo does not use external memory Featured NXP Products Product Link VFxxx Controller Solutions https://www.nxp.com/products/processors-and-microcontrollers/legacy-mcu-mpus/vfxxx-controller:VYBRID?&tid=vanVYBRID Vybrid Controller Solutions Tower System Module Vybrid VF6xx Tower System Kit with Arm DS-5 | NXP  Links VF3xx : Vybrid family with ARM® Cortex™-A5, 1.5MB SRAM, LCD, security, 2x Ethernet, L2 switch VF5xx : Vybrid family with ARM® Cortex™-A5, 1.5MB SRAM, LCD, security, 2x Ethernet, L2 switch VF6xx : Vybrid family with ARM® Cortex™-A5 + Cortex-M4, 1.5MB SRAM, LCD, security, 2x Ethernet, L2 switch  
View full article
This in home energy display  and Solar Panel demo illustrates a very low-cost  solution for real-time energy monitoring . A DSC-based dedicated control PV inverter from Future supports the MPPT algorithm for optimal power delivery from the solar panel.   Features This Solar Panel demo illustrates a very low-cost connectivity solution for real-time energy monitoring A DSC-based dedicated control PV inverter from Future supports the MPPT algorithm for optimal power delivery from the solar panel    
View full article
A sample refrigerator design with two microcontrollers.  The K70 controls the user touch display and while the MC56F8257 DSC manages and controls the compressor.     Features See how NXP ICs work together in this refrigerator reference design LCD controller Graphics controllers and touch sensing interface Graphics being driven by the Kinetis Microcontrollers K70 Compressor is controlled by a Digital Signal Controller (DSC) driving a sensorless permanent magnet vector control of the motor Featured NXP Products Product Link Kinetis® K7x Graphic LCD Microcontrollers (MCUs) based on Arm® Cortex®-M4 Core Kinetis® K7x Graphic LCD Microcontrollers (MCUs) based on Arm® Cortex®-M4 Core | NXP  Kinetis® K70-120–150 MHz, High-Speed USB, Ethernet, DDR and Anti-Tamper Microcontrollers based on Arm® Cortex®-M4 Core Arm Cortex-M4|Kinetis K70 120-150 MHz 32-bit MCUs | NXP  DSC MC56F8257 Motor Control Tower System Module DSC MC56F8257 Motor Control Tower Module | NXP  Links Digital Signal Controllers Kinetis MCUs based on ARM® Cortex®-M Cores  
View full article
Oracle's James Allen demonstrates a variety of NXP hardware running Java technology, a NXP-based IoT Gateway involved in capturing, analyzing and transmitting healthcare data, and a NXP-based IoT Gateway involved in capturing, filter, analyzing and integrating M2M data to enterprise systems, including business processes.   Featured NXP Products K70 Kinetis i.MX6
View full article
Features Overview of an NXP based IoT demo emulating an HVAC system. See how the cloud IoT can provide value for consumers, service companies and device manufacturers Built around the Kinetis Microcontroller KL25Z The Kinetis Microcontroller drives an Xbee ZigBee radio as a well as a display that simulates the specific thermostat in the residential or commercial building to see the temperature reading and if the fan is running Gateway takes the data and send it via cellular to the device cloud Allows customer to view data and to set points and look operational status and history as well as for preventive maintenance Featured NXP Products Product Link Kinetis® KL2x-72/96MHz, USB Ultra-Low-Power Microcontrollers (MCUs) based on Arm® Cortex®-M0+ Core Arm® Cortex®-M0+|Ultra-Low Power Kinetis® KL2x USB MCU | NXP  Freedom Development Platform for Kinetis® KL14, KL15, KL24, KL25 MCUs FRDM-KL25Z|Freedom Development Platform|Kinetis® MCU | NXP  Links NXP Connect - Digi  
View full article
Demo Owner: Brian Shay Features Learn about enVision online design tool for interactive reference designs Search for NXP and find examples using i.MX6 Block level diagram for reference design for i.MX6 microprocessor Speed up application device with the processor chosen Ability to download the schematics in various popular formats Collaboration between different team members is possible using this tool many different NXP products represented besides the i.MX6   Featured NXP Products ARM® Cortex®-A9 Cores: i.MX 6 Series|NXP Links Arrow enVision for NXP Products  
View full article
See how to use the Tower Kinetis 70 development hardware and programmed with PEG GUI, MQX Software Solutions RTOS and processor expert software development tools to create this touch screen controlled, wireless motor control demonstration.   Features Hardware and software modular system that NXP provides for the Kinetis Microcontrollers K series One TWR-K70F120M board communicates with another TWR-K70F120M board wirelessly and then the second TWR-K70F120M board controls a motor Usage of LCD touch panel to control the speed of the motor   Featured NXP Products CodeWarrior Development Tools|NXP Processor Expert Software and Embedded Compon|NXP Kinetis K70 120 MHz Tower System Module|NXP MQX
View full article
This video shows tools that allow users to get started very quickly in their development with NXP products.     Features Example of products shown: Products in Raspberry Pi format such as the HummingBoard, but more powerful with more memory and more features available Sensor fusion board with multiple accelerometers, Magnetometers, Gyroscopes and sensor fusion software interacting with the Kinetis FRDM board Wandboard with i.MX6 processor, very active developer community, multiple flavors of Linux and Android are available Riot Board - open source i.MX6 board with big expansion capabilities Little Bits which is part of a Hacker community space allows snapping elements together and interacting with them easily CuBox-i from Solid Run (Android or XBMC) and display multimedia stream to TV Featured NXP Products i.MX6 Kinetis Links HummingBoard FRDM Sensor Fusion Board Wandboard - i.MX6 ARM Cortex-A9 Opensource Community Development Board - BLOG Riot Board Little Bits Solid Run Cu-Box-i Internet of Tomorrow - IoT Tour - Blogs NXP IoT Schedule  
View full article
Demo   SCM-i.MX6D is the smallest single chip system module integrating NXPs high end apps processor along with memory PMIC and Flash. Demo will show this small yet powerful module running graphics, android applications as well as other IoT/ portable applications. The SCM will be integrated with an external WiFi along with a sensor hub and will be demonstrating the SCM capability along with WiFi.     Features Ultra-small SCM i.MX 6D includes i.MX 6Dual, 16 MB SPI NOR flash, PMIC PF0100, 109 discrete devices, and enabled for 1 or 2 GB LPDDR2 Single 17 mm x 14 mm x 1.7 mm footprint Displaying a video game and Miracast using a Wi-Fi connection to a Smart TV   Featured NXP Products Single Chip System Modules (SCM) Single Chip Module i.MX 6Dual
View full article
Demo     Hardware technology platform CPU-351-13 Board in gateway products M2M and IoT multi-service edge computing platforms Gateway connected to smart mirror - Updating information constantly Keywords: IP67 rugged module / Cellular Rapid development, everywhere cloud Links ARM Cortex-A9|i.MX 6 Multicore Processors|NXP Eurotech Group: embedded boards, rugged systems for integrated solutions - high performance computing CPU-351-13 : Low Power, Rugged i.MX6 SBC Eurotech
View full article
About this demo This demo shows the usage of a Neural Network (NN) applied for handwritten digit recognition, the NN model runs on the i.MX RT1060 MCU. The main idea of the demonstration is to show the i.MX RT capability to manage a graphical user interface while applying a NN model to recognize handwritten numbers to determine whether a password is correct or wrong. The demonstration is tested by setting a 4-digit password to a 4.3" LCD Panel, then the user must enter the correct password to unlock device; when the password is provided, the digits recognized by the NN are displayed on the screen. A 'Clear' button will erase the previous numbers for the user to try a new password to unlock the device. Technical Introduction and Acknowledgment The demo is available using two different approaches for the model creation and inference engines: TensorFlow Lite and CMSIS-NN using Caffe Framework.   TensorFlow Lite The application note AN12603 describes handwritten digit recognition on embedded systems through deep learning. The digit recognition is performed by a TensorFlow Lite model trained with the MINST dataset containing 60,000 handwritten grayscale images and 10,000 testing examples. This application note, deep dives into every step to achieve the application using Tensorflow Lite and build a GUI using Embedded Wizard.   CMSIS-NN using Caffee Framework The application note AN12781 explores the usage of Deep Neural Networks created in Caffe Framework, this framework allows creating a model and convert it to CMSIS-NN functions to be exported to the i.MX RT platform as source files. The model is also trained for the digit recognition using the MNIST dataset. The document describes the procedure to create, train and deploy the model; in the final step the model is exported a C source files using CMSIS-NN functions and weights that are exported to the i.MX RT1060 project. Video     Hardware setup   Recommended Products i.MX RT1060 Evaluation Kit | NXP  4.3" LCD Panel RK043FN02H-CT | NXP    Further Information                                           The NXP ® eIQ ™ software environment enables the use of ML algorithms on NXP MCUs, i.MX RT crossover MCUs, and i.MX family SoCs. eIQ software includes inference engines, neural network compilers and optimized libraries. Additionally,  the models can be optimized through techniques like quantization and pruning, AN12781 explores the possibility of optimization by creating a new model using Caffe with a quantization to simplify the floating-point data. By reducing the 32-bit floating-point data to an 8-bit and fixed-point format, the memory allocation got reduced and this resulted in a lower-processing power.   Transfer Learning Transfer learning gives machine learning models the ability to apply past experience to quickly and more accurately learn to solve new problems. This technique has become very important in deep learning. AN12892  describes how to perform transfer learning in TensorFlow and a use case example, which aims to improve the performance of the application from AN12603 .     Useful Links   Links  AN12603 AN12603 Software AN12781 AN12781 Software AN12892 AN12892 Software eIQ™ for TensorFlow Lite | NXP  Caffe | Deep Learning Framework  Embedded Wizard | Simplify Your GUI Development  What is a Container? | App Containerization | Docker 
View full article
Overview In the industrial world, it is critical to incorporate fail-safe technology where possible in applications such as crane steering machines, robotic lift, and assembly line robots to name a few. By doing so, you ensure you meet Safety Integrity Level (SIL) standards as found in the IEC 61508 standard. Also, you significantly increase human safety and protect products and property. This fail Safe Motor Control solution incorporates the MPC574xP family of MCUs that delivers the highest functional safety standards for industrial applications. The MPC574xP family incorporates a lockstep function that serves as a watchdog function to flag any problems with the MCU including a programmable Fault Collection and Control Unit (FCCU) that monitors the integrity status of the MCU and provides flexible safe state control. Also, this device is a part of the SafeAssure® program, helping manufacturers achieve functional safety standard compliance. Block Diagram Recommended Products Category Products Features Power Switch 12XS2 | 12 V Low RDSON eXtreme Switch | NXP  Watchdog and configurable Fail-safe mode by hardware Authentication time (on-chip calculations) < 50 ms Programmable overcurrent trip level and overtemperature protection, undervoltage shutdown, and fault reporting Output current monitoring Pressure Sensor MPXHZ6130A|Pressure Sensor | NXP  The MPXHZ6130A series sensor integrates on-chip, bipolar op amp circuitry and thin-film resistor networks to provide a high output signal and temperature compensation for automotive, aviation, and industrial applications. Temperature Sensor https://www.nxp.com/products/sensors/silicon-temperature-sensors/silicon-temperature-sensors:KTY8X High accuracy and reliability Long-term stability Positive temperature coefficient; fail-safe behavior MOSFET Pre-driver GD3000 |3-phase Brushless Motor Pre-Driver | NXP  Fully specified from 8.0 to 40 V covers 12 and 24 V automotive systems Extended operating range from 6.0 to 60V covers 12 and 42 V systems Greater than 1.0 A gate drive capability with protection Power Management and Safety Monitoring MC33908 | Safe SBC | NXP  Enhanced safety block associated with fail-safe outputs Designed for ASIL D applications (FMEDA, Safety manual) Secured SPI interface   Evaluation and Development Boards   Link Description MPC5744P Development Kit for 3-phase PMSM | NXP  The NXP MTRCKTSPS5744P motor control development kit is ideal for applications requiring one PMSM motor, such as power steering or electric powertrain. Evaluation daughter board - NXP MPC5744P, 32-bit Microcontroller | NXP  The KITMPC5744DBEVM evaluation board features the MPC5744P, which is the second generation of safety-oriented microcontrollers, for automotive and industrial safety applications
View full article
Overview In the industrial world, technologies to track performance and correct problems instantly have become critical to meeting output expectations and keeping personnel safe. This is especially true with organizations facing the impact of an unpredictable economic environment and aging infrastructure. Our NXP two-way radio solution takes advantage of our complete technology portfolio of high-performance MPUs, MCUs, and peripheral devices that integrate security and connectivity features and a 10-15 year product longevity program. This combination delivers high reliability and quality communication and performance that enables your customers to work safely, efficiently and enables seamless communication that boosts productivity and insight to extend the life of business assets.   Interactive Block Diagram Recommended Products   Category Products Features MCU Arm® Cortex®-M4|Kinetis® KV3x Real-time Control MCUs | NXP  100/120 MHz Cortex®-M4 core with DSP and floating-point unit – improves performance in math-intensive applications (e.g., processing of sensorless FOC (field-oriented control) algorithms) 2x 16-bit ADCs with two capture and hold circuits and up to 1.2 MSPS sample rate – simultaneous measurement of current and voltage phase, reduced jitter on input values improving system accuracy Up to 2 x 8-channel and 2 x 2-channel programmable FlexTimers – high-accuracy PWM generation with integrated power factor correction or speed sensor decoder (incremental decoder/hall sensor) MPU i.MX 8M Applications Processor | Arm® Cortex®-A53, Cortex-M4 | 4K display resolution | NXP  Quad Arm Cortex-A53; Cortex-M4F 6x I2S/SAI (20+ channels, each 32-bits @384 kHz); SPDIF Tx/Rx; DSD512 OpenGL® ES 3.1, OpenGL® 3.0, Vulkan®, OpenCL™ 1.2 Secure Element A1006 | Secure Authenticator IC: Embedded Security Platform | NXP  Advanced security using asymmetrical public/private key Diffie-Hellman authentication protocol with two different keys for encryption and decryption based on ECC (Elliptic Curve Cryptography) with a NIST B-163 bit strong binary field curve Authentication time (on-chip calculations) < 50 ms Power Consumption: 500 μA active CapTouch Sensor PCF8883 | NXP  Wide input capacitance range (10 pF to 60 pF) Wide voltage operating range (VDD = 3 V to 9 V) Designed for battery-powered applications (IDD = 3 μA, typical) Automatic calibration RTC PCF8523 | NXP  Provides year, month, day, weekday, hours, minutes, and seconds based on a 32.768 kHz quartz crystal Resolution: seconds to years Analog Switch Logic controlled high-side power switch | NXP  Wide supply voltage range from 3 V to 5.5 V 30 V tolerant on VBUS ISW maximum 2 A continuous current Load Switch USB PD and type C current-limited power switch | NXP  VIN supply voltage range from 4.0 V to 5.5 V All-time reverse current protection with ultra-fast RCP recovery Adjustable current limit from 400 mA to 3.3 adjustable current limits from 400 mA to 3.3 A Clamped current output in the over-current condition Very low ON resistance: 30 mΩ (typical) USB Type-C PTN5150 | NXP  USB Type-C Rev 1.1 compliance Compatible with legacy OTG hardware and software Support plug, orientation, role and charging current detection Level Translator PCAL6416AEX | NXP  The 16-bit general-purpose I/O expander Latched outputs with 25 mA drive maximum capability The operating power supply voltage range of 1.65 V to 5.5 V GPIO Expander PCAL6416AEX | NXP  The 16-bit general-purpose I/O expander Latched outputs with 25 mA drive maximum capability The operating power supply voltage range of 1.65 V to 5.5 V PMIC PMIC with 1A Li+ Linear Battery Charger | NXP  Input voltage VIN from 5V bus, USB, or AC adapter (4.1 V to 6.0 V) withstands up to 22V transient DDR memory reference voltage, VREFDDR, 0.5 to 0.9 V, 10 mA I2C interface User-programmable Standby, Sleep/Low-power, and Off (REGS_DISABLE) modes Accelerometer ±2g/±4g/±8g, Low g, 14-Bit Accelerometer | NXP  1.95 V to 3.6 V supply voltage 1.6 V to 3.6 V interface voltage ±2g/±4g/±8g dynamically selectable acceleration full-scale range Temperature Sensor PCT2075: I2C-bus Fm+, 1 Degree C Accuracy | NXP  Pin-for-pin replacement for LM75 series but allows up to 27 devices on the bus Power supply range from 2.7 V to 5.5 V Temperatures range from -55 °C to +125 °C Wireless MCU Arm® Cortex®-M0+|Kinetis® KW41Z 2.4 GHz Bluetooth Low Energy Thread Zigbee Radio MCUs | NXP  2.4 GHz Bluetooth Low Energy version 4.2 Compliant IEEE Std. 802.15.4 Standard Compliant AES-128 Accelerator (AESA), True Random Number Generator (TRNG)
View full article
Overview NXP's industrial printer solution allows you to leverage the Internet of Things (IoT) technologies and easily integrate a reliable, fast, and secure design that differentiates and provides value to your customers. NXP provides an extensive technology portfolio including high-performance MPUs with advanced integrated security and connectivity features, cryptographic accelerators, and a 10-15 year product longevity program. This enables designers to successfully develop reliable, high performing, and secure printers.   Interactive Block Diagram Recommended Products   Category Products Features MPU i.MX 6SoloX Applications Processors | Arm® Cortex®-A9, Cortex-M4 | NXP 1x Cortex-A9 up to 1 GHz 1x Cortex-M4 up to 200 MHz 24-bit parallel CMOS sensor interface 2x 10/100/1000 Ethernet PCIe 2.0 (1 lane) FlexCAN 5x SPI, 6x UART, 4x I2C, 5x I2S/SSI, 8x PWM   i.MX 8M Applications Processor | Arm® Cortex®-A53, Cortex-M4 | 4K display resolution | NXP  Quad Arm Cortex-A53; Cortex-M4F OpenGL® ES 3.1, OpenGL® 3.0,Vulkan®, Open CL™ 1.2 Dual PCIe with L1 substates for fast wake-up from low-power mode Gigabit Ethernet controller supporting AVB and EEE 4x PWM, 3X SPI, 4X I2C Secure Authenticator A1006 | Secure Authenticator IC: Embedded Security Platform | NXP  Authentication time (on-chip calculations) < 50 ms Unique static pair of ECC Private Key Power Consumption: 500 μA active RTC PCF8523 | NXP  Provides year, month, day, weekday, hours, minutes, and seconds based on a 32.768 kHz quartz crystal. Resolution: seconds to years. Load Switch USB PD and type C current-limited power switch | NXP  VIN supply voltage range from 4.0 V to 5.5 V All-time reverse current protection with ultra-fast RCP recovery Adjustable current limit from 400 mA to 3.3 adjustable current limits from 400 mA to 3.3 A Clamped current output in the over-current condition USB Type-C PTN5150 | NXP  Compatible with legacy OTG hardware and software Support plug, orientation, role and charging current detection Level Translator Voltage Level Translators (Level Shifters) | NXP  Bi-directional level shifter and translator circuits include a range from single-bit to 32-bit widths GPIO Expander PCAL6416AEX | NXP  The 16-bit general-purpose I/O expander Latched outputs with 25 mA drive maximum capability The operating power supply voltage range of 1.65 V to 5.5 V PMIC 14-Channel Configurable Power Management IC | NXP  Four to six buck regulators depending on configuration, Single/dual phase/parallel options, DDR termination tracking mode option, DVS option 5V boost regulator for USB OTG CAN Transceiver TJA1057 | High Speed CAN Transceiver | NXP  VIO option allows for direct interfacing with 3.3 V and 5 V-supplied microcontrollers I2S port to allow routing to the applications processor Functional behavior predictable under all supply conditions Thermally protected AC/DC AC-DC Solutions | NXP  Increased efficiency and no-load power of the total application Universal mains operation: 90 - 264 Vac / 47 - 63Hz Over Current Protection (OCP), Over Power Protection (OPP), Over Temperature Protection (OTP) Motor Driver Dual H-Bridge Motor Driver 2-8.6 V 1.4 A 200 kHz | NXP  Low Total RDS(ON) 0.8 Ω (Typ), 1.2 Ω (Max) @ 25°C Undervoltage Detection and Shutdown Circuit Output Current 0.7 A (DC) Temperature Sensor PCT2075: I2C-bus Fm+, 1 Degree C Accuracy | NXP  Pin-for-pin replacement for LM75 series but allows up to 27 devices on the bus Power supply range from 2.7 V to 5.5 V Temperatures range from -55 °C to +125 °C Wireless MCU Arm® Cortex®-M0+|Kinetis® KW41Z 2.4 GHz Bluetooth Low Energy Thread Zigbee Radio MCUs | NXP  2.4 GHz Bluetooth Low Energy version 4.2 Compliant IEEE Std. 802.15.4 Standard Compliant AES-128 Accelerator (AESA), True Random Number Generator (TRNG)
View full article
Overview Remote virtual smartphones promise the same benefits as remote computer desktops and cloud-based gaming: low-cost client hardware, sandboxed user environments, and persistent user state. The way they work is that the physical smartphone runs only thin-client software and the smartphone application runs remotely on a server. To be economical, this server hosts multiple of these virtual smartphones, taking advantage of hardware virtualization support built into its processor. Slotted into the machine, an add-on GPU provides high-performance graphics. To reduce latency for real-time gameplay, the server is best located near the end-user in the edge of the mobile network. For virtual smartphones to be compatible with physical smartphones, Arm compatibility is required. At the 2020 Consumer Electronics Show, NXP demonstrated the Layerscape LX2160A processor hosting Redfinger’s cloud-based Android emulator and virtual smartphone. NXP’s processor integrates 16 CPU cores, enabling it to host 16 or more virtual smartphones. Games and other software execute with the same look and feel as if they were running locally on a smartphone. Like other Layerscape processors, the LX2160A delivers excellent performance per watt and is designed to work in high-temperature environments, such as being packed densely in a rack in a data center or deployed remotely at an edge-computing site. Although NXP designed it for stringent embedded applications, the LX2160A processor is powerful enough for servers—making it a great solution for Android emulation.     Block Diagram NXP Products Name of Product QorIQ LX2160A Development Board | NXP    Related Documents from Community Name of Document Discover i.MX: Industry-Leading Processor Solution for Media, Smart Home, Smart Industrial, Health/Medical and Broad Embedded Applications    Related Communities Name of Document Layerscape 
View full article