i.MX RT Crossover MCUs Knowledge Base

取消
显示结果 
显示  仅  | 搜索替代 
您的意思是: 

i.MX RT Crossover MCUs Knowledge Base

讨论

排序依据:
Face recognition Actually, face recognition technology is used in many scenes in our daily life, for instance, when taking pictures with the mobile phone, the camera software will automatically recognize the faces in the lens and focus, scan face for real-name verification when registering the App and scan face for pay, etc. The basic steps of face recognition are shown in the below figure. Firstly, the camera captures image data, then through preprocessing such as noise elimination and image format conversion, the image data will be transmitted to the processor for face detection and recognition calculations. After recognizing the face successful, continue to do the follow-up operations. Fig1 The basic steps of face recognition i.MX RT106F MCU based solution for face recognition The below figure is the block diagram of i.MX RT106F MCU-based solution for face recognition provided by the NXP. Comparing with the general processor (CPU) solution, it has comparative advantages in cost and power consumption. Further, the PCB size will be smaller too and the MCU usually can boot up within a few hundred milliseconds even with RTOS, versus to the boot-up speed of the processor (CPU) equipped with a Linux system that is about 10 seconds, it will give customers a better user experience. Fig2 i.MX RT106F MCU based solution for face recognition Of course, the i.MX RT106F MCU-based solution face recognition solution is not intended to replace the solution based on the processor (CPU). As aforementioned, face recognition technology has a lot of application cases, and it will definitely be used in more fields in the future, so the MCU-based face recognition solution provides customers and the market with another choice. i.MX RT106F MCU The i.MX RT106F face recognition crossover processor is an EdgeReady™ solution-specific variant of the i.MX RT1060 family of crossover processors, targeting face recognition applications. It features NXP’s advanced implementation of the Arm Cortex®-M7 core, which operates at speeds up to 600 MHz to provide high CPU performance and the best real-time response. i.MX RT106F based solutions enable system designers to easily and inexpensively add face recognition capabilities to a wide variety of smart appliances, smart homes, smart retail, and smart industrial devices. The i.MX RT106F is licensed to run the OASIS Lite library for face recognition (as the below figure shows) which include: Face detection Anti-spoofing Face tracking Face alignment Glass detection Face recognition Confidence measure Face recognition quantified results, etc Fig3 OASIS Recognition Software Pipeline sln_viznas_iot_elock_oobe The sln_viznas_iot_elock_oobe project is the application on the SLN-VIZNAS-IOT (as the below figure shows, regarding the Bootstrap and Bootloader in the software flowchart, I will introduce them in the future). The following development work is based on the sln_viznas_iot_elock_oobe project, however, I need to sketch the basic workflow of it prior to starting real development work. Fig4 SLN-VIZNAS-IOT software flowchart sln_viznas_iot_elock_oobe's workflow flow In the Camera_Start() function, the task (Camera_Init_Task) completes the initialization of the RGB and IR cameras, then creates a task (Camera_Task); In the Display_Start() function, after the task (Display_Init_Task) completes the initialization of the display medium (USB or LCD), it immediately creates the task (Display_Task) and sends the message queue s_DisplayReqMsg.id = QMSG_DISPLAY_FRAME_REQ to the task (Camera_Task), then the pDispData will point to the s_BufferLcd[0] array for storing the image data to be displayed; In the Oasis_Start() function, firstly, OASISLT_init() completes the initialization of the OAISIT library, then creates a task (Oasis_Task) to send the message queues gFaceDetReqMsg.id = QMSG_FACEREC_FRAME_REQ and gFaceInfoMsg.id = QMSG_FACEREC_INFO_UPDATE to the task (Camera_Task) to make the pDetIR and pDetRGB point to the face block diagram captured by the RGB and IR cameras, and update the content pointed by infoMsgIn. After the camera is initialized, the RGB camera works at first. After the image data is captured, an interrupt is triggered and the callback function Camera_Callback() sends the message queue DQMsg.id = QMSG_CAMERA_DQ to the task (Camera_Task), and DQIndex++; CAMERA_RECEIVER_GetFullBuffer() extracts the image data captured by the RGB camera, and sends the message queue DPxpMsg.id = QMSG_PXP_DISPLAY to the task (PXP_Task) created in the APP_PXP_Start() function and EQIndex++, meanwhile switch the camera from RGB to IR. After the APP_PXPStartCamera2Display() function in the task (PXP_Task) completes processing, it sends the message queue s_DResMsg.id = QMSG_PXP_DISPLAY to the task (Camera_Task), and the task (Camera_Task) sends the message queue DresMsg.id = QMSG_DISPLAY_FRAME_RES to the task (Display_Task) after receiving the above message queue. The task (Display_Task) completes display, then it sends the message queue s_DisplayReqMsg.id = QMSG_DISPLAY_FRAME_REQ to the task (Camera_Task) to make pDispData point to the s_BufferLcd[1] array; After the IR camera completes capturing work, CAMERA_RECEIVER_GetFullBuffer() extracts the image data and sends the message queue DPxpMsg.id = QMSG_PXP_DISPLAY to the (PXP_Task) task created in the APP_PXP_Start() function, continue to execute EQIndex++ and switch to RGB camera again, and repeat the steps 5. Finally, send the message queue FPxpMsg.id = QMSG_PXP_FACEREC to the task (PXP_Task) and set irReady = true. After the task (PXP_Task) receives the above message queue, it calls APP_PXPStartCamera2DetBuf() and after completes the processing, sends the message queue s_FResMsg.id = QMSG_PXP_FACEREC to the task (Camera_Task); CAMERA_RECEIVER_GetFullBuffer() extracts the image data collected by the RGB camera, repeat step 5, when (pDetRGB && irReady) condition is met, send the message queue FPxpMsg.id = QMSG_PXP_FACEREC to the task (PXP_Task) and set irReady = false, pDetRGB = NULL, pDetIR = NULL. After the task (PXP_Task) receives the above message queue, it calls APP_PXPStartCamera2DetBuf() and after completes the processing, sends the message queue s_FResMsg.id = QMSG_PXP_FACEREC to the task (Camera_Task). At this time, the (!pDetIR && !pDetRGB) condition is met and the Queue message FResMsg.id = QMSG_FACEREC_FRAME_RES is sent to the task (Oasis_Task), run OASISLT_run_extend to perform face recognition calculation, and send the message queue gFaceDetReqMsg.id = QMSG_FACEREC_FRAME_REQ to the task (Camera_Task) to make the pDetIR and pDetRGB point to the face block diagram captured by the RGB and IR cameras again. keep repeat steps 6 and 7; Fig5 sln_viznas_iot_elock_oobe's workflow flow Smart Coffee machine Fig 6 is the workflow of the smart coffee machine that I want to develop for, as there is no LCD board on hand, in the below development process, I will select Win10's camera (as the below figure shows) to output the captured image, further, take advantage of the Shell command to simulate the LCD's touch feature to interact with the board.   Fig6 workflow of the smart coffee machine Fig7 Camera Code modification In the commondef.h, add a new member variable 'uint16_t coffee_taste' in Union FeatureItem to stand for the favorite coffee taste; typedef union { struct { /*put char/unsigned char together to avoid padding*/ unsigned char magic; char name[FEATUREDATA_NAME_MAX_LEN]; int index; // this id identify a feature uniquely,we should use it as a handler for feature add/del/update/rename uint16_t id; uint16_t pad; // Add a new component uint16_t coffee_taste; /*put feature in the last so, we can take it as dynamic, size limitation: * (FEATUREDATA_FLASH_PAGE_SIZE * 2 - 1 - FEATUREDATA_NAME_MAX_LEN - 4 - 4 -2)/4*/ float feature[0]; }; unsigned char raw[FEATUREDATA_FLASH_PAGE_SIZE * 2]; } FeatureItem; // 1kB   In featuredb.h, add two member functions into class FeatureDB:  set_taste()  and  get_taste() , and add the definition of the above two member functions in featuredb.cpp; class FeatureDB { public: FeatureDB(); ~FeatureDB(); int add_feature(uint16_t id, const std::string name, float *feature); int update_feature(uint16_t id, const std::string name, float *feature); int del_feature(uint16_t id, std::string name); int del_feature(const std::string name); int del_feature_all(); std::vector<std::string> get_names(); int get_name(uint16_t id, std::string &name); std::vector<uint16_t> get_ids(); int ren_name(const std::string oldname, const std::string newname); int feature_count(); int get_free(int &index); int database_save(int count); int get_feature(uint16_t id, float *feature); void set_autosave(bool auto_save); bool get_autosave(); //Add two customize member functions int set_taste(const std::string username, uint16_t taste_number); int get_taste(const std::string username); private: bool auto_save; int load_feature(); int erase_feature(int index); int save_feature(int index = 0); int reassign_feature(); int get_free_mapmagic(); int get_remain_map(); }; int FeatureDB::set_taste(const std::string username, uint16_t taste_number) { int index = FEATUREDATA_MAX_COUNT; for (int i = 0; i < FEATUREDATA_MAX_COUNT; i++) { if (s_FeatureData.item[i].magic == FEATUREDATA_MAGIC_VALID) { if (!strcmp(username.c_str(), s_FeatureData.item[i].name)) { index = i; } } } if (index != FEATUREDATA_MAX_COUNT) { s_FeatureData.item[index].coffee_taste = taste_number; return 0; } else { return -1; } } int FeatureDB::get_taste(const std::string username) { int index = FEATUREDATA_MAX_COUNT; int taste_number; for (int i = 0; i < FEATUREDATA_MAX_COUNT; i++) { if (s_FeatureData.item[i].magic == FEATUREDATA_MAGIC_VALID) { if (!strcmp(username.c_str(), s_FeatureData.item[i].name)) { index = i; } } } if (index != FEATUREDATA_MAX_COUNT) { taste_number = s_FeatureData.item[index].coffee_taste; return taste_number; } else { return -1; } }   In database.h, add the declarations of  DB_Set_Taste()  and  DB_Get_Taste()  functions, and in database.cpp, add the related codes of the above two functions. These two functions are equivalent to encapsulating the newly added member functions set_taste() and get_taste() of the FeatureDB class; int DB_Del(uint16_t id, std::string name); int DB_Del(string name); int DB_DelAll(); int DB_Ren(const std::string oldname, const std::string newname); int DB_GetFree(int &index); int DB_GetNames(std::vector<std::string> *names); int DB_Count(int *count); int DB_Save(int count); int DB_GetFeature(uint16_t id, float *feature); int DB_Add(uint16_t id, float *feature); int DB_Add(uint16_t id, std::string name, float *feature); int DB_Update(uint16_t id, float *feature); int DB_GetIDs(std::vector<uint16_t> &ids); int DB_GetName(uint16_t id, std::string &names); int DB_GenID(uint16_t *id); int DB_SetAutoSave(bool auto_save); // Add two customize functions int DB_Set_Taste(const std::string username, const uint16_t taste); int DB_Get_Taste(const std::string username); int DB_Set_Taste(const std::string username, const uint16_t taste) { int ret = DB_MGMT_FAILED; ret = DB_Lock(); if (DB_MGMT_OK == ret) { ret = s_DB->set_taste(username, taste); DB_UnLock(); } return ret; } int DB_Get_Taste(const std::string username) { int ret = DB_MGMT_FAILED; ret = DB_Lock(); if (DB_MGMT_OK == ret) { ret = s_DB->get_taste(username); DB_UnLock(); } return ret; } In sln_api.h, add the declarations of the functions  VIZN_SetTaste() ,  VIZN_GetTaste()  and  VIZN_Is_Rec_User() , and add the codes of the above three functions in sln_api.cpp. The VIZN_SetTaste() and VIZN_GetTaste() functions are equivalent to the encapsulation of the DB_Set_Taste() and DB_Get_Taste() functions. Why is it so complicated? To follow the code layering mechanism of the elock_oobe project and reduce the difficulty of code implementation through code layered encapsulation. /** * @brief Set user's favorite coffee taste. * * @Param clientHandle The client handler which required this action * @Param userName Pointer to a buffer which contains the name of the new user. * @Param taste Coffee taste */ vizn_api_status_t VIZN_SetTaste(VIZN_api_client_t *clientHandle, char *UserName, cfg_Coffee_taste taste); /** * @brief Set user's favorite coffee taste. * * @Param clientHandle The client handler which required this action * @Param userName Pointer to a buffer which contains the name of the new user. * @Param taste Pointer to the Coffee taste */ vizn_api_status_t VIZN_GetTaste(VIZN_api_client_t *clientHandle, char *UserName, int *taste); vizn_api_status_t VIZN_Is_Rec_User(VIZN_api_client_t *clientHandle, char *UserName); ~~~~~~~~~ vizn_api_status_t VIZN_SetTaste(VIZN_api_client_t *clientHandle, char *UserName, cfg_Coffee_taste taste) { int32_t status; if (!IsValidUserName(UserName)) { return kStatus_API_Layer_RenameUser_InvalidUserName; } status = DB_Set_Taste(std::string(UserName), (uint16_t)taste); if (status == 0) { return kStatus_API_Layer_Success; } else if (status == -1) { return kStatus_API_Layer_SetTaste_Failed; } } vizn_api_status_t VIZN_GetTaste(VIZN_api_client_t *clientHandle, char *UserName, int *taste) { int32_t status; if (!IsValidUserName(UserName)) { return kStatus_API_Layer_RenameUser_InvalidUserName; } *taste = DB_Get_Taste(std::string(UserName)); if (*taste != -1) { return kStatus_API_Layer_Success; } else { return kStatus_API_Layer_GetTaste_Failed; } } vizn_api_status_t VIZN_Is_Rec_User(VIZN_api_client_t *clientHandle, char *UserName) { if (!IsValidUserName(UserName)) { return kStatus_API_Layer_RenameUser_InvalidUserName; } return kStatus_API_Layer_Success; } In sln_api_init.cpp, declare the variable:  std::string Current_User = "" ; which is used to store the name corresponding to the face after recognition, and add the processing function  Coffee_Rec()  after successful face recognition in the structure variable ops2; std::string Current_User = " "; //Add customize function int Coffee_Rec(VIZN_api_client_t *pClient, face_info_t face_info); client_operations_t ops2 = { .detect = NULL, .recognize = Coffee_Rec,//NULL, .enrolment = NULL, }; //Add customize function int Coffee_Rec(VIZN_api_client_t *pClient, face_info_t face_info) { Current_User = face_info.name; return 1; } In sln_timers.h, increase MS_SYSTEM_LOCKED to extend the locked status time to 25 seconds; ~~~~~~~~ #define MS_SYSTEM_LOCKED 25000 //2000 // MS in which the board is in a locked state after a reg/rec. ~~~~~~~~ In sln_cli.cpp, add three Shell commands: order, set_taste, get_taste to stand for the operations of brewing coffee, setting coffee taste, and checking coffee taste; SHELL_COMMAND_DEFINE(set_taste, (char *)"\r\n\"set_taste username <0|1|2|3|~>\": set user's favorite taste\r\n" "0 - Cappuccino\r\n" "1 - Black Coffee\r\n" "2 - Coffee latte\r\n" "3 - Flat White\r\n" "4 - Cortado\r\n" "5 - Mocha\r\n" "6 - Con Panna\r\n" "7 - Lungo\r\n" "8 - Ristretto\r\n" "9 - Others \r\n", FFI_CLI_SetTasteCommand, SHELL_IGNORE_PARAMETER_COUNT); SHELL_COMMAND_DEFINE(get_taste, (char *)"\r\n\"get_taste username\": return user's favorite taste \r\n", FFI_CLI_GetTasteCommand, SHELL_IGNORE_PARAMETER_COUNT); SHELL_COMMAND_DEFINE(order, (char *)"\r\n\"order <0|1|2|3|~>\": order a favorite taste \r\n", FFI_CLI_OrderCommand, SHELL_IGNORE_PARAMETER_COUNT); ~~~~~~ static shell_status_t FFI_CLI_SetTasteCommand(shell_handle_t shellContextHandle, int32_t argc, char **argv) { if (argc != 3) { SHELL_Printf(shellContextHandle, "Wrong parameters\r\n"); return kStatus_SHELL_Error; } return UsbShell_QueueSendFromISR(shellContextHandle, argc, argv, SHELL_EV_FFI_CLI_SET_TASTE); } static shell_status_t FFI_CLI_GetTasteCommand(shell_handle_t shellContextHandle, int32_t argc, char **argv) { if (argc != 2) { SHELL_Printf(shellContextHandle, "Wrong parameters\r\n"); return kStatus_SHELL_Error; } return UsbShell_QueueSendFromISR(shellContextHandle, argc, argv, SHELL_EV_FFI_CLI_GET_TASTE); } shell_status_t FFI_CLI_OrderCommand(shell_handle_t shellContextHandle, int32_t argc, char **argv) { if (argc > 2) { SHELL_Printf(shellContextHandle, "Wrong parameters\r\n"); return kStatus_SHELL_Error; } return UsbShell_QueueSendFromISR(shellContextHandle, argc, argv, SHELL_EV_FFI_CLI_ORDER); } ~~~~~~ shell_status_t RegisterFFICmds(shell_handle_t shellContextHandle) { SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(list)); SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(add)); SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(del)); SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(rename)); SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(verbose)); SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(camera)); SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(version)); SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(save)); SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(updateotw)); SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(reset)); SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(emotion)); SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(liveness)); SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(detection)); SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(display)); SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(wifi)); SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(app_type)); SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(low_power)); // Add three Shell commands SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(order)); SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(set_taste)); SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(get_taste)); return kStatus_SHELL_Success; } In sln_cli.cpp, it needs to add corresponding codes for handle order, set_taste, get_taste instructions in task UsbShell_CmdProcess_Task else if (queueMsg.shellCommand == SHELL_EV_FFI_CLI_SET_TASTE) { int coffee_taste = atoi(queueMsg.argv[2]); if (coffee_taste >= Cappuccino && coffee_taste <= Others) { status = VIZN_SetTaste(&VIZN_API_CLIENT(Shell),(char *)queueMsg.argv[1], (cfg_Coffee_taste)coffee_taste); if (status == kStatus_API_Layer_Success) { SHELL_Printf(shellContextHandle, "User: %s like coffee taste: %s \r\n", queueMsg.argv[1], Coffee_type[coffee_taste]); } else { SHELL_Printf(shellContextHandle, "Cannot set coffee taste\r\n"); } } else { SHELL_Printf(shellContextHandle, "Unsupported coffee taste\r\n"); } } else if (queueMsg.shellCommand == SHELL_EV_FFI_CLI_GET_TASTE) { int get_taste_num = 0; status = VIZN_GetTaste(&VIZN_API_CLIENT(Shell),(char *)queueMsg.argv[1], &get_taste_num); if (status == kStatus_API_Layer_Success) { SHELL_Printf(shellContextHandle, "User: %s like coffee taste: %s \r\n", queueMsg.argv[1], Coffee_type[(cfg_Coffee_taste)(get_taste_num)]); } else { SHELL_Printf(shellContextHandle, "Cannot get coffee taste\r\n"); } } else if (queueMsg.shellCommand == SHELL_EV_FFI_CLI_ORDER) { status = VIZN_Is_Rec_User(&VIZN_API_CLIENT(Shell),(char *)Current_User.c_str()); if (status == kStatus_API_Layer_Success) { if (queueMsg.argc == 1) { int get_taste_num = 0; status = VIZN_GetTaste(&VIZN_API_CLIENT(Shell),(char*)Current_User.c_str(), &get_taste_num); if (status == kStatus_API_Layer_Success) { SHELL_Printf(shellContextHandle, "User: %s order the a cup of %s \r\n", Current_User.c_str(), Coffee_type[(cfg_Coffee_taste)(get_taste_num)]); } else { SHELL_Printf(shellContextHandle, "Sorry, please order again, Current user is %s\r\n",Current_User.c_str()); } } else if(queueMsg.argc == 2) { int coffee_taste = atoi(queueMsg.argv[1]); if (coffee_taste >= Cappuccino && coffee_taste <= Others) { status = VIZN_SetTaste(&VIZN_API_CLIENT(Shell),(char*)Current_User.c_str(), (cfg_Coffee_taste)coffee_taste); if (status == kStatus_API_Layer_Success) { SHELL_Printf(shellContextHandle, "User: %s order a cup of %s \r\n", Current_User.c_str(), Coffee_type[coffee_taste]); } else { SHELL_Printf(shellContextHandle, "Cannot set coffee taste, Current user is %s\r\n",Current_User.c_str()); } } else { SHELL_Printf(shellContextHandle, "Unsupported coffee taste\r\n"); } } } } Use the cafe logo of《Friends》to replace the original Welcome_home picture, use the BmpCvt tool to convert the picture into the corresponding array, and add it to welcomehome_320x122.h. static const unsigned short Coffee_shop_320_122[] = { 0x59E6, 0x6227, 0x6247, 0x59C5, 0x59C5, 0x59A5, 0x4103, 0x6A67, 0x6A47, 0x6227, 0x6A47, 0x6A68, 0x7268, 0x6A67, 0x6A67, 0x6A47, 0x72A9, 0x6A68, 0x7268, 0x6A48, 0x5A06, 0x6A88, 0x6A68, 0x6247, 0x6A47, 0x7289, 0x7289, 0x6A47, 0x6A47, 0x6A47, 0x6227, 0x6A68, 0x6206, 0x6A47, 0x5A26, 0x6247, 0x6227, 0x6A27, 0x4924, 0x836D, 0x5207, 0x7BAC, 0x5247, 0x83ED, 0x4A47, 0x2923, 0x7B8C, 0x49E5, 0x49E5, 0x4A05, 0x28C1, 0x5226, 0x6267, 0x6A87, 0x72E9, 0x6267, 0x6AA9, 0x5A27, 0x6AA9, 0x6AA9, 0x5A47, 0x6A88, 0x5A06, 0x5A47, 0x6AA9, 0x5A47, 0x62A9, 0x5206, 0x6288, 0x6268, 0x5A47, 0x5A27, 0x5A47, 0x5A27, 0x49E6, 0x4A07, 0x4A07, 0x5A89, 0x49C6, 0x5A48, 0x5A28, 0x5A47, 0x5226, 0x49E6, 0x49C6, 0x41A6, 0x5208, 0x2082, 0x52A8, 0x6B6B, 0x39A5, 0x39A5, 0x3964, 0x49E7, 0x3104, 0x49C7, 0x3945, 0x41A6, 0x28A2, 0x2061, 0x3965, 0x28E3, 0x1881, 0x3944, 0x3103, 0x3103, 0x3903, 0x4145, 0x51A6, 0x51C6, 0x4985, 0x51E6, 0x51E6, 0x61E7, 0x6A48, 0x6A28, 0x6A28, 0x6A27, 0x61E6, 0x6207, 0x6A68, 0x59E7, 0x4185, 0x51E6, 0x51A6, 0x6228, 0x5A07, 0x6228, 0x5A08, 0x4184, 0x41A5, 0x4164, 0x3944, 0x3944, 0x736B, 0x83ED, 0x41A5, 0x83ED, 0x6288, 0x8BAB, 0x836A, 0x6287, 0x6B2A, 0x5267, 0x83CD, 0x5A68, 0x5228, 0x3986, 0x3985, 0x7B0A, 0x6A67, 0x7267, 0x832B, 0x49A5, 0x6206, 0x8AC9, 0x72A8, 0x82C9, 0x82E9, 0x8309, 0x6A46, 0x8B2B, 0x3860, 0x8329, 0x6A67, 0x7288, 0x7268, 0x61E6, 0x7267, 0x6A67, 0x59C5, 0x51A4, 0x6A46, 0x7AA8, 0x6A26, 0x7287, 0x7AA8, 0x72A8, 0x72A9, 0x51C5, 0x5A27, 0x5A27, 0x3923, 0x ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 0x7B8C, 0x734B, 0x6B0A, 0x83CD, 0x83ED, 0x8C0E, 0x7B8C, 0x7B6C, 0x20C2, 0x5227, 0x83ED, 0x6AE9, 0x734B, 0x62A9, 0x7B6B, 0x7B8C, 0x62E9, 0x7BAC, 0x7B6B, 0x732A, 0x940D, 0x83AC, 0x732A, 0x7309, 0x8BCC, 0x7309, 0x8BCD, 0x83AC, 0x7B6B, 0x940D, 0x3943, 0x942E, 0x7B6B, 0x734A, 0x7B8B, 0x62C8, 0x7B8B, 0x7B6A, 0x7BAB, 0x732A, 0x7B6B, 0x7B6B, 0x83CC, 0x6B09, 0x6AA9, 0x6AE9, 0x7B6B, 0x7B8B, 0x83AC, 0x734B, 0x6AC9, 0x6B0A, 0x734B, 0x734A, 0x62A8, 0x732A, 0x8C0E, 0x8BCD, 0x944F, 0x734B, 0x7B8B, 0x732A, 0x942E, 0x8BCD, 0x83AD, 0x732B, 0x6B0A, 0x6AEA, 0x62C9, 0x9C90, 0x28C2, 0x8BEE, 0x93EE, 0x8BCD, 0x4183, 0x838B, 0x7B6A, 0x6287, 0x8BCB }; Programming the new project After saving the modified code and recompile the sln_viznas_iot_elock_oobe project (as shown in the figure below), then connect the MCU-LINK to J6 on the SLN-VIZNAS-IOT, just like Fig9 shows. Fig8 Recompile code Fig9 MCU-LINK (Note: it needs to reselect the Flash driver, as the below figure shows.) Fig10 Flash driver After that, it's able to program the code project to the on-board Hyperflash. Test & Summary When the new code project boot-up, please refer to Get Started with the SLN-VIZNAS-IOT to use the serial terminal to test the newly added three Shell commands: orders, set_taste, and get_taste. Once a face is successfully recognized, the cafe logo will appear up (as shown in Fig11). Fig11 Cafe logo Definitely, this smart coffee machine seems like a 'toy' demo, and there is a lot of work to improve it. Below is the list of my future work plans, Use the LCD panel instead of USB to display; Connect an external amplifier to enable voice prompt feature; Enable the Wifi feature to connect to the App; Use the GUI library to enhance UI experience; Add a voice recognition feature to control; And I'll be glad to hear any comments from you.    
查看全文
[中文翻译版] 见附件   原文链接: https://community.nxp.com/t5/eIQ-Machine-Learning-Software/eIQ-on-i-MX-RT1064-EVK/ta-p/1123602 
查看全文
Obtaining the footprint for Kinetis/LPC/i.MXRT part numbers is very straightforward using the Microcontroller Symbols, Footprints and Models Library homepage, on the following link: https://www.nxp.com/design/software/models/microcontroller-symbols-footprints-and-models:MCUCAD?tid=vanMCUCAD What some users may not be aware of is that the BXL file available for NXP Kinetis/LPC/i.MXRT part numbers also contain the 3D model of the package, which is often needed when working on the industrial design of your application. You may follow the steps below to export the 3D model of the package in STEP (Standard for the Exchange of Product Data) format using the Ultra Librarian software, which can be downloaded from the link on the models library homepage. A STEP (.step,stp) file stores the model in ASCII format. This format can be imported into many CAD suites that allow to work with 3D solids. First, obtain the BXL file for the part number you are interested in. In this example the MIMXRT1052CVL5B.blx.   Then, open the Ultra Librarian project and load this file using the “Load Data” button, and select the “3D Step Model” checkbox from the Select Tools options. Finally, select the Export to Select Tools option. Once the exporting process is finished, the step file will be available on the path UltraLibrarian/Library/Exported.  The STEP (.stp) file can be opened in CAD suites that support solid 3D objects, like FreeCAD which is open source.
查看全文
                                      配置RT600开发环境 RT600开发入门培训视频。 https://www.nxp.com/document/guide/getting-started-with-i-mx-rt600-evaluation-kit:GS-MIMXRT685-EVK?&tid=vanGS-MIMXRT685-EVK#title2.1   下载I.MX RT600 SDK。下载链接: https://mcuxpresso.nxp.com/en/select?device=EVK-MIMXRT685     下载MCUXpresso IDE。注意需要安装MCUXpresso IDE 11.1.1及最新版本。https://www.nxp.com/webapp/swlicensing/sso/downloadSoftware.sp?catid=MCUXPRESSO               下载安装LPCScrypt,可以将默认板载的CMSIS-DAP固件升级改为J-LINK。通过J-LINK,可以下载调试HiFi4 DSP固件。下载链接https://www.nxp.com/design/microcontrollers-developer-resources/lpc-microcontroller-utilities/lpcscrypt-v2-1-1:LPCSCRYPT?&tab=Design_Tools_Tab     下载安装J-LINK驱动。下载链接https://www.segger.com/downloads/jlink/   下载安装Cadence HiFi 4 DSP IDE for MIMXRT600。 第一次下载,注册用户https://tensilicatools.com/register/。国内用户注册时,如果页面没有出现下面人机身份验证,说明IP被GW Firewall屏蔽了。需要通过代理或者其他特殊手段,否则用户注册将无法成功提交。   下载HiFi DSP Development Tools for i.MX RT600开发工具。 https://tensilicatools.com/download/rt600-download-page/   申请License for RT600 SDK。注意输入绑定网卡MAC地址时,需要去除中间‘:’等字符,否则提示失败。   申请成功后,可以下载License文件。   启动Xplorer 8.0.13后,在菜单Help -- Xplorer License Keys安装License文件。安装成功后显示如下:     Xplorer下载调试器配置。 将xt-ocd.exe所在目录加入到系统Path环境变量。   使能”Use XOCD Manager”,指定Topology File   设置Download binary为Always,取消每次下载前都弹出提示框,节省下载时间。     通过J-Link下载HiFi4 DSP固件,可以单步调试代码。    
查看全文
RT Linux SDK build based on Ubuntu 1. Abstract The SDK of NXP MIMXRT products can support three operation systems: windows, Linux, and macOS. Usually, the vast majority of users use the windows version combined with IDE compilation, and the documentation is relatively complete. However, for the Linux version, although the SDK is downloaded, it also contains documents, but the documents are the same as those of windows, not for Linux. Therefore, when a small number of customers use Ubuntu Linux to compile, they suffer from no documentation reference, especially for novices, it is difficult to use.      This article will implement the build of RT1060 linux version SDK based on Ubuntu. 2. Tool preparation You need to prepare a computer with Ubuntu system. Windows can install a virtual machine with Ubuntu system. This article uses the Ubuntu system of the web server. Tools required for testing: Ubuntu system cmake ARMGCC: ARGCC for ARM Cortex M core SDK: SDK_2_13_1_EVK-MIMXRT1060_linux.zip EVK: MIMXRT1060-EVK This article takes MIMXRT1060-EVK SDK as an example, and the situation of other RT development boards with Linux SDK is the same. 2.1 SDK downloading     Download link: https://mcuxpresso.nxp.com/en/builder?hw=EVK-MIMXRT1060 Fig 1 Download the SDK code, named as: SDK_2_13_1_EVK-MIMXRT1060_linux.zip If you download it under Windows, you need to copy the SDK to the Ubuntu system. Here you can use FileZilla or MobaXterm to transfer the file. Because I use the web server Ubuntu, it is based on MobaXterm. This software is free to use, and the download link is: https://mobaxterm.mobatek.net/ Put the downloaded SDK into the Ubuntu folder, in MobaXterm, drag the file can realize the file transfer from Windows to Ubuntu: Fig 2 Unzip SDK, the commander is: unzip SDK_2_13_1_EVK-MIMXRT1060_linux.zip -d ./SDK_2_13_1_EVK-MIMXRT1060_linux Fig 3 Fig 4 It can be seen that the SDK has been successfully unzipped to the SDK_2_13_1_EVK-MIMXRT1060_linux folder. At this point, the Linux SDK is ready to use. 2.2 ARMGCC install and configuration Download ARMGCC, as you can see from the release note of the SDK, the supported GCC Arm Embedded version: GCC Arm Embedded, version is 10.3-2021.10   Download link:https://developer.arm.com/downloads/-/gnu-rm Download the file: gcc-arm-none-eabi-10.3-2021.10-x86_64-linux.tar.bz2  Copy it to the Ubuntu, and unzip it, the unzip commander is: tar -xjvf gcc-arm-none-eabi-10.3-2021.10-x86_64-linux.tar.bz2 Fig 5 Fig 6 You can see that ARMGCC has been decompressed. Configure the environment variables below and add ARMGCC_DIR to /etc/profile: Add the path at the end of the profile to save and exit: export ARMGCC_DIR=/home/nxa07323/rtdoc/gcc-arm-none-eabi-10.3-2021.10/ export PATH=$PATH:/home/nxa07323/rtdoc/gcc-arm-none-eabi-10.3-2021.10/bin/ Fig 7 Valid profile, and check the ARMGCC_DIR is really valid. source /etc/profile echo $ARMGCC_DIR Fig 8 Until now, ARMGCC is ready to use! 2.3 cmake download and install Build also need the cmake tool, so use the following command to install cmake and check whether the installation is successful: sudo apt-get install cmake cmake –version Fig 9 Cmake is also ready! 3. Testing All the tools are ready, let’s start compiling the code, here we take hello_world as an example to compile an executable file downloaded to Flash. 3.1 Executable file Compilation Enter the hello_world gcc path of the SDK: Fig10 It can be seen that there are many files under the armgcc folder, which are compilable files that generate different images: build_debug,build_release:the linker file is RAM linker, where text and data section is put in internal TCM. build_flexspi_nor_debug, build_flexspi_nor_release: The linker file is flexspi_nor linker, where text is put in flash and data put in TCM. build_flexspi_nor_sdram_debug, build_flexspi_nor_sdram_release: The linker file is flexspi_nor_sdram linker, where text is put in flash and data put in SDRAM. build_sdram_debug, build_sdram_release: The linker file is SDRAM linker, where text is put in internal TCM and data put in SDRAM. build_sdram_txt_debug, build_sdram_txt_release: The linker file is SDRAM_txt linker, where text is put in SDRAM and data put in OCRAM. Now, compile build_flexspi_nor_debug.sh, this script will generate flash .elf file, the command is: ./build_flexspi_nor_debug.sh Fig 11 The compiled .elf is placed in the flexspi_nor_debug folder: Fig 12 Convert the hello_world.elf file to hex and bin for the RT board burning, conversion command is: arm-none-eabi-objcopy -O ihex hello_world.elf hello_world.hex arm-none-eabi-objcopy -O binary hello_world.elf hello_world.bin Fig 13 3.2 Code Downloading Test The generated files hello_world.hex and hello_world.bin are the executable files, which can be downloaded to the EVK board through MSD, serial downloader, or debugger software. Open the bin file to view: Fig 14 As you can see, this file is an app executable file with FCB. Here use the MCUbootUtility tool to download, and the EVK board enters the serial download mode: SW7 1-OFF, 2-OFF, 3-OFF, 4-ON Fig 15 After the downloading is finished, EVK board enter the internal boot mode: SW7 1-OFF,2-OFF,3-ON,4-OFF Fig 16 We can see, the printf works, it means the Ubuntu Linux build the file works OK. 3.3 Code configuration Some customers may think that the executable files to be loaded by some of our tools do not need FCB, so how to realize to generate the app without FCB Linux, here we need to modify the flags.cmake file, the path is:     /home/nxa07323/rtdoc/SDK_2_13_1_EVK-MIMXRT1060_linux/boards/evkmimxrt1060/demo_apps/hello_world/armgcc Configure BOOT_HEADER_ENABLE=0: Default is BOOT_HEADER_ENABLE=1(Fig 17), modified to Fig 18: Fig 17                              Fig18 Build again, to generate the .bin, check the .bin file: Fig 19 We can see that this file is a pure app file that does not contain FCB+IVT. It can be used in occasions that do not require FCB. Until now, the RT1060 Linux version of the SDK can be compiled to generate an executable file under Ubuntu, and the function is normal after the function test.            
查看全文
The RT600 is a family of dual-core microcontrollers for embedded applications featuring an Arm® Cortex®-M33 CPU combined with a Cadence® Tensilica ® HiFi 4 audio DSP core.  Check out this latest app note to learn about communication and debugging of these two cores.  For list of all i.MX RT600 app notes, visit: nxp.com/imxrt600
查看全文
This demo code shows how to synchronize the PWM signals with another internal timer or an off-chip source. It allows you to achieve slower PWM frequencies than those that can be achieved with internal clocks as well as that multiple modules and multiple chips can be synchronized to each other. The idea is the following: The QTMR generates a PWM signal (external clock signal) which is routed through the XBAR to clocking the eFlexPWM, and at the same, the external clock signal is routed to an IO PAD in the first MCU. In a second MCU, an IO PAD is routed through the XBAR to clocking the eFlexPWM (see Figure 1).   Figure 1     The demo code (only MCU1 part so far) can me tested using the SDK for EVKB-IMXRT1050 v2.14.0. Probe the PWM signals using an oscilloscope: - At J24-1  GPIO_AD_B0_03  XBAR1_INOUT17 (QTMR PWM signal) - At J24-6  GPIO_SD_B0_00  FLEXPWM1_PWM0_A - At J24-3  GPIO_SD_B0_01  FLEXPWM1_PWM0_B Please remember weld resistors 0Ω at R280 R281.
查看全文
1.1 Introduction   RT-Flash is a GUI tool specially designed for i.MX RT production. Its feature is similar to MfgTool2, but it solves below limitaions of MfgTool2: The .sb file can only be specified in xml file; USB port is the only choice to download .sb file; Sometimes USB Hub is required to connect;   With RT-Flash, you can easily get started with NXP MCU secure boot. The main features of RT-Flash include: Support i.MXRT1015, i.MXRT1021, i.MXRT1051/1052, i.MXRT1061/1062, i.MXRT1064 SIP Support both UART and USB-HID serial downloader modes Support for loading .sb image file into boot device 1.2 Download   RT-Flash is developed in Python, and it is open source. The development environment is Python 2.7.15 (32bit), wxPython 4.0.3, pySerial 3.4, pywinusb 0.4.2, PyInstaller 3.3.1 (or higher). Source code: https://github.com/JayHeng/RT-Flash   RT-Flash is packaged by PyInstaller, all Python dependencies have been packaged into an executable file (\RT-Flash\bin\RT-Flash.exe), so if you do not want to develop RT-Flash for new feature, there is no need to install any Python software or related libraries. Note1: The RT-Flash.exe in the source code package is packaged in the Windows 10 x64 environment and has only been tested in this environment. If it cannot be used directly for system environment reasons, you need to install Python2.7.15 x86 version (Confirm that the directory "\Python27" and "\Python27\Scripts" are in the system environment variable path after the installation is completed), then click on "do_setup_by_pip.bat" in the "\RT-Flash\env" directory to install the Python library on which RT-Flash depends. Finally, click "do_pack_by_pyinstaller.bat" to regenerate the RT-Flash.exe. Note2: You must use Python2 x86 version, because RT-Flash uses the pywinusb library, which cannot be packaged by PyInstaller in Python2 x64 version. The pywinusb author has no plan to fix the problem. 1.3 Installation   RT-Flash is a pure green free installation tool. After downloading the source code package, double-click "\RT-Flash\bin\RT-Flash.exe" to use it. No additional software is required.   Before the RT-Flash.exe graphical interface is displayed, a console window will pop up first. The console will work along with the RT-Flash.exe graphical interface. The console is mainly for the purpose of showing error information of RT-Flash.exe. At present, RT-Flash is still in development stage, and the console will be removed when the RT-Flash is fully validated. 1.4 Interface
查看全文
How to load MDK RAM app to the RT1170 external flash 1. Abstract This guide is requested by our end customer, he wants to realize the MDK project RAM code download to the MIMXRT1170 external QSPI flash. So, based on the NXP RT1170 SDK, and the MIMXRT1170-EVK board, generate the MDK project, reallocate the app image, generate the image, and use the tool to download the code to the external flash. 2. App image prepare 2.1 Generate one SDK MDK standalone project Open the SDK_2_15_000_MIMXRT1170-EVK webpage: https://mcuxpresso.nxp.com/en/builder?hw=MIMXRT1170-EVK Download the SDK, and generate one MDK standalone project: Fig 1 Fig 2 After downloading, we will get the MIMXRT1170-EVK-iled_blinky_cm7.zip, which is the MDK project. 2.2 MDK project image reallocation As the RAM image is the none-xip image, normally to the IDE, can’t download to the flash directly, as the debug is in the RAM. If want to download to the flash, we can generate the app image, then use the tool to program it to the external flash. Normally, none-xip image, the IVT offset is 0X400, so we need to reallocate the image start address, here, we can use 0X2000 as the app entry address. Fig 3 ITCM default size is 256K=0X4000, so modify the linker file-> scf file like this: Fig 4 Now, to generate the hex and bin image file, which is used for the tool downloading. Fig 5 To build the bin file command: $K\ARM\ARMCC\bin\fromelf.exe --bin --output=debug\@L.bin !L Fig 6   Building, you can find the file in the folder: MIMXRT1170-EVK-iled_blinky_cm7\iled_blinky_cm7\debug Fig 7 2.3 MDK project debug after reallocation After the image reallocation, some customer may still need the MDK RAM project can do the debugging, here, also need to modify the debug .ini file. The Setup also need to change the SP, PC and Vector table offset register address. Fig 8 Then build and debug the code, we can find it can enter the ram image debug mode: Fig 9 3. App image download We can use the MCUBootUtility Tool to download the code: https://github.com/JayHeng/NXP-MCUBootUtility/releases/tag/v6.1.0 the related user manual is: https://github.com/JayHeng/NXP-MCUBootUtility Download the tool. MIMXRT1170-EVK enter the serial download mode by changing SW1: 1-OFF,2-OFF,3-OFF,4-ON Power off and power on the board again, find another USB cable to connect the J20 USB1 interface. Then, use the MCUBootutility to connect the board: Fig 10 After connection, select the MDK project generated .hex file: Fig 11 Press the All-in-One-Action button, to download the code, this is the downloaded result: Fig 12 Press the “Reset device” button to exit the tool. Then MIMXRT1170-EVK board change SW1: 1-OFF, 2-OFF, 3-ON,4-OFF Press the EVK on board reset button, SW4, you will find the LED is blinking, it means the MDK RAM project already download to the external QSPI flash, and boot OK.
查看全文
A vulnerability (CVE-2022-22819) has been identified on select NXP processors by which a malformed SB2 file header sent to the device as part of an update or recovery boot can be used to create a buffer overflow. The buffer overflow can then be used to launch various exploits. Refer to the attached bulletin for more information.   09/26/2022 - Bulletin updated to include fix datecode information. 11/01/2022 - Bulletin updated with clarification that mixed datecodes are RT600 only.    
查看全文
Introduction A common need for GUI applications is to implement a clock function.  Whether it be to create a clock interface for the end user's benefit, or just to time animations or other actions, implementing an accurate clock is a useful and important feature for GUI applications.  The aim of this document is to help you implement clock functions in your AppWizard project.   Methods When implementing a real-time clock, there are a couple of general methods to do so.   Use an independent timer in your MCU Using animation objects Each of these methods have their advantages and disadvantages.  If you just need a timer that doesn't require extra code and you don't require control or assurance of precision, or maybe you can't spare another timer, using an animation object (method #2) may be a good option in that application.  If your application requires an assurance of precision or requires other real-time actions to be performed that AppWizard can't control, it is best to implement an independent timer in your MCU (method #1).  Method 1:  Independent MCU Timer Implementing a timer via an independent MCU timer allows better control and guarantees the precision because it isn't a shared clock and the developer can adjust the interrupt priorities such that the timer interrupt has the highest priority.  AppWizard timing uses a common timer and then time slices activities similar to how an operating system works.  It is for this reason that implementing an independent MCU timer is best when you need control over the precision of the timer or you need other real-time actions to be triggered by this timer.  When implementing a timer using an independent MCU timer (like the RTC module), an understanding of how to interact with Text widgets is needed. Let's look at this first.   Interacting with Text Widgets Editing Text widgets occurs through the use of the emWin library API (the emWin library is the underlying code that AppWizard builds upon). The Text widget API functions are documented in the emWin Graphic Library User Guide and Reference Manual, UM3001.  Most of the Text widget API functions require a Text widget handle.  Be sure to not confuse this handle for the AppWizard ID.  Imagine a clock example where there are two Text widgets in the interface:  one for the minutes and one for the seconds.  The AppWizard IDs of these objects might be ID_TEXT_MINS and ID_TEXT_SECONDS respectively (again, these are not to be confused with the handle to the Text widget for use by emWin library functions).  The first action software should take is to obtain the handle for the Text widgets.   This can be done using the WM_GetDialogItem function.  The code to get the active window handle and the handle for the two Text widgets is shown below: activeWin = WM_GetActiveWindow(); textBoxMins = WM_GetDialogItem(activeWin, ID_TEXT_MINS); textBoxSecs = WM_GetDialogItem(activeWin, ID_TEXT_SECONDS);‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Note that this function requires the handle to the parent window of the Text widget.  If your application has multiple windows or screens, you may need to be creative in how you acquire this handle, but for this example, the software can simply call the WM_GetActiveWindow function (since there is only one screen).  When to call these functions can be a bit tricky as well.  They can be called before the MainTask() function of the application is called and the application will not crash.  However, the handles won't be correct and the Text widgets will not be updated as expected.  It's recommended that these handles be initialized when the screen is initialized.  An example of how this would be done is shown below: void cbID_SCREEN_CLOCK(WM_MESSAGE * pMsg) { extern WM_HWIN activeWin; extern WM_HWIN textBoxMins; extern WM_HWIN textBoxSecs; extern WM_HWIN textBoxDbg; if(pMsg->MsgId == WM_INIT_DIALOG) { activeWin = WM_GetActiveWindow(); textBoxMins = WM_GetDialogItem(activeWin, ID_TEXT_MINS); textBoxSecs = WM_GetDialogItem(activeWin, ID_TEXT_SECONDS); textBoxDbg = WM_GetDialogItem(activeWin, ID_TEXT_DBG); } GUI_USE_PARA(pMsg); }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Once the Text widget handles have been acquired, the text can be updated using the TEXT_SetText() function or the TEXT_SetDec() function in this case, because the Text widgets are configured for decimal mode, since we want to display numbers.  An example of the code to do this is shown below.  /* TEXT_SetDec(Text Widget Handle, Value as Int, Length, Shift, Sign, Leading Spaces) */ if(TEXT_SetDec(textBoxSecs, (int)gSecs, 2, 0, 0, 0)) { /* Perform action here if necessary */ } if(TEXT_SetDec(textBoxMins, (int)gMins, 2, 0, 0, 0)) { /* Perform action here if necessary */ } ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Method 2:  Animation Objects When implementing a real-time clock using animation objects, it is necessary to implement a loop.  This could be done outside of the AppWizard GUI (in your code) but because the timing precision can't be guaranteed, it's just as easy to implement a loop in the AppWizard GUI if you know how (it isn't very intuitive as to how to do this). Before examining the interactions to do this, let's look at the variables and objects needed to do this.  ID_VAR_SECS - This variable holds the current seconds value. ID_VAR_SECS_1 - This variable holds the next second value.  ID_TEXT_SECONDS - Text box that displays the current seconds value. ID_END_CNT - Variable that holds the value at which the seconds rolls over and increments the minute count ID_TEXT_MINS - Text box that holds the current minute count. ID_MIN_END_CNT - Variable that holds the value at which the minutes rolls over (which would also increment the hour count if the hours were implemented). ID_BUTTON_SECS - This is a hidden button that initiates actions when the seconds variable has reached the end count.  Now, here are the interactions used to implement the clock feature using animation interactions.  The heart of the loop are the interactions triggered by ID_VAR_SECS.  ID_VAR_SECS -> ID_VAR_SECS_1:  When ID_VAR_SECS changes, it needs to add one to ID_VAR_SECS_1 so that the animation will animate to one second from the current time. ID_VAR_SECS -> ID_TEXT_SECONDS:  When ID_VAR_SECS changes, it also needs to start the animation from the current value to the next second (ID_VAR_SECS_1). A very essential part of the loop is ensuring the animation restarts every time.  So ID_TEXT_SECONDS needs to change the value of ID_VAR_SECS when the animation ends. ID_VAR_SECS is changed to the current time value, ID_VAR_SECS_1. When the ID_TEXT_SECONDS animation ends, it must also decrement the ID_VAR_END_CNT variable.  This is analogous to the control variable of a "For" loop being updated. This is done using the ADDVALUE job, adding '-1' to the variable, ID_VAR_END_CNT. When ID_VAR_END_CNT changes, it updates the hidden button, ID_BUTTON_SECS, with the new value.  This is analogous to a "For" loop checking whether its control variable is still within its limits.   The interactions in group 5 are interactions that restart the loop when the seconds reach the count that we desire.  When the loop is restarted, the following actions must be taken: Set ID_VAR_SECS and ID_VAR_SECS_1 to the initial value for the next loop ('0' in this case).  Note that ID_VAR_SECS_1 MUST be set before ID_VAR_SECS.  Additionally, if the loop is to continue, ID_VAR_SECS and ID_VAR_SECS_1 must be set to the same value.   ID_TEXT_SECONDS is set to the initial value.  If this isn't done, then the text box will try to animate from the final value to the initial value and then will look "weird". ID_VAR_END_CNT is reset to its initial value (60 in this case).  ID_BUTTON_SECS is also responsible for updating the minutes values.  In this case, it's incrementing the ID_TEXT_MINS value (counting up in minutes) and decrementing the ID_VAR_MIN_END_CNT  Adjusting the time of an animation object The animation object (as well as other emWin objects) use the GUI_X_DELAY function for timing.  It is up to the host software to implement this function.  In the i.MX RT examples, the General Purpose Timer (GPT) is used for this timer.  So how the GPT is configured will affect the timing of the application and the how fast or slow the animations run. The GPT is configured in the function BOARD_InitGPT() which resides in the main source file.  The recommended way to adjust the speed of the timer is by changing the divider value to the GPT. Conclusion So we have seen two different methods of implementing a real-time clock in an AppWizard GUI application.  Those methods are: Use an independent timer in your MCU Using animation objects Using an independent timer in your MCU may be preferred as it allows for better control over the timing, can allow for real-time actions to be performed that AppWizard can't control, and provides some assurance of precision.  Using animation objects may be preferred if you just need a quick timer implementation that doesn't require you to manually add code to your project or use a second timer.  
查看全文
Overview of i.MX RT1050         The i.MX RT1050 is the industry's first crossover processor and combines the high-performance and high level of integration on an applications processors with the ease of use and real-time functionality of a micro-controller. The i.MX RT1050 runs on the Arm Cortex-M7 core at 600 MHz, it means that it definitely has the ability to do some complicated computing, such as floating-point arithmetic, matrix operation, etc. For general MCU, they're hard to conquer these complicated operations.         It has a rich peripheral which makes it suit for a variety of applications, in this demo, the PXP (Pixel Pipeline), CSI (CMOS Sensor Interface), eLCDIF (Enhanced LCD Interface) allows me to build up camera display system easily Fig 1 i.MX RT series           It has a rich peripheral which makes it suit for a variety of applications, in this demo, the PXP (Pixel Pipeline), CSI (CMOS Sensor Interface), eLCDIF (Enhanced LCD Interface) allows me to build up camera display system easily Fig 2 i.MX RT1050 Block Diagram Basic concept of Compute Vision (CV)          Machine Learning (ML) is moving to the edge because of a variety of reasons, such as bandwidth constraint, latency, reliability, security, ect. People want to have edge computing capability on embedded devices to provide more advanced services, like voice recognition for smart speakers and face detection for surveillance cameras. Fig 3 Reason        Convolutional Neural Networks (CNNs) is one of the main ways to do image recognition and image classification. CNNs use a variation of multilayer perception that requires minimal pre-processing, based on their shared-weights architecture and translation invariance characteristics. Fig 4 Structure of a typical deep neural network         Above is an example that shows the original image input on the left-hand side and how it progresses through each layer to calculate the probability on the right-hand side. Hardware MIMXRT1050 EVK Board; RK043FN02H-CT(LCD Panel) Fig 5 MIMXRT1050 EVK board Reference demo code emwin_temperature_control: demonstrates graphical widgets of the emWin library. cmsis_nn_cifar10: demonstrates a convolutional neural network (CNN) example with the use of convolution, ReLU activation, pooling and fully-connected functions from the CMSIS-NN software library. The CNN used in this example is based on the CIFAR-10 example from Caffe. The neural network consists of 3 convolution layers interspersed by ReLU activation and max-pooling layers, followed by a fully-connected layer at the end. The input to the network is a 32x32 pixel color image, which is classified into one of the 10 output classes. Note: Both of these two demo projects are from the SDK library Deploy the neuro network mode Fig 6 illustrates the steps of deploying the neuro network mode on the embedded platform. In the cmsis_nn_cifar10 demo project, it has provided the quantized parameters for the 3 convolution layer, so in this implementation, I use these parameters directly, BTW, I choose 100 images randomly from the Test set as a round of input to evaluate the accuracy of this model. And through several rounds of testing, I get the model's accuracy is about 65% as the below figure shows. Fig 6 Deploy the neuro network mode Fig 7 cmsis_nn_cifar10 demo project test result The CIFAR-10 dataset is a collection of images that are commonly used to train ML and computer vision algorithms, it consists of 60000 32x32 color images in 10 classes, with 6000 images per class ("airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"). There are 50000 training images and 10000 test images. Embedded platform software structure         After POR, various components are initialized, like system clock, pin mux, camera, CSI, PXP, LCD and emWin, etc. Then control GUI will show up in the LCD, press the Play button will display the camera video in the LCD, once an object into the camera's window, you can press the Capture button to pause the display and run the model to identify the object. Fig8 presents the software structure of this demo. Fig 8 Embedded platform software structure Object identify Test The three figures present the testing result.   Fig 9 Fig 10 Fig 11 Furture work          Use the Pytorch framework to train a better and more complicated convolutional network for object recognition usage.
查看全文
Source code: https://github.com/JayHeng/NXP-MCUBootUtility   【v2.0.0】 Features: > 1. Support i.MXRT5xx A0, i.MXRT6xx A0 >    支持i.MXRT5xx A0, i.MXRT6xx A0 > 2. Support i.MXRT1011, i.MXRT117x A0 >    支持i.MXRT1011, i.MXRT117x A0 > 3. [RTyyyy] Support OTFAD encryption secure boot case (SNVS Key, User Key) >     [RTyyyy] 支持基于OTFAD实现的安全加密启动(唯一SNVS key,用户自定义key) > 4. [RTxxx] Support both UART and USB-HID ISP modes >     [RTxxx] 支持UART和USB-HID两种串行编程方式(COM端口/USB设备自动识别) > 5. [RTxxx] Support for converting bare image into bootable image >     [RTxxx] 支持将裸源image文件自动转换成i.MXRT能启动的Bootable image > 6. [RTxxx] Original image can be a bootable image (with FDCB) >     [RTxxx] 用户输入的源程序文件可以包含i.MXRT启动头 (FDCB) > 7. [RTxxx] Support for loading bootable image into FlexSPI/QuadSPI NOR boot device >     [RTxxx] 支持下载Bootable image进主动启动设备 - FlexSPI/QuadSPI NOR接口Flash > 8. [RTxxx] Support development boot case (Unsigned, CRC) >     [RTxxx] 支持用于开发阶段的非安全加密启动(未签名,CRC校验) > 9. Add Execute action support for Flash Programmer >     在通用Flash编程器模式下增加执行(跳转)操作 > 10. [RTyyyy] Can show FlexRAM info in device status >       [RTyyyy] 支持在device status里显示当前FlexRAM配置情况 Improvements: > 1. [RTyyyy] Improve stability of USB connection of i.MXRT105x board >     [RTyyyy] 提高i.MXRT105x目标板USB连接稳定性 > 2. Can write/read RAM via Flash Programmer >    通用Flash编程器里也支持读写RAM > 3. [RTyyyy] Provide Flashloader resident option to adapt to different FlexRAM configurations >     [RTyyyy] 提供Flashloader执行空间选项以适应不同的FlexRAM配置 Bugfixes: > 1. [RTyyyy] Sometimes tool will report error "xx.bat file cannot be found" >     [RTyyyy] 有时候生成证书时会提示bat文件无法找到,导致证书无法生成 > 2. [RTyyyy] Editing mixed eFuse fields is not working as expected >     [RTyyyy] 可视化方式去编辑混合eFuse区域并没有生效 > 3. [RTyyyy] Cannot support 32MB or larger LPSPI NOR/EEPROM device >     [RTyyyy] 无法支持32MB及以上容量的LPSPI NOR/EEPROM设备 > 4. Cannot erase/read the last two pages of boot device via Flash Programmer >    在通用Flash编程器模式下无法擦除/读取外部启动设备的最后两个Page
查看全文
This application note describes how to develop an H.264 video decoding application with the NXP i.MX RT1050 processor. Click here to access the full application note. Click here to access the github repo of FFMPEG(code, no GPL). state: the code is for evaluation purpose only.
查看全文
In the i.MXRT 1050 EVK web page, there is a very nice "Getting Started" page to show the videos and steps how to use the board. 1. Connect the board to your PC by a USB cable. 2. Build and download the SDK. a. In the SDK Builder web page, you can customize and download the specific SDK of your board. b. On the next page, you can select different OS and different IDE. Select "MCUpresso IDE" for Windows here. c. You can add the software component that you wanted. d. Request to build the SDK. e. When the build request has completed, the SDK is available for download under the SDK Dashboard page. - Download icon : Download the SDK - Rebuild icon : Rebuild the SDK with different setting - Share icon : Share the SDK to others - MCUConfigTool icon : Run the MCU Configuration Tool to configure the pinmux and clocks for your own design board. - Remove icon : Remove the SDK from the Dashboard. 3. Install the MCUXpresso IDE. a. Go to the MCUXpresso IDE weg page to download the IDE and then install it. 4. Build and run the example on EVK. a. Open the MCUXpresso IDE. Simply drag & drop the SDK zip file to "Installed SDKs" view. b. Import the SDK examples and then click "Next". c. Select the "hello_world" under the demo_apps. d. Click "Build" to build the demo. e. Execute the terminal software (e.g. PuTTY). The COM port of the console output can be found in "devices manager". The COM setting is 115200,8,N,1. f. Click the "bug" icon to start the debugging. g. Click "Resume All Debug Sessions" icon to run the demo. h. "hello world" print out in console. Reference: i.MXRT1050 web page ( Contain the datasheet, reference manual of the i.MXRT1050 processor) i.MXRT1050EVK web page ( Contain the user's guides of the i.MXRT1050 EVK) MCUXpresso IDE web page ( Contain the user's guides of the MCUXpresso IDE )
查看全文
INTRODUCTION REQUIREMENTS UTILITY USAGE INTEGRATION FUNCTIONAL DEMONSTRATION     1. INTRODUCTION   This document explains how to create an emWin application using as reference the emwin_temperature_control demo included on MCUXpresso SDK, and the emWin Utilities. The custom application for this example, is a Tic-Tac-Toe game, using the emWin GUI as user input, adding the proper logic for game implementation on the emWin generated code, and running on a MIMXRT1060-EVK board. 2. REQUIREMENTS   For the demonstration of this demo, the following material is required: MIMXRT1060-EVK board with the RK043FN02H-CT 4.3" LCD Panel. MCUXpresso IDE v11.0. MCUXpresso SDK v2.6.2 for EVK-MIMXRT1060, including the emWin middleware. Segger emWin 5.38b Libraries and Utilities. emWin 5.30 documentation. 3. UTILITY USAGE   For this demo, just GUIBuilder utility is used, and from this utility, just four widget elements are implemented on the application: Window, Text, Button and Image. At the beginning, one Window is added, configuring its xSize and ySize to 480 x 272, matching with screen's resolution. Over this Window, all the other elements are placed. Each Widget have proprieties that could be added/modified with the right click menu. The overall number of used widgets elements are the following: Three Text widgets, one for the title, other to indicate the next turn, and a third that is empty, because it will be dynamically updated to indicate the winner of the game (or indicating a Draw). Two Image widgets, on where BPM files are loaded and converted to constant arrays, to have the Cross/Circle icons indicating the current turn of the game. Ten Button widgets, one to reinitialize the game, and the other nine to build the 3x3 array used for the game. The complete application layout is shown on the following figure: Then, click on "File->Save" menu, and a file named "WindowDLG.c" file should be created on the same folder on where GUIBuilder utility is located. The "WindowDLG.c" file of this demo, as well as the BMP files for the cross/circle icons could be found on the attachments of this document. Additionally, you could also click on "File->Open" to open the downloaded "WindowDLG.c" file and modify it by your own. 4. INTEGRATION   1) First of all, it is required to import the "emwin_temperature_control" demo included on MCUXpresso SDK for MIMXRT1060-EVK board: Import SDK example(s) -> evkmimxrt1060 -> emwin_examples -> emwin_temperature_control 2) Just after importing the demo, by convenience we have renamed the project and the "source->emwin_temperature_control.c" to "evkmimxrt1060_emwin_tictactoe" and "emwin_tictactoe.c" (right click -> rename). After applying these changes, the demo should be able to be compiled and downloaded without errors and running without issues: 3) Then, open the "WindowDLG.c" file generated by the GUIBuilder and locate the "Defines" section. Copy all of them and replace the Definitions for Widgets IDs already included on the "emwin_tictactoe.c" file. 4) Also remove the "Some dimension defines" and "Colors" sections of the "emwin_tictactoe.c" file, and also the content of "Structures", "Static data". From the same file, also remove the sections for "_aGradient", "_GetSelectedRoom", "_SetFanButtonState", "_cbButton", "_cbButtonFan", "_cbKnob", "_DrawKnob", "_OnRelease". 5) Add the "_acImage_0" and "_acImage_1" arrays from the "WindowDLG.c" file to the "Static data" section of "emwin_tictactoe.c" file. 6) Replace all the elements from the "_aDialogCreate" array from the "emwin_tictactoe.c" with the ones from the "WindowDLG.c" file. 7) Add the function "_GetImageById" and replace the function "_cbDialog" from the "WindowDLG.c" file to the "emwin_tictactoe.c" file. 😎 Until here, the application should be compiled and downloaded without issues, although there is not included any functionality to perform the match. The downloaded layout is shown on the following image: 9) Now, for the implementation of the game itself, the following variables are added to the "Static data" section of "emwin_tictactoe.c" file. "player_turn" indicates who is the current player on move ("X" or "O"). "slots_free" is a counter to know how many remaining slots are free. "winner_player" stores who is the winner, or if the game is a Draw. "slot_status" array is in charge to store the current statusof each slot U8 i, player_turn=0, slots_free=9, winner_player=0; const U32 player_colors[] = {GUI_RED, GUI_BLUE}; enum {SLOT_FREE, SLOT_X, SLOT_O, SLOT_LOCK}; U8 slot_status[] = {SLOT_FREE, SLOT_FREE, SLOT_FREE,                               SLOT_FREE, SLOT_FREE, SLOT_FREE,                               SLOT_FREE, SLOT_FREE, SLOT_FREE}; 10) It was also implemented a function that checks all the possible Slot combinations to define the winner or if the match is a draw. It is the function "CheckWinner" and could be ckeched in the "emwin_tictactoe.c" file of the attachments, that already have all the required changes to have the Tic-Tac-Toe demo running. It is also required adding its function prototype to the "Prototypes" section of "emwin_tictactoe.c" file. 11) Basically, almost all of the game mechanics are defined by the "WM_NOTIFICATION_CLICKED" event of the 9x9 Buttons widgets, so, it is implemented inside the "_cbDialog" function. Below you could find the code for "ID_BUTTON_0"; the red highlights are what change for each Button event:     case ID_BUTTON_0: // Notifications sent by 'Button'       switch(NCode) {       case WM_NOTIFICATION_CLICKED:         // USER START (Optionally insert code for reacting on notification message)         if (slot_status[0] == SLOT_FREE){             hItem = WM_GetDialogItem(pMsg->hWin, ID_BUTTON_0);             BUTTON_SetTextColor(hItem, 0, player_colors[player_turn]);             if (!player_turn){                 BUTTON_SetText(hItem, "X");                 slot_status[0] = SLOT_X;             }             else{                 BUTTON_SetText(hItem, "O");                 slot_status[0] = SLOT_O;             }             player_turn ^= 1;             slots_free--;         }         // USER END         break; 12) For the Restart Button, the implemented logic is in charge of revert back all the Slots status to "Free", erase the content of all the Slots, and also restart the counter of free Slots to nine. 13) After polling all the GUI widgets events, the "CheckWinner" function is called, and then, the winner is defined, indicating it on the "Text_Winner" widget (on the upper-left corner of the screen) that was originally empty. 14) It is also implemented a functionality to directly draw a green rectangle (using emWin Draw functions) around the Cross/Circle icons, depending who is the player on move (also implemented inside the "_cbDialog" function, at the end).   //Draw green rectangle to indicate the player on move   if (!player_turn)   {     GUI_SetColor(GUI_GREEN);     GUI_DrawRoundedFrame(6, 106, 83, 183, 0, 4);     GUI_SetColor(GUI_BLACK);     GUI_DrawRoundedFrame(6, 186, 83, 263, 0, 4);   }   else   {       GUI_SetColor(GUI_GREEN);       GUI_DrawRoundedFrame(6, 186, 83, 263, 0, 4);       GUI_SetColor(GUI_BLACK);       GUI_DrawRoundedFrame(6, 106, 83, 183, 0, 4);   } 15) Finally, a printf with a welcome message was added to "main" function, just before initializing the GUI.     PRINTF("Tic-Tac-Toe demo on i.MXRT1060.\r\n"); 5. FUNCTIONAL DEMONSTRATION   Below are shown captures of the application running, when Cross wins, when Circle wins, and when the match is a draw.  
查看全文
RT1170 camera CSI Y8 format modification 1.Abstract RT1170's CSI can support YUV format. The so-called YUV is divided into three components: Y represents luminance, that is, grayscale value; UV represents chrominance, which describes chroma and saturation. Similar to RGB, YUV is also a color encoding method, which can separate luminance information Y from chroma information UV. If you want to display black and white, you can have no UV information, only Y information, that is, Y800=Y8, and you can also display the complete image. For RT1170 YUV, the official SDK provides demo based on the YUV444 format, but in actual use, some customers need the function of the Y8 format, so how should they configure it based on the existing YUV SDK? From the reference manual of RT1170, you can see the following information: Fig 1 This description can be understood as requiring the Y8 mode, as long as the configuration: CSI_CR20[BINARY_EN]=0 CSI_CR20[BIG_END]=1 However, in reality, with this configuration, the original YUV code cannot display the camera data. So how should the camera's Y8 configuration be done to display black and white images on the LCD? This article will give a detailed explanation. 2. RT1170 CSI Camera Y8 format configuration and testing 2.1 Hardware and software situation Board:MIMXRT1170-EVK REV C4 LCD:  RK055AHD091 Camera:OV5640 Code:SDK_2_15_000_MIMXRT1170-EVK\boards\evkmimxrt1170\driver_examples\csi\mipi_yuv\cm7 IDE: MCUXPresso IDE v11.9.0 2.2 Y8 formation configuration   In fact, for CSI_CR20 configuration, you also need to enable the Histogram function, which is the following register bits: Fig 2 Here, based on the current SDK demo evkmimxrt1170_csi_mipi_yuv_cm7 demo, modify it to the Y8 format, list the modification points, mainly modify the file:csi_mipi_yuv.c (1) static void DEMO_InitPxp(void) Modify: PXP_SetCsc1Mode(DEMO_PXP, kPXP_Csc1YCbCr2RGB); To: PXP_SetCsc1Mode(DEMO_PXP, kPXP_Csc1YUV2RGB); If this item is not modified, LCD will just display the Green color. (2)static void DEMO_InitCamera(void) Before BOARD_InitMipiCsi(); Add the this code: CSI->CR20 |= CSI_CR20_QRCODE_EN_MASK | CSI_CR20_HISTOGRAM_EN_MASK; Here, didn’t configure CSI_CR20[BINARY_EN]=0, as after reseting, this bit is default to 0. If in the practical usage, this bit is modified to 1, then here, need to modify BINARY_EN to 0, it means the format is Y8, not Y1. The reason that can’t display the correct Y8 previously, is caused by the bit HISTOGRAM_EN is not set. (3) static void DEMO_CSI_MIPI_YUV(void) Modify structure psBufferConfig as follows: pxp_ps_buffer_config_t psBufferConfig = { .pixelFormat = kPXP_PsPixelFormatY8, //kPXP_PsPixelFormatYUV1P444, /* Note: This is 32-bit per pixel */ .swapByte = false, .bufferAddrU = 0U, .bufferAddrV = 0U, .pitchBytes = DEMO_CAMERA_WIDTH,//DEMO_CAMERA_WIDTH * DEMO_CAMERA_BUFFER_BPP,// }; Mainly 2 points: .pixelFormat = kPXP_PsPixelFormatY8, .pitchBytes  = DEMO_CAMERA_WIDTH, If you only change the pixel format to Y8, but pitchBytes is not changed to the camera width, the resulting LCD display will be a small strip on the top, instead of the entire LCD screen showing the camera's Y8 format black and white image. So far, all Y8-related modification projects have been completed. Finally, it should be noted that the default SDK LCD display is not the one selected in this article: RK055AHD091. So you need to modify the DEMO_PANEL macro in display_support.h to the following: #define DEMO_PANEL DEMO_PANEL_RK055AHD091 Then, build the project, and download it to the board MIMXRT1170-EVK. 2.3 Test result after modification Below we use the same color picture to test the YUV and Y8 display effects in front of the camera. here are the pictures:  the camera format of the picture on the left is YUV444, and the picture on the right is in Y8 format. You can see that the left one is in color, and the right one is in black and white. The black and white Y8 camera data acquisition and LCD display have been successfully completed.
查看全文
MIMXRT1010 EVK (Chinese Version)  Design Files and Hardwre User's Guide 
查看全文
[中文翻译版] 见附件   原文链接: https://community.nxp.com/docs/DOC-341317
查看全文