i.MX Processors Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

i.MX Processors Knowledge Base

Discussions

Sort by:
The i.MX 8QuadXPlus Multisensory Enablement Kit (MEK) is a NXP development platform based on Cortex A-35 + Cortex-M4 cores. Built with high-level integration to support graphics, video, image processing, audio, and voice functions, the i.MX 8X processor family is ideal for safety-certifiable and efficient performance requirements. This tutorial shows how to enable the Cortex-M4 using the MCUXpresso SDK package and loading the binary from the network. NOTE: It is also possible to load the Cortex-M4 image from the SCFW using the imx-mkimage utility. But now we are going to focus on MCUXpresso. Setting up the machine   Install cmake on the host machine: $ sudo apt-get install cmake Download the armgcc toolchain and export the location as ARMGCC_DIR: $ export ARMGCC_DIR=<your_path_to_arm_gcc>/gcc-arm-none-eabi-9-2020q2/ NOTE: The ARMGCC_DIR variable needs to be exported on the terminal used for compilation. To setup the TFTP server on the host machine: Configuring your Host PC for TFTPPermalink   The first step is to install all the prerequisite packages for TFTP: $ sudo apt-get install xinetd tftpd tftp Create a TFTP folder in your desired location with root owner and the “rwx” permission for all users: $ sudo mkdir /tftpboot $ sudo chmod –R 777 /tftpboot $ sudo chown –R root /tftpboot Create a configuration file for the TFTP with the following content. (The server_args parameter must match with the folder created above) $ cat /etc/xinetd.d/tftp service tftp { protocol = udp port = 69 socket_type = dgram wait = yes user = root server = /usr/sbin/in.tftpd server_args = -s /tftpboot disable = no } Restart the xinetd service: $ sudo /etc/init.d/xinetd restart You can place any file at the TFTP folder and load it through U-Boot, you can also create symbolic links from your building directory avoiding to copy and paste your zImage and dtb files every time. Configuring your Host PC for NFSPermalink   Install all the needed packages for NFS: $ sudo apt-get install nfs-kernel-server Create a folder for placing your rootfs: $ mkdir /tftpboot/rfs Add the following line in the end of your /etc/exports file: /tftpboot/rfs *(rw,no_root_squash,no_subtree_check) Restart the NFS service: $ sudo service nfs-kernel-server restart Place your rootfs or create a symbolic link for the NFS folder.    Downloading the SDK Download the MCUXpresso following these steps: Click on “Select Development Board”; Select MEK-MIMX8QX under “Select a Device, Board, or Kit” and click on “Build MCUXpresso SDK” on the right; Select “Host OS” as Linux and “Toolchain/IDE” as GCC ARM Embedded; Add “FreeRTOS” and all the wanted Middleware and hit “Request Build”; Wait for the SDK to build and download the package. Building the image All demos and code examples available on the SDK package are located in the directory <<SDK_dir>>/boards/mekmimx8qx/. This tutorial shows how to build and flash the hello_world demo but similar procedures can be applied for any example (demo, driver, multicore, etc) on the SDK. To build the demo, enter the armgcc folder under the demo directory and make sure that the ARMGCC_DIR variable is set correctly. $ cd ~/SDK_2.3.0_MEK-MIMX8QX/boards/mekmimx8qx/demo_apps/hello_world/armgcc $ export ARMGCC_DIR=<your_path_to_arm_gcc>/gcc-arm-none-eabi-9-2020q2/ Run the build_release.sh script to build the code. $ ./build_release.sh NOTE: If needed, give the script execution permission by running chmod +x build_release.sh. This generates the M4 binary (hello_world.bin) under the release folder. Copy this image to the /tftpboot/ directory on the host PC. NOTE: This procedure shows how to build the M4 image that runs on TCM. To run the image from DDR, use the build_ddr_release.sh script to build the binary under the ddr_release folder. Flashing the image Open two serial consoles, one for /dev/ttyUSB0 for Cortex-A35 to boot Linux, and one for /dev/ttyUSB1 for Cortex-M4 to boot the SDK image. On the A35 console, with a SD Card with U-Boot, stop the booting process and enter the following commands to load the M4 binary to TCM: => dhcp => setenv serverip <ip_from_host_pc> => tftp 0x88000000 hello_world.bin => dcache flush => bootaux 0x88000000 Then the M4 core will load the image to the /dev/ttyUSB1 console.    
View full article
The document descript how to use the win32diskimager to create bootable sdcard.  How to resize sdcard mirror rootfs partition. Ex: fsl-image-validation-imx-imx6qpdlsolox.sdcard
View full article
This example uses the touchscreen that comes with i.MX51 EVK's parallel LCD Download xserver-xorg-input-evtouch (xserver-xorg-input-evtouch_0.8.8-3build1_armel.deb) from https://launchpad.net/ubuntu/lucid/armel/xserver-xorg-input-evtouch/0.8.8-3build1 On i.MX51 EVK board, run “sudo dpkg –i xserver-xorg-input-evtouch_0.8.8-3build1_armel.deb” to install debian package. Remove evdev config file: sudo rm /usr/lib/X11/xorg.conf.d/05-evdev.conf Change the content of 10-evtouch.conf to: sudo vi /usr/lib/X11/xorg.conf.d/10-evtouch.conf Section "InputClass"            Identifier "touchscreen catchall"            MatchIsTouchscreen "on"            Driver "evtouch"            Option "SwapY" "1"            Option "MinX" "32"            Option "MinY" "46"            Option "MaxX" "1001"            Option "MaxY" "967" EndSection   The MinX, MinY, MaxX and MaxY values can be changed to match the exact configuration of your touchscreen Save above configuration and reboot the system.
View full article
[Brief description] (1)Contents The ducoment introduced how to expand Gigabit Ethernet based on i.MX6 PCI Express, and attached schematics in DSN & pdf format. (2)Binary file for EEROM I have the binary file used to debug intel82574 circuit in this schematic, If customer wants to use it to debug board based on i.MX6+Intel82574, she can submit a case for me to get the file by our Salesforece system. Best Regards, TIC Weidong Sun Email: weidong.sun@nxp.com
View full article
This patch implements (or exposes) routines to poll the imx uarts. The KGDB drivers need these methods to be implemented or the ttymxc driver is not sufficient. The synthetic CONFIG_CONSOLE_POLL value activates these routines (or CONFIG_SERIAL_MXC_CONSOLE for the polled write). There is still no poll routines in -855-ge067785, which is the September 2010 Linux release from Freescale. Also not in Linux 2.6.36 drivers/serial/imx.c either. $ git diff drivers/serial/mxc_uart.c diff --git a/drivers/serial/mxc_uart.c b/drivers/serial/mxc_uart.c index ae6d2e1..728b607 100644 --- a/drivers/serial/mxc_uart.c +++ b/drivers/serial/mxc_uart.c @@ -1551,6 +1551,28 @@ mxcuart_pm(struct uart_port *port, unsigned int state, unsigned int oldstate)                             clk_enable(umxc->clk);    }  +#ifdef CONFIG_CONSOLE_POLL +/* + * Read a character from the UART. + */ +static inline int mxcuart_console_read_char(struct uart_port *port) +{ +       volatile unsigned int status; +    int ch; + +       do { +               status = readl(port->membase + MXC_UARTUSR2); +       } while ((status & MXC_UARTUSR2_RDR) == 0); +       ch = readl(port->membase + MXC_UARTURXD); +/* Ignore parity errors, etc. */ +/*  status = ch | UART_CREAD_BIT; */ +    ch &= 0xff; + +    return ch; +} +static void mxcuart_console_write_char(struct uart_port *port, char ch); +#endif +    /*!     * This structure contains the pointers to the control functions that are     * invoked by the core serial driver to access the UART hardware. The @@ -1575,14 +1597,18 @@ static struct uart_ops mxc_ops = {                 .config_port = mxcuart_config_port,                 .verify_port = mxcuart_verify_port,                 .send_xchar = mxcuart_send_xchar, +#ifdef CONFIG_CONSOLE_POLL +              .poll_put_char = mxcuart_console_write_char, +              .poll_get_char = mxcuart_console_read_char, +#endif };  -#ifdef CONFIG_SERIAL_MXC_CONSOLE +#if defined(CONFIG_SERIAL_MXC_CONSOLE) || defined (CONFIG_CONSOLE_POLL)     /*     * Write out a character once the UART is ready     */ -static inline void mxcuart_console_write_char(struct uart_port *port, char ch) +static void mxcuart_console_write_char(struct uart_port *port, char ch)    {            volatile unsigned int status;  @@ -1592,6 +1618,10 @@ static inline void mxcuart_console_write_char(struct uart_port *port, char ch)                writel(ch, port->membase + MXC_UARTUTXD);     }  +#endif + +#ifdef CONFIG_SERIAL_MXC_CONSOLE +    /*!     * This function is called to write the console messages through the UART port.     *
View full article
i.MX93 DDR stress test tool is different with previous i.MX tool. This Chinese article describe how to debug i.MX93 DDR and introduce DDR config tool usage.
View full article
Platform: Demo images, i.MX8MPlus EVK   Some customer need test ffs gadget function on i.MX8MPlus EVK. Here is demo for ffs test, please connect EVK and Ubuntu PC before test.   Test script: #!/bin/sh # Setup the device (configfs) modprobe libcomposite mkdir -p config mount none config -t configfs cd config/usb_gadget/ mkdir g1 cd g1 echo 0x1fc9 >idVendor echo 0x0146 >idProduct mkdir strings/0x409 echo 12345 >strings/0x409/serialnumber echo "Signal 11" >strings/0x409/manufacturer echo "Test" >strings/0x409/product mkdir configs/c.1 mkdir configs/c.1/strings/0x409 echo "Config1" >configs/c.1/strings/0x409/configuration # Setup functionfs mkdir functions/ffs.usb0 ln -s functions/ffs.usb0 configs/c.1 cd ../../../ mkdir -p ffs mount usb0 ffs -t functionfs cd ffs ffs-test 64 & # from the Linux kernel, with mods! sleep 3 cd .. # Enable the USB device echo 38100000.usb > config/usb_gadget/g1/UDC   EVK log root@imx8mpevk:~# ./test2.sh [ 17.859597] file system registered ffs-test: dbg: ep0: writing descriptors (in v2 format) ffs-test: dbg: ep0: writing strings ffs-test: dbg: ep1: starting ffs-test: dbg: ep2: starting ffs-test: dbg: ep1: starts ffs-test: dbg: ep0: starts ffs-test: dbg: ep2: starts Event BIND Event ENABLE Ubuntu PC log: lzm@lzm-GL552VW:~$ lsusb -D /dev/bus/usb/001/008 Device: ID 1fc9:0146 NXP Semiconductors Test Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 2.10 bDeviceClass 0 bDeviceSubClass 0 bDeviceProtocol 0 bMaxPacketSize0 64 idVendor 0x1fc9 NXP Semiconductors idProduct 0x0146 bcdDevice 6.01 iManufacturer 1 Signal 11 iProduct 2 Test iSerial 3 12345 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 0x0020 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 4 Config1 bmAttributes 0x80 (Bus Powered) MaxPower 2mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 2 bInterfaceClass 255 Vendor Specific Class bInterfaceSubClass 0 bInterfaceProtocol 0 iInterface 5 Source/Sink Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x01 EP 1 OUT bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 1 Binary Object Store Descriptor: bLength 5 bDescriptorType 15 wTotalLength 0x0016 bNumDeviceCaps 2 USB 2.0 Extension Device Capability: bLength 7 bDescriptorType 16 bDevCapabilityType 2 bmAttributes 0x0000010e BESL Link Power Management (LPM) Supported BESL value 256 us SuperSpeed USB Device Capability: bLength 10 bDescriptorType 16 bDevCapabilityType 3 bmAttributes 0x00 wSpeedsSupported 0x000f Device can operate at Low Speed (1Mbps) Device can operate at Full Speed (12Mbps) Device can operate at High Speed (480Mbps) Device can operate at SuperSpeed (5Gbps) bFunctionalitySupport 1 Lowest fully-functional device speed is Full Speed (12Mbps) bU1DevExitLat 0 micro seconds bU2DevExitLat 0 micro seconds Device Status: 0x0001 Self Powered  
View full article
How to use UART4 on iMX8M from Linux User Space   The UART4 on iMX8MM-EVK and iMX8MN-EVK are thinking of debugging the M core which is not usable on Linux user space by default on pre-compiled images.   To use the UART4 on Linux user space you have to do the next modifications on the device tree and atf to assign that peripheral to Linux User Space     https://github.com/nxp-imx/imx-atf/blob/lf_v2.6/plat/imx/imx8m/imx8mm/imx8mm_bl31_setup.c     iMX8MN-EVK   imx8mn_bl31_setup.c   https://github.com/nxp-imx/imx-atf/blob/lf_v2.6/plat/imx/imx8m/imx8mn/imx8mn_bl31_setup.c   /* Master domain assignment */ RDC_MDAn(RDC_MDA_M7, DID1), /* peripherals domain permission */ - RDC_PDAPn(RDC_PDAP_UART4, D1R | D1W), + RDC_PDAPn(RDC_PDAP_UART4, D0R | D0W), RDC_PDAPn(RDC_PDAP_UART2, D0R | D0W), RDC_PDAPn(RDC_PDAP_RDC, D0R | D0W | D1R),       Device tree configurations for iMX8MN-EVK   iMX8MN-EVK.dtsi   https://github.com/nxp-imx/linux-imx/blob/lf-6.1.y/arch/arm64/boot/dts/freescale/imx8mn-evk.dtsi   &uart3 { pinctrl-names = "default"; pinctrl-0 = <&pinctrl_uart3>; assigned-clocks = <&clk IMX8MN_CLK_UART3>; assigned-clock-parents = <&clk IMX8MN_SYS_PLL1_80M>; uart-has-rtscts; status = "okay"; }; + &uart4 { + pinctrl-names = "default"; + pinctrl-0 = <&pinctrl_uart4>; + assigned-clocks = <&clk IMX8MN_CLK_UART4>; + assigned-clock-parents = <&clk IMX8MN_SYS_PLL1_80M>; + status = "okay"; + }; ********************** pinctrl_uart3: uart3grp { fsl,pins = < MX8MN_IOMUXC_ECSPI1_SCLK_UART3_DCE_RX 0x140 MX8MN_IOMUXC_ECSPI1_MOSI_UART3_DCE_TX 0x140 MX8MN_IOMUXC_ECSPI1_SS0_UART3_DCE_RTS_B 0x140 MX8MN_IOMUXC_ECSPI1_MISO_UART3_DCE_CTS_B 0x140 >; }; + pinctrl_uart4: uart4grp { + fsl,pins = < + MX8MN_IOMUXC_UART4_RXD_UART4_DCE_RX 0x140 + MX8MN_IOMUXC_UART4_TXD_UART4_DCE_TX 0x140 + >; + };   iMX8MM-EVK   https://github.com/nxp-imx/imx-atf/blob/lf_v2.6/plat/imx/imx8m/imx8mm/imx8mm_bl31_setup.c   imx8mm_bl31_setup.c   /* Master domain assignment */ RDC_MDAn(RDC_MDA_M7, DID1), /* peripherals domain permission */ - RDC_PDAPn(RDC_PDAP_UART4, D1R | D1W), + RDC_PDAPn(RDC_PDAP_UART4, D0R | D0W), RDC_PDAPn(RDC_PDAP_UART2, D0R | D0W), RDC_PDAPn(RDC_PDAP_RDC, D0R | D0W | D1R),   Device tree configurations for iMX8MM-EVK   iMX8MM-EVK.dtsi   https://github.com/nxp-imx/linux-imx/blob/lf-6.1.y/arch/arm64/boot/dts/freescale/imx8mm-evk.dtsi   &uart3 { pinctrl-names = "default"; pinctrl-0 = <&pinctrl_uart3>; assigned-clocks = <&clk IMX8MM_CLK_UART3>; assigned-clock-parents = <&clk IMX8MM_SYS_PLL1_80M>; uart-has-rtscts; status = "okay"; }; + &uart4 { + pinctrl-names = "default"; + pinctrl-0 = <&pinctrl_uart4>; + assigned-clocks = <&clk IMX8MM_CLK_UART4>; + assigned-clock-parents = <&clk IMX8MM_SYS_PLL1_80M>; + status = "okay"; + }; ********************** pinctrl_uart3: uart3grp { fsl,pins = < MX8MM_IOMUXC_ECSPI1_SCLK_UART3_DCE_RX 0x140 MX8MM_IOMUXC_ECSPI1_MOSI_UART3_DCE_TX 0x140 MX8MM_IOMUXC_ECSPI1_SS0_UART3_DCE_RTS_B 0x140 MX8MM_IOMUXC_ECSPI1_MISO_UART3_DCE_CTS_B 0x140 >; }; + pinctrl_uart4: uart4grp { + fsl,pins = < + MX8MM_IOMUXC_UART4_RXD_UART4_DCE_RX 0x140 + MX8MM_IOMUXC_UART4_TXD_UART4_DCE_TX 0x140 + >; + };   iMX8MP-EVK   https://github.com/nxp-imx/imx-atf/blob/lf_v2.6/plat/imx/imx8m/imx8mp/imx8mp_bl31_setup.c   imx8mp_bl31_setup.c   RDC_MDAn(RDC_MDA_M7, DID1), RDC_MDAn(RDC_MDA_LCDIF, DID2), RDC_MDAn(RDC_MDA_LCDIF2, DID2), RDC_MDAn(RDC_MDA_HDMI_TX, DID2), /* peripherals domain permission */ + RDC_PDAPn(RDC_PDAP_UART4, D0R | D0W), RDC_PDAPn(RDC_PDAP_UART2, D0R | D0W), RDC_PDAPn(RDC_PDAP_WDOG1, D0R | D0W), RDC_PDAPn(RDC_PDAP_RDC, D0R | D0W | D1R),   Device tree configurations for iMX8MP-EVK   iMX8MP-EVK.dts   https://github.com/nxp-imx/linux-imx/blob/lf-6.1.y/arch/arm64/boot/dts/freescale/imx8mp-evk.dts   &uart3 { pinctrl-names = "default"; pinctrl-0 = <&pinctrl_uart3>; assigned-clocks = <&clk IMX8MP_CLK_UART3>; assigned-clock-parents = <&clk IMX8MP_SYS_PLL1_80M>; fsl,uart-has-rtscts; status = "okay"; }; + &uart4 { + pinctrl-names = "default"; + pinctrl-0 = <&pinctrl_uart4>; + assigned-clocks = <&clk IMX8MP_CLK_UART4>; + assigned-clock-parents = <&clk IMX8MP_SYS_PLL1_80M>; + status = "okay"; + }; ************************************ pinctrl_uart3: uart3grp { fsl,pins = < MX8MP_IOMUXC_ECSPI1_SCLK__UART3_DCE_RX 0x140 MX8MP_IOMUXC_ECSPI1_MOSI__UART3_DCE_TX 0x140 MX8MP_IOMUXC_ECSPI1_SS0__UART3_DCE_RTS 0x140 MX8MP_IOMUXC_ECSPI1_MISO__UART3_DCE_CTS 0x140 >; }; + pinctrl_uart4: uart4grp { + fsl,pins = < + MX8MP_IOMUXC_UART4_RXD__UART4_DCE_RX 0x140 + MX8MP_IOMUXC_UART4_TXD__UART4_DCE_TX 0x140 + >; + };     After compiling the image with the changes previously shown, we obtained this result:      
View full article
Software environment: L5.4.47_2.2.0 Hardware i.MX8QXPC0 EVK board In the uuu script we can see the bootloader imx-boot-imx8qxpc0mek-sd.bin-flash is necessary. The default BSP build generate in the yocto project is with the spl, some customers are confused about the how to build the imx-boot-imx8qxpc0mek-sd.bin-flash. Here I give the manually compile way and generate it in yocto. In the yocto generate it is more convenient than the manually compile way. Hope this can do help for you.
View full article
Pre-Sales: i.MX8/8X applications in automotive(Chinese Version) https://community.nxp.com/docs/DOC-345825 i.MX8X website design resource guide: (Chinese Version) https://community.nxp.com/docs/DOC-345676 After-Sales: i.MX8X memory configuration&test application notes: (Chinese Version) https://community.nxp.com/docs/DOC-345803 i.MX8X hardware design guide: (Chinese Version) https://community.nxp.com/docs/DOC-346582 i.MX8X_4.19.35_bootloader customization application notes: (Chinese Version) https://community.nxp.com/docs/DOC-345713 i.MX8X_4.19.35_kernal customization application notes: (Chinese Version) https://community.nxp.com/docs/DOC-345714 i.MX8X_4.14.98_bootloader customization application notes: (Chinese Version) https://community.nxp.com/docs/DOC-342448 i.MX8X_4.14.98_kernal customization application notes: (Chinese Version) https://community.nxp.com/docs/DOC-344217 i.MX8X_5.4.24_bootloader customization application notes: (Chinese Version) https://community.nxp.com/docs/DOC-347131
View full article
  Some our customers want to use the mfgtool to download the images to QSPI and boot up. When download the demo images on our website (Linux 4.1.15) to the QSPI-NOR on IMX7D SABRE-SDB. The error occurred as follows: Is it able to program the QSPI-NOR on i.MX7D SABRE-SDB by using MFG-Tool? Answer is yes. In the above error message we can see that the system can not find and detect the qspi, so it can not excute the following code,<CMD state="body="$ flash_erase /dev/mtd0 0 20">Erasing Boot partition</CMD>Updater" type="push" when use the mfgtool to download the images to the QSPI-NOR . The board i.MX7D SABRE-SDB and default BSP are boot up from EPDC.  Here customer want to boot up from QSPI, When using QSPI, you need to de-populate R388-R391, R396-R399 and populate R392-R395, R299, R300 in your hardware. QSPI signals are muxed with EPDC_D[7:0]. You can see the schematic, details you can see as follow. After hardware modify, you can use the mfgtool2-yocto-mx-sabresd-qspi-nor-mx25l51245g.vbs to download. And then boot up from qspi, boot mode you can refer to the schematic boot up setting. Both software and mfgtool you can download here http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/i.mx-applications-processors/i.mx-software-and-tools:IMXSW_HOME. Demo images can documents you can also get.    
View full article
On this tutorial we will review the implementation of Flutter on the i.MX8MP using the Linux Desktop Image. Please find more information about Flutter using the following link: Flutter: Option to create GUIs for Embedded System... - NXP Community Requirements: Evaluation Kit for the i.MX 8M Plus Applications Processor. (i.MX 8M Plus Evaluation Kit | NXP Semiconductors) NXP Desktop Image for i.MX 8M Plus (GitHub - nxp-imx/meta-nxp-desktop at lf-6.1.1-1.0.0-langdale) Note: This tutorial is based on the NXP Desktop Image with Yocto version 6.1.1 – Langdale. Steps: 1. First, run commands to update packages. $ sudo apt update $ sudo apt upgrade 2. Install Flutter for Linux using the following command. $ sudo snap install flutter --classic 3. Run the command to verify the correct installation. $ flutter doctor With this command you will find information about the installation. The important part for our purpose is the parameter "Linux toolchain - develop for Linux desktop". 4. Run the command “flutter create .” to create a flutter project, this framework will create different folders and files used to develop the application.  $ cd Documents $ mkdir flutter_hello $ cd flutter_hello $ flutter create .​ 5. Finally, you can run the “hello world” application using: $ flutter run Verify the program behavior incrementing the number displayed on the window.  
View full article
In some cases, such as mass production or preparing a demo. We need u-boot environment stored in demo sdcard mirror image.  Here is a way: HW:  i.MX8MP evk SW:  LF_v5.15.52-2.1.0_images_IMX8MPEVK.zip The idea is to use fw_setenv to set the sdcard mirror as the operation on a real emmc/sdcard. Add test=ABCD in u-boot-initial-env for test purpose. And use fw_printenv to check and use hexdump to double confirm it. The uboot env is already written into sdcard mirror(imx-image-multimedia-imx8mpevk.wic). All those operations are on the host x86/x64 PC. ./fw_setenv -c fw_env.config -f u-boot-initial-env Environment WRONG, copy 0 Cannot read environment, using default ./fw_printenv -c fw_env.config Environment OK, copy 0 jh_root_dtb=imx8mp-evk-root.dtb loadbootscript=fatload mmc ${mmcdev}:${mmcpart} ${loadaddr} ${bsp_script}; mmc_boot=if mmc dev ${devnum}; then devtype=mmc; run scan_dev_for_boot_part; fi arch=arm baudrate=115200 ...... ...... ...... splashimage=0x50000000 test=ABCD usb_boot=usb start; if usb dev ${devnum}; then devtype=usb; run scan_dev_for_boot_part; fi vendor=freescale hexdump -s 0x400000 -n 2000 -C imx-image-multimedia-imx8mpevk.wic 00400000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| hexdump -s 0x400000 -n 10000 -C imx-image-multimedia-imx8mpevk.wic 00400000 5f a4 9b 97 20 6a 68 5f 72 6f 6f 74 5f 64 74 62 |_... jh_root_dtb| 00400010 3d 69 6d 78 38 6d 70 2d 65 76 6b 2d 72 6f 6f 74 |=imx8mp-evk-root| 00400020 2e 64 74 62 00 20 6c 6f 61 64 62 6f 6f 74 73 63 |.dtb. loadbootsc| 00400030 72 69 70 74 3d 66 61 74 6c 6f 61 64 20 6d 6d 63 |ript=fatload mmc| 00400040 20 24 7b 6d 6d 63 64 65 76 7d 3a 24 7b 6d 6d 63 | ${mmcdev}:${mmc| 00400050 70 61 72 74 7d 20 24 7b 6c 6f 61 64 61 64 64 72 |part} ${loadaddr| 00400060 7d 20 24 7b 62 73 70 5f 73 63 72 69 70 74 7d 3b |} ${bsp_script};| 00400070 00 20 6d 6d 63 5f 62 6f 6f 74 3d 69 66 20 6d 6d |. mmc_boot=if mm| ...... ...... ...... 00401390 76 3d 31 00 73 6f 63 3d 69 6d 78 38 6d 00 73 70 |v=1.soc=imx8m.sp| 004013a0 6c 61 73 68 69 6d 61 67 65 3d 30 78 35 30 30 30 |lashimage=0x5000| 004013b0 30 30 30 30 00 74 65 73 74 3d 41 42 43 44 00 75 |0000.test=ABCD.u| 004013c0 73 62 5f 62 6f 6f 74 3d 75 73 62 20 73 74 61 72 |sb_boot=usb star| 004013d0 74 3b 20 69 66 20 75 73 62 20 64 65 76 20 24 7b |t; if usb dev ${| 004013e0 64 65 76 6e 75 6d 7d 3b 20 74 68 65 6e 20 64 65 |devnum}; then de| flash the sdcard mirror into i.MX8MP evk board emmc to check uuu -b emmc_all imx-boot-imx8mp-lpddr4-evk-sd.bin-flash_evk imx-image-multimedia-imx8mpevk.wic  The first time boot, the enviroment is already there.  How to achieve that: a. fw_setenv/fw_printenv: https://github.com/sbabic/libubootenv.git Note: Please do not use uboot fw_setenv/fw_printenv Compile it on the host x86/x64 PC. It is used on host. b. u-boot-initial-env Under uboot, make u-boot-initial-env Note: Yocto deploys u-boot-initial-env by default c. fw_env.config  imx-image-multimedia-imx8mpevk.wic 0x400000 0x4000 0x400000 0x4000 are from uboot-imx\configs\imx8mp_evk_defconfig CONFIG_ENV_SIZE=0x4000 CONFIG_ENV_OFFSET=0x400000 Now, you can run  ./fw_setenv -c fw_env.config -f u-boot-initial-env
View full article
Hello everyone, this document will share an step by step guide of the configuration needed in a Linux PC to compile the SDK examples we provide, as well as how to download them in an easy way. Requirements: I.MX 8M Mini EVK SDK package (for i.MX8MM) UUU tool First step would be to get the SDK package, this include documentation and code, which is available at the MCUXpresso builder webpage: https://mcuxpresso.nxp.com/en/welcome Click on the select a development board and select the package for your development kit or the i.MX MPU   This guide is focused on Linux build so will select GCC package and Linux host PC as the environment. Click on build and wait for the SDK package to be ready for download. Note1: Click on select all if the whole middleware package is desired Note2: it is possible to select each middleware that are desired. On new window select download SDK Select on new pop-up window download both SDK and documentation Read and accept EULA so the download start Decompress the package using the following command: $ tar -xvzf ~/SDK_2_13_0_EVK-MIMX8MM.tar.gz -C ~/SDK_2_13_0_EVK-MIMX8MM Next will be to download the GCC from the ARM webpage, gcc-arm-none-eabi-10.3-2021.10-x86_64-linux.tar.bz2 https://developer.arm.com/downloads/-/gnu-rm Note that the GCC version used is based on the minimum version required, since this was tested and supported, this could be found within the SDK documentation (~/SDK_2_13_0_EVK-MIMX8MM/docs/MCUXpresso SDK Release Notes for EVK-MIMX8MM) Once downloaded we can decompress and configure the environment: $ tar -xf gcc-arm-none-eabi-10.3-2021.10-x86_64-linux.tar.bz2 $ export ARMGCC_DIR=~/gcc-arm-none-eabi-10.3-2021.10 $ export PATH=$PATH:~/gcc-arm-none-eabi-10.3-2021.10 $ sudo apt-get install cmake  Check the version >= 3.0.x $ cmake --version Once this is done we enter the path of the example of our choice and compile using the script, as necessary using debug, release or all. $ cd ~/SDK_2_13_0_EVK-MIMX8MM/boards/evkmimx8mm/demo_apps/hello_world/armgcc $./build_release.sh The binary (elf and bin) will be found inside the folder according to whether we use debug or release script. For this example we used release script: $ cd release Once builded we can move/download the binaries from the Linux host PC to the board by using the UUU tool with the command fat_write #### we put the board in fastboot mode by entering the command in the uboot terminal fastboot 0 #### From the Linux terminal introduce the UUU command to  download to the FAT partition of the eMMC of the baord: ## For rproc it is needed the .elf binary ## $ uuu -v -b fat_write hello_world.elf mmc 0:1 hello_world.elf ## For bootaux it is needed the .bin binary ## $  uuu -v -b fat_write hello_world.bin mmc 0:1 hello_world.bin Once with the binaries in the FAT partition of the SD/eMMC of our board we can make the necessary modifications (device tree/bootargs) to test the Cortex-M examples. For any question regarding this document, please create a community thread and tag me if needed. Saludos/Regards, Aldo.
View full article
PCIE IP on i.MX8MM and i.MX8MP is same, customer can follow PCIE test Application note to do compliance test, if eye diagram failed, they can fine turn corresponding regs below: iMX8MMRM.pdf IMX8MPRM.pdf GEN1:             GEN2:                 Related code in kernel Phy-fsl-imx8-pcie.c (kernel-source\drivers\phy\freescale)    3794      2020/11/4 static int imx8_pcie_phy_init(struct phy *phy) { ……          /* Configure TX drive level  */        writel(0x2d, imx8_phy->base + 0x404);          return 0; }   Thanks Lambert
View full article
     The following steps allow you to toggle a pin on i.MX 8M Mini EVK, you can use the EVK as not gate, trigger a wake up signal, etc. With an script and modifying the device tree you can read an input and get as output the invert input.   On the Host.   Cloning the Linux kernel repository.   Clone the i.MX Linux Kernel repo to the home directory. cd ~ git clone -b lf-5.10.72-2.2.0 https://source.codeaurora.org/external/imx/linux-imx cd linux-imx/   Patching the device tree.   Open the imx8mm-evk.dtsi file: vim arch/arm64/boot/dts/freescale/imx8mm-evk.dtsi For the purpose of this example, uart3 has to be "disabled" in order to avoid pins conflict, so change "okay" to "disabled": &uart3 {        pinctrl-names = "default";        pinctrl-0 = <&pinctrl_uart3>;        assigned-clocks = <&clk IMX8MM_CLK_UART3>;        assigned-clock-parents = <&clk IMX8MM_SYS_PLL1_80M>;        fsl,uart-has-rtscts;        status = "disabled"; }; Add the following lines in the iomuxc node: &iomuxc {       pinctrl-names = "default";       pinctrl-0 = <&pinctrl_hog>; ​       pinctrl_hog: hoggrp {               fsl,pins = <                       MX8MM_IOMUXC_ECSPI1_SS0_GPIO5_IO9               0x19                       MX8MM_IOMUXC_ECSPI1_MISO_GPIO5_IO8              0x19               >;       };   Build the device tree.   Setup your toolchain, for example: source /opt/fsl-imx-wayland/5.10-hardknott/environment-setup-cortexa53-crypto-poky-linux Generate config file. make imx_v8_defconfig Compile the device tree. make freescale/imx8mm-evk.dtb Copy the .dtb file to the EVK, for example with scp: scp imx8mm-evk.dtb root@<EVK_IP>:/home/root Alternatively, you may copy the .dtb file directly to the FAT32 partition where the Kernel and Device Tree files are located.   On the EVK Board.   Switching the device tree.   To copy the updated device tree to the corresponding partition, first create a directory. mkdir Partition_1 Mount the partition one. mount /dev/mmcblk1p1 Partition_1/ Copy or move the device tree into partition one. cp imx8mm-evk.dtb Partition_1/ Reboot the board. reboot   Create an script.   Use vi: vi toggle.sh Add the following lines: #!/bin/bash ​ echo 136 > /sys/class/gpio/export echo in > /sys/class/gpio/gpio136/direction ​ echo 137 > /sys/class/gpio/export echo out > /sys/class/gpio/gpio137/direction echo 0 > /sys/class/gpio/gpio137/value ​ while : do ​ if [[($(cat /sys/class/gpio/gpio136/value) == "0")]]; then         echo 1 > /sys/class/gpio/gpio137/value else         echo 0 > /sys/class/gpio/gpio137/value        fi ​ done Save the file: :wq Change file permissions: chmod +x toggle.sh   Toggling a pin.   In this example we are using the pin "UART3_CTS" like an input and "UART3_RTS" like an output. To toggle the pin, run the script: ./toggle.sh
View full article
This is a quick article focused on how to add the support of SFTP on the i.MX devices using Yocto to add that packages.   Refer to the pdf attached.
View full article
The A53 Debug Console Changing consists in several major updates like: RDC settings, Pinmux, Clocks and Ecosystem Updates.
View full article
BSP: L5.4.47-2.2.0-rc2 Board: imx8QM B0 HW:  LVDS2HDMI , MIPIDSI2HDMI. It is the porting of i.MX8QM dpu loopback to isi. to the 5.4.y, with the addition of the MIPI-DSI loopback and the HDMI loopback.  Overview of the DC capture configuration: For enabling the capture: only DC 0 Stream 0  and DC 1 Stream 1 can be captured The pixel link Master address should be set to 3 because the Receiver Address at ISI is 3 and can't be changed. To continue displaying the stream, the Receiver Address at LVDS and DSI or HDMI should be changed to 3. It is possible to change the RA by using GPIO of the modules.   Patches: Create V4L2 device enabling the capture of by the ISI of DC loop-backs. Enable ISI capture from DSI 0 / LVDS 1 in 1920x1080 (at the same time.) Enable ISI capture from HDMI in 2840x2160 (half with even pixel) in 1920x2160. While capturing with the ISI, the captured screen continue to be displayed. Remark: Ov5640 cameras are also enabled in the same dtb. So 4 stream in 1920x1080 can be captured at the same time. Installation and gstreamer command: See readme
View full article
[中文翻译版] 见附件   原文链接: https://community.nxp.com/docs/DOC-343344 
View full article