i.MX Processors Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

i.MX Processors Knowledge Base

Discussions

Sort by:
We use PCIe to connect Intersil TW6865 chip for the surround view solution. This is the connection of PCIe to iMX6Q SabreSD board.   This is the block diagram of the connection: This is the 4 camera surround view:   Code base is L3.0.35_12.10.02 release. You can merge the patch file to the latest Freescale release. Please check the attach file for the patch code.   Note:  It is only a test version. The last code for L3.0.35 BSP: L3.0.35_GA4.1.0 Patches.7z The last code for L3.10.53 BSP: L3.10.53_TW686x_patch.7z Patch for L4.1.15 1.1.0 GA BSP: TW6865 driver for Linux L4.1.15_1.1.0-ga.7z
View full article
The solution works when I use mx53_loco bsp. Modify u-boot and kernel, keep the same. Then you may find you can't login into the system regardless of whatever you input after freescale login: It confused me for a long time. If you  also met this problem,try to check the iomux-mx53.h(linux/arch/arm/plat-mxc/include/mach/). #define _MX53_PAD_PATA_DIOW__UART1_TXD_MUX   IOMUX_PAD(the fourth argument 0x878 should be changed to 0x0) I think this is a small bug in header files. Haifeng
View full article
In this post we see how to setup a Debian server, to allow booting the i.MX6 sabre sd platform (mostly) from the network. Booting from the network instead of e.g. the SD card is very handy for day to day development and testing, as it eliminates almost all physical interactions with the board and saves much time. Also, fortunately for us, both u-boot and Linux for i.MX6 support network booting out of the box. Boot sequence principles Before we setup the server, here are some more details on the boot sequence we will obtain in the end: i.MX6 boots, loads u-boot from SD card. u-boot starts, loads its environment (boot commands) from SD card. u-boot obtains its network address by DHCP, loads a Linux kernel uImage and a dtb by TFTP. Linux boots; obtains its network address by DHCP (again), mounts its root filesystem on NFS. Setting up DHCP and TFTP One can easily setup a Debian server to act as DHCP and TFTP server with Dnsmasq; just install the dnsmasq package. The default configuration is mostly empty; so we need to enhance it a bit. For the following we will assume that your Debian server has IP address 192.168.111.1 on the network where it sees the i.MX6 sabre sd platform. You can add some options to a dnsmasq config file such as e.g. /etc/dnsmasq.d/my-custom-config-file:   dhcp-range=192.168.111.50,192.168.111.150,12h   enable-tftp   tftp-root=/var/ftpd This informs dnsmasq to act as a DHCP server for addresses range 192.168.111.50-150 and act as TFTP server, which serves files under /var/ftpd. That means you will need to copy a Linux uImage and an imx6q-sabresd.dtb under /var/ftpd/. See this post for more details about compiling Linux to obtain those two files. Setting up NFS If we want the root filesystem to be mounted on the network we will need to export some folders with NFS from the Debian server. We need to install the nfs-kernel-server package and setup /etc/exports with a line such as:   /tftpboot       192.168.111.*(rw,no_root_squash,subtree_check) This allows clients on the 192.168.111.0 network to access filesystems under the /tftpboot folder. So you will need to create a /tftpboot folder on the server, and install some "filesystem" under there. For this example we assume you will have a busybox installed under a /tftpboot/busybox/ folder. That means we want to have under there all folders such as bin, dev, etc... See this post for details on how to compile busybox to populate this folder. Do not forget to restart the NFS server after configuration, with:   # /etc/init.d/nfs-kernel-server restart We are now setup on the server side. Setting up u-boot At the time of this writing we need to help u-boot a bit when booting the i.MX6 sabre sd platform from the network. Stop at u-boot prompt and configure a few things:   env default -a   setenv netargs $netargs rw   setenv serverip 192.168.111.1   setenv nfsroot /tftpboot/busybox   setenv bootcmd run netboot   saveenv Reset your board; it should now boot from the network:   U-Boot 2013.07-rc1-00210-gc623eb0 (Jun 27 2013 - 21:10:47)   (..)   Hit any key to stop autoboot:  0   Booting from net ...   BOOTP broadcast 1   DHCP client bound to address 192.168.111.121   Using FEC device   TFTP from server 192.168.111.1; our IP address is 192.168.111.121   Filename 'uImage'.   Load address: 0x12000000   Loading: #################################################################            #################################################################            #################################################################            #################################################################            ##########################            4 MiB/s   done   Bytes transferred = 4185600 (3fde00 hex)   BOOTP broadcast 1   DHCP client bound to address 192.168.111.121   Using FEC device   TFTP from server 192.168.111.1; our IP address is 192.168.111.121   Filename 'imx6q-sabresd.dtb'.   Load address: 0x11000000   Loading: ##            2.7 MiB/s   done   Bytes transferred = 22818 (5922 hex)   ## Booting kernel from Legacy Image at 12000000 ...      Image Name:   Linux-3.10.0-rc7   (..)   Starting kernel ...   Booting Linux on physical CPU 0x0   Linux version 3.10.0-rc7 (jenkins@debian) (gcc version 4.7.2 (Debian 4.7.2-5) ) #1 SMP Tue Jun 25 08:28:31 CEST 2013   (..)   Kernel command line: console=ttymxc0,115200 root=/dev/nfs ip=dhcp nfsroot=192.168.111.1:/tftpboot/busybox,v3,tcp rw   (..)   fec 2188000.ethernet eth0: Freescale FEC PHY driver [Generic PHY] (mii_bus:phy_addr=2188000.ethernet:01, irq=-1)   IPv6: ADDRCONF(NETDEV_UP): eth0: link is not ready   libphy: 2188000.ethernet:01 - Link is Up - 1000/Full   IPv6: ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready   Sending DHCP requests ., OK   IP-Config: Got DHCP answer from 192.168.111.1, my address is 192.168.111.121   IP-Config: Complete:        device=eth0, hwaddr=00:04:9f:02:b7:fd, ipaddr=192.168.111.121, mask=255.255.255.0, gw=192.168.111.1        host=192.168.111.121, domain=, nis-domain=(none)        bootserver=192.168.111.1, rootserver=192.168.111.1, rootpath=        nameserver0=192.168.111.1   ALSA device list:     No soundcards found.   VFS: Mounted root (nfs filesystem) on device 0:11.   devtmpfs: mounted   Freeing unused kernel memory: 292K (806d5000 - 8071e000)   Please press Enter to activate this console. Enjoy! Bonus: updating u-boot by the network One last piece remains on the SD card: u-boot. If you do not want to move your SD card out of its slot any more, here is a method for you to update even u-boot from the network. You will need to copy u-boot.imx under /var/ftpd. See this post for details on how to compile u-boot and obtain u-boot.imx. Then, at u-boot prompt, do:   dhcp $loadaddr u-boot.imx   mmc dev 1   mmc write $loadaddr 2 600 This will download a new u-boot.imx from the network and flash it to your SD card; reboot your board and you are done. Note that we give 600 as the number of SD card blocks to write; this is a rough estimate of ~300KB, which should work in most of the cases as writing a bit "too much" blocks does not harm. If you are very picky, you can compute the exact number of blocks by dividing your u-boot.imx size by 512 and rounding it up. See also... Did you know that dnsmasq primary role is to be used to "relay" the DNS queries? A feature that come very handy when you want to let your i.MX6 platform "see" the internet.
View full article
Here we show how to generate a minimal root filesystem fairly quickly with BusyBox, for the i.MX6 sabre sd platform. This document assumes you are able to boot a Linux kernel on your platform already. See this post for details on how to do it. This implies you already have a "working" Linux development environment with some ARM cross-compilers at hand (e.g. Debian + Emdebian). busybox is so small that we will go for a ramdisk as our main root filesystem. Get busybox sources We will use git to fetch busybox sources:   $ git clone git://git.busybox.net/busybox This should create a busybox directory with all the latest sources. Note that for more stability you might want to checkout a release instead of the latest version; to do so, list the available release tags with e.g. git tag -l, and git checkout <the-desired-tag>. Compile Assuming your cross compiler is called e.g. arm-linux-gnueabihf-gcc, you can compile by doing:   $ cd busybox   $ export ARCH=arm   $ export CROSS_COMPILE=arm-linux-gnueabihf-   $ make defconfig   $ sed -i.orig 's/^#.*CONFIG_STATIC.*/CONFIG_STATIC=y/' .config   $ make   $ make install This should create an _install folder hierarchy containing binaries and links. Note that we force the build of a static binary with the sed command. Configure the root filesystem We need to add some more configuration into the _install folder before we can call it a minimal filesystem. Create some folders We need to create some mountpoints and folders:   $ mkdir _install/dev   $ mkdir _install/proc   $ mkdir _install/sys   $ mkdir -p _install/etc/init.d Add some configuration files and scripts We need to prepare the main init configuration file, _install/etc/inittab, with this contents:   ::sysinit:/etc/init.d/rcS   ::askfirst:/bin/sh   ::ctrlaltdel:/sbin/reboot   ::shutdown:/sbin/swapoff -a   ::shutdown:/bin/umount -a -r   ::restart:/sbin/init This is very close to the default behavior busybox init has with no inittab file. It just suppresses some warnings about missing tty. We need to add some more configuration to mount a few filesystems at boot for convenience. This is done with an _install/etc/fstab file containing:   proc     /proc proc     defaults 0 0   sysfs    /sys  sysfs    defaults 0 0   devtmpfs /dev  devtmpfs defaults 0 0 We also need to actually trigger the mount in the _install/etc/init.d/rcS script, which is called from the inittab. It should contain:   #!/bin/sh   mount -a And we need to make it executable:   $ chmod +x _install/etc/init.d/rcS Generate the ramdisk contents Now that we have adapted the root filesystem contents, we can generate a busybox ramdisk image for u-boot with the following commands:   $ (cd _install ; find |cpio -o -H newc |gzip -c > ../initramfs.cpio.gz)   $ mkimage -A arm -T ramdisk -d initramfs.cpio.gz uInitrd This results in a uInitrd file, suitable for u-boot. Prepare a boot script The default u-boot commands are not sufficient to boot our system, so we need to edit a boot.txt file with the following contents:   run loaduimage   run loadfdt   setenv rdaddr 0x13000000   fatload mmc ${mmcdev}:$mmcpart $rdaddr uInitrd   setenv bootargs console=${console},${baudrate} rdinit=/sbin/init   bootm $loadaddr $rdaddr $fdt_addr Then we generate a boot.scr script, which can be loaded by u-boot with:   $ mkimage -A arm -T script -d boot.txt boot.scr Put on SD card Assuming you have prepared your SD card with u-boot and Linux as explained in this post, you have a single FAT partition on your card with your kernel and dtb. Our boot script and ramdisk image should be copied alongside:   $ mount /dev/<your-sd-card-first-partition> /mnt   $ cp uInitrd boot.scr /mnt/   $ umount /mnt Your SD card first partition is typically something in /dev/sd<X>1 or /dev/mmcblk<X>p1. Note that you need write permissions on the SD card for the command to succeed, so you might need to su - as root, or use sudo, or do achmod a+w as root on the SD card device node to grant permissions to users. Boot! Your SD card is ready for booting. Insert it in the SD card slot of your i.MX6 sabre sd platform, connect to the USB to UART port with a serial terminal set to 115200 baud, no parity, 8bit data and power up the platform. Your busybox system should boot to a prompt:   ...   Freeing unused kernel memory: 292K (806d5000 - 8071e000)   Please press Enter to activate this console. After pressing enter you should have a functional busybox shell on the target. Enjoy! See also... For a more featured root filesystem you might want to try a Debian filesystem in a second SD card partition, as explained in this post, or generate your filesystem with Buildroot. If you plan to compile busybox often, you might want to use a C compiler cache; see this post.
View full article
Here we show how to bootstrap the Debian Linux distribution from a PC to the i.MX6 sabre sd platform. While bootstrapping Debian on any architecture "natively" is pretty straightforward, "cross-bootstrapping" requires some techniques that we will explain. This document assumes you are able to boot a Linux kernel on your platform already. See this post for details on how to do it. Also, this document assumes you are using a Debian PC for preparing your SD card. You will require the following packages to be installed: binfmt-support qemu-user-static debootstrap Note: all the commands found in the following steps need to be run as root. Formatting the SD card We need to format the SD card with two partitions; one small FAT partition to contain the Linux kernel and its dtb, and one large ext4 partition, which will contain the root filesystem with the Debian userspace. Also, we need to make sure we leave some space for u-boot starting from offset 1024B. Here is an example SD card layout:   +-----+------+--------+-----+---------------+-----------------   | MBR |  ... | u-boot | ... | FAT partition | Linux partition ...   +-----+------+--------+-----+---------------+-----------------   0     512    1024           1M              ~257M (offsets in bytes) Here is an example SD card layout, as displayed by fdisk:   Device    Boot      Start         End      Blocks   Id  System   /dev/sdc1            2048      526335      262144    c  W95 FAT32 (LBA)   /dev/sdc2          526336     8054783     3764224   83  Linux (units: 512B sectors) You can format and mount the Linux partition with:   # mkfs.ext4 /dev/<your-sd-card-second-partition>   # mount /dev/<your-sd-card-second-partition> /mnt Your SD card second partition is typically something in /dev/sd<X>2 or /dev/mmcblk<X>p2. Do not forget to install u-boot and a Linux kernel as explained in those posts. Bootstrapping Debian First stage The first stage of Debian bootstrapping is done with:   # debootstrap --foreign --arch=armhf testing /mnt This will retrieve the base Debian packages from the internet, and perform a first stage of installation:   I: Retrieving Release   I: Retrieving Release.gpg   I: Checking Release signature   I: Valid Release signature (key id A1BD8E9D78F7FE5C3E65D8AF8B48AD6246925553)   I: Validating Packages   I: Resolving dependencies of required packages...   I: Resolving dependencies of base packages...   I: Found additional required dependencies: insserv libbz2-1.0 libcap2 libdb5.1 libsemanage-common libsemanage1 libslang2 libustr-1.0-1   I: Found additional base dependencies: libee0 libept1.4.12 libestr0 libgcrypt11 libgnutls-openssl27 libgnutls26 libgpg-error0 libidn11 libjson-c2 liblognorm0 libmnl0 libnetfilter-acct1 libnfnetlink0 libp11-kit0 libsqlite3-0 libtasn1-3 libxapian22   I: Checking component main on http://ftp.us.debian.org/debian...   (...)   I: Extracting util-linux...   I: Extracting liblzma5...   I: Extracting zlib1g... At this point, the necessary tools for second stage of installation are under /mnt/debootstrap/. Second stage The second stage needs to run natively; on an arm platform, that is. But we can use the combination of two techniques to perform this stage on the PC anyway:   # cp /usr/bin/qemu-arm-static /mnt/usr/bin/   # chroot /mnt /debootstrap/debootstrap --second-stage Those commands copy an arm emulator on the target filesystem, and use the chroot command to execute the second stage of the installation into the SD card, on the PC, with transparent emulation:   I: Installing core packages...   I: Unpacking required packages...   I: Unpacking libacl1:armhf...   I: Unpacking libattr1:armhf...   I: Unpacking base-files...   (...)   I: Configuring tasksel...   I: Configuring tasksel-data...   I: Configuring libc-bin...   I: Base system installed successfully. You can now remove /mnt/usr/bin/qemu-arm-static, or keep it for later, subsequent chroot under emulation. Finetuning the root filesystem For development it is handy to remove the root password on the target by removing the '*' from /mnt/etc/shadow on the SD card:   root::15880:0:99999:7::: Also, we can add the following line in /mnt/etc/inittab to obtain a login prompt on the UART:   T0:23:respawn:/sbin/getty -L ttymxc0 115200 vt100 You can now unmount the filesystem with:   # umount /mnt Boot! Your SD card is ready for booting. Insert it in the SD card slot of your i.MX6 sabre sd platform, connect to the USB to UART port with a serial terminal set to 115200 baud, no parity, 8bit data and power up the platform. At the time of writing u-boot tells the kernel to boot from the wrong partition by default, so we need to interrupt by pressing enter at u-boot prompt for the first boot and setup u-boot environment to fix this:   U-Boot > setenv mmcroot /dev/mmcblk0p2 rootwait rw   U-Boot > saveenv   Saving Environment to MMC...   Writing to MMC(1)... done As this is saved in the SD card it need only to be done once at first boot. You can reboot your board or type boot; your Debian system should boot to a prompt:   (...)   [ ok ] Starting periodic command scheduler: cron.   [ ok ] Running local boot scripts (/etc/rc.local).   Debian GNU/Linux jessie/sid debian ttymxc0   debian login: From there you may login as root. It is recommended to setup the network connection and install an ssh server inside the target for further development. Enjoy! See also... With the amounts of memory we have today in the systems, it is even possible to boot Debian in a ramdisk. See this post about busybox for the ramdisk generation. Another way of generating a root filesystem is by building it with buildroot. See and this post for details.
View full article
ccache is a C compiler cache. ccache can save a large amount of compilation time on recurring builds and builds restarted from a clean repository after make clean or git clean. It is well suited for e.g. u-boot and Linux compilation. Caching the host compiler Caching "native" builds is easily done by adding in the beginning of your $PATH a special directory, which contains links to ccache to override the usual compiler. On e.g. Debian this directory is readily available as /usr/lib/ccache, So you can do:   $ export PATH="/usr/lib/ccache:$PATH" Typical links found in this folder are:   c++ -> ../../bin/ccache   cc -> ../../bin/ccache   g++ -> ../../bin/ccache   gcc -> ../../bin/ccache etc... Caching the cross compiler Caching cross-compiled builds can be done in the same way as native builds, provided you create links of the form e.g. arm-linux-gnueabihf-gcc pointing to ccache. But there is an even more convenient way for those projects, which rely on a $CROSS_COMPILE environment variable (as is the case for e.g. u-boot and Linux). You can prefix the cross compiler with ccache there in e.g. the following way:   $ export CROSS_COMPILE="ccache arm-linux-gnueabihf-" Monitoring efficiency Now that your builds are cached, you might want to see how much is "spared" with this technique. ccache -s will tell you all sorts of statistics, such as:   cache directory                     /home/vstehle/.ccache   cache hit (direct)                 10852   cache hit (preprocessed)            3225   cache miss                         19000   called for link                    33267   called for preprocessing            9463   compile failed                         3   preprocessor error                     1   couldn't find the compiler           117   unsupported source language          921   unsupported compiler option         2167   no input file                      31681   files in cache                     51694   cache size                           1.3 Gbytes   max cache size                       4.0 Gbytes Here you see a somewhat typical 50%/50% hit/miss ratio. Enjoy! See Also ccache is usually supported natively by build systems, such as Buildroot or Yocto.
View full article
Here is a quick summary at booting Linux on the i.MX 6 sabre sd platform. This assumes you already have u-boot working on your platform as described here. This implies you already have a "working" Linux development environment with some ARM cross-compilers at hand (e.g. Debian + Emdebian). Get Linux sources We will use git to fetch Linux sources:   $ git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git This should create a linux directory with all the latest sources (after a while). Note that for more stability you might want to checkout a release instead of the latest version; to do so, list the available release tags with e.g. git tag -l 'v*', and git checkout <the-desired-tag>. Compile Assuming your cross compiler is called e.g. arm-linux-gnueabihf-gcc, you can compile by doing:   $ cd linux   $ export ARCH=arm   $ export CROSS_COMPILE=arm-linux-gnueabihf-   $ make imx_v6_v7_defconfig   $ make You then need to supply a LOADADDR (as joowonkim pointed out); do:   $ make uImage LOADADDR=0x10008000 This should create a number of files, including arch/arm/boot/uImage and arch/arm/boot/dts/imx6q-sabresd.dtb. Put on SD We need a proper FAT partition on the SD card, from which u-boot will be able to load the kernel and dtb. Also, we need to make sure we leave some space for u-boot starting from offset 1024B. Here is an example SD card layout:   +-----+------+--------+-----+----------------   | MBR |  ... | u-boot | ... | FAT partition ...   +-----+------+--------+-----+----------------   0     512    1024           1M (offsets in bytes) Here is an example SD card layout, as displayed by fdisk:   Device    Boot      Start         End      Blocks   Id  System   /dev/sdc1            2048     8054783     4026368    c  W95 FAT32 (LBA) (units: 512B sectors) You can format the FAT partition, mount, copy and unmount with:   $ mkfs.vfat /dev/<your-sd-card-first-partition>   $ mount /dev/<your-sd-card-first-partition> /mnt   $ cp arch/arm/boot/uImage arch/arm/boot/dts/imx6q-sabresd.dtb /mnt/   $ umount /mnt Your SD card first partition is typically something in /dev/sd<X>1 or /dev/mmcblk<X>p1. Note that you need write permissions on the SD card for the command to succeed, so you might need to su - as root, or use sudo, or do a chmod a+w as root on the SD card device node to grant permissions to users. Also, be sure to have u-boot on the SD card as explained in this post. Boot! That's it; u-boot already knows how to deal with your kernel by default so you are good to go. Insert the SD card into the SD card slot of your i.MX6 sabre sd platform, connect to the USB to UART port with a serial terminal set to 115200 baud, no parity, 8bit data and power up the platform. You should see u-boot messages:   U-Boot 2013.07-rc1-00014-g74771f4 (Jun 21 2013 - 16:27:39) u-boot should load the uImage and dtb from SD card and boot the kernel:   (...)   reading uImage   4215344 bytes read in 449 ms (9 MiB/s)   Booting from mmc ...   reading imx6q-sabresd.dtb   22818 bytes read in 22 ms (1012.7 KiB/s)   ## Booting kernel from Legacy Image at 12000000 ...      Image Name:   Linux-3.10.0-rc6      Image Type:   ARM Linux Kernel Image (uncompressed)      Data Size:    4215280 Bytes = 4 MiB      Load Address: 10008000      Entry Point:  10008000      Verifying Checksum ... OK   ## Flattened Device Tree blob at 11000000      Booting using the fdt blob at 0x11000000      Loading Kernel Image ... OK   OK      Using Device Tree in place at 11000000, end 11008921   Starting kernel ... The kernel should boot:   Booting Linux on physical CPU 0x0   Linux version 3.10.0-rc6 (vstehle@debian) (gcc version 4.7.2 (Debian 4.7.2-5) ) #1 SMP Fri Jun 21 18:09:26 CEST 2013 By default, the kernel will try to mount a root filesystem from the SD card second partition, as can be read in the default kernel command line:   (...)   Kernel command line: console=ttymxc0,115200 root=/dev/mmcblk1p2 rootwait rw ...but we did not prepare a root filesystem partition, so after a number of boot messages the kernel will wait indefinitely:   (...)   mmc1: new SDHC card at address b368   (...)    mmcblk0: p1   (...)   Waiting for root device /dev/mmcblk1p2... We will see in another post how to prepare this root filesystem on the second SD card partition. Enjoy! See also... If you plan to compile Linux often, you might want to use a C compiler cache; see this post. Once you have Linux booting on your platform the next step is to give it a root filesystem. See this post for a Debian root filesystem, this post for a minimal busybox filesystem and this post for generating a root filesystem with buildroot.
View full article
i.MX6Q PCIe EP/RC Validation and Throughput Hardware setup     * Two i.MX6Q SD boards, one is used as PCIe RC; the other one is used as PCIe EP. Connected by 2*mini_PCIe to standard_PCIe  adaptors, 2*PEX cable adaptors,  and one PCIe cable. Software configurations     * When building RC image, make sure that         CONFIG_IMX_PCIE=y         # CONFIG_IMX_PCIE_EP_MODE_IN_EP_RC_SYS is not set         CONFIG_IMX_PCIE_RC_MODE_IN_EP_RC_SYS=y     * When build EP image, make sure that         CONFIG_IMX_PCIE=y         CONFIG_IMX_PCIE_EP_MODE_IN_EP_RC_SYS=y         # CONFIG_IMX_PCIE_RC_MODE_IN_EP_RC_SYS is not set Features     * Set-up link between RC and EP by their stand-alone 125MHz running internally. * In EP's system, EP can access the reserved ddr memory    (default address:0x40000000) of PCIe RC's system, by the   interconnection between PCIe EP and PCIe RC. NOTE: The layout of the 1G DDR memory on SD boards is 0x1000_0000 ~ 0x4FFF_FFFF) Use mem=768M in the kernel command line to reserve the 0x4000_0000 ~ 0x4FFF_FFFF DDR memory  space used to do the EP access tests. (The example of the RC’s cmd-line: Kernel command line: noinitrd console=ttymxc0,115200 mem=768M root=/dev/nfs nfsroot=10.192.225.216:/home/r65037/nfs/rootfs_mx5x_10.11,v3,tcp ip=dhcp rw) Throughput results ARM core used as the bus master, and cache is disabled ARM core used as the bus master, and cache is enabled IPU used as the bus master(DMA) Data size in one write tlp 8 bytes 32 bytes 64 bytes Write speed ~109MB/s ~298MB/s ~344MB/s Data size in one read tlp 32 bytes 64 bytes 64 bytes Read speed ~29MB/s ~100MB/s ~211MB/s IPU used as the bus master(DMA) Here is the summary of the PCIe throughput results tested by IPU. Write speed is about 344 MB/s. Read speed is about 211MB/s ARM core used as the bus master (define EP_SELF_IO_TEST in pcie.c driver) write speed ~300MB/s. read speed ~100MB/s. Cache is enabled. PCIe EP: Starting data transfer... PCIe EP: Data transfer is successful, tv_count1 54840us, tv_count2 162814us. PCIe EP: Data write speed is 298MB/s. PCIe EP: Data read speed is 100MB/s. Regarding to the log, the data size of each TLP when cache is enabled, is about 4 times of the data size in write, and 2 times of the data size in read, when the cache is not enabled. Cache is disabled Cache is enabled Data size in one write tlp 8 bytes 32 bytes Write speed ~109MB/s ~298MB/s Data size in one read tlp 32 bytes 64 bytes Read speed ~29MB/s ~100MB/s Cache is not enabled PCIe EP: Starting data transfer... PCIe EP: Data transfer is successful, tv_count1 149616us, tv_count2 552099us. PCIe EP: Data write speed is 109MB/s. PCIe EP: Data read speed is 29MB/s. One simple method used to connect the imx6 pcie ep and rc View of the whole solution: HW materials: 2* iMX6Q SD boards,  2* Mini PCIe to STD PCIe adaptors, one SATA2 data cable. the mini-pcie to standard pcie exchange adaptor. Here is the URL: http://www.bplus.com.tw/Adapter/PM2C.html How to make it. signals connections Two adaptors, one is named as A, the other one is named as B. A                  B TXM <----> RXM TXN <----> RXN RXM <----> TXM RXN <----> TXN A1 connected to B3 A2 connected to B4 A3 connected to B1 A4 connected to B2 Connect the cable to the adaptor. Connect the SATA2 data cable to Mini PCIe to STD PCIe adaptor (A)    Connect the SATA2 data cable to Mini PCIe to STD PCIe adaptor (B) NOTE: * Please keep length of Cable as short as possible.  Our cable is about 12cm. * Please connect shield wire in SATA2 Cable to GND at both board. * Please boot up PCIe EP system before booting PCIe RC system. Base one imx_3.0.35 mainline, the patch, and the IPU test tools had been attached. NOTE: * IPU tests usage howto. Unzip the xxx.zip, and run xxx_r.sh to do read tests, run xxx_w.sh to do the write tests. Tests log: EP: root@freescale ~/pcie_ep_io_test$ ./pcie-r.sh pass cmdline 14, ./pcie_ipudev_test.out new option : c frame count set 1 new option : l loop count set 1 new option : i input w=1024,h=1024,fucc=RGB4,cpx=0,cpy=0,cpw=0,cph=0,de=0,dm=0 new option : O 640,480,RGB4,0,0,0,0,0 new option : s show to fb 0 new option : f output file name ipu1-1st-ovfb new option : ÿ show_to_buf:0, input_paddr:0x1000000, output.paddr0x18800000 ====== ipu task ====== input:         foramt: 0x34424752         width: 1024         height: 1024         crop.w = 1024         crop.h = 1024         crop.pos.x = 0         crop.pos.y = 0 output:         foramt: 0x34424752         width: 640         height: 480         roate: 0         crop.w = 640         crop.h = 480         crop.pos.x = 0         crop.pos.y = 0 total frame count 1 avg frame time 19019 us, fps 52.579000 root@freescale ~/pcie_ep_io_test$ ./pcie-w.sh pass cmdline 14, ./pcie_ipudev_test.out new option : c frame count set 1 new option : l loop count set 1 new option : i input w=640,h=480,fucc=RGB4,cpx=0,cpy=0,cpw=0,cph=0,de=0,dm=0 new option : O 1024,1024,RGB4,0,0,0,0,0 new option : s show to fb 1 new option : f output file name ipu1-1st-ovfb new option : ÿ show_to_buf:1, input_paddr:0x18a00000, output.paddr0x1000000 ====== ipu task ====== input:         foramt: 0x34424752         width: 640         height: 480         crop.w = 640         crop.h = 480         crop.pos.x = 0         crop.pos.y = 0 output:         foramt: 0x34424752         width: 1024         height: 1024         roate: 0         crop.w = 1024         crop.h = 1024         crop.pos.x = 0         crop.pos.y = 0 total frame count 1 avg frame time 11751 us, fps 85.099140 root@freescale ~$ ./memtool -32 01000000=deadbeaf Writing 32-bit value 0xDEADBEAF to address 0x01000000 RC: Before run "./memtool -32 01000000=deadbeaf" at EP. root@freescale ~$ ./memtool -32 40000000 10 Reading 0x10 count starting at address 0x40000000 0x40000000:  00000000 00000000 00000000 00000000 0x40000010:  00000000 00000000 00000000 00000000 0x40000020:  00000000 00000000 00000000 00000000 0x40000030:  00000000 00000000 00000000 00000000 After run "./memtool -32 01000000=deadbeaf" at EP. root@freescale ~$ ./memtool -32 40000000 10 Reading 0x10 count starting at address 0x40000000 0x40000000:  DEADBEAF 00000000 00000000 00000000 0x40000010:  00000000 00000000 00000000 00000000 0x40000020:  00000000 00000000 00000000 00000000 0x40000030:  00000000 00000000 00000000 00000000 Labels parameters
View full article
There is GPU SDK for i.MX6D/Q/DL/S: IMX_GPU_SDK.  This is to share the experience when compiling the example code from the SDK with Linux BSP release: L3.0.35_1.1.0_121218 and  L3.0.35_4.0.0_130424 . Minimal profile is using and have been verified on both i.MX6Q SDP and i.MX6DL SDP. To start: Please make sure “gpu-viv-bin-mx6q” has been selected in the Package list and compiled to your rootfs. After finished the compilation of the rootfs, you should find some newly added libraries for GLES1.0, GLES2.0, OpenVG and EGL in <ltib>/rootfs/usr/lib However, you should find libOpenVG.so is actually copied from libOepnVG_3D.so: vmuser@ubuntu:~/ltib_src/ltib/rootfs/usr/lib$ ls -al libOpen* -rwxr-xr-x 1 root root 115999 2013-06-06 18:31 libOpenCL.so -rwxr-xr-x 1 root root 515174 2013-06-06 18:31 libOpenVG_355.so -rwxr-xr-x 1 root root 272156 2013-06-06 18:31 libOpenVG_3D.so -rwxr-xr-x 1 root root 272156 2013-06-06 18:31 libOpenVG.so So, in this way, i.MX6D/Q will no use libOpenVG_355.so in the build. Also, if you run NFS, the libOpenVG.so will change to symbolic link:           For example, run on i.MX6Q SDP, it will link to /usr/lib/libOpenVG_355.so                          For example, run on i.MX6DL SDP, it will link to /usr/lib/libOpenVG_3D.so                Then, when you compile the OpenVG example code, it is becoming very confusing.  Thus, it needs to pay attention when doing the compilation.  For example, delete the symbolic link and make copy of the corresponding library: For i.MX6D/Q, please do this: $ sudo /bin/rm libOpenVG.so $ sudo cp libOpenVG_355.so libOpenVG.so For i.MX6S/DL, please do this: $ sudo /bin/rm libOpenVG.so $ sudo cp libOpenVG_3D.so libOpenVG.so To compile the sample code in the GPU SDK, you could refer to iMXGraphicsSDK_OpenGLES2.0.pdf or iMXGraphicsSDK_OpenGLES1.1.pdf in ~/gpu_sdk_v1.00.tar/Documentation/Tutorials to set up the cross compilation environment; which is assuming the LTIB and the rootfs is ready. $ export ROOTFS=/home/vmuser/ltib_src/ltib/rootfs $ export CROSS_COMPILE=/opt/freescale/usr/local/gcc-4.6.2-glibc-2.13-linaro-multilib-2011.12/fsl-linaro-toolchain/bin/arm-none-linux-gnueabi- For OpenVG: $ cd ~/gpu_sdk_v1.00/Samples/OpenVG $ make -f Makefile.fbdev clean $ make -f Makefile.fbdev $ make -f Makefile.fbdev install The executable will then be copied to this directory: ~/gpu_sdk_v1.00/Samples/OpenVG/bin/OpenVG_fbdev For GLES2.0 $ cd ~/gpu_sdk_v1.00/Samples/ GLES2.0 $ make -f Makefile.fbdev clean $ make -f Makefile.fbdev $ make -f Makefile.fbdev install The executable will then be copied to this directory: ~/gpu_sdk_v1.00/Samples/ GLES2.0/bin/GLES20_fbdev For GLES1.1, please modify the Makefile.fbdev to remove the compilation of example codes "18_VertexBufferObjects" and "19_Beizer" that are not exist. Then, $ cd ~/gpu_sdk_v1.00/Samples/ GLES1.1 $ make -f Makefile.fbdev clean $ make -f Makefile.fbdev $ make -f Makefile.fbdev install The executable will then be copied to this directory: ~/gpu_sdk_v1.00/Samples/ GLES1.1/bin/GLES11_fbdev Finally, you could copy the executable to the rootfs and test on i.MX6Q SDP/SDB or i.MX6DL SDP board. NOTE: the newly added makefiles.tgz contains Makefile.x11 hacked from GLES2.0 example code to make OpenVG to compile and run on Ubuntu 11.10 rootfs.
View full article
An i.MX50 customer encountered such kernel bug recently. Android UI has no response, because the suspend work queue is blocked:     suspend       pm_suspend         enter_state           suspend_prepare / suspend_finish             pm_prepare_console / pm_restore_console               vt_move_to_console                 vt_waitactive                   vt_event_wait                     wait_event_interruptible Confimed the same bug can also happen on imx6SL which is running linux 3.0.35. e.g. by echo standby/mem > /sys/power/state It takes over thousand suspend/resume cycles to reproduce the problem. The bug fix has been merged since linux 3.6: commit a7b12929be6cc55eab2dac3330fa9f5984e12dda
View full article
This patch release is target for LPDDR2 ( dual channels in interleave mode ) support on i.MX6DL platform. Two patches are prepared to modify u-boot and kernel in order to have correct DRAM init sequence, 400MHz & 24MHz frequency switching and suspend/resume support. The patches are not fully verified. It is provided as reference for customer to enable their i.MX6DL board with LPDDR2. Customization and Testing is needed by customer. We need to remind some points here: MMDC_MDCFG3LP in 24MHz need to increase the margin ( 0x40222 -> 0x80555 ) in order to pass the OS frequency switch stress test. We are identifying the reason but this workaround is working fine and included to the patch. Code changes in kernel is prepared so that it is compatible to DDR3. In other words, the DDR type will be detected and a correct handling will be done for LPDDR2 and DDR3. In LPDDR2 system, we can't put SDQ pin into LPM during suspend. Otherwise, the system cannot resume. Dual channels in fix mapping mode is not recommended to use.
View full article
Hi All, The new i.MX 6 SL L3.0.35_2.1.0 release is now available on the http://www.freescale.com/site. ·         Files available # Name Description 1 L3.0.35_2.1.0_LINUX_DOCS i.MX   6SoloLite Linux BSP Documentation. Includes Release Notes, Reference Manual,   User guide. API Documentation 2 L3.0.35_2.1.0_LINUX_MMDOCS i.MX 6SoloLite Linux Multimedia Codecs   Documentation. Includes   CODECs Release Notes and User's Guide 3 L3.0.35_2.1.0_ER_SOURCE i.MX   6SoloLite Linux BSP Source Code Files 4 L3.0.35_2.1.0_MM_CODECS i.MX   6SoloLite Linux Multimedia Codecs Sources 5 L3.0.35_2.1.0_AACP_CODECS i.MX   6SoloLite Linux AAC Plus Codec 6 L3.0.35_2.1.0_DEMO_IMAGE i.MX   6SoloLite Linux Binary Demo Files ·         Target HW boards o   i.MX6SL-EVK ·         New features o   Updated thermal equation for i.MX 6SoloLite o   Added Fuse check for all the devices o   Enabled DISPLAY power gating feature on TO1.2 ·         Known issues o   For known issues and limitations please consult the release notes.
View full article
When to improve kernel booting using hibernation [1], I found kernel initialized each component [2] took too much time. One solution is to remove unnecessary module to save time. Another approach is to delay those modules until user space up. Then it won’t lost some features just because hopes to gain benefit on booting speed. This is very useful since hibernation’s trigger point is at the late_initcall [3]. Kernel doesn't need do much module initialize since hibernate will restore those module status later. The detailed implementation is in the attached patch. [1]: hibernation is a technique to store system memory content to storage. Then the device can be shutdown and read the content back after power on. [2]: component means subsystem or driver. [3]: Consult kernel/power/hibernate.c, software_resume
View full article
Change ambient graphic - Ambient Grafic:      Fluxbox (low memory and fast initialization) - Install (root):      apt-get update      apt-get install fluxbox - After instalation, edit file /etc/lightdm/lightdm.conf and change line:      "greeter-session=unity-grreter"  for  "greeter-session=fluxbox"   if, preference auto login comment this line:      "autologin-user=user"  for  "#autologin-user=user" - Reboot and try fluxbox  🙂
View full article
This document provides the steps to patch and build a fastboot Linux System. This document assumes the BSP 3.0.35_1.1.0 and a  i.MX6Q platform. For more information about what the patches do, please check this link. Install LTIB and move to the ltib folder Download the ltib patch from this document and patch it (patch -p1 < 0001-set-imx6_ssd_lite_defconfig-as-default-kernel-config.patch) Go to the LTIB configuration menu (./ltib -m config), select mx6q platform and min profile Select mx6q_sabresd as u-boot board Fetch and Patch: u-boot: Prepare u-boot source code (./ltib -m prep -p u-boot) Move to u-boot folder (cd rpm/BUILD/u-boot-2009.08) Download u-boot attached patches Patch code (for p in *.patch; do patch -p1 < $p;done) kernel: Prepare kernel source code (./ltib -m prep -p kernel) Move to kernel folder (cd rpm/BUILD/linux) Download attached kernel patches Patch code (for p in *.patch; do patch -p1 < $p;done) Build  (./ltib) Add  an application to run first after boot in rootfs/etc/inittab (see example inittab file, it captures data from the MIPI Camera) Create necessary devices nodes under rootfs/dev. For example terminal: sudo mknod ttymxc0 c 207 16 video capture nodes: sudo mknod video0 c 81 5; sudo mknod video1 c 81 6 video display nodes: sudo mknod video16 c 81 0; sudo mknod video17 c 81 1 frame-buffers: for i in 0 1 2 3 4; do sudo mknod fb$i c 29 $i; done Package rootfs (cd rootfs; sudo tar --numeric-owner -cvfj ../rootfs.tar.bz2 *; cd ..) On a windows machine, download latest Manufacturing tool and uncompress it. Move rootfs.tar.bz2, rootfs/boot/uImage and rootfs/boot/u-boot.bin into the corresponding Manufacturing folder (Profiles\MX6Q Linux Update\OS Firmware\files) Choose a sabresd-eMMC profile and flash the board Boot the board using the eMMC
View full article
Notes: First run the playback pipeline then the streaming pipeline. The above example streams H263 video and AMR audio data. Change codec format to your needs. In case where the iMX is the streaming machine, the audio encoder 'amrnbenc' must be installed before. This scenario has not been tested Shell variables and pipelines Playback machine (receiver) # On playback machine, set either IMX2PC or PC2IMX variables, then run the pipeline ## IMX2PC: Case where PC does the playback     AUDIO_DEC_SINK="rtpamrdepay ! amrnbdec ! alsasink "     VIDEO_CAPS="\"application/x-rtp,media=(string)video,clock-rate=(int)90000,encoding-name=(string)H263-1998\""     VIDEO_DEC_SINK="rtph263pdepay ! ffdec_h263 ! autovideosink" ## End of IMX2PC Settings ## PC2IMX: Case where iMX does the playback     AUDIO_DEC_SINK="rtpamrdepay ! mfw_amrdecoder ! alsasink "     VIDEO_CAPS="\"application/x-rtp,media=(string)video,clock-rate=(int)90000,encoding-name=(string)H263-1998\""     VIDEO_DEC_SINK="rtph263pdepay ! vpudec ! mfw_v4lsink " ## End of PC2IMX Settings PLAYBACK_AUDIO="udpsrc caps=\"application/x-rtp,media=(string)audio,clock-rate=(int)8000,encoding-name=(string)AMR,encoding-params=(string)1,octet-align=(string)1\" \             port=5002 ! rtpbin.recv_rtp_sink_1 \         rtpbin. ! $AUDIO_DEC_SINK \      udpsrc port=5003 ! rtpbin.recv_rtcp_sink_1 \      rtpbin.send_rtcp_src_1 ! udpsink port=5007 sync=false async=false" PLAYBACK_VIDEO="udpsrc caps=$VIDEO_CAPS port=5000 ! rtpbin.recv_rtp_sink_0 \         rtpbin. ! $VIDEO_DEC_SINK \         udpsrc port=5001 ! rtpbin.recv_rtcp_sink_0 \         rtpbin.send_rtcp_src_0 ! udpsink port=5005 sync=false async=false" PLAYBACK_AV="$PLAYBACK_VIDEO $PLAYBACK_AUDIO" # Playback pipeline gst-launch -v gstrtpbin name=rtpbin $PLAYBACK_AV Streaming Machine (sender) # On Streaming machine, set either IMX2PC or PC2IMX variables, then run the pipeline ## IMX2PC: Case where iMX does the streaming     IP=x.x.x.x # IP address of the playback machine     VIDEO_SRC="mfw_v4lsrc"     VIDEO_ENC="vpuenc codec=h263 ! rtph263ppay "    AUDIO_ENC="audiotestsrc ! amrnbenc ! rtpamrpay " ## END IMX2PC settings ## PC2IMX: Case where PC does the streaming     IP=y.y.y.y # IP address of the playback machine     VIDEO_SRC="v4l2src"     VIDEO_ENC="ffenc_h263 ! rtph263ppay "     AUDIO_ENC="audiotestsrc ! amrnbenc ! rtpamrpay " # END PC2PC settings STREAM_AUDIO="$AUDIO_ENC ! rtpbin.send_rtp_sink_1 \         rtpbin.send_rtp_src_1 ! udpsink host=$IP port=5002 \         rtpbin.send_rtcp_src_1 ! udpsink host=$IP port=5003 sync=false async=false \         udpsrc port=5007 ! rtpbin.recv_rtcp_sink_1" STREAM_VIDEO="$VIDEO_SRC ! $VIDEO_ENC ! rtpbin.send_rtp_sink_0 \         rtpbin.send_rtp_src_0 ! queue ! udpsink host=$IP port=5000 \         rtpbin.send_rtcp_src_0 ! udpsink host=$IP port=5001 sync=false async=false \         udpsrc port=5005 ! rtpbin.recv_rtcp_sink_0" STREAM_AV="$STREAM_VIDEO $STREAM_AUDIO" # Stream pipeline gst-launch -v gstrtpbin name=rtpbin $STREAM_AV
View full article
Hi all,      I have a problem about usb mass storage driver, that's it can't enumerate my mass storage device.      but it can enumerate my mouse, keyboard...etc hid device.      anyone have idea about it ?      I always get below messages when my mass storage device plugs in.      and below is my dmesg information      My hardware -->      Type A receptacle on otg controller ~
View full article
The i.MX6 DL/S L3.035_3.0.4 patch release is now available onwww.freescale.com ·         Files available # Name Description 1 L3.0.35_3.0.4_TEMP_PATCH This patch release is based on the i.MX 6DualLite/6Solo   Linux L3.0.35_3.0.0 release. The purpose of this patch release is fix the   miscalibration issue for the thermal sensor.
View full article
The i.MX 6 D/Q L3.035_1.0.3 patch release is now available on www.freescale.com ·         Files available # Name Description 1 L3.0.35_1.0.3_TEMP_PFD_PATCH This patch release is based on the i.MX 6Dual/6Quad Linux   12.09.01 release. The purpose of this patch release is update thermal sensor   calibration routine and correct the PFD workflow in U-Boot. More details in   the release notes.
View full article
The i.MX 6 D/Q L3.035_1.1.3 patch release is now available on the www.freescale.com ·         Files available # Name Description 1 L3.0.35_1.1.3_TEMP_PATCH This patch release is based on the i.MX 6Dual/6Quad Linux   L3.0.35_1.1.0 release. The purpose of this patch release is fix the   miscalibration issue for the thermal sensor.
View full article