i.MX Processors Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

i.MX Processors Knowledge Base

Discussions

Sort by:
This document provides the steps to patch and build a fastboot Linux System. This document assumes the BSP 3.0.35_1.1.0 and a  i.MX6Q platform. For more information about what the patches do, please check this link. Install LTIB and move to the ltib folder Download the ltib patch from this document and patch it (patch -p1 < 0001-set-imx6_ssd_lite_defconfig-as-default-kernel-config.patch) Go to the LTIB configuration menu (./ltib -m config), select mx6q platform and min profile Select mx6q_sabresd as u-boot board Fetch and Patch: u-boot: Prepare u-boot source code (./ltib -m prep -p u-boot) Move to u-boot folder (cd rpm/BUILD/u-boot-2009.08) Download u-boot attached patches Patch code (for p in *.patch; do patch -p1 < $p;done) kernel: Prepare kernel source code (./ltib -m prep -p kernel) Move to kernel folder (cd rpm/BUILD/linux) Download attached kernel patches Patch code (for p in *.patch; do patch -p1 < $p;done) Build  (./ltib) Add  an application to run first after boot in rootfs/etc/inittab (see example inittab file, it captures data from the MIPI Camera) Create necessary devices nodes under rootfs/dev. For example terminal: sudo mknod ttymxc0 c 207 16 video capture nodes: sudo mknod video0 c 81 5; sudo mknod video1 c 81 6 video display nodes: sudo mknod video16 c 81 0; sudo mknod video17 c 81 1 frame-buffers: for i in 0 1 2 3 4; do sudo mknod fb$i c 29 $i; done Package rootfs (cd rootfs; sudo tar --numeric-owner -cvfj ../rootfs.tar.bz2 *; cd ..) On a windows machine, download latest Manufacturing tool and uncompress it. Move rootfs.tar.bz2, rootfs/boot/uImage and rootfs/boot/u-boot.bin into the corresponding Manufacturing folder (Profiles\MX6Q Linux Update\OS Firmware\files) Choose a sabresd-eMMC profile and flash the board Boot the board using the eMMC
View full article
Using a RAW NAND is more difficult compared to eMMC, but for lower capacity it is still cheaper. Even with the ONFI (Open NAND Flash Interface) you can face initialization issue you can find by measure performance. I will take example of a non-well supported flash, I have installed on my evaluation board (SABRE AI). I wanted to do a simple performance test, to check roughly the MB/s I can expected with this NAND. One of a simplest test is to use the dd command: root@imx6qdlsolo:~# time dd if=/dev/mtd4 of=/dev/null 851968+0 records in 851968+0 records out 436207616 bytes (436 MB, 416 MiB) copied, 131.8884 s, 3.3 MB/s ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ As my RAW was supposed to work in EDO Mode 5, I could expect more than 20MB/s. To check what was wrong, read you kernel startup log: Booting Linux on physical CPU 0x0 Linux version 4.1.15-2.0.0+gb63f3f5 (bamboo@yb6) (gcc version 5.3.0 (GCC) ) #1 SMP PREEMPT Fri Sep 16 15:02:15 CDT 2016 CPU: ARMv7 Processor [412fc09a] revision 10 (ARMv7), cr=10c53c7d CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache Machine model: Freescale i.MX6 DualLite/Solo SABRE Automotive Board [...] Amd/Fujitsu Extended Query Table at 0x0040 Amd/Fujitsu Extended Query version 1.3. number of CFI chips: 1 nand: device found, Manufacturer ID: 0xc2, Chip ID: 0xdc nand: Macronix MX30LF4G18AC nand: 512 MiB, SLC, erase size: 128 KiB, page size: 2048, OOB size: 64 gpmi-nand 112000.gpmi-nand: mode:5 ,failed in set feature. Bad block table found at page 262080, version 0x01 Bad block table found at page 262016, version 0x01 nand_read_bbt: bad block at 0x00000a7e0000 nand_read_bbt: bad block at 0x00000dc80000 4 cmdlinepart partitions found on MTD device gpmi-nand Creating 4 MTD partitions on "gpmi-nand":‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ On line 13 you can read "mode:5, failed in set feature", meaning you are not in mode 5... so you have the "relaxed" timing you have at boot. After debuging your code (I have just remove the NAND back reading security check), you can redo the test: root@imx6qdlsolo:~# time dd if=/dev/mtd4 of=/dev/null 851968+0 records in 851968+0 records out 436207616 bytes (436 MB, 416 MiB) copied, 32.9721 s, 13.2 MB/s‍‍‍‍‍‍‍‍‍‍‍‍ So you multiplied the performances by 4! Anyway, you have a better tool to measure your NAND performance, it is mtd_speedtest, but you have to rebuild your kernel. In Yocto, reconfigure your kernel (on your PC of couse!): bitbake virtual/kernel -c menuconfig‍‍‍ Choose in the menu "Device Drivers" -> "Memory Technology Device (MTD) support" -> "MTD tests support", even it it not recommended! bitbake virtual/kernel -f -c compile bitbake virtual/kernel -f -c build bitbake virtual/kernel -f -c deploy‍‍‍‍‍‍‍‍‍ Then reflash you board (kernel + rootfs as tests are .ko files): Then you can do more accurate performance test: insmod /lib/modules/4.1.29-fslc+g59b38c3/kernel/drivers/mtd/tests/mtd_speedtest.ko dev=2 ================================================= mtd_speedtest: MTD device: 2 mtd_speedtest: MTD device size 16777216, eraseblock size 131072, page size 2048, count of eraseblocks 128, pages per eraseblock 64, OOB size 64 mtd_test: scanning for bad eraseblocks mtd_test: scanned 128 eraseblocks, 0 are bad mtd_speedtest: testing eraseblock write speed mtd_speedtest: eraseblock write speed is 4537 KiB/s mtd_speedtest: testing eraseblock read speed mtd_speedtest: eraseblock read speed is 16384 KiB/s mtd_speedtest: testing page write speed mtd_speedtest: page write speed is 4250 KiB/s mtd_speedtest: testing page read speed mtd_speedtest: page read speed is 15784 KiB/s mtd_speedtest: testing 2 page write speed mtd_speedtest: 2 page write speed is 4426 KiB/s mtd_speedtest: testing 2 page read speed mtd_speedtest: 2 page read speed is 16047 KiB/s mtd_speedtest: Testing erase speed mtd_speedtest: erase speed is 244537 KiB/s mtd_speedtest: Testing 2x multi-block erase speed mtd_speedtest: 2x multi-block erase speed is 252061 KiB/s mtd_speedtest: Testing 4x multi-block erase speed mtd_speedtest: 4x multi-block erase speed is 256000 KiB/s mtd_speedtest: Testing 8x multi-block erase speed mtd_speedtest: 8x multi-block erase speed is 260063 KiB/s mtd_speedtest: Testing 16x multi-block erase speed mtd_speedtest: 16x multi-block erase speed is 260063 KiB/s mtd_speedtest: Testing 32x multi-block erase speed mtd_speedtest: 32x multi-block erase speed is 256000 KiB/s mtd_speedtest: Testing 64x multi-block erase speed mtd_speedtest: 64x multi-block erase speed is 260063 KiB/s mtd_speedtest: finished =================================================‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ You can now achieve almost 16MB/s, better than the dd test. Of course you cannot achieve more than 20MB/s, but you are not that far, and the NAND driver need optimizations. To redo the test: rmmod /lib/modules/4.1.29-fslc+g59b38c3/kernel/drivers/mtd/tests/mtd_speedtest.ko insmod /lib/modules/4.1.29-fslc+g59b38c3/kernel/drivers/mtd/tests/mtd_speedtest.ko dev=2 To check your NAND is in EDO mode 5, you can check your clock tree: /unit_tests/dump-clocks.sh clock          parent   flags    en_cnt pre_cnt      rate [...] gpmi_bch_apb   ---      00000005   0       0       198000000 gpmi_bch       ---      00000005   0       0       198000000 gpmi_io        ---      00000005   0       0        99000000 gpmi_apb       ---      00000005   0       0       198000000‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ The IO are clocked now at 99MHz, thus you can read at 49.5MHz (20ns in EDO mode 5 definition).
View full article
When to improve kernel booting using hibernation [1], I found kernel initialized each component [2] took too much time. One solution is to remove unnecessary module to save time. Another approach is to delay those modules until user space up. Then it won’t lost some features just because hopes to gain benefit on booting speed. This is very useful since hibernation’s trigger point is at the late_initcall [3]. Kernel doesn't need do much module initialize since hibernate will restore those module status later. The detailed implementation is in the attached patch. [1]: hibernation is a technique to store system memory content to storage. Then the device can be shutdown and read the content back after power on. [2]: component means subsystem or driver. [3]: Consult kernel/power/hibernate.c, software_resume
View full article
The Linux Kernel is just another recipe for Yocto, so learning to patch it you learn to patch any other package. In the other hand, Yocto **should not** be used for package development, but in those rare cases follow the below steps. It is assumed that you have already build the package you want to patch. 1. Create the patch or patches. In this example we are patching the Linux kernel for [wandboard-dual](http://www.wandboard.org/) machine; in other words, the value of MACHINE on the `build/conf/local.conf` is `MACHINE ??= 'wandboard-dual'`. In case you already have the patches, make sure these can be nicely applied with the commands `git apply --check <PATCH_NAME>`, and jump this step build $ cd tmp/work/wandboard_dual-poky-linux-gnueabi/linux-wandboard/3.0.35-r0/git build $ # Edit any files you want to change build $ git add <modified file 1> <modified file 2> .. # Select the files you want to commit build $ git commit -s -m '<your commit's title>' # Create the commit build $ git format-patch -1 # Create the patch 2. Create a new layer (see document i.MX Yocto Proyect: How can I create a new Layer?) 3. On the new layer (e.g `meta-fsl-custom`) , create the corresponding subfolders and the `.bbfile` sources $ mkdir -p meta-fsl-custom/recipes-kernel/linux/linux-wandboard-3.0.35/ sources $ cat > meta-fsl-custom/recipes-kernel/linux/linux-wandboard_3.0.35.bbappend FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}-${PV}:" SRC_URI += "file://0001-calibrate-Add-printk-example.patch" PRINC := "${@int(PRINC) + 1}" # SEE NOTE BELLOW ^d (The PRINC variable is not needed starting at Yocto 1.6 ([RFC] base.bbclass: Deprecate the PRINC logic - Patchwork)) 4. Move the patch to the new layer sources $ cp \ ../build/tmp/work/wandboard_dual-poky-linux-gnueabi/linux-wandboard/3.0.35-r0/git/0001-calibrate-Add-printk-example.patch \ meta-fsl-custom/recipes-kernel/linux/linux-wandboard-3.0.35 5. Setup the enviroment and clean previous package's build data (sstate) fsl-community-bsp $ . setup-environment build build $ bitbake -c cleansstate linux-wandboard 6. Compile and Deploy build $ bitbake -f -c compile linux-wandboard build $ bitbake -c deploy linux-wandboard 7. Insert the SD into your Host and copy the `uImage` into the first partition. Do not forget to unmount the partition before removing the card! build $ sudo cp tmp/deploy/images/uImage /media/Boot\ wandbo/ 8. Insert the SD into your board and test your change.
View full article
  Just sharing some experiences during the development and studying.   Although, it appears some hardwares, it focuses on software to speed up your developing on your  hardware.     杂记共享一下在开发和学习过程中的经验。    虽然涉及一些硬件,但其本身关注软件,希望这些能加速您在自己硬件上的开发。   02/07/2024 Device Tree Standalone Compile under Windows https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/Device-Tree-Standalone-Compile-under-Windows/ta-p/1855271   02/07/2024 i.MX8X security overview and AHAB deep dive i.MX8X security overview and AHAB deep dive - NXP Community   11/23/2023 “Standalone” Compile Device Tree https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/Standalone-Compile-Device-Tree/ta-p/1762373     10/26/2023 Linux Dynamic Debug https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/Linux-Dynamic-Debug/ta-p/1746611   08/10/2023 u-boot environment preset for sdcard mirror u-boot environment preset for sdcard mirror - NXP Community   06/06/2023 all(bootloader, device tree, Linux kernel, rootfs) in spi nor demo imx8qxpc0 mek all(bootloader, device tree, Linux kernel, rootfs)... - NXP Community     09/26/2022 parseIVT - a script to help i.MX6 Code Signing parseIVT - a script to help i.MX6 Code Signing - NXP Community   Provide  run under windows   09/16/2022   create sdcard mirror under windows create sdcard mirror under windows - NXP Community     08/03/2022   i.MX8MM SDCARD Secondary Boot Demo https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX8MM-SDCARD-Secondary-Boot-Demo/ta-p/1500011     02/16/2022 mx8_ddr_stress_test without UI   https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/mx8-ddr-stress-test-without-UI/ta-p/1414090   12/23/2021 i.MX8 i.MX8X Board Reset https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX8-i-MX8X-Board-Reset/ta-p/1391130       12/21/2021 regulator userspace-consumer https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/regulator-userspace-consumer/ta-p/1389948     11/24/2021 crypto af_alg blackkey demo crypto af_alg blackkey demo - NXP Community   09/28/2021 u-boot runtime modify Linux device tree(dtb) u-boot runtime modify Linux device tree(dtb) - NXP Community     08/17/2021 gpio-poweroff demo https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/gpio-poweroff-demo/ta-p/1324306         08/04/2021 How to use gpio-hog demo https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/How-to-use-gpio-hog-demo/ta-p/1317709       07/14/2021 SWUpdate OTA i.MX8MM EVK / i.MX8QXP MEK https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/SWUpdate-OTA-i-MX8MM-EVK-i-MX8QXP-MEK/ta-p/1307416     04/07/2021 i.MX8QXP eMMC Secondary Boot https://community.nxp.com/t5/i-MX-Community-Articles/i-MX8QXP-eMMC-Secondary-Boot/ba-p/1257704#M45       03/25/2021 sc_misc_board_ioctl to access the M4 partition from A core side sc_misc_board_ioctl to access the M4 partition fr... - NXP Community     03/17/2021 How to Changei.MX8X MEK+Base Board  Linux Debug UART https://community.nxp.com/t5/i-MX-Community-Articles/How-to-Change-i-MX8X-MEK-Base-Board-Linux-Debug-UART/ba-p/1246779#M43     03/16/2021 How to Change i.MX8MM evk Linux Debug UART https://community.nxp.com/t5/i-MX-Community-Articles/How-to-Change-i-MX8MM-evk-Linux-Debug-UART/ba-p/1243938#M40       05/06/2020 Linux fw_printenv fw_setenv to access U-Boot's environment variables Linux fw_printenv fw_setenv to access U-Boot's env... - NXP Community     03/30/2020 i.MX6 DDR calibration/stress for Mass Production https://community.nxp.com/docs/DOC-346065     03/25/2020 parseIVT - a script to help i.MX6 Code Signing https://community.nxp.com/docs/DOC-345998     02/17/2020 Start your machine learning journey from tensorflow playground Start your machine learning journey from tensorflow playground      01/15/2020 How to add  iMX8QXP PAD(GPIO) Wakeup How to add iMX8QXP PAD(GPIO) Wakeup    01/09/2020 Understand iMX8QX Hardware Partitioning By Making M4 Hello world Running Correctly https://community.nxp.com/docs/DOC-345359   09/29/2019 Docker On i.MX6UL With Ubuntu16.04 https://community.nxp.com/docs/DOC-344462   09/25/2019 Docker On i.MX8MM With Ubuntu https://community.nxp.com/docs/DOC-344473 Docker On i.MX8QXP With Ubuntu https://community.nxp.com/docs/DOC-344474     08/28/2019 eMMC5.0 vs eMMC5.1 https://community.nxp.com/docs/DOC-344265     05/24/2019 How to upgrade  Linux Kernel and dtb on eMMC without UUU How to upgrade Linux Kernel and dtb on eMMC without UUU     04/12/2019 eMMC RPMB Enhance and GP https://community.nxp.com/docs/DOC-343116   04/04/2019 How to Dump a GPT SDCard Mirror(Android O SDCard Mirror) https://community.nxp.com/docs/DOC-343079   04/04/2019 i.MX Create Android SDCard Mirror https://community.nxp.com/docs/DOC-343078   04/02/2019: i.MX Linux Binary_Demo Files Tips  https://community.nxp.com/docs/DOC-343075   04/02/2019:       Update Set fast boot        eMMC_RPMB_Enhance_and_GP.pdf   02/28/2019: imx_builder --- standalone build without Yocto https://community.nxp.com/docs/DOC-342702   08/10/2018: i.MX6SX M4 MPU Settings For RPMSG update    Update slide CMA Arrangement Consideration i.MX6SX_M4_MPU_Settings_For_RPMSG_08102018.pdf   07/26/2018 Understand ML With Simplest Code https://community.nxp.com/docs/DOC-341099     04/23/2018:     i.MX8M Standalone Build     i.MX8M Standalone Build.pdf     04/13/2018:      i.MX6SX M4 MPU Settings For RPMSG  update            Add slide CMA Arrangement  Consideration     i.MX6SX_M4_MPU_Settings_For_RPMSG_04132018.pdf   09/05/2017:       Update eMMC RPMB, Enhance  and GP       eMMC_RPMB_Enhance_and_GP.pdf 09/01/2017:       eMMC RPMB, Enhance  and GP       eMMC_RPMB_Enhance_and_GP.pdf 08/30/2017:     Dual LVDS for High Resolution Display(For i.MX6DQ/DLS)     Dual LVDS for High Resolution Display.pdf 08/27/2017:  L3.14.28 Ottbox Porting Notes:         L3.14.28_Ottbox_Porting_Notes-20150805-2.pdf MFGTool Uboot Share With the Normal Run One:        MFGTool_Uboot_share_with_NormalRun_sourceCode.pdf Mass Production with programmer        Mass_Production_with_NAND_programmer.pdf        Mass_Production_with_emmc_programmer.pdf AndroidSDCARDMirrorCreator https://community.nxp.com/docs/DOC-329596 L3.10.53 PianoPI Porting Note        L3.10.53_PianoPI_PortingNote_151102.pdf Audio Codec WM8960 Porting L3.10.53 PianoPI        AudioCodec_WM8960_Porting_L3.10.53_PianoPI_151012.pdf TouchScreen PianoPI Porting Note         TouchScreen_PianoPI_PortingNote_151103.pdf Accessing GPIO From UserSpace        Accessing_GPIO_From_UserSpace.pdf        https://community.nxp.com/docs/DOC-343344 FreeRTOS for i.MX6SX        FreeRTOS for i.MX6SX.pdf i.MX6SX M4 fastup        i.MX6SX M4 fastup.pdf i.MX6 SDCARD Secondary Boot Demo        i.MX6_SDCARD_Secondary_Boot_Demo.pdf i.MX6SX M4 MPU Settings For RPMSG        i.MX6SX_M4_MPU_Settings_For_RPMSG_10082016.pdf Security        Security03172017.pdf    NOT related to i.MX, only a short memo
View full article
In defaut Linux BSP, NXP implemented LVDS to HDMI(it6263) and MIPI-DSI to HDMI(adv7535) bridge chip drivers. And these drivers need read the EDID from display, then apply the timing parameters to DRM driver. But for the use case that bridge chip -> Serializer -> Deserializer -> LCD Panel use case, there is no EDID. The attached are reference patches for such use case, it combined the bridge chip to panel directly, and no EDID is needed. The patches are tested on iMX8QXP MEK with bridge chip + panel mode, both of them can see the fb0 device under /sys/class/graphics/ folder, also can see card under  /sys/class/drm/. Display works fine with DTS selected 720P panel mode. [2020-06-24]: Add patches for L4.14.98 kernel: Android_Auto_P9.0.0_GA2.1.0_Kernel_No_EDID_IT6263.patch L4.14.98-iMX8QXP-MEK-ADV7535-MIPI-DSI-to-HDMI-bridge-chip-com.patch
View full article
What is a device tree? The device tree is a data structure that is passed to the Linux kernel to describe the physical devices in a system. Before device trees came into use, the bootloader (for example, U-Boot) had to tell the kernel what machine type it was booting. Moreover, it had to pass other information such as memory size and location, kernel command line, etc. Sometimes, the device tree is confused with the Linux Kernel configuration, but the device tree specifies what devices are available and how they are accessed, not whether the hardware is used. The device tree is a structure composed of nodes and properties: Nodes: The node name is a label used to identify the node. Properties: A node may contain multiple properties arranged with a name and a value. Phandle: Property in one node that contains a pointer to another node. Aliases: The aliases node is an index of other nodes. A device tree is defined in a human-readable device tree syntax text file such as .dts or .dtsi. The machine has one or several .dts files that correspond to different hardware configurations. With these .dts files we can compile them into a device tree binary (.dtb) blobs that can either be attached to the kernel binary (for legacy compatibility) or, as is more commonly done, passed to the kernel by a bootloader like U-Boot. What is Devshell? The Devshell is a terminal shell that runs in the same context as the BitBake task engine. It is possible to run Devshell directly or it may spawn automatically. The advantage of this tool is that is automatically included when you configure and build a platform project so, you can start using it by installing the packages and following the setup of i.MX Yocto Project User's Guide on section 3 “Host Setup”. Steps: Now, let’s see how to compile your device tree files of i.MX devices using Devshell. On host machine. Modify or make your device tree on the next path: - 64 bits. ~/imx-yocto-bsp/<build directory>/tmp/work-shared/<machine>/kernel-source/arch/arm64/boot/dts/freescale - 32 bits. ~/imx-yocto-bsp/<build directory>/tmp/work-shared/<machine>/kernel-source/arch/arm/boot/dts To compile, it is needed to prepare the environment as is mentioned on i.MX Yocto Project User's Guide on section 5.1 “Build Configurations”. $ cd ~/imx-yocto-bsp $ DISTRO=fsl-imx-xwayland MACHINE=<machine> source imx-setup-release.sh -b <build directory> $ bitbake -c devshell virtual/kernel (it will open a new window) On Devshell window. $ make dtbs (after finished, close the Devshell window) On host machine. $ bitbake -c compile -f virtual/kernel $ bitbake -c deploy -f virtual/kernel This process will compile all the device tree files linked to the machine declared on setup environment and your device tree files will be deployed on the next path: ~/imx-yocto-bsp/<build directory>/tmp/deploy/images/<machine> I hope this article will be helpful. Best regards. Jorge.
View full article
Hi all,      I have a problem about usb mass storage driver, that's it can't enumerate my mass storage device.      but it can enumerate my mouse, keyboard...etc hid device.      anyone have idea about it ?      I always get below messages when my mass storage device plugs in.      and below is my dmesg information      My hardware -->      Type A receptacle on otg controller ~
View full article
INTRODUCTION REQUIREMENTS CREATE A NEW PROJECT GPU EXAMPLE GSTREAMER EXAMPLE 1. INTRODUCTION:      The below steps show how to create different application examples using Elipse IDE. 2. REQUIREMENTS:      A fully working image and meta-toolchain generated in Yocto . You can follow the  next training: Yocto Training - HOME      Install and configure the Yocto Eclipse Plug-in. For more details about this requirement please refer to Setting up the Eclipse IDE for Yocto Application Development         To demonstrate the steps, L3.14.28  BSP, fsl-image-qt5 image and i.MX6Q SABRE-SDP board were used. 3. CREATE A NEW PROJECT      Follow the section Creating a Hello World Project of this document Setting up the Eclipse IDE for Yocto Application Development 4. GPU EXAMPLE           For this project we use the source code found in the fsl-gpu-sdk that can be downloaded from:      https://www.freescale.com/webapp/Download?colCode=IMX6_GPU_SDK&location=null&Parent_nodeId=1337637154535695831062&Parent…      Follow section 3 and create a new project named gputest.      From the IMX6_GPU_SDK choose one of the examples of GLES2.0 folder. In this case the 01_SimpleTriangle is chosen.      Copy the .c and .h files to the src directory of the gputest project. The Project Explorer window should look like this:              Add the needed files and libraries to compile and link in the Makefile.am file found in the ´src´ folder. The Makefile.am file should have the below content:          bin_PROGRAMS = gputest          gputest_SOURCES = gputest.c fsl_egl.c fslutil.c          AM_CFLAGS = @gputest_CFLAGS@          AM_LDFLAGS = @gputest_LIBS@ -lstdc++ -lm -lGLESv2 -lEGL -lX11 -ldl          CLEANFILES = *~ ​    Add the PATH to CFLAGS where the compiler will look for the headers at Project->Properties->Autotools->configure:           In this project there is no need to add extra PATHs for the headers. Apply the changes by clicking on Reconfigure Project. Build the project To test the file you can send the executable to the board with:           $ scp gputest root@<board_ip>:/home/root      $./gputest      You should get the next output in the display: 5. GSTREAMER EXAMPLE      For this project we use the source code found at Basic tutorial 1: Hello world! - GStreamer SDK documentation - GStreamer SDK documentation    Follow section 3 and create a new project named Gstreamer.    Copy the code of the basic tutorial to your Gstreamer.c file.    Add the needed files and libraries to compile and link in the Makefile.am file found in the ´src´ folder. The Makefile.am file should have the below content:                           bin_PROGRAMS = Gstreamer      Gstreamer_SOURCES = Gstreamer.c      AM_CFLAGS = @Gstreamer_CFLAGS@      AM_LDFLAGS = @Gstreamer_LIBS@ -lstdc++  -lVDK -lm -lGLESv2 -lGAL -lEGL  -ldl -lgstreamer-0.10 -lgobject-2.0 -lgmodule-2.0 -lgthread-2.0 -lrt -lxml2 -lglib-2.0      CLEANFILES = *~         ​    Add the PATH to CFLAGS where the compiler will look for the headers at Project->Properties->Autotools->configure:           For this example the next lines are added             -I${Sysroot}/usr/include/gstreamer-1.0        -I${Sysroot}/usr/include/glib-2.0        -I${Sysroot}/usr/include/libxml2        -I${Sysroot}/usr/lib/glib-2.0/include      Apply the changes by clicking on Reconfigure Project. Build the project To test the file you can send the executable to the board with:           $ scp Gstreamer root@<board_ip>:/home/root To execute the application on the board:      $./Gstreamer The board should have internet access and the application should play the video found at http://docs.gstreamer.com/media/sintel_trailer-480p.webm
View full article
In the IMX8MM SDK unfortunately we cannot find any example about of use a GPIO as an input with interrupt.  To use a GPIO as input with interrupt we need to keep in mind how the GPIO IRQs works in the ARM Cortex M4.   We can find in Table 7-2 (CM4 Interrupt Summary) of IMX8MMRM (IMX8MM Reference Manual) the GPIOs IRQs are divided by two parts:     Combined interrupt indication for GPIOn signal 0 throughout 15  Combined interrupt indication for GPIOn signal 16 throughout 31    This basically means, the pines of GPIOn from 0 to 15 are handled by Combined interrupt indication for GPIOn signal 0 throughout 15 and the pines from 16 to 31 are handled by Combined interrupt indication for GPIOn signal 16 throughout 31.    In SDK we can find these definitions in:  <SDK root>/devices/MIMX8MM6/MIMX8MM6_cm4.h (Remember this is for IM8MM SDK)    In this example I will use GPIO5_IO12 (ECSPI2_MISO) as Input with IRQ and GPIO5_IO11 (ECSPI_MOSI) as Output of IMX8MM-EVK. I will connect the Output to the Input and will see the behavior of the IRQ in Rising and Falling edge.    For this example I will connect ECSPI2_MOSI (GPIO5_IO11) to ECSPI_MISO (GPIO5_IO12):   See the below definitions:   #define IN_GPIO   GPIO5  This define the GPIO base of the IN pin  #define IN_GPIO_PIN  12u  This define the pin number (for in)  #define IN_IRQ  GPIO5_Combined_0_15_IRQn  This define the IRQ number (72 in this case)  #define GPIO_IRQ_HANDLER  GPIO5_Combined_0_15_IRQHandler  This is a "pointer" to function that will handle the interrupt  #define IN_NAME  "IN GPIO5_IO12"  This is only a name or description for the pin    See below definitions:    #define OUT_GPIO  GPIO5  This is the GPIO base of OUT pin  #define OUT_GPIO_PIN  11u  This define the pin number (for out)  #define OUT_NAME  "OUT GPIO5_IO11"  This is only a name or description for the pin      Now the below section is the IRQ handler (which was defined before)😞   The GPIO_ClearPinsInterruptFlags(IN_GPIO, 1u << IN_GPIO_PIN); refers to GPIOx_ISR register:      For this example, the IRQ Handler will print "IRQ detected ............" in each interrupt.    We will create two different GPIOs config, one for Output and other one for Input with IRQ Falling edge:    Then configure the GPIOs and IRQ:     EnableIRQ refers to enable the 72 IRQ.   GPIO_PortEnableInterrupts refers to GPIOx_IMR: Finally, the example put the out GPIO5_IO11 in High state and then in low state many. First the IRQ is configured as Falling edge, then as Rising edge.     I will attach the complete source file.    To compile it you can use ARMGCC toolchain directly, but I like to use VSCode with MCUXpresso integration.  Once, when you have your .bin file (in my case igpio_led_output.bin) you can load to board with UUU tool: In your Linux machine: sudo uuu -b fat_write igpio_led_output.bin mmc 2:1 gpio.bin In U-boot board: u-boot=> fastboot 0   Then, when the .bin file was loaded, you can load to the CORTEX M4 in U-boot whit: u-boot=> fatload mmc 2:1 ${loadaddr} gpio.bin 7076 bytes read in 14 ms (493.2 KiB/s) u-boot=> cp.b 0x80000000 0x7e0000 0x10000 u-boot=> bootaux 0x7e0000 ## No elf image ar address 0x007e0000 ## Starting auxiliary core stack = 0x20020000, pc = 0x1FFE02CD... u-boot=>   NOTE: You can load the binary to cortex m4 with Custom bootscripts for practicity.   Once the binary loaded in M4 core you should see in seria terminal this logs (Remember GPIO5_IO11 and GPIO5_IO12 must be connected to get the same logs):    And the logs when you disconnect the GPIO5_IO11 and GPIO5_IO12 in execution time:  🔴Disconnection (Red color) 🔵Reconnection (Blue color)   I hope this can helps.     Best regards!    Salas. 
View full article
  Platform & BSP :i.MX8MPlus, L6.1.36   The attachments enable the i.MX8MPlus pci function in uboot. lspci in Linux root@imx8mpevk:~# lspci -nn 00:00.0 PCI bridge [0604]: Synopsys, Inc. DWC_usb3 / PCIe bridge [16c3:abcd] (rev 01) 01:00.0 Ethernet controller [0200]: Marvell Technology Group Ltd. Device [1b4b:2b42] (rev 11) pci test results in uboot:  u-boot=> pci BusDevFun VendorId DeviceId Device Class Sub-Class _____________________________________________________________ 00.00.00 0x16c3 0xabcd Bridge device 0x04 u-boot=> pci bar 00.00.00 ID Base Size Width Type ---------------------------------------------------------- 0 0x0000000018000000 0x0000000000100000 32 MEM u-boot=> pci regions 00 Buses 00-01 # Bus start Phys start Size Flags 0 0x0000000000000000 0x000000001ff80000 0x0000000000010000 io 1 0x0000000018000000 0x0000000018000000 0x0000000007f00000 mem 2 0x0000000040000000 0x0000000040000000 0x0000000016000000 mem sysmem 3 0x0000000058000000 0x0000000058000000 0x00000000a8000000 mem sysmem 4 0x0000000100000000 0x0000000100000000 0x00000000c0000000 mem sysmem u-boot=> pci header 00.00.00 vendor ID = 0x16c3 device ID = 0xabcd command register ID = 0x0007 status register = 0x0010 revision ID = 0x01 class code = 0x06 (Bridge device) sub class code = 0x04 programming interface = 0x00 cache line = 0x08 latency time = 0x00 header type = 0x01 BIST = 0x00 base address 0 = 0x18000000 base address 1 = 0x00000000 primary bus number = 0x00 secondary bus number = 0x01 subordinate bus number = 0x01 secondary latency timer = 0x00 IO base = 0x10 IO limit = 0x00 secondary status = 0x0000 memory base = 0x1820 memory limit = 0x1810 prefetch memory base = 0xfff0 prefetch memory limit = 0x0000 prefetch memory base upper = 0x00000000 prefetch memory limit upper = 0x00000000 IO base upper 16 bits = 0x0000 IO limit upper 16 bits = 0x0000 expansion ROM base address = 0x18100000 interrupt line = 0xff interrupt pin = 0x01 bridge control = 0x0000
View full article
This is a tool for screen capture under DRM (Direct Render Manager). This also a revised version for previous “drmfbcap” (DRM Framebuffer Capture). Unlike the FB based system under which we can capture the frame buffer easily through reading the device node, the DRM is much more complex and secure-protected. No direct way for reading framebuffer data from user space. Under DRM case, we need to open the DRM device, query the resource, get and map the FB object and then read the buffer eventually. With this tool, we can capture the buffer content from a DRM device and output as raw RGB/YUV data. Features: Capture all planes or specific plane, including hidden/covered planes or planes (overlays) managed by applications directly. Both RGB and YUV supported (auto detect). Tile format (VSI Super-Tile) is also supported. Repeat mode which can capture frames continuously. Tool was built as static linked, in this case, it should be working in both Linux and Android.   Important notes: Behavior of DRM subsystem is different between Linux 4.x and 5.x/6.x. For Linux 4.x, you can capture the RGB buffer without any problem. But, there’s no API for YUV (multi-plane) buffer. To capture YUV, please patch kernel with: “kernel_0001-drm-Add-getfb2-ioctl_L4.14.98.patch”. For Linux 5.x, mapping/capturing the internal buffer is not allowed by default due to security reason. To overcome this temporary (for debug only), patch the kernel with: “0001-drm-enable-mapping-of-internal-object-for-debugging_L5.x.patch”. It contains a minor change to remove this guard. Both patches are included in attachment. To get more details about how to use this tool, try “-h” option to print the usage message. Enjoy!
View full article
Ubuntu distro uses dash instead of bash as shell, then change it to bash: # cd /bin # sudo rm sh # sudo ln -s bash sh Install all necessary packages by typing: sudo apt-get install patch g++ rpm zlib1g-dev m4 bison libncurses5-dev libglib2.0-dev gettext \ build-essential tcl intltool libxml2-dev liborbit2-dev libx11-dev ccache flex uuid-dev liblzo2-dev If under Ubuntu 64bit, install ia32-libs package: sudo apt-get install ia32-libs If you will install Xorg in your ltib, you will need to install this package: sudo apt-get install x11proto-core-dev If you will install gtk+ in your ltib, you will need to install the following packages: sudo apt-get install libdbus-glib-1-dev libgtk2.0-dev libdbus-glib-1-dev Configure visudo file, as root using the command "/usr/sbin/visudo", and add the following line in the User privilege section: username ALL = NOPASSWD: /usr/bin/rpm, /opt/freescale/ltib/usr/bin/rpm Where username is your user name, the name you use to do logon in your system. Classic Error messages and solutions under Ubuntu Can't exec "mconf": No such file or directory at /home/tic/ltib/bin/Ltibutils.pm line 972. exec: mconf /home/tic/ltib/config/main.lkc: No such file or directory at /home/tic/ltib/bin/Ltibutils.pm line 972. traceback:   Ltibutils::system_nb:972   main::get_plat_dir:2947     main:548 Started: Tue Feb 16 18:01:38 2010 Ended:  Tue Feb 16 18:59:26 2010 Elapsed: 3468 seconds Build Failed Solution: edit the ltib script line 925:                   # install the new package           $cmd  = "$cf->{sudo} $cf->{rpm} ";           $cmd .= "--root $cf->{rpmroot} ";           $cmd .= "--dbpath $cf->{rpmdb} ";           $cmd .= "--prefix $cf->{rpmipfx} " if $cf->{rpmipfx};           $cmd .= "--ignorearch -ivh ";           $cmd .= "--force "  unless $cf->{conflicts} || $cf->{hostinst};           $cmd .= "--replacepkgs --replacefiles " if $cf->{hostinst};           $cmd .= "--nodeps " if $cf->{nodeps};           $cmd .= "--excludedocs "; +        $cmd .= "--force-debian " if $rpm =~ m/rpm-fs/ && `uname -a` =~ m/ubuntu/i;           $cmd .= "--define '_tmppath $cf->{tmppath}' ";           $cmd .= "$rpm"; error: cannot open Name index using db3 - No such file or directory (2) error: cannot open Name index using db3 - No such file or directory (2) sudo rpm --root / --dbpath /tmp/rpm-tic/rpmdb -e --allmatches --nodeps --define '_tmppath /home/tic/ltib/tmp' rpm-fs 2>/dev/null sudo rpm --root / --dbpath /tmp/rpm-tic/rpmdb --ignorearch -ivh --force --nodeps --excludedocs --define '_tmppath /home/tic/ltib/tmp'  /tmp/rpm-tic/RPMS/i686/rpm-fs-4.0.4-1.i686.rpm rpm: please use alien to install rpm packages on Debian, if you are really sure use --force-debian switch. See README.Debian for more details. sudo /opt/freescale/ltib/usr/bin/rpm --root / --dbpath /opt/freescale/ltib/var/lib/rpm -Uv --justdb --notriggers --noscripts --nodeps  /tmp/rpm-tic/RPMS/i686/rpm-fs-4.0.4-1.i686.rpm sudo: /opt/freescale/ltib/usr/bin/rpm: command not found mkdir: cannot create directory `/opt/freescale': Permission denied Cannot create the download directory:   /opt/freescale/pkgs Either change to a global directory you have write permissions to, or create it as root.  Please set the permissions to 777 traceback:   main::check_dirs:2469   main::host_checks:1426     main:542 Started: Wed Nov 25 01:56:53 2009 Ended:  Wed Nov 25 02:07:42 2009 Elapsed: 649 seconds Build Failed solution : sudo chmod 777 /opt make[1]: Entering directory `/opt/freescale/ltib/usr/src/rpm/BUILD/texinfo-4.8' Making all in tools make[2]: Entering directory `/opt/freescale/ltib/usr/src/rpm/BUILD/texinfo-4.8/tools' make[2]: *** No rule to make target `all'.  Stop. make[2]: Leaving directory `/opt/freescale/ltib/usr/src/rpm/BUILD/texinfo-4.8/tools' make[1]: *** [all-recursive] Error 1 make[1]: Leaving directory `/opt/freescale/ltib/usr/src/rpm/BUILD/texinfo-4.8' make: *** [all] Error 2 error: Bad exit status from /home/tic/ltib/tmp/rpm-tmp.U8vEdX (%build) RPM build errors:     Bad exit status from /home/tic/ltib/tmp/rpm-tmp.U8vEdX (%build) Build time for texinfo: 55 seconds Failed building texinfo Died at ./ltib line 1380. traceback:   main::build_host_rpms:1380   main::host_checks:1435     main:542 Started: Wed Nov 25 20:10:43 2009 Ended:  Wed Nov 25 20:31:42 2009 Elapsed: 1259 seconds These packages failed to build: texinfo Build Failed solution : install ccache package in host + cd /opt/freescale/ltib/usr/src/rpm/BUILD + cd lkc-1.4 + make -j1 conf mconf gcc -O0 -Wall -g -fPIC -c conf.c -o conf.o bison -l -b zconf -p zconf zconf.y flex -L -Pzconf zconf.l make: flex: Command not found make: *** [lex.zconf.c] Error 127 error: Bad exit status from /home/tic/ltib/tmp/rpm-tmp.010CjL (%build) RPM build errors:     Bad exit status from /home/tic/ltib/tmp/rpm-tmp.010CjL (%build) Build time for lkc: 2 seconds Failed building lkc Died at ./ltib line 1380. traceback:   main::build_host_rpms:1380   main::host_checks:1435     main:542 Started: Thu Nov 26 00:33:46 2009 Ended:  Thu Nov 26 01:19:39 2009 Elapsed: 2753 seconds These packages failed to build: lkc Build Failed solution : install flex package in host Making all in po make[2]: Entering directory `/home/tic/ltib/rpm/BUILD/alsa-utils-1.0.11rc2/alsaconf/po' mv: cannot stat `t-ja.gmo': No such file or directory make[2]: *** [ja.gmo] Error 1 make[2]: *** Waiting for unfinished jobs.... mv: cannot stat `t-ru.gmo': No such file or directory make[2]: *** [ru.gmo] Error 1 make[2]: Leaving directory `/home/tic/ltib/rpm/BUILD/alsa-utils-1.0.11rc2/alsaconf/po' make[1]: *** [all-recursive] Error 1 make[1]: Leaving directory `/home/tic/ltib/rpm/BUILD/alsa-utils-1.0.11rc2/alsaconf' make: *** [all-recursive] Error 1 error: Bad exit status from /home/tic/ltib/tmp/rpm-tmp.93730 (%build) RPM build errors:     Bad exit status from /home/tic/ltib/tmp/rpm-tmp.93730 (%build) Build time for alsa-utils: 84 seconds Failed building alsa-utils f_buildrpms() returned an error, exiting traceback:   main:560 Started: Sat Nov 28 07:39:40 2009 Ended:  Sat Nov 28 08:17:18 2009 Elapsed: 2258 seconds These packages failed to build: alsa-utils Build Failed Exiting on error or interrupt solution : install package gettext and ja-trans checking for glib-genmarshal... no configure: error: Could not find a glib-genmarshal in your PATH error: Bad exit status from /home/tic/ltib/tmp/rpm-tmp.13030 (%build) RPM build errors:     Bad exit status from /home/tic/ltib/tmp/rpm-tmp.13030 (%build) Build time for glib2: 107 seconds Failed building glib2 f_buildrpms() returned an error, exiting traceback:   main:560 Started: Sat Dec  5 03:19:36 2009 Ended:  Sat Dec  5 03:29:46 2009 Elapsed: 610 seconds These packages failed to build: glib2 Build Failed Exiting on error or interrupt solution : install the package libglib2.0-dev
View full article
Some i.MX25 customers reported an issue for the GPT timer, when using 120MHz (240MHz UPLL divided 2) clock source as the GPT per_clk, the timer will not be increased all the time in free-run mode. If using 66.5MHz IPG clock and 133MHz PER clock as the clock source, there are no such issue. There are 4 test cases in the attached test code. Case 0: in CCM_MCR, set bit 5 as 0 for 133MHz HCLK as the gpt_per_clk source;  in GPT_CR bit[8:6], set 0b001 ipg_clk (66.5MHz). There is no issue, the GPT counter is fixed at 4 between old_cnt and new_cnt. Case 1: in CCM_MCR, set bit 5 as 0 for 133MHz HCLK as the gpt_per_clk source;  in GPT_CR bit[8:6], set 0b010 ipg_clk_highfreq (133MHz). There is no issue, the GPT counter is fixed at 8 between old_cnt and new_cnt. Case 2: in CCM_MCR, set bit 5 as 1 for 240MHz UPLL divided by 2 as the gpt_per_clk source;  in GPT_CR bit[8:6], set 0b001 ipg_clk (60MHz). There is no issue, the GPT counter is fixed at 4 between old_cnt and new_cnt. Case 3: in CCM_MCR, set bit 5 as 0 for 240MHz UPLL divided by 2 as the gpt_per_clk source;  in GPT_CR bit[8:6], set 0b010 ipg_clk_highfreq (120MHz). There is issue, the GPT counter is not a fixed value between old_cnt and new_cnt, and sometimes it will be negative. Count 9874: 4 old_cnt: 0x188849dc new_cnt: 0x188849e0 Count 9877: 12 old_cnt: 0x18918400 new_cnt: 0x1891840c Count 9915: 4 old_cnt: 0x189aea90 new_cnt: 0x189aea94 Count 9937: -12 old_cnt: 0x18a42458 new_cnt: 0x18a4244c Count 9967: 4 old_cnt: 0x18adb17c new_cnt: 0x18adb180 In fact, it is not an issue, when using UPLL as the GPT clock source, the maxim frequency should be 60MHz. That's why all other three test case is OK and it only failed on this case.
View full article
This work is the result of my daughter's idea, she finished it with my guidance. Cradle-1 Palmsize mini-HPC World's first full function heterogeneous mini-HPC, this is what it looks like: 1 Architecture         Overall:  CPU+GPU heterogeneous, 4 nodes, connected by a 100M Ethernet switcher;         Nodes: FreeScale I.MX6 Quad core mini-pc, with 4 ARM Cortex-A9 cores and 1 Vivante GC2000 GPU 2  Software         OS:   Ubuntu 11.10 linaro         OpenCL driver: Vivante GC2000 OpenCL driver         Compiler:  C/C++: gcc 4.6.1, Fortan90/95:  gfortran 4.6.1,         MPI Parallel Computing: MPICH2 1.4-1         NFS network file system: nfs-kernel-server 1.2.4         SSH security:   openssh   1:5.8 3 Hardware         The hardware of all nodes are the same, only the software configurations are slightly different. One of them was assigned as the master node, the others are slave nodes. They were TV sticks originally, with android 4.0 installed. The node's hardware specification is:         CPU: 4 1.2G Cortex-A9 cores         GPU: 1 Vivante GC2000 GPU         RAM: 1G DDR         ROM: 8G SD         NIC:   usb2.0 100M Ethernet Adapter (this NIC is not the TV stick's component, we added it)         WIFI: 150M         Display Interface:  HDMI         Network Switcher: 5 port 100M Ethernet Switcher 4  Network         Each node has one USB2.0 NIC and one WIFI interface, the WIFI is used as the backup connection for NIC connection. Network configurations are:         IP Address assignment:  (baby1 - baby4 are the four computing nodes)         baby1: 100M NIC 192.168.10.1 WIFI 192.168.0.111         baby2: 100M NIC 192.168.10.2 WIFI 192.168.0.112         baby3: 100M NIC 192.168.10.3 WIFI 192.168.0.113         baby4: 100M NIC 192.168.10.4 WIFI 192.168.0.114 5  Performance         Cradle-1 has 16 1.2G ARM Cortex-A9 cores and 4 Vivante GC2000 GPU cores, the total computing power of these 20 computing devices is more than 100GFLOPS,   more powerful than an ordinary desktop. The whole machine is only a little bigger than a palm, and the total power consumption is less than 15 watts.          The overall architecture of Cradle-1 is almost the same as Chinese Tianhe-1A or the Titan in the oak ridge lab. they used the same set of software, LINUX+OPENCL+OPENMPI. Cradle-1 supports C/C++, Fortran90/95. And almost all kinds of parallel computing algorithms can run on it, the only difference is the scale.         We coded a MPI parallel computing program for large matrix multiplication with 4 processes, each process had 5 threads, four threads for the four CPU cores, and one thread for GPU computing. 6 Appearance Front Back Top Left Right One node, it has three interfaces, the right is HDMI interface, upper-left is the wireless adapter for keyboard and mouse, down-left is the power connection. One node is running Ubuntu 11.10. Coded a simple OpenCL program to display OpenCL driver information On a notebook, using remote desktop access function to obtan the node baby1's desktop. This is the sign in desktop of baby1 node. Baby 1 has X11VNC server installed. sign in baby1, open a terminal Ran a MPI testing program, ensuring that all babies (baby1 - baby4) were working     Any comments? please mail to audrey.tao@hotmail.com
View full article
Audio, from a file gst-launch filesrc location=test.wav ! wavparse ! mfw_mp3encoder ! filesink location=output.mp3 Audio Recording gst-launch alsasrc num-buffers=$NUMBER blocksize=$SIZE ! mfw_mp3encoder ! filesink location=output.mp3 # where #     duration = $NUMBER*$SIZE*8 / (samplerate *channel *bitwidth) # Example: 60 seconds recording # gst-launch alsasrc num-buffers=240 blocksize=44100 ! mfw_mp3encoder ! filesink location=output.mp3 # # To verify that is correct, do a normal audio playback gst-launch filesrc location=output.mp3 typefind=true ! beepdec ! audioconvert ! 'audio/x-raw-int,channels=2' ! alsasink Video, from a test source gst-launch videotestsrc ! queue ! vpuenc ! matroskamux ! filesink location=./test.avi Video, from a file gst-launch filesrc location=sample.yuv blocksize=$BLOCK_SIZE ! 'video/x-raw-yuv,format=(fourcc)I420, width=$WIDTH, height=$HEIGHT, framerate=(fraction)30/1' ! vpuenc codec=$CODEC ! matroskamux ! filesink location=output.mkv sync=false # where #     BLOCK_SIZE = WIDTH * HEIGHT * 1.5 #     CODEC = 0(MPEG4), 5(H263), 6(H264) or 12(MJPG). # # For example, encoding a CIF raw file gst-launch filesrc location=sample.yuv blocksize=152064 ! 'video/x-raw-yuv,format=(fourcc)I420, width=352, height=288, framerate=(fraction)30/1' ! vpuenc codec=0 ! matroskamux ! filesink location=sample.mkv sync=false Video, from Web camera # when the web cam is connected, the device node /dev/video0 should be present. In order to test the camera, without encoding gst-launch v4l2src ! mfw_v4lsink # in recording, run: # gst-launch v4l2src num-buffers=-1 ! queue max-size-buffers=2 ! vpuenc codec=0 ! matroskamux ! filesink location=output.mkv sync=false # # where sync=false indicates filesink to to use a clock sync # # In case a specific width/height is needed, just add the filter caps gst-launch v4l2src num-buffers=-1  ! 'video/x-raw-yuv,format=(fourcc)I420, width=352, height=288, framerate=(fraction)30/1' ! queue ! vpuenc codec=0 ! matroskamux ! filesink location=output.mkv sync=false # # In case you want to see in the screen what the camera is capturing, add a tee element # gst-launch v4l2src num-buffers=-1 ! tee name=t ! queue ! mfw_v4lsink t. ! queue ! vpuenc codec=0 ! matroskamux ! filesink location=output.mkv sync=false Video, from Parallel/MIPI camera # The camera driver needs to be loaded before executing the pipeline, refer to the BSP document to see which driver to load # MIPI (J5 port): modprobe ov5640_camera_mipi modprobe mxc_v4l2_capture   # Parallel (J9 port): modprobe ov5642_camera modprobe mxc_v4l2_capture   gst-launch mfw_v4lsrc ! queue ! vpuenc codec=0 ! matroskamux ! filesink location=output.mkv sync=false   # Do a 'gst-inspect mfw_v4lsrc' or 'gst-inspect vpuenc' to see other possible settings (resolution, fps, codec, etc.)
View full article
恩智浦BSP的内核定制 ........................................... 103 6.1 IO管脚配置与Pinctrl驱动 .................................... 103 6.2 新板bringup ........................................................ 118 6.3 更改调试串口: .................................................. 127 6.4 uSDHC设备定制(eMMC flash,SDcard, SDIOcard) 133 6.5 LVDS LCD 驱动定制 .......................................... 142 6.6 GPIO_Key 驱动定制 .......................................... 145 6.7 GPIO_LED 驱动定制 ......................................... 149 6.8 Fuse nvram驱动 ................................................. 152 6.9 SPI与SPI Slave驱动 ........................................... 153 6.10 USB 3.0 TypeC 改成 USB 3.0 TypeA(未验证) ... 160 6.11 汽车级以太网驱动定制 ....................................... 160
View full article
 This article uses i.MX Linux® User's Guide, Rev. L4.1.15_2.1.0-ga, 05/2017 as an example (it may be found as attachment), please refer to section 4.5.12 (How to build U-Boot and Kernel in standalone environment).   First, generate a development SDK, which includes the tools, toolchain, and small rootfs to compile against to put on the host machine.     • Generate an SDK from the Yocto Project build environment with the following command. To set up the Yocto Project build environment, follow the steps in the i.MX Yocto Project User's Guide (IMXLXYOCTOUG). In the following command, set <Target-Machine> to the machine you are building for.   <Target-Machine> may be one of the following :   • imx6qpsabreauto • imx6qpsabresd • imx6ulevk • imx6ull14x14evk • imx6ull9x9evk • imx6dlsabreauto • imx6dlsabresd • imx6qsabreauto • imx6qsabresd • imx6slevk • imx6sllevk • imx6solosabreauto • imx6solosabresd • imx6sxsabresd • imx6sxsabreauto • imx7dsabresd  The «populate_sdk» generates an script file that sets up environment without Yocto Project. This SDK should be updated for each release to pick up the latest headers, toolchain, and tools from the current release.   $ DISTRO=fsl-imx-fb MACHINE=<Target-Machine> source fsl-setup-release.sh -b build-fb   $ DISTRO=fsl-imx-fb MACHINE=<Target-Machine> bitbake core-image-minimal -c populate_sdk   or   $ bitbake meta-toolchain       • From the build directory, the bitbake was run in, copy the sh file in tmp/deploy/sdk to the host machine to build on and execute the script to install the SDK. The default location is in /opt but can be placed anywhere on the host machine.     Note. Each time you wish to use the SDK in a new shell session, you need to source the environment setup script e.g.    $ . /opt/fsl-imx-fb/4.1.15-2.0.0/environment-setup-cortexa9hf-neon-poky-linux-gnueabi   or    $ source /opt/fsl-imx-fb/4.1.15-2.0.0/environment-setup-cortexa9hf-neon-poky-linux-gnueabi   From  Yocto Project Mega-Manual  Note By default, this toolchain does not build static binaries. If you want to use the toolchain to build these types of libraries, you need to be sure your image has the appropriate static development libraries. Use the  IMAGE_INSTALL  variable inside your  local.conf  file to install the appropriate library packages. Following is an example using  glibc  static development libraries:      IMAGE_INSTALL_append = " glibc-staticdev"   On the host machine, these are the steps to build U-Boot and Kernel:  • On the host machine, set the environment with the following command before building.   $ export CROSS_COMPILE=/opt/fsl-imx-fb/4.1.15/environment-setup-cortexa9hf-vfp-neon-pokylinux-gnueabi   $ export ARCH=arm • To build U-Boot, find the configuration for the target boot. In the following example, i.MX 6ULL is the target.     Download source by cloning with   $ git clone http://git.freescale.com/git/cgit.cgi/imx/uboot-imx.git -b imx_v2016.03_4.1.15_2.0.0_ga   $ cd uboot-imx $ make clean $ make mx6ull_14x14_evk_defconfig $ make u-boot.imx   • To build the kernel, execute the following commands:   Download source by cloning with   $ git clone http://git.freescale.com/git/cgit.cgi/imx/linux-imx.git -b imx_4.1.15_2.0.0_ga   $ cd linux-imx $ make defconfig $ make   • To build an application (Hello World) as test.c:   $ source /opt/fsl-imx-fb/4.1.15-2.0.0/environment-setup-cortexa9hf-neon-poky-linux-gnueabi $ cd ~/test/ $ arm-poky-linux-gnueabi-gcc --sysroot=/opt/fsl-imx-fb/4.1.15-2.0.0/sysroots/cortexa9hf-neon-poky-linux-gnueabi -mfloat-abi=hard test.c To check if the the compiled code (a.out) is ARM executable   $ file ./a.out   ./a.out: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), dynamically linked, interpreter /lib/ld-linux-armhf.so.3, for GNU/Linux 2.6.32, BuildID[sha1]=0e5c22dcf021748ead2c0bd51a4553cb7d38f6f2, not stripped   Copy file a.out to target Linux filesystem and before run it check again :   root@imx6ul7d:/unit_tests/1# file a.out   a.out: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), dynamically linked, interpreter /lib/ld-linux-armhf.so.3, for GNU/Linux 2.6.32, BuildID[sha1]=0e5c22dcf021748ead2c0bd51a4553cb7d38f6f2, not stripped   To define what Linux libs are needed to run our application :   root@imx6ul7d:/unit_tests/1# ldd a.out     linux-vdso.so.1 (0x7ee93000)   libc.so.6 => /lib/libc.so.6 (0x76e64000)   /lib/ld-linux-armhf.so.3 (0x76f9d000)   If some libs are not located in the filesystem you can observe the following message :   -sh: root@imx6ul7d:/unit_tests/1#./a.out: No such file or directory   Finally - run a.out:   root@imx6ul7d:/unit_tests/1# ./a.out Hello World root@imx6ul7d:/unit_tests/1#
View full article
Check new updated version for with Morty here Step 1 : Get iMX Yocto AVS setup environment Review the steps under Chapter 3 of the i.MX_Yocto_Project_User'sGuide.pdf on the L4.X LINUX_DOCS to prepare your host machine. Including at least the following essential Yocto packages $ sudo apt-get install gawk wget git-core diffstat unzip texinfo \   gcc-multilib build-essential chrpath socat libsdl1.2-dev u-boot-tools Install the i.MX NXP AVS repo Create/Move to a directory where you want to install the AVS yocto build enviroment. Let's call this as <yocto_dir> $ cd <yocto_dir> $ repo init -u https://source.codeaurora.org/external/imxsupport/meta-avs-demos -b master -m imx7d-pico-avs-sdk_4.1.15-1.0.0.xml Download the AVS BSP build environment: $ repo sync Step 2: Setup yocto for Alexa_SDK image with AVS-SETUP-DEMO script: Run the avs-setup-demo script as follows to setup your environment for the imx7d-pico board: $ MACHINE=imx7d-pico DISTRO=fsl-imx-x11 source avs-setup-demo.sh -b <build_sdk> Where <build_sdk> is the name you will give to your build folder. After acepting the EULA the script will prompt if you want to enable: Sound Card selection The following Sound Cards are supported on the build: SGTL (In-board Audio Codec for PicoPi) 2-Mic Conexant The script will prompt if you are going to use the Conexant Card. If not then SGTL will be assumed as your selection Are you going to use Conexant Sound Card [Y/N]? Install Alexa SDK Next option is to select if you want to pre-install the AVS SDK software on the image. Do you want to build/include the AVS_SDK package on this image(Y/N)? If you select YES, then your image will contain the AVS SDK ready to use (after authentication). Note this AVS_SDK will not have WakeWord detection support, but it can be added on runtime. If your selection was NO, then you can always manually fetch and build the AVS_SDK on runtime. All the packages dependencies will be already there, so only fetching the AVS_SDK source code and building it is required. Finish avs-image configuration At the end you will see a text according with the configuration you select for your image build. Next is an example for a Preinstalled AVS_SDK with Conxant Sound Card support and WiFi/BT not enabled. ==========================================================   AVS configuration is now ready at conf/local.conf             - Sound Card = Conexant                                     - AVS_SDK pre-installed                                       You are ready to bitbake your AVS demo image now:               bitbake avs-image                                        ========================================================== Step 3: Build the AVS image Go to your <build_sdk> directory and start the build of the avs-image There are 2 options Regular Build: $ cd <yocto_dir>/<build_sdk> $ bitbake avs-image With QT5 support included: $ cd <yocto_dir>/<build_sdk> $ bitbake avs-image-qt5 The image with QT5 is useful if you want to add some GUI for example to render DisplayCards. Step 4 : Deploying the built images to SD/MMC card to boot on target board. After a build has succesfully completed, the created image resides at <build_sdk>/tmp/deploy/images/imx7d-pico/ In this directory, you will find the imx7d-pico-avs.sdcard image or imx7d-pico-avs-qt5.sdcard, depending on the build you chose on Step3. To Flash the .sdcard image into the eMMC device of your PicoPi board follow the next steps: Download the bootbomb flasher Follow the instruction on Section 4. Board Reflashing of the Quick Start Guide for AVS kit to setup your board on flashing mode. Copy the built SDCARD file $ sudo dd if=imx7d-pico-avs.sdcard of=/dev/sd bs=1M && sync $ sync Properly eject the pico-imx7d board: $ sudo eject /dev/sd NXP Documentation Refer to the Quick Start Quide for AVS SDK to fully setup your PicoPi board with Synaptics 2Mic and PicoPi i.mx7D For a more comprehensive understanding of Yocto, its features and setup; more image build and deployment options and customization, please take a look at the i.MX_Yocto_Project_User's_Guide.pdf document from the Linux documents bundle mentioned at the beginning of this document. For a more detailed description of the Linux BSP, u-boot use and configuration, please take a look at the i.MX_Linux_User's_Guide.pdf document from the Linux documents bundle mentioned at the beginning of this document.
View full article
The Linux L4.9.11_1.0.0 RFP(GA) for i.MX6 release files are now available on www.nxp.com    Files available: # Name Description 1 L4.9.11_1.0.0-ga_images_MX6QPDLSOLOX.tar.gz i.MX 6QuadPlus, i.MX 6Quad, i.MX 6DualPlus, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo, i.MX 6Solox Linux Binary Demo Files 2 L4.9.11_1.0.0-ga_images_MX6SLEVK.tar.gz i.MX 6Sololite EVK Linux Binary Demo Files 3 L4.9.11_1.0.0-ga_images_MX6UL7D.tar.gz i.MX 6UltraLite EVK, 7Dual SABRESD, 6ULL EVK Linux Binary Demo Files 4 L4.9.11_1.0.0-ga_images_MX6SLLEVK.tar.gz i.MX 6SLL EVK Linux Binary Demo Files 5 L4.9.11_1.0.0-ga_images_MX7ULPEVK.tar.gz i.MX 7ULP EVK Linux Binary Demo Files  6 L4.9.11_1.0.0-ga_mfg-tools.tar.gz i.MX Manufacturing Toolkit for Linux L4.9.11_1.0.0 BSP 7 L4.9.11_1.0.0-ga_gpu-tools.tar.gz L4.9.11_1.0.0 i.MX VivanteVTK file 8 bcmdhd-1.141.100.6.tar.gz The Broadcom firmware package for i.MX Linux L4.9.11_1.0.0 BSP. 9 imx-aacpcodec-4.2.1.tar.gz Linux AAC Plus Codec for L4.9.11_1.0.0 10 fsl-yocto-L4.9.11_1.0.0.tar.gz L4.9.11_1.0.0 for Linux BSP Documentation. Includes Release Notes, User Guide.   Target boards: i.MX 6QuadPlus SABRE-SD Board and Platform i.MX 6QuadPlus SABRE-AI Board i.MX 6Quad SABRE-SD Board and Platform i.MX 6DualLite SABRE-SD Board i.MX 6Quad SABRE-AI Board i.MX 6DualLite SABRE-AI Board i.MX 6SoloLite EVK Board i.MX 6SoloX SABRE-SD Board i.MX 6SoloX SABRE-AI Board i.MX 7Dual SABRE-SD Board i.MX 6UltraLite EVK Board i.MX 6ULL EVK Board i.MX 6SLL EVK Board i.MX 7ULP EVK Board (Beta Quality)   What’s New/Features: Please consult the Release Notes.   Known issues For known issues and more details please consult the Release Notes.   More information on changes, see: README: https://source.codeaurora.org/external/imx/fsl-arm-yocto-bsp/tree/README?h=imx-morty ChangeLog: https://source.codeaurora.org/external/imx/fsl-arm-yocto-bsp/tree/ChangeLog?h=imx-morty
View full article