i.MX Processors Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

i.MX Processors Knowledge Base

Discussions

Sort by:
The Linux L4.9.88_2.0.0 Rocko, i.MX7ULP Linux/SDK2.4 RFP(GA) release files are now available. Linux on IMX_SW web page, Overview -> BSP Updates and Releases ->Linux L4.9.88_2.0.0 SDK on https://mcuxpresso.nxp.com/ web page.   Files available: Linux:  # Name Description 1 imx-yocto-L4.9.88_2.0.0.tar.gz L4.9.88_2.0.0 for Linux BSP Documentation. Includes Release Notes, User Guide. 2 L4.9.88_2.0.0_images_MX6QPDLSOLOX.tar.gz i.MX 6QuadPlus, i.MX 6Quad, i.MX 6DualPlus, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo, i.MX 6Solox Linux Binary Demo Files 3 L4.9.88_2.0.0_images_MX6SLEVK.tar.gz i.MX 6Sololite EVK Linux Binary Demo Files 4 L4.9.88_2.0.0_images_MX6UL7D.tar.gz i.MX 6UltraLite EVK, 7Dual SABRESD, 6ULL EVK Linux Binary Demo Files 5 L4.9.88_2.0.0_images_MX6SLLEVK.tar.gz i.MX 6SLL EVK Linux Binary Demo Files 6 L4.9.88_2.0.0_images_MX8MQ.tar.gz i.MX 8MQuad EVK Linux Binary Demo files 7 L4.9.88_images_MX7ULPEVK.tar.gz i.MX 7ULP EVK Linux Binary Demo Files  8 L4.9.88_2.0.0-ga_mfg-tools.tar.gz Manufacturing Toolkit for Linux L4.9.88_2.0.0 iMX6,7 BSP 9 L4.9.88_2.0.0_mfg-tool_MX8MQ.tar.gz Manufacturing Toolkit for Linux L4.9.88_2.0.0 i.MX8MQ BSP 10 imx-aacpcodec-4.3.5.tar.gz Linux AAC Plus Codec for L4.9.88_2.0.0   SDK:   On https://mcuxpresso.nxp.com/, click the Select Development Board to customize the SDK based on your configuration then download the SDK package.    Target board: i.MX 6QuadPlus SABRE-SD Board and Platform i.MX 6QuadPlus SABRE-AI Board i.MX 6Quad SABRE-SD Board and Platform i.MX 6DualLite SABRE-SD Board i.MX 6Quad SABRE-AI Board i.MX 6DualLite SABRE-AI Board i.MX 6SoloLite EVK Board i.MX 6SoloX SABRE-SD Board i.MX 6SoloX SABRE-AI Board i.MX 7Dual SABRE-SD Board i.MX 6UltraLite EVK Board i.MX 6ULL EVK Board i.MX 6SLL EVK Board i.MX 7ULP EVK Board i.MX 8MQ EVK Board   What’s New/Features: Please consult the Release Notes.   Known issues For known issues and more details please consult the Release Notes.   More information on changes of Yocto, see: README: https://source.codeaurora.org/external/imx/imx-manifest/tree/README?h=imx-linux-rocko ChangeLog: https://source.codeaurora.org/external/imx/imx-manifest/tree/ChangeLog?h=imx-linux-rocko
View full article
The following document contains a list of document, questions and discussions that are relevant in the community based on amount of views. If you are having a problem, doubt or getting started in i.MX processors, you should check the following links to see if your doubt is in there. Yocto Project Freescale Yocto Project main page‌ Yocto Training - HOME‌ i.MX Yocto Project: Frequently Asked Questions‌ Useful bitbake commands‌ Yocto Project Package Management - smart  How to add a new layer and a new recipe in Yocto  Setting up the Eclipse IDE for Yocto Application Development Guide to the .sdcard format  Yocto NFS & TFTP boot  YOCTO project clean  Yocto with a package manager (ex: apt-get)  Yocto Setting the Default Ethernet address and disable DHCP on boot.  i.MX x Building QT for i.MX6  i.MX6/7 DDR Stress Test Tool V3.00  i.MX6DQSDL DDR3 Script Aid  Installing Ubuntu Rootfs on NXP i.MX6 boards  iMX6DQ MAX9286 MIPI CSI2 720P camera surround view solution for Linux BSP i.MX Design&Tool Lists  Simple GPIO Example - quandry  i.MX6 GStreamer-imx Plugins - Tutorial & Example Pipelines  Streaming USB Webcam over Network  Step-by-step: How to setup TI Wilink (WL18xx) with iMX6 Linux 3.10.53  Linux / Kernel Copying Files Between Windows and Linux using PuTTY  Building Linux Kernel  Patch to support uboot logo keep from uboot to kernel for NXP Linux and Android BSP (HDMI, LCD and LVDS)  load kernel from SD card in U-boot  Changing the Kernel configuration for i.MX6 SABRE  Android  The Android Booting process  What is inside the init.rc and what is it used for.  Others How to use qtmultimedia(QML) with Gstreamer 1.0
View full article
The i.MX Android N7.1.2_2.0.0 GA release is now available on IMX_SW page.   Files available: # Name Description 1 android_N7.1.2_2.0.0_docs.tar.gz i.MX Android N7.1.2_2.0.0 BSP Documentation 2 android_N7.1.2_2.0.0_source.tar.gz Source Code of Android N7.1.2_2.0.0 BSP (4.1 kernel) for i.MX 6QuadPlus, i.MX 6Quad, i.MX 6DualPlus, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo i.MX 6Sololite, i.MX6SX and i.MX7D 3 android_N7.1.2_2.0.0_image_6dqpsabreauto.tar.gz Binary Demo Files of Android N7.1.2_2.0.0 BSP - SABRE for Automotive Infotainment based on i.MX 6QuadPlus, i.MX 6Quad, and i.MX 6DualLite 4 android_N7.1.2_2.0.0_image_6dqpsabresd.tar.gz Binary Demo Files of Android N7.1.2_2.0.0 BSP - SABRE Platform and SABRE Board based on i.MX 6QuadPlus, i.MX 6Quad and i.MX 6DualLite. 5 android_N7.1.2_2.0.0_image_6slevk.tar.gz Binary Demo Files of Android N7.1.2_2.0.0 BSP - i.MX 6Sololite evaluation kit. 6 android_N7.1.2_2.0.0_image_6sxsabresd.tar.gz Binary Demo Files of Android N7.1.2_2.0.0 BSP - SABRE Board based on i.MX 6SoloX 7 android_N7.1.2_2.0.0_image_6sxsabreauto.tar.gz Binary Demo Files of Android N7.1.2_2.0.0 BSP - SABRE for Automotive infotainment based on i.MX 6SoloX 8 android_N7.1.2_2.0.0_image_7dsabresd.tar.gz Binary Demo Files of Android N7.1.2_2.0.0 BSP - SABRE Board based on i.MX 7Dual 9 fsl_aacp_dec.tar.gz AAC Plus Codec for N7.1.2_2.0.0 10 android_N7.1.2_2.0.0_tools.tar.gz Manufacturing Toolkit and VivanteVTK for N7.1.2_2.0.0   Supported Hardware SoC/Boards: i.MX 6Quad, i.MX 6QuadPlus, and i.MX 6DualLite SABRE-SD board and platform i.MX 6Quad, i.MX 6QuadPlus, and i.MX 6DualLite SABRE-AI board and platform i.MX 6SoloLite EVK platform i.MX 6SoloX SABRE-SD board and platforms i.MX 6SoloX SABRE-AI board and platforms i.MX 7Dual SABRE-SD board and platform   Changes: Compared to the N7.1.1_1.0.0 release, this release has the following major changes: Upgraded the Android code base from android-7.1.1_r13 to android-7.1.2_r9. Upgraded U-Boot from v2015.04 to v2017.03. Upgraded the kernel from v4.1.15 to v4.9.17. Upgraded the GPU driver from 6.2.0.p2 to 6.2.2.p1. Upgraded the Wi-Fi BCMDHD release version to 1.141.100.6. Refine the Gralloc and HWC HAL. Enable the GPT partition to replace the MBR partition.   Feature: For features please consult the release notes.   Known issues For known issues and more details please consult the Release Notes.
View full article
    Xenomai is real-time framework, which can run seamlessly side-by-side Linux as a co-kernel system, or natively over mainline Linux kernels (with or without PREEMPT-RT patch). The dual kernel nicknamed Cobalt, is a significant rework of the Xenomai 2.x system. Cobalt implements the RTDM specification for interfacing with real-time device drivers. The native linux version, an enhanced implementation of the experimental Xenomai/SOLO work, is called Mercury. In this environment, only a standalone implementation of the RTDM specification in a kernel module is required, for interfacing the RTDM-compliant device drivers with the native kernel. You can get more detailed information from Home · Wiki · xenomai / xenomai · GitLab       I have ported xenomai 3.1 to i.MX Yocto 4.19.35-1.1.0, and currently support ARMv7 and tested on imx6ulevk/imx6ull14x14evk/imx6qpsabresd/imx6dlsabresd/imx6sxsabresdimx6slevk boards. I also did stress test by tool stress-ng on some boards.      You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm.git, and git checkout Linux-4.19.35-1.1.0. (which inlcudes all patches and bb file) and add the following variable in conf/local.conf before build xenomai by command bitake xenomai.  XENOMAI_KERNEL_MODE = "cobalt"  PREFERRED_VERSION_linux-imx = "4.19-${XENOMAI_KERNEL_MODE}" IMAGE_INSTALL_append += " xenomai" DISTRO_FEATURES_remove = "optee" or XENOMAI_KERNEL_MODE = "mercury" PREFERRED_VERSION_linux-imx = "4.19-${XENOMAI_KERNEL_MODE}" IMAGE_INSTALL_append += " xenomai" DISTRO_FEATURES_remove = "optee" If XENOMAI_KERNEL_MODE = "cobalt", you can build dual kernel version. And If XENOMAI_KERNEL_MODE = "mercury", it is single kernel with PREEMPT-RT patch. The following is test result by the command (/usr/xenomai/demo/cyclictest -p 50 -t 5 -m -n -i 1000 😞 //Mecury on 6ULL with stress-ng --cpu 4 --io 2 --vm 1 --vm-bytes 128M --metrics-brief policy: fifo: loadavg: 6.08 2.17 0.81 8/101 534 T: 0 (  530) P:99 I:1000 C:  74474 Min:     23 Act:  235 Avg:   77 Max:    8278 T: 1 (  531) P:99 I:1500 C:  49482 Min:     24 Act:   32 Avg:   56 Max:    8277 T: 2 (  532) P:99 I:2000 C:  36805 Min:     24 Act:   38 Avg:   79 Max:    8170 T: 3 (  533) P:99 I:2500 C:  29333 Min:     25 Act:   41 Avg:   54 Max:    7069 T: 4 (  534) P:99 I:3000 C:  24344 Min:     24 Act:   51 Avg:   60 Max:    7193   //Cobalt on 6ULL with stress-ng --cpu 4 --io 2 --vm 1 --vm-bytes 128M --metrics-brief policy: fifo: loadavg: 7.02 6.50 4.01 8/100 660 T: 0 (  652) P:50 I:1000 C: 560348 Min:      1 Act:   10 Avg:   15 Max:      71 T: 1 (  653) P:50 I:1500 C: 373556 Min:      1 Act:    9 Avg:   17 Max:      78 T: 2 (  654) P:50 I:2000 C: 280157 Min:      2 Act:   14 Avg:   20 Max:      64 T: 3 (  655) P:50 I:2500 C: 224120 Min:      1 Act:   12 Avg:   15 Max:      57 T: 4 (  656) P:50 I:3000 C: 186765 Min:      1 Act:   31 Avg:   19 Max:      53   //Cobalt on 6qp with stress-ng --cpu 4 --io 2 --vm 1 --vm-bytes 512M --metrics-brief policy: fifo: loadavg: 8.11 7.44 4.45 8/156 1057 T: 0 (  917) P:50 I:1000 C: 686106 Min:      0 Act:    3 Avg:    5 Max:      53 T: 1 (  918) P:50 I:1500 C: 457395 Min:      0 Act:    3 Avg:    5 Max:      49 T: 2 (  919) P:50 I:2000 C: 342866 Min:      0 Act:    2 Avg:    4 Max:      43 T: 3 (  920) P:50 I:2500 C: 274425 Min:      0 Act:    3 Avg:    5 Max:      58 T: 4 (  921) P:50 I:3000 C: 228682 Min:      0 Act:    2 Avg:    6 Max:      46   //Cobalt on 6dl with stress-ng --cpu 2 --io 2 --vm 1 --vm-bytes 256M --metrics-brief policy: fifo: loadavg: 3.35 4.15 2.47 1/122 850 T: 0 (  729) P:50 I:1000 C: 608088 Min:      0 Act:    1 Avg:    3 Max:      34 T: 1 (  730) P:50 I:1500 C: 405389 Min:      0 Act:    0 Avg:    4 Max:      38 T: 2 (  731) P:50 I:2000 C: 304039 Min:      0 Act:    1 Avg:    4 Max:      45 T: 3 (  732) P:50 I:2500 C: 243225 Min:      0 Act:    0 Avg:    4 Max:      49 T: 4 (  733) P:50 I:3000 C: 202683 Min:      0 Act:    0 Avg:    5 Max:      38   //Cobalt on 6SX stress-ng --cpu 4 --io 2 --vm 1 --vm-bytes 512M  --metrics-brief policy: fifo: loadavg: 7.51 7.19 6.66 8/123 670 T: 0 (  598) P:50 I:1000 C:2314339 Min:      0 Act:    3 Avg:    8 Max:      60 T: 1 (  599) P:50 I:1500 C:1542873 Min:      0 Act:   15 Avg:    8 Max:      72 T: 2 (  600) P:50 I:2000 C:1157152 Min:      0 Act:    4 Avg:    9 Max:      55 T: 3 (  601) P:50 I:2500 C: 925721 Min:      0 Act:    5 Avg:    9 Max:      57 T: 4 (  602) P:50 I:3000 C: 771434 Min:      0 Act:    6 Avg:    6 Max:      41   //Cobalt on 6Solo lite stress-ng --cpu 4 --io 2 --vm 1 --vm-bytes 512M  --metrics-brief policy: fifo: loadavg: 7.01 7.04 6.93 8/104 598 T: 0 (  571) P:50 I:1000 C:3639967 Min:      0 Act:    9 Avg:    7 Max:      60 T: 1 (  572) P:50 I:1500 C:2426642 Min:      0 Act:    9 Avg:   11 Max:      66 T: 2 (  573) P:50 I:2000 C:1819980 Min:      0 Act:   11 Avg:   10 Max:      57 T: 3 (  574) P:50 I:2500 C:1455983 Min:      0 Act:   12 Avg:   10 Max:      56 T: 4 (  575) P:50 I:3000 C:1213316 Min:      0 Act:    7 Avg:    9 Max:      43   //Cobalt on 7d with stress-ng --cpu 2 --io 2 --vm 1 --vm-bytes 256M --metrics-brief policy: fifo: loadavg: 5.03 5.11 5.15 6/107 683 T: 0 (  626) P:50 I:1000 C:6842938 Min:      0 Act:    1 Avg:    2 Max:      63 T: 1 (  627) P:50 I:1500 C:4561953 Min:      0 Act:    4 Avg:    2 Max:      66 T: 2 (  628) P:50 I:2000 C:3421461 Min:      0 Act:    0 Avg:    2 Max:      69 T: 3 (  629) P:50 I:2500 C:2737166 Min:      0 Act:    3 Avg:    2 Max:      71 T: 4 (  630) P:50 I:3000 C:2280969 Min:      0 Act:    2 Avg:    1 Max:      33   //////////////////////////////////////// Update for Yocto L5.10.52 2.1.0  /////////////////////////////////////////////////////////// New release for Yocto release L5.10.52 2.1.0. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm and git checkout xenomai-5.10.52-2.1.0. Updating: 1, Upgrade Xenomai to v3.2 2, Enable Dovetail instead of ipipe. Copy xenomai-arm to <Yocto folder>/sources/meta-imx/meta-bsp/recipes-kernel, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL_append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL_append += " xenomai" Notice: If XENOMAI_KERNEL_MODE = "cobalt", you can build dual kernel version. And If XENOMAI_KERNEL_MODE = "mercury", it is single kernel with PREEMPT-RT patch. //////////////////////////////////////// Update for Yocto L5.15.71 2.2.0  /////////////////////////////////////////////////////////// New release for Yocto release L5.15.71 2.2.0. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm and git checkout xenomai-5.15.71-2.2.0. Updating: 1, Upgrade Xenomai to v3.2.2 Copy xenomai-arm to <Yocto folder>/sources/meta-imx/meta-bsp/recipes-kernel, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL:append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL:append += " xenomai" Notice: If XENOMAI_KERNEL_MODE = "cobalt", you can build dual kernel version. And If XENOMAI_KERNEL_MODE = "mercury", it is single kernel with PREEMPT-RT patch.   ///////// Later update for Later Yocto release, please refer to the following community post //////////// 移植实时Linux方案Xenomai到i.MX ARM64平台 (Enable real-time Linux Xenomai on i.MX ARM64 Platform)   
View full article
Freescale's PF0100 PMIC should have VDDIO power tied to the same supply as the associated I2C supply on MX6. There is a momentary on-chip sneak path on power-up if VDDIO is wired per the i.MX6 SABRE-AI automotive development platform. As a result, I2C power rail P3V3_DELAYED rises prematurely due to backfeed from P3V3 through the I2C port. Note that on SABRE-AI, P3V3 powers up before P3V3_DELAYED. Existing SABRE-AI design: PF0100 VDDIO is wired to P3V3. Corrective action for mass production: Wire PF0100 VDDIO to P3V3_DELAYED; same supply as the associated I2C supplies on MX6 (NVCC_EIM0 and NVCC_GPIO). Laboratory results attached.
View full article
i.MX6 Quad/6Dual/6SoloLite Errata ERR006282: ROM code uses non-reset PFDs to generate clocks which may lead to random boot failures This PDF contains information about an issue affecting i.MX 6Quad/6Dual/6SoloLite Phase Fractional Dividers (PFDs) and boot. This erratum will be included in the next update of the i.MX6x Silicon Errata documentation but is being provided here for reference until then.
View full article
This document provide an overall guide how to get started with i.MX6 development. There are several chapters: 1. how to get necessary docs from freescale website; 2. how to setup environment and build your own images;3. Hardware design consideration;4. How to get help. I hope the doc will bring you in i.MX world more easily, and hope you all have a fun in it.
View full article
Important: If you have any questions or would like to report any issues with the DDR tools or supporting documents please create a support ticket in the i.MX community. Please note that any private messages or direct emails are not monitored and will not receive a response.   This is a detailed programming aid for the registers associated with MMDC initialization. The last sheet formats the register settings for use with ARM RealView ICE. It can also be used with the windows executable for the DDR Stress Test. This programming aid was used for internal NXP validation boards.
View full article
The Linux L4.9.11_1.0.0 RFP(GA) for i.MX6 release files are now available on www.nxp.com    Files available: # Name Description 1 L4.9.11_1.0.0-ga_images_MX6QPDLSOLOX.tar.gz i.MX 6QuadPlus, i.MX 6Quad, i.MX 6DualPlus, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo, i.MX 6Solox Linux Binary Demo Files 2 L4.9.11_1.0.0-ga_images_MX6SLEVK.tar.gz i.MX 6Sololite EVK Linux Binary Demo Files 3 L4.9.11_1.0.0-ga_images_MX6UL7D.tar.gz i.MX 6UltraLite EVK, 7Dual SABRESD, 6ULL EVK Linux Binary Demo Files 4 L4.9.11_1.0.0-ga_images_MX6SLLEVK.tar.gz i.MX 6SLL EVK Linux Binary Demo Files 5 L4.9.11_1.0.0-ga_images_MX7ULPEVK.tar.gz i.MX 7ULP EVK Linux Binary Demo Files  6 L4.9.11_1.0.0-ga_mfg-tools.tar.gz i.MX Manufacturing Toolkit for Linux L4.9.11_1.0.0 BSP 7 L4.9.11_1.0.0-ga_gpu-tools.tar.gz L4.9.11_1.0.0 i.MX VivanteVTK file 8 bcmdhd-1.141.100.6.tar.gz The Broadcom firmware package for i.MX Linux L4.9.11_1.0.0 BSP. 9 imx-aacpcodec-4.2.1.tar.gz Linux AAC Plus Codec for L4.9.11_1.0.0 10 fsl-yocto-L4.9.11_1.0.0.tar.gz L4.9.11_1.0.0 for Linux BSP Documentation. Includes Release Notes, User Guide.   Target boards: i.MX 6QuadPlus SABRE-SD Board and Platform i.MX 6QuadPlus SABRE-AI Board i.MX 6Quad SABRE-SD Board and Platform i.MX 6DualLite SABRE-SD Board i.MX 6Quad SABRE-AI Board i.MX 6DualLite SABRE-AI Board i.MX 6SoloLite EVK Board i.MX 6SoloX SABRE-SD Board i.MX 6SoloX SABRE-AI Board i.MX 7Dual SABRE-SD Board i.MX 6UltraLite EVK Board i.MX 6ULL EVK Board i.MX 6SLL EVK Board i.MX 7ULP EVK Board (Beta Quality)   What’s New/Features: Please consult the Release Notes.   Known issues For known issues and more details please consult the Release Notes.   More information on changes, see: README: https://source.codeaurora.org/external/imx/fsl-arm-yocto-bsp/tree/README?h=imx-morty ChangeLog: https://source.codeaurora.org/external/imx/fsl-arm-yocto-bsp/tree/ChangeLog?h=imx-morty
View full article
Hello everyone, We have recently migrated our Source code from CAF (Codeaurora) to Github, so i.MX NXP old recipes/manifest that point to Codeaurora eventually will be modified so it points correctly to Github to avoid any issues while fetching using Yocto. Also, all repo init commands for old releases should be changed from: $ repo init -u https://source.codeaurora.org/external/imx/imx-manifest -b <branch name> [ -m <release manifest>] To: $ repo init -u https://github.com/nxp-imx/imx-manifest -b <branch name> [ -m <release manifest>] This will also apply to all source code that was stored in Codeaurora, the new repository for all i.MX NXP source code is: https://github.com/nxp-imx For any issues regarding this, please create a community thread and/or a support ticket. Regards, Aldo.
View full article
      The i.MX6UL/LL/LZ processor supports 2 USB OTG interfaces, USB OTG1 and USB OTG2, and each USB interface can be configured as a device, host or dual role mode. On the EVK board of i.MX6UL/LL, USB OTG1 is designed as dual role mode, and USB OTG2 is designed as HOST mode. This is sufficient for most customers.       However, in actual applications, we may need 2 USB HOSTs, and at the same time, we don’t want to use MicroUSB to USB TYPE-AF cable for Host-Device mode conversion. Therefore, the design of the USB circuit needs to meet such requirements: 1. USB device mode We need a USB device to download the linux image to the flash or SD card on the board. 2. 2 USB HOSTs When the system is working normally, we need the board to support 2 USB HOST. i.MX6UL/LL/LZ has only 2 USB ports. How to design to meet this requirement without increasing the USB HUB? The following scheme is used as a reference, and I hope it will be helpful to customers with similar requirement:        The logic and application description of this Diagram:: Default—device mode In the process of debugging the software, we need to use the USB OTG interface to download the linux image, so it must work in device mode. What we need to do is: (1). Pull USB OTG ID up to 3.3V (2). The USB OTG D+/D- signal is switched to the MicroUSB connector. (3). The USB OTG VBUS is provided with 5V power from the external PC USB HOST. Usage:        -Use a jumper for Pin 1 and Pin2, USB OTG ID pin will be pulled up to High.        With the operation, SEL pin of USB Muxer is High, and USB signals are switched to port B, and USB differential signals are connected to MicroUSB connector. At the same time, MIC2026-1YM output is disabled. The USB OTG1 VBUS pin of CPU is supplied by VBUS of MicroUSB connector, that is to say, supplied by PC USB HOST.        In this mode, software engineer can use it to download images to flash on board. Normal Work—Host mode After the software debugging is completed, two HOSTs are needed on the board. At this time, we need to switch the USB OTG1 from device to HOST mode. What we need to do is: (1). Pull USB OTG1 ID down to LOW (2). The USB OTG D+/D- signal is switched to the USB Type-AF connector. (3). Board should supply 5V power for USB device connected USB Type-AF connector. Usage:        -Use a jumper for Pin 2 and Pin3, USB OTG ID pin will be pulled down to Low.        With the operation, USB OTG1 ID pin is pulled down to Low, SEL pin of USB Muxer is also LOW, USB signals are switched to Port A, and connected to USB type-AF connector. At the same time, MIC2026-1YM is enabled , OUTA will output 5V , which will supply USB device connected on USB type-AF connector.   [Note] Users need to pay attention to. When using the jumper with PIN1/2/3, the board needs to be powered off. In other words, when switching between device and host, you need to switch off the power, then power on, and restart the board. The solution can also be used for i.MX processors with USB 2.0 interface.   NXP CAS team Wedong Sun 01/15/2021
View full article
A new version of the Pins Tool for i.MX Application Processors has been released and is available for download as desktop tool from Pins Tool for i.MX Application Processors|NXP. The pins Tool for i.MX Application Processors is used for pin routing configuration, validation and code generation, including pin functional/electrical properties, power rails, run-time configurations, with the following main features: Desktop application Muxing and pin configuration with consistency checking Multicore support ANSI-C initialization code Graphical processor package view Multiple configuration blocks/functions Easy-to-use device configuration Selection of Pins and Peripherals Package with IP blocks Routed pins with electrical characteristics Registers with configured and reset values Power Groups with assigned voltage levels Source code for C/C++ applications Documented and easy to understand source code CSV Report and Device Tree File Localized for English and Simplified Chinese Mostly Connected: On-Demand device data download Integrates with any compiler and IDE What's New Added Label support to give signals a name Added ‘Log’ and ‘Problems’ view to report conflicts between settings Added support for templates to store user configurations as starting point for new configurations Added ability to download and share data for devices, especially for off-network host machines i.MX header files are now automatically part of the device data Import of legacy Processor Expert .pe files Export of register defines Various bug fixes and documentation improvements The release notes of the desktop application are attached to this article. Import Processor Expert Files A new importer has been added to import legacy Processor Expert for i.MX files: Labels Signals can now have user defined labels: Templates, Kits, Boards and Processors When creating a new configuration, it offers Templates, Boards and Processors. Custom configurations can be stored as templates and then used for new configurations. Board Specific Functions With the provided board and kit configurations, there are now pre-configured initialization functions for major blocks on the board: Export Data To simplify downloading the device specific data for the desktop tool, the 'Export' function can be used to download and export the data. The data can be copied that way to another machine or all data for a set of devices can be loaded. Export Registers With the Export command the registers can be exported as text/source: This is used to store the register values: /*FUNCTION********************************************************************** * * Function Name : init_audmux_pins * Description   : Configures pin routing and optionally pin electrical features. * *END**************************************************************************/ #define INIT_AUDMUX_PINS_IOMUXC_AUD5_INPUT_DA_AMX_SELECT_INPUT_VALUE            0x00000000   /*!< Register name: IOMUXC_AUD5_INPUT_DA_AMX_SELECT_INPUT */ #define INIT_AUDMUX_PINS_IOMUXC_AUD5_INPUT_TXCLK_AMX_SELECT_INPUT_VALUE         0x00000000   /*!< Register name: IOMUXC_AUD5_INPUT_TXCLK_AMX_SELECT_INPUT */ #define INIT_AUDMUX_PINS_IOMUXC_AUD5_INPUT_TXFS_AMX_SELECT_INPUT_VALUE          0x00000000   /*!< Register name: IOMUXC_AUD5_INPUT_TXFS_AMX_SELECT_INPUT */ #define INIT_AUDMUX_PINS_IOMUXC_SW_MUX_CTL_PAD_DI0_PIN02_VALUE                  0x00000002   /*!< Register name: IOMUXC_SW_MUX_CTL_PAD_DI0_PIN02 */ #define INIT_AUDMUX_PINS_IOMUXC_SW_MUX_CTL_PAD_DI0_PIN03_VALUE                  0x00000002   /*!< Register name: IOMUXC_SW_MUX_CTL_PAD_DI0_PIN03 */ #define INIT_AUDMUX_PINS_IOMUXC_SW_MUX_CTL_PAD_DI0_PIN04_VALUE                  0x00000002   /*!< Register name: IOMUXC_SW_MUX_CTL_PAD_DI0_PIN04 */ #define INIT_AUDMUX_PINS_IOMUXC_SW_MUX_CTL_PAD_DI0_PIN15_VALUE                  0x00000002   /*!< Register name: IOMUXC_SW_MUX_CTL_PAD_DI0_PIN15 */ #define INIT_AUDMUX_PINS_IOMUXC_SW_MUX_CTL_PAD_DISP0_DATA16_VALUE               0x00000003   /*!< Register name: IOMUXC_SW_MUX_CTL_PAD_DISP0_DATA16 */ #define INIT_AUDMUX_PINS_IOMUXC_SW_MUX_CTL_PAD_DISP0_DATA18_VALUE               0x00000003   /*!< Register name: IOMUXC_SW_MUX_CTL_PAD_DISP0_DATA18 */ #define INIT_AUDMUX_PINS_IOMUXC_SW_MUX_CTL_PAD_DISP0_DATA19_VALUE               0x00000003   /*!< Register name: IOMUXC_SW_MUX_CTL_PAD_DISP0_DATA19 */ ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ We hope you will find this new release useful. Thanks for designing with NXP! 
View full article
The i.MX6 Multi-Mode DDR Controller (MMDC) has profiling capabilities to monitor the operation of the controller. The profiling capability counts certain events related to a specified AXI-ID during a profiling period. The events that can be counted are: The number of read accesses during the profiling period (MMDCx_MADPSR2[RD_ACC_COUNT] register field) The number of write accesses during the profiling period (MMDCx_MADPSR3[WR_ACC_COUNT] register field) The number of bytes read during the profiling period (MMDCx_MADPSR4[RD_BYTES_COUNT] register field) The number of bytes written during the profiling period (MMDCx_MADPSR5[WR_BYTES_COUNT] register field) The number of MMDC clock cycles during which the MMDC state machine is busy (MMDCx_MADPSR1[BUSY_COUNT] register field) BUSY_COUNT is the number of MMDC clock cycles during the profiling period in which the MMDC state machine is not idle. So this is the time the MMDC spends doing any activity, not just read or write data transfers. The MMDC state machine is active whenever there are any read or write requests in the read and write FIFOs. The MMDC is active during many operations that are not reading or writing data such as arbitration of requests, control cycles, bank open/close, etc. So BUSY_COUNT represents the number of cycles when the controller is busy, not just the number of cycles when the external bus is busy. The number of bytes read and bytes written can be used to determine data throughput and the BUSY_COUNT can be used to determine what part of the time the controller is active/idle. Together these can be used to determine the controller efficiency for a particular application. For detailed information, see the "MMDC profiling" section of the MMDC chapter in the reference manual for the SoC being used.
View full article
meta-avs-demos Yocto layer meta-avs-demos is a Yocto meta layer (complementary to the NXP BSP release for i.MX) published on CodeAurora that includes the additional required packages to support  Amazon's Alexa Voice Services SDK (AVS_SDK) applications. The build procedure is the described on the README.md of the corresponding branch. We have 2 fuctional branches now: imx-alexa-sdk: Support for Morty based i.mx releases imx7d-pico-avs-sdk_4.1.15-1.0.0: legacy support for Jethro releases The master branch is only used to collect manifest files, that used with repo init/sync commands will fetch the whole environment for the 2 special supported boards: i.MX7D Pico Pi and i.MX8M EVK. However the meta-avs-demos can be used with any i.MX board either. Recipes to include Amazon's Alexa Voice Services in your applications. The meta-avs-demos provides the required recipes to build an i.MX image with the support for running Alexa SDK. The imx-alexa-sdk branch is based on Morty and kernel 4.9.X and it supports the next builds: i.MX7D Pico Pi i.MX8M EVK Generic i.MX board For the i.MX7D Pico Pi and i.MX8M EVK there is an extended support for additional (external) Sound Cards like: TechNexion VoiceHat: 2Mic Array board with DSPConcepts SW support Synaptics Card: 2 Mic with Sensory WakeWord support The Generic i.MX is for any other regular i.MX board supported on the official NXP BSP releases. Only the default soundcard (embedded) on the board is supported. Sensory wakeword is currently only enabled for those with ARMV7 architecture. To support any external board like the VoiceHat or Synaptics is up to the user to include the additional patches/changes required. Build Instructions Follow the corresponding README file to follow the steps to build an image with Alexa SDK support README-IMX7D-PICOPI.md README-IMX8M-EVK.md README-IMX-GENERIC.md
View full article
  Question: How can we generate an ARM DS5 DStream format DDR initialization script using the DRAM Register Programming Aid?  Answer: Some RPAs include a  "DStream .ds file" tab for the ARM DS5 debugger specific commands. The i.MX6UL/ULL/ULZ DRAM Register Programming Aids for example already has this supported. However, the user can easily create  the .ds format from the existing .inc format. The basic steps to convert .inc files to .ds format are as follows: 1)  Replace the one instance of setmem /16 with mem set 2)  In that same line, replace 0x020bc000 = with 0x020bc000 16 3)  Use a Replace All command to change setmem /32 with mem set 4)  Use a Replace All command to change = with 32 5)  Use a Replace All command to change // with # 6)  Save as a .ds file.   Question: When using a 528MHz DRAM Controller interface with a DDR memory of a faster speed bin, which speed bin timing options should one use? Answer: For example, let’s assume our MX6DQ design is using a DDR3 memory from a DDR3-1600 speed bin.  However, the maximum speed of the MMDC interface for the MX6DQ using DDR3 is 528MHz.  Should we use the 1600 speed bin (800MHz clock speed) or the 1066 speed bin (533MHz clock speed)?  In short, the user should use the timings rated for the maximum speed (frequency) with which you are running, in this case DDR3-1066 (533MHz).  In some cases, like when using the MX6DL, the maximum DDR frequency is 400MHz.  In this case, you would want to try and use 800 timings found in the AC timing parameters table.  However, most DDR3 devices have speed bin tables that may go only as low as 1066, in which case you would use the closest speed bin to your operational frequency (i.e. the 1066 speed bin table).     Question: Some timing parameters may specify a min and max number, which should I use? Answer: In most cases, you will want to choose the minimum timings.  Some DRAM controllers may have a tRAS_MAX timing parameter, in which case you would obviously use the maximum tRAS parameter given in the DRAM data sheet. Also, for timing parameters tAONPD and tAOFPD, we also want to use the maximum values given in the DDR3 data sheet. These represent the maximum amount of time the DDR3 device takes to turn on or off the RTT (termination), therefore, we should wait at least this amount of time before issuing any commands or accesses.   Question: Some timing parameters state things like “Greater of 3CK or 7.5ns”; which should I use? Answer: This depends on your clock speed.  Say you are running at 533MHz.  At 533MHz, 7.5ns equates to 4CKs.  In this case, 7.5ns at 533MHz is GREATER than 3CK, so we would use the 7.5ns number, or 4CKs. At 400MHz, 7.5ns equates to 3CKs.  In this case, we’d simply use 3CKs.   Question: I have a design that will throttle the DDR frequency (dynamic frequency scaling).  At full speed, I plan to run at 533MHz, and then I plan to throttle down to say 400MHz whenever possible.  Do I need to re-calculate my 400 MHz timing parameters that were initially set for 533MHz? Answer: It is not necessary to re-calculate timing parameters for 400MHz, and you can re-use the ones for 533MHz.  The timings at 533 MHz are much tighter than 400 MHz, and the key here is to NOT violate timings.  Also, it may be a bit of a hassle maintaining two sets of timing parameters, especially if later in the design, you swap DDR vendors that might require you to re-calculate some timing parameters.  It’s easier to do it once and to come up with a combined worse-case timing parameters for 533MHz, which you know will work at 400MHz.  But, if you don’t mind maintaining two sets of timing parameters, and really want to optimize timings down to the last pico-second for 400MHz, then knock yourself out.   Question: Can I use these Register programming aids for both Fly by and T- Topology ? Answer Yes The DDR register programming aid is agnostic to the DDR layout. The same spreadsheet works for both topologies. We recommend running write leveling calibration for both topologies and the values returned by the Write Leveling routine from the Freescale DDR stress test should be incorporated back to the customer specific initialization script. The DDR stress test also has a feature whereby it evaluates the write leveling values returned from calibration and increments WALAT to 1 if the values exceed a defined limit. The DDR stress test informs the user when the Write Additional latency (WALAT) exceeds the limit and should be increased by 1, and reminds the user to add it back in the customer specific initialization script if required.   WALAT - 0 00000000 WALAT: Write Additional latency. Recommend to clear these bits. Proper board design should ensure that the DDR3 devices are placed close enough to the MMDC to ensure the skew between CLK and DQS is less than 1 cycle.     Question: Can I use the DEFAULT Register programming aid values for MDOR when using an Internal OSC instead of the recommended 32.768 KHZ XTAL ? Answer No, NXP recommends reprogramming these values based on the worse case frequency (Max clock) of the internal OSC of the device to guarantee JEDEC timings are met. Please refer to Internal Oscillator Accuracy considerations for the i.MX 6 Series for more details  
View full article
NOTE: Always de-power the target board and the aggregator when plugging or unplugging smart sensors from the aggregator. NOTE: See this link to instrument a board with a Smart Sensor. This page documents the triple-range "smart" current sensor that's part of a larger system for profiling power on application boards. The smart sensor features a Kinetis KL05Z with three current sense amplifiers. It allows measurement currents in three ranges. Four assembly options allow measurement of rail voltages 0-3.3V (two overall current ranges), 0-6.6V, and 12V. It connects to an aggregator, which powers, controls and aggregates data from a number of smart sensor boards. One of the biggest improvements over the older dual-range measurement system is that the on-sensor microcontroller allows near-simultaneous measurement of all instrumented rails on a board. The dual range profiler can only make one measurement at a time.  These are intended to be used with a microncontroller board to act as a trigger and data aggregator. This aggregator could also be used to reprogram the sensors.  The series resistance added by the smart sensor when in run mode (highest current range) is under 11 milliOhms as measured with 4-point probes and a Keysight B2902B SMU.  A "power oscilloscope" can be made by triggering measurements at regular intervals and presenting the results graphically.... Schematic: Board Layout, Top: Board Layout, Bottom: Here's a photo of two with a nickel is included to show scale. The board measures about 0.5 by 1.3 inches. Connections: The smart sensor header connections are: 5V: powers the 3.3V regulator, which in turn powers everything else on the sensor board 12V: all the gates of all the switching FETs are pulled pulled up to 12V GND: ground connection SCL/TX: I2C clock line  SDA/RX: I2C data line  SWD_CLK:  line for triggering smart sensors to make measurements RESET_B:  line for resetting the smart sensor board SWD_IO: select line for the smart sensor Theory of operation: Three shunts and current sense amplifiers are used to measure current in three ranges. One shunt/sense amp pair has a 0.002Ω shunt integrated into the IC package (U1, INA250). The other two sense amps (U2 and U3, INA212) require an external shunt.  FETs Q1, Q2,  and Q3 are used to switch the two lower range shunt/sense amp pairs in and out of circuit. In normal run operation (highest current range), Q1 (FDMC012N03, with Rds(on) under 1.5mΩ) is turned on, which shorts leaves only U1 in circuit. FETs Q4, Q5 and Q6 translate the voltages to 3.3V so that GPIO on U4 (MCU KL05Z) can control them.  Rail voltage measurement is facilitated via resistors R3, R4, and R12 and Q7. Not all of these are populated in every assembly option. For measuring rail voltages 0-3.3V, R12 is populated. To measure 0-6.6V, R3, R4,and Q7 are populated. When turned on Q7 enables the voltage divider. All of the assembly option population info can be found in the schematic (attached). Regulator U5 (AP2210N) provides the 3.3V supply for all of the components on the board. This 1% tolerance regulator is used to provide a good reference for the ADC in U4.  Microcontroller U4 detects the assembly population option of the board via resistors R9, R10, and R11 so that the same application code can be used across all variations of the sensor boards. GPIO control the FETs and four ADC channels are used to measure the sense amplifier outputs and the rail voltage. Having a microcontroller on the sensor board allows the user to do extra credit things like count coulombs as well as allowing all similarly instrumented rails to measure at the same time via trigger line SWD_CLK. Data communication can be via I2C or UART, since these two pins can do both.  But if multiple sensor boards are to be used with an aggregator, communication needs to be over I2C. Application Code: The latest application code for the KL05Z on the smart sensor resides here: https://os.mbed.com/users/r14793/code/30847-SMRTSNSR-KL05Z/. The latest binary is attached below. In order to re-flash a smart sensor, the modification detailed in the aggregator page needs to be made. Once the modification is completed, leave the aggregator unpowered while pluging the SWD debugger into J5 and the smart sensor to be programmed into JP15. Very old UART-based application code for the KL05Z, built in the on-line MBED compiler (note that it requires the modified mbed library for internal oscillator). This code was used while testing the first smart sensor prototypes. It has since been abandoned. It's published here in the event that a user wants to use a single sensor plugged into JP15 with UART breakout connector J6. /****************************************************************************** * * MIT License (https://spdx.org/licenses/MIT.html) * Copyright 2017-2018 NXP * * MBED code for KL05Z-based "smart" current sensor board, basic testing * of functions via UART (connected via FRDM board and OpenSDA USB virtual * COM port). * * Eventual goal is to have each smart sensor communicate over I2C to an * aggregator board (FRDM board with a custom shield), allowing 1-10 power * supply rails to be instrumented. Extra credit effort is to support * sensors and aggregator with sigrok... * * Because there is no crystal on the board, need to edit source mbed-dev library * to use internal oscillator with pound-define: * change to "#define CLOCK_SETUP 0" in file: * mbed-dev/targets/TARGET_Freescale/TARGET_KLXX/TARGET_KL05Z/device/system_MKL05Z4.c * ******************************************************************************/ #include "mbed.h" // These will be GPIO for programming I2C address... // not yet implemented, using as test pins... DigitalOut addr0(PTA3); DigitalOut addr1(PTA4); DigitalOut addr2(PTA5); DigitalOut addr3(PTA6); // configure pins for measurements... // analog inputs from sense amps and rail voltage divider... AnalogIn HIGH_ADC(PTB10); AnalogIn VRAIL_ADC(PTB11); AnalogIn LOW1_ADC(PTA9); AnalogIn LOW2_ADC(PTA8); // outputs which control switching FETs... DigitalOut VRAIL_MEAS(PTA7); // turns on Q7, connecting voltage divider DigitalOut LOW_ENABLE(PTB0); // turns on Q4, turning off Q1, enabling low measurement DigitalOut LOW1(PTB2); // turns on Q5, turning off Q2, disconnecting shunt R1 DigitalOut LOW2(PTB1); // turns on Q6, turning off Q3, disconnecting shunt R2 // input used for triggering measurement... // will eventually need to be set up as an interrupt so it minimizes delay before measurement InterruptIn trigger(PTA0); // use as a trigger to make measurement... // PTB3/4 can be used as UART or I2C... // For easier development with one smart sensor, we are using UART here... Serial uart(PTB3, PTB4); // tx, rx long int count=0; int n=25; // global number of averages for each measurement int i, temp; bool repeat=true; // flag indicating whether measurements should repeat or not const float vref = 3.3; // set vref for use in calculations... float delay=0.25; // default delay between measurement bool gui = false; // flag for controlling human vs machine readable output bool statistics = false;// flag for outputting min and max along with average (GUI mode only) void enableHighRange(){ LOW_ENABLE = 0; // short both low current shunts, close Q1 wait_us(5); // delay for FET to settle... (make before break) LOW1 = 0; LOW2 = 0; // connect both shunts to make lower series resistance VRAIL_MEAS = 0; // disconnect rail voltage divider wait_us(250); // wait for B2902A settling... } void enableLow1Range(){ LOW1 = 0; LOW2 = 1; // disconnect LOW2 shunt so LOW1 can measure wait_us(5); // delay for FET to settle... (make before break) LOW_ENABLE = 1; // unshort low current shunts, open Q1 VRAIL_MEAS = 0; // disconnect rail voltage divider wait_us(250); // wait for B2902A settling... } void enableLow2Range(){ LOW1 = 1; LOW2 = 0; // disconnect LOW1 shunt so LOW2 can measure wait_us(5); // delay for FET to settle... (make before break) LOW_ENABLE = 1; // unshort low current shunts, open Q1 VRAIL_MEAS = 0; // disconnect rail voltage divider wait_us(500); // wait for B2902A settling... } void enableRailV(){ VRAIL_MEAS = 1; // turn on Q7, to enable R3-R4 voltage divider wait_us(125); // wait for divider to settle... // Compensation cap can be used to make // voltage at ADC a "square wave" but it is // rail voltage and FET dependent. Cap will // need tuning if this wait time is to be // removed/reduced. // // So, as it turns out, this settling time and // compensation capacitance are voltage dependent // because of the depletion region changes in the // FET. Reminiscent of grad school and DLTS. // Gotta love device physics... } void disableRailV(){ VRAIL_MEAS = 0; // turn off Q7, disabling R3-R4 voltage divider } // this function measures current, autoranging as necessary // to get the best measurement... void measureAuto(){ Timer t; float itemp; float tempI=0; float imin = 1.0; // used to keep track of the minimum... float imax = 0; // used to keep track of the maximum... t.start(); // use timer to see how long things take... enableHighRange(); // this should already be the case, but do it anyway... for (i = 0; i < n; i++){ itemp = HIGH_ADC; // read HIGH range sense amp output if (statistics && itemp>imax) imax = itemp; // update max if necessary if (statistics && itemp<imin) imin = itemp; // update min if necessary tempI += itemp; // add current sample to running sum } tempI = tempI/n *vref/0.8; // compute average we just took... if (gui) uart.printf("=> %5.3f ", tempI); if (statistics && gui) uart.printf("[%5.3f/%5.3f] ", imin*vref/0.8, imax*vref/0.8); // if current is below this threshold, use LOW1 to measure... if (tempI < 0.060) { if (!gui) uart.printf("... too Low: %f A, switching to low1 ==>\r\n", tempI); tempI=0; enableLow1Range(); // change FETs to enable LOW1 measurement... imin = 1.0; imax = 0; for (i = 0; i < n; i++){ itemp = LOW1_ADC; // read LOW1 sense amp output if (statistics && itemp>imax) imax = itemp; // update max if necessary if (statistics && itemp<imin) imin = itemp; // update min if necessary tempI += itemp; // add current sample to running sum } tempI = tempI/n *vref/0.05/1000; // compute average we just took... if (gui) uart.printf("%6.4f ", tempI); if (statistics && gui) uart.printf("[%6.4f/%6.4f] ", imin*vref/0.05/1000, imax*vref/0.05/1000); // if current is below this threshold, use LOW2 to measure... if (tempI < 0.0009){ if (!gui) uart.printf("... too Low: %f A, switching to low2 ==>\r\n", tempI); tempI=0; enableLow2Range(); // change FETs to enable LOW1 measurement... imin = 1.0; imax = 0; for (i = 0; i < n; i++){ itemp = LOW2_ADC; // read LOW2 sense amp output if (statistics && itemp>imax) imax = itemp; // update max if necessary if (statistics && itemp<imin) imin = itemp; // update min if necessary tempI += itemp; // add current sample to running sum } tempI = tempI/n *vref/2/1000; // compute average we just took... if (gui) uart.printf("%8.6f ", tempI); if (statistics && gui) uart.printf("[%8.6f/%8.6f] ", imin*vref/2/1000, imax*vref/2/1000); } } t.stop(); // stop the timer to see how long it took do do this... enableHighRange(); if (!gui) uart.printf("\r\nCurrent = %f A Current Measure Time = %f sec\r\n", tempI, t.read()); } // the autoranging should really be done with functions that return values, as should the // functions below... This would make for shorter and more elegant code, but the author // is a bit of a pasta programmer... void measureHigh(){ float highI=0; enableHighRange(); for (i = 0; i < n; i++){ highI += HIGH_ADC; } highI = highI/n; uart.printf("HIghI = %f A\r\n", vref*highI/0.8); } void measureLow1(){ float low1I=0; enableLow1Range(); for (i = 0; i < n; i++){ low1I += LOW1_ADC; } enableHighRange(); low1I = low1I/n; uart.printf("low1I = %f A\r\n", vref*low1I/0.05/1000); } void measureLow2(){ float low2I=0; enableLow2Range(); for (i = 0; i < n; i++){ low2I += LOW2_ADC; } enableHighRange(); low2I = low2I/n; uart.printf("low2I = %f A\r\n", vref*low2I/2/1000); } // measure the rail voltage, default being with // a divide by 2 resistor divider // It has to be switched out when not in use or it will // add to the measured current, at least in the low ranges... void measureRailV(){ float railv=0; float mult = vref*2; // since divide by 2, we can measure up to 6.6V... float vmin = 5; float vmax = 0; float vtemp; enableRailV(); // switch FETs so divider is connected... for (i = 0; i < n; i++){ vtemp = VRAIL_ADC; // read voltage at divider output... if (statistics && vtemp>vmax) vmax = vtemp; // update max if necessary if (statistics && vtemp<vmin) vmin = vtemp; // update min if necessary railv += vtemp; // add current sample to running sum } disableRailV(); // now disconnect the voltage divider railv = railv/n; // compute average (note this is in normalized ADC [0..1]) // Convert to voltage by multiplying by "mult" if (!gui) uart.printf("RailV = %5.3f V ", mult*railv); if (gui) uart.printf("%5.3f ", mult*railv); if (statistics && gui) uart.printf("[%5.3f/%5.3f] ", mult*vmin, mult*vmax); uart.printf("\r\n"); } // not sure how useful this function is... void measureAll(){ measureHigh(); measureLow1(); measureLow2(); measureRailV(); } // test function to see if trigger pin is being hit... // intended for use later to do timed triggering of measurements... void triggerIn(){ uart.printf("You're triggering me! \r\n"); measureAll(); } // main... int main() { // set up basic conditions... Timer m; uart.baud(115200); enableHighRange(); // default state - only HIGH sense amp in circuit, no divider // signal that we're alive... uart.printf("Hello World!\r\n"); // configure the trigger interrupt... trigger.rise(&triggerIn); while (true) { count++; wait(delay); if (repeat){ // if repeat flag is set, keep making measurements... m.reset(); // reset and start timer... m.start(); measureAuto(); // measuring current using auto-ranging... measureRailV(); // measure rail voltage... m.stop(); // stop the timer. if (!gui) uart.printf(" Total Measure Time = %f sec", m.read()); if (!gui) uart.printf("\r\n\r\n"); } // see if there are any characters in the receive buffer... // this is how we change things on the fly... // Commands (single keystroke... it's easier) // t = one shot automeasure // v = measure volt // h = one shot high measure // k = one shot LOW1 measure // l = one shot LOW2 measure (letter l) // r = toggle repeat // R = turn off repeat // + = faster repeat rate // - = slower repeat rate // = = set repeat rate to 0.25 sec // g = use human readable text output // G = use compressed text format for GUI // s = turn statistics output off // S = turn statistics output on (only in GUI mode) // n = decrease number of averages for each measurement // N = increase number of averages for each measurement // // these were for testing FET switching... // 1 = LOW_ENABLE = 0 (the number 1) // 2 = LOW1 = 0 // 3 = LOW2 = 0 // 4 = VRAIL_MEAS = 0 // ! = LOW_ENABLE = 1 // @ = LOW1 = 1 // # = LOW2 = 1 // $ = VRAIL_MEAS = 1 if (uart.readable()){ temp = uart.getc(); if (temp==(int) 't') { if (!gui) uart.printf("Keyboard trigger: "); measureAuto(); measureRailV(); //measureAll(); } if (temp==(int) 'v') { uart.printf("Keyboard trigger: "); measureRailV(); } if (temp==(int) 'h') { uart.printf("Keyboard trigger: "); measureHigh(); } if (temp==(int) 'k') { uart.printf("Keyboard trigger: "); measureLow1(); } if (temp==(int) 'l') { uart.printf("Keyboard trigger: "); measureLow2(); } if (temp==(int) '1') { LOW_ENABLE = 0; uart.printf("Keyboard trigger: LowEnable = %d\r\n", 0); } if (temp==(int) '2') { LOW1 = 0; uart.printf("Keyboard trigger: LOW1 = %d\r\n", 0); } if (temp==(int) '3') { LOW2 = 0; uart.printf("Keyboard trigger: LOW2 = %d\r\n", 0); } if (temp==(int) '4') { VRAIL_MEAS = 0; uart.printf("Keyboard trigger: VRAILMEAS = %d\r\n", 0); } if (temp==(int) '!') { LOW_ENABLE = 1; uart.printf("Keyboard trigger: LowEnable = %d\r\n", 1); } if (temp==(int) '@') { LOW1 = 1; uart.printf("Keyboard trigger: LOW1 = %d\r\n", 1); } if (temp==(int) '#') { LOW2 = 1; uart.printf("Keyboard trigger: LOW2 = %d\r\n", 1); } if (temp==(int) '$') { VRAIL_MEAS = 1; uart.printf("Keyboard trigger: VRAILMEAS = %d\r\n", 1); } if (temp==(int) 'r') { repeat = !repeat; uart.printf("Keyboard trigger: repeat toggle: %s \r\n", repeat ? "true" : "false"); } if (temp==(int) 'R') repeat = false; if (temp==(int) '+') { delay -= 0.05; if (delay<0.05) delay = 0.05; } if (temp==(int) '-') { delay += 0.05; if (delay>1) delay = 1; } if (temp==(int) '=') delay = 0.25; if (temp==(int) 'g') gui = false; if (temp==(int) 'G') gui = true; if (temp==(int) 's') statistics = false; if (temp==(int) 'S') statistics = true; if (temp==(int) 'n') { n -= 25; if (n<25) n = 25; } if (temp==(int) 'N') { n += 25; if (n>1000) n = 1000; } if (temp==(int) 'N' || temp==(int) 'n') uart.printf("/r/n/r/n Averages = %d \r\n\r\b", n); } } }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍
View full article
When you do long test (days or weeks) test on i.MX board and your test fails, you often wants to know what has happen with a JTAG probe. The problem is when you have 50 boards running in parallel, you don't have the budget to have 50 JTAG debug probe. If you do a "hot plug" of your JTAG probe, you have roughly one chance out 2 to reset your board... so you'll have to wait another couple of hour to resee the problem. Anyway to have a reliable JTAG plug with no reset, it is really simple... cut the RESET line on your cable! then you'll still be able to "attach" to your i.MX. On the MEK board, with a 10-pin JTAG connector, you have the cut the cable line 10 of the ribbon cable: On the cable, cut the reset line like this: With my Lauterbach JTAG  probe, when I do a "hot plug" I never have a reset of my i.MX. BR Vincent
View full article
Instrumenting A Board To instrument a board, the connection between the power supply and the target device needs to be broken, usually via a series resistor that's placed on the board. Sometimes the inductor needs to be lifted if no series resistor was included on the rail by the board's designer. In the ideal case, through-hole connections were also provided on the board for the connection of these off-board sensors. Here are three close-up photos that show several boards that have been instrumented: In all three cases, the sensors stand in place via the two outer current carrying wires. The middle and right used insulated wires where as the one on the left used bare wires. In all three cases, the sensor's + connection needs to go towards the power supply and the - connection goes to the target device. The outer wires here are 24-26 gauge. (The relatively heavy gauge wire is used to keep the series resistance of inserting a smart sensor to a minimum.) The ground connection is the middle hole of the smart sensor. In the left and middle photos, a 30 gauge wire connects to the middle hole ground connection on the  board. In the right photo, the ground wire was more conveniently added to a big cap just below the bottom of edge of the photo. Here are wider angle view photos of two of the boards above: The sensors on the left are free-standing since the current carrying wires are stiff enough to hold them upright. Care must be taken since too much flexing will cause a wire to break. Too much bending can also cause a short to the board (and that's why insulated wires were used on these boards). The board on the right has the sensors laying parallel to the board. They are not affixed to the board, but a wire is wrapped around the bundle of ribbon cables out of view past the right edge of the photo. For boards without the through hole connections, the smart sensors need to be immobilized to keep from pulling the SMT pads off the board. If there is room on the board or sides of connectors or large components, the sensors may be attached down with foam double-sticky tape (see photo below, sensor affixed on top i.MX7ULP): For boards where there are no convenient unpopulated areas or there are too many sensors, some other means needs to be devised to immoblize the smart sensors. In the left photo below, two inductors per sensor have been flipped and the two sensors inserted to instrument the two rails. The solder pads on the inductors would easily be broken off by any movement of the smart sensors, so a cage with clamps to hold the ribbon cables was 3D printed. On the back side, there is room for the aggregator to be zip tied to the bottom plate, so the instrumented board can be moved as a single unit with minimal flexing of the ribbon cables.
View full article