i.MX Processors Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

i.MX Processors Knowledge Base

Discussions

Sort by:
i.MX evaluation board can be a simple solution to program i.MX boards in a factory for instance. i.MX evaluation board are not for industrial usage, but you can find plenty of cheap i.MX insdustrial boards on the web. Here I am using an i.MX8QXP rev B0 MEK board and I will program an i.MX6Q SABRE SD board. The first step is to generate your image. Follow the documentation steps to generate the "validation" image. You will have to customize a little bit the local.conf file (in conf/local.conf) to have git, cmake, gcc and other missing package. edit local.conf and add the following lines at the end of the file: IMAGE_INSTALL_append = " git cmake htop packagegroup-core-buildessential xz p7zip rsync"‍‍‍‍‍ I have added rsync package in local, it can replace cp (copy) but with the --progress option you can see the copy progression. P7zip replace unzip for our images archives avaialable on nxp.com as unzip as issues with big files. then rebake your image: bitbake -k fsl-image-validation-imx‍‍‍‍‍ When it is done, go in tmp/deploy/image/<your image generated> and use uuu to program your board (I use a sd card; thus I can increase the partition esily): sudo ./uuu -b sd_all imx-boot-imx8qxpmek-sd.bin-flash fsl-image-validation-imx-imx8qxpmek.sdcard.bz2/*‍‍‍‍‍ As the rootfs can be too small, use gparted under Linux for instance to increase the size of the partition. Put the SD card and start your board. Here here the dirty part... You may know archlinux|ARM websitesite (Arch Linux ARM ), you have a lots of precompiled packages. Thus on the board you can download it, and copy the file in /usr folder (you can use it to have the latest openSSL for  instance!). Plug an ethernet cable on the board and check if it is up: ifconfig -a ifconfig eth0 up‍‍‍‍‍‍‍‍‍‍ Now you should have access to the internet. On uuu webpage you can find all the packages you need (here I am using a 4.14.98_2.0.0 Linux): mkdir missinglibs cd missinglibs wget http://mirror.archlinuxarm.org/aarch64/core/bzip2-1.0.8-2-aarch64.pkg.tar.xz wget http://mirror.archlinuxarm.org/aarch64/core/nettle-3.5.1-1-aarch64.pkg.tar.xz wget http://mirror.archlinuxarm.org/aarch64/core/libusb-1.0.22-1-aarch64.pkg.tar.xz wget http://mirror.archlinuxarm.org/aarch64/extra/libzip-1.5.2-2-aarch64.pkg.tar.xz wget http://mirror.archlinuxarm.org/aarch64/core/zlib-1:1.2.11-3-aarch64.pkg.tar.xz wget http://mirror.archlinuxarm.org/aarch64/extra/p7zip-16.02-5-aarch64.pkg.tar.xz cd ..‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Wait all the archives are downloaded (otherwise you'll decompress before the archive is downloaded) as wget is running in background! Now untar the archives and copy it in the rootfs (dirty): tar -xJf libzip-1.5.2-2-aarch64.pkg.tar.xz tar -xJf libusb-1.0.22-1-aarch64.pkg.tar.xz tar -xJf nettle-3.5.1-1-aarch64.pkg.tar.xz tar -xJf bzip2-1.0.8-2-aarch64.pkg.tar.xz cp zlib-1:1.2.11-3-aarch64.pkg.tar.xz zlib tar -xJf zlib tar -xJf p7zip-16.02-5-aarch64.pkg.tar.xz cd usr sudo cp -R . /usr cd ../../ ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Download and compile uuu: git clone git://github.com/NXPmicro/mfgtools.git cd mfgtools/ cmake . make‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Download an image on nxp.com for instance. I have downloaded on the i.MX6 4.14.98_2.0.0 image and put it on a usb key. then unzip it in the uuu folder: 7z e L4.14.98_2.0.0_ga_images_MX6QPDLSOLOX.zip‍‍‍‍ As mentionned before unzip cannot hadle big files... so use 7z as me plug the i.MX6Q SABRE SD to the i.MX8X and program your i.MX6 board: ./uuu uuu.auto-imx6qsabresd‍ uuu (Universal Update Utility) for nxp imx chips -- libuuu_1.3.74-0-g64eeca1 Success 1 Failure 0 ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍
View full article
We will build a remote debug environmet of Qt Creator in this user guide.   Contents 1 Change local.conf file in Yocto 2 2 Build and deploy Yocto SDK 2 2.1 Build full image SDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Deploy SDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 Configure QT Kit 2 3.1 Setup device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3.2 Configure QT version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.3 Configure gcc and g++ manually . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.4 Configure gdb manually . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.5 Configure Kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.6 Very important thing!! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Test result
View full article
NOTE: Always de-power the target board and the aggregator when plugging or unplugging smart sensors from the aggregator. NOTE: See this link to instrument a board with a Smart Sensor. Overview The i.MX Power Profiler system consists of one to fourteen "smart" current sensors, an aggregator shield, and a Kinetis FRDM board (the FRDM-KL25 has been used in prototyping but the FRDM-K64F and FRDM-K66F should also be fully compatible). One of the biggest improvements of this system over its preceeding dual-range measurement system is that the microcontroller on each sensor board allows near-simultaneous measurement of all instrumented rails on a board. The dual range profiler has only a single MCU for all sensors, so only one measurement can be made at a time.  It is intended to be used to instrument one to fourteen rails of a target i.MX appliation board. Ideally, the target board will have been designed with a matching/mating power sense footprint for each rail to be measured.  Each smart sensor can sense current in three ranges with three current sense amplifiers. They are "smart" because each sensor board has a Kinetis KL05Z on it to control the switching FETs and to digitize the analog signals (the sense amplifier outputs and the target's power supply rail voltage). A 1% voltage regulator on each smart sensor provides a good voltage reference right next to the KL05Z to ensure better ADC accuracy. Each smart sensor board communicates via I2C. The aggregator shield has three I2C bus extenders (PCA9518) which essentially provide a dedicated I2C bus for each of the connected smart sensors. The FRDM board's I2C is also connected to one of the bus extenders ports. Individual GPIO lines are routed to each smart sensor's connected along with a ganged reset and trigger line for all of the connected smart sensors. A boost regulator generates almost 12V from the FRDM board's 5V supply, which is used for all the switching FETs on the smart sensor boards. The FRDM board's 5V rail is also routed to each smart sensor, which is regulated down to 3.3V locally on each connected smart sensor. Here is a photo of the very first prototypes after moving to 10-pin 0.05" spaced headers and ribbon cables instead of FFC: The smart sensor is intended to mate with through-hole current sense tap points on the target i.MX application board. Three holes spaced at 0.05" each. When not instrumented with sensor, a short needs to be placed across the outer two pins so that the board will function normally. The through hole connections provide physical protection to the target board, keeping traces from getting ripped off. The ground connection in the center provides a reference for meauring the rail voltage on the target board. A partial layout example of the implementation of the current sense footprint is below, where two 0805 shorting resistors in parallel are placed on each side of the holes. The top trace connects to the regulator output and the bottom to the load, usually an i.MX power supply rail. To include the current sense footprint into a board during the design phase, it should be configured as in the following partial schematic:  Every effort should be made to place the feedback on the i.MX side of the sense points so that the regulator compensates for the additional series resistance of the smart sensor, which effectively eliminates the additional series resistance the smart sensor adds. The Feedback should be before the smart sensor if the switching supply won't tolerate the additional series resistance (i.e., output becomes unstable).
View full article
The vbs file is a script file in mfgtool. In fsl android lollipop consolidate and later MFGTOOL version, You just need add a new vbs item for new board and have not need to change the ucl2.xml. The below is the example struct. Set wshShell = CreateObject("WScript.shell") wshShell.run "mfgtool2.exe -c ""linux"" -l ""SDCard-Android"" -s ""board=sabresd"" -s ""folder=sabresd"" -s ""soc=6dl"" -s ""mmc=2"" -s ""data_type=-f2fs""" Set wshShell = Nothing Explain for each option: -l: storage type      There three type for android: Nand-Android\eMMC-Android\SDCard-Android -s: extend variable      board: It is used to download uboot and dts in init system.      folder: there are three type: sabresd sabreauto evk                the android image is located in: files/android/%folder%/      soc: Used to define android image name. types: 6q, 6dl, 6sx, 6sl.      mmc: define the storage idex.      data_type: if the type of data partition is f2fs, need define data_type=-f2fs      ldo: if the board is 1.2G, need to define it to -ldo      plus: if the board is 6qp, need too define it to p
View full article
NOTE: Always de-power the target board and the aggregator when plugging or unplugging smart sensors from the aggregator. The aggregator portion of the i.MX Power Profiling System sits between the "smart" current sensor boards and the host computer. It provides power and signal connections to each connected sensor board. The communication is done over I2C, where three I2C bus extenders (PCA9518) effectively provide a dedicated bus to each I2C device, to better allow for cabling.  More information will follow... A photo, layout images and schematic attached below.   MBED source for the FRDM-KL25Z is available here: 30848-KL25Z-AGGREGATOR    Smart Sensor Connections At each smart sensor header JP0-JP13, these are the connections provided: 5V: powers the 3.3V regulator on each sensor board 12V: all the gates of all the switching FETs are pulled pulled up to 12V GND: ground connection SCL/TX0: I2C clock line  SDA/RX0: I2C data line  SWD_CLK:  global line for triggering smart sensors to make measurements RESET_B:  global line for resetting all smart sensor boards SWD_IO_n: individual select line for each smart sensor I2C Bus Connection Three I2C bus extenders (PCA9518) provide buffered connections between the FRDM board and all the connected smart sensors. The bus extenders were added to allow for longer cables between the aggregator and the smart sensor boards. Each bus extender has five ports and along with connections that allow extending the bus to more bus extenders. Gate Supply The aggregator contains a boost regulator that boost the 5V input from the FRDM board to 12V. The boosted voltage is fed to each of the smart sensor headers. It's used by the smart sensor board to pull up the gates of the switching FETs above any of the rails under test by at least 4.5V in order to benefit from a lower Rds(on). Caution must be exercised with some older FRDM boards since the 5V from the USB connection passes through diodes with a maximum current of 200mA.  The boost regulator and the load presented by the smart sensor boards may exceed the diode's limit and damage it. (Yes, it's happened... two older FRDM-KL25Z boards were used during development. One of them failed with the diode shorted (~0.05 Ohms), so everything kept working. The other failed with a  short of ~45 Ohms, so it kind of worked but not really...) Application Code for Aggregator  To date, application code has only been developed for the FRDM-KL25Z board. The latest application code resides at: https://os.mbed.com/users/r14793/code/30848-KL25Z-AGGREGATOR/, with the latest binary attached below. SWD Programming of Smart Sensors  Connectors J5 and JP15 are provided as an adapter for programming the smart sensor boards via SWD. JP15 provides power to the smart sensor board, since they have no direct 3.3V input for the KL05Z. An SWD programmer (or suitably modified FRDM-KL05Z board) connects to J5. Both connections use 10-pin 0.05"-spaced ribbon cables. Additionally, when a smart sensor is connected to JP15, J6 provides access to the UART pins of the smart sensor (the I2C pins on the smart sensor also mux out the UART of the KL05Z). No hardware changes are necessary at all; changing the code running on the smart sensor is all that's required. In fact, during the initial prototyping of the smart sensors, the serial UART connection was used instead of I2C. Modify Aggregator To Use SWD Dongle To Program Smart Sensor:  Add a wire as shown on the bottom side of the aggregator board as shown below. This ties 3.3V on the aggregator to the debug header, enabling the voltage level translators on the dongle to communicate with the KL05Z on the smart sensor board.  
View full article
[中文翻译版] 见附件   原文链接: https://community.nxp.com/docs/DOC-343518 
View full article
The document descript how to use the win32diskimager to create bootable sdcard.  How to resize sdcard mirror rootfs partition. Ex: fsl-image-validation-imx-imx6qpdlsolox.sdcard
View full article
[中文翻译版] 见附件   原文链接: https://community.nxp.com/docs/DOC-342877 
View full article
Important: If you have any questions or would like to report any issues with the DDR tools or supporting documents please create a support ticket in the i.MX community. Please note that any private messages or direct emails are not monitored and will not receive a response.   This is a detailed programming aid for the registers associated with MMDC initialization. The last sheet formats the register settings for use with ARM RealView ICE. It can also be used with the windows executable for the DDR Stress Test. This programming aid was used for internal NXP validation boards.
View full article
This document shows the steps for the creation of Archlinux and kernel 4.18.5 on the UDOO board. Required material: UDOO board, Ubuntu 16.04 and SD card. Firts we need u-boot (universal bootloader), for that reason we need update the host. $ sudo apt-get update Then we need the file *.img and SPL for the file system $ wget http://os.archlinuxarm.org/os/imx6/boot/udoo/SPL $ wget http://os.archlinuxarm.org/os/imx6/boot/udoo/u-boot.img Kernel 4.18.5 and file system: $ sudo mkdir archlinux $ wget http://os.archlinuxarm.org/os/ArchLinuxARM-armv7-latest.tar.gz $ sudo tar -xzvf  ArchLinuxARM-armv7-latest.tar.gz $ sudo rm -rf *.tar.gz You must have the following files Now  We are going to burn the memory, we need a 16Gb of space: We need to make sure it is empty Then partitions: $ sudo fdisk /dev/sdc O, P, N, P, 1 space, 8192 default, W At the end the sdc is partition, then create the filesystem partition $ sudo mkfs.ext4 /dev/sdc1 The working directory $ sudo mkdir mnt mount the partition 1 $ sudo mount /devsdc1 mtn/ Now we where the kernel and filesystem are and copy all the file in mnt: $ sudo cp -vr * ~/mnt/ Once it finish we execute $ sync then unmount the partition of sdc1: $ sudo umount mnt/ Now is moment to load the SPL and u-boot: and $ sync we retire the sd and turn on the board. Now you are on ArchLinux. user: alarm                  root: Root Pass: alarm                 pass: root Now the firts thing we must do it is upgrade the keys: $ pacman -key --init $ pacman -key --populate archlinuxarm $ pacman -Syyuu We can add another user: $ useradd - m -g user  -s /bin/bash user_name $ passwd user_name $ paman -S sudo $ visudo Root ALL= (ALL) ALL user_name ALL=(ALL) ALL $ exit For the graphic we are going to install the xorg: $ sudo pacman -S xorg-server $ sudo pacman -S xorg-apps Now we can execute startx and observe the windows of xorg $ startx To have a windows gestor: $ sudo pacman -S sddm $ sudo pacman -S plasma kde-applications $ sudo systemctl enable sddm Reboot and you are ArchLinux graphics windows
View full article
[中文翻译版] 见附件   原文链接: https://community.nxp.com/docs/DOC-343344 
View full article
[中文翻译版] 见附件   原文链接: https://community.nxp.com/docs/DOC-343116 
View full article
[中文翻译版] 见附件   原文链接: https://community.nxp.com/docs/DOC-343079 
View full article
Hello there. Here is a good way to use U-boot in an efficient way with custom scripts. The bootscript is an script that is automatically executed when the boot loader starts, and before the OS auto boot process. The bootscript allows the user to execute a set of predefined U-Boot commands automatically before proceeding with normal OS boot. This is especially useful for production environments and targets which don’t have an available serial port for showing the U-Boot monitor. This information can be find in U-Boot Reference Manual.   I will take the example load a binary file in CORTEX M4 of IMX8MM-EVK. In my case, I have the binary file in MMC 2:1 called gpio.bin and I will skip those steps because that is not the goal.   First, you need the u-boot-tools installed in your Linux machine: sudo apt install u-boot-tools   That package provide to us the tool mkimage to convert a text file (.src, .txt) file to a bootscript file for U-Boot.   Now, create your custom script, in this case a simple script for load binary file in Cortex M4: nano mycustomscript.scr  and write your U-Boot commands: fatload mmc 2:1 0x80000000 gpio.bin cp.b 0x80000000 0x7e0000 0x10000 bootaux 0x7e0000   Now we can convert the text file to bootscript with mkimage. Syntax: mkimage -T script -n "Bootscript" -C none -d <input_file> <output_file> mkimage -T script -n "Bootscript" -C none -d mycustomscript.scr LCM4-bootscript   This will create a file called LCM4-bootscript (Or as your called it).   A way to load this bootscript file to U-Boot is using the UUU tool, in U-Boot set the device in fastboot with command: u-boot=> fastboot 0 Then in linux with the board connected through USB to PC run the command: sudo uuu -b fat_write LCM4-bootscript mmc 2:1 LCM4-bootscript   Now we have our bootscript in U-Boot in MMC 2:1.   Finally, we can run the bootscript in U-Boot: u-boot=> load mmc 2:1 ${loadaddr} LCM4-bootscript 158 bytes read in 2 ms (77.1 KiB/s) u-boot=> source ${loadaddr} ## Executing script at 40400000 6656 bytes read in 5 ms (1.3 MiB/s) ## No elf image at address 0x007e0000 ## Starting auxiliary core stack = 0x20020000, pc = 0x1FFE02CD...   And the Cortex M4 booted successfully:    I hope this can helps to you.   Best regards.   Salas.  
View full article
[中文翻译版] 见附件   原文链接: https://community.nxp.com/docs/DOC-343273 
View full article
[中文翻译版] 见附件   原文链接: Guide to flash an eMMC from SD Card on i.MX6Q SABRE-SD 
View full article
In some cases, such as mass production or preparing a demo. We need u-boot environment stored in demo sdcard mirror image.  Here is a way: HW:  i.MX8MP evk SW:  LF_v5.15.52-2.1.0_images_IMX8MPEVK.zip The idea is to use fw_setenv to set the sdcard mirror as the operation on a real emmc/sdcard. Add test=ABCD in u-boot-initial-env for test purpose. And use fw_printenv to check and use hexdump to double confirm it. The uboot env is already written into sdcard mirror(imx-image-multimedia-imx8mpevk.wic). All those operations are on the host x86/x64 PC. ./fw_setenv -c fw_env.config -f u-boot-initial-env Environment WRONG, copy 0 Cannot read environment, using default ./fw_printenv -c fw_env.config Environment OK, copy 0 jh_root_dtb=imx8mp-evk-root.dtb loadbootscript=fatload mmc ${mmcdev}:${mmcpart} ${loadaddr} ${bsp_script}; mmc_boot=if mmc dev ${devnum}; then devtype=mmc; run scan_dev_for_boot_part; fi arch=arm baudrate=115200 ...... ...... ...... splashimage=0x50000000 test=ABCD usb_boot=usb start; if usb dev ${devnum}; then devtype=usb; run scan_dev_for_boot_part; fi vendor=freescale hexdump -s 0x400000 -n 2000 -C imx-image-multimedia-imx8mpevk.wic 00400000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| hexdump -s 0x400000 -n 10000 -C imx-image-multimedia-imx8mpevk.wic 00400000 5f a4 9b 97 20 6a 68 5f 72 6f 6f 74 5f 64 74 62 |_... jh_root_dtb| 00400010 3d 69 6d 78 38 6d 70 2d 65 76 6b 2d 72 6f 6f 74 |=imx8mp-evk-root| 00400020 2e 64 74 62 00 20 6c 6f 61 64 62 6f 6f 74 73 63 |.dtb. loadbootsc| 00400030 72 69 70 74 3d 66 61 74 6c 6f 61 64 20 6d 6d 63 |ript=fatload mmc| 00400040 20 24 7b 6d 6d 63 64 65 76 7d 3a 24 7b 6d 6d 63 | ${mmcdev}:${mmc| 00400050 70 61 72 74 7d 20 24 7b 6c 6f 61 64 61 64 64 72 |part} ${loadaddr| 00400060 7d 20 24 7b 62 73 70 5f 73 63 72 69 70 74 7d 3b |} ${bsp_script};| 00400070 00 20 6d 6d 63 5f 62 6f 6f 74 3d 69 66 20 6d 6d |. mmc_boot=if mm| ...... ...... ...... 00401390 76 3d 31 00 73 6f 63 3d 69 6d 78 38 6d 00 73 70 |v=1.soc=imx8m.sp| 004013a0 6c 61 73 68 69 6d 61 67 65 3d 30 78 35 30 30 30 |lashimage=0x5000| 004013b0 30 30 30 30 00 74 65 73 74 3d 41 42 43 44 00 75 |0000.test=ABCD.u| 004013c0 73 62 5f 62 6f 6f 74 3d 75 73 62 20 73 74 61 72 |sb_boot=usb star| 004013d0 74 3b 20 69 66 20 75 73 62 20 64 65 76 20 24 7b |t; if usb dev ${| 004013e0 64 65 76 6e 75 6d 7d 3b 20 74 68 65 6e 20 64 65 |devnum}; then de| flash the sdcard mirror into i.MX8MP evk board emmc to check uuu -b emmc_all imx-boot-imx8mp-lpddr4-evk-sd.bin-flash_evk imx-image-multimedia-imx8mpevk.wic  The first time boot, the enviroment is already there.  How to achieve that: a. fw_setenv/fw_printenv: https://github.com/sbabic/libubootenv.git Note: Please do not use uboot fw_setenv/fw_printenv Compile it on the host x86/x64 PC. It is used on host. b. u-boot-initial-env Under uboot, make u-boot-initial-env Note: Yocto deploys u-boot-initial-env by default c. fw_env.config  imx-image-multimedia-imx8mpevk.wic 0x400000 0x4000 0x400000 0x4000 are from uboot-imx\configs\imx8mp_evk_defconfig CONFIG_ENV_SIZE=0x4000 CONFIG_ENV_OFFSET=0x400000 Now, you can run  ./fw_setenv -c fw_env.config -f u-boot-initial-env
View full article
[中文翻译版] 见附件   原文链接: i.MX Create Android SDCard Mirror 
View full article