无线连接知识库

取消
显示结果 
显示  仅  | 搜索替代 
您的意思是: 

Wireless Connectivity Knowledge Base

讨论

排序依据:
Hello all, let me share a video demonstration of the Thread Smart Home model. See the link below: Thread Smart Home model Best regards, Karel
查看全文
This document describes how to add additional cluster to the Router application in the JN-AN-1217 ZigBee 3.0 Base Device Application Note. The Router application's main endpoint contains Basic, Groups, Identify and OnOff server. The steps below describe how to add two clusters to Router: Temperature Measurement server and OnOff client. Note that these changes only go as far as making the new clusters added and discoverable, no functionality has been added to these clusters.  Common/Source/app.zpscfg The first step is to update the ZigBee PRO Stack Configuration file to add the new clusters (OnOff Client, Temperature Measurement Server) to the Router application endpoint. The HA profile already contains few clusters but Temperature Measurement cluster was added:   The OnOff client was already present in Router endpoint but the Temperature Measurement cluster was then added into Router application endpoint:   Router/Build/Makefile For cluster belonging to General domain, the cluster code is automatically build and linked but for other domains, the compiling and linking needs to be enabled. As Temperature Measurement belongs to Measurement and Sensing domain, enable the cluster code in Makefile: Router/Source/zcl_options.h This file is used to set the options used by the ZCL. Enable Clusters The cluster functionality for the router endpoint was enabled:   Enable any optional Attributes and Commands for the clusters  Add the cluster creation and initialization into ZigBee Base device definitions The cluster functionality for some of the clusters is already present on ZigBee Base Device. For Temperature Measurement cluster the functionality was added into ZigBee Base Device. <Path to JN-SW-4x70 SDK>/ Components/ZCL/Devices/ZHA/Generic/Include/base_device.h The first step was including the Temperature Measurement header files into base device header file as shown below:   The second step was adding cluster instance into base device Instance as shown below: The next step was to define the cluster into the base device structure as below: <Path to JN-SW-4x70 SDK>/ Components/ZCL/Devices/ZHA/Generic/Include/base_device.c The cluster create function for Temperature Measurement cluster for server was called in ZigBee base device registration function:   Router/Source/app_zcl_task.c Temperature Measurement Server Cluster Data Initialization - APP_vZCL_DeviceSpecific_Init() The default attribute values for the Temperature Measurement clusters are initialized:
查看全文
802.15.4 wireless sniffers like the USB-KW41Z are capable of capturing over-the-air traffic. The captured packets are passed to a network protocol decoder like Wireshark over a network interface tunnel built by the Kinetis Protocol Analyzer.   Hardware  One USB-KW41Z preloaded with sniffer firmware ( instructions found at www.nxp.com/usb-kw41z )  Software Download & Install Thread Wireshark from wireshark.org which is an open-source network protocol analyzer capable of debugging over the air communication between Thread devices. Kinetis Protocol Analyzer is a software that provides a bridge between the USB-KW41 and Wireshark.  Wireshark Configuration  Open Wireshark from the Program Files Click Edit and select Preferences  Click Protocols to expand a list of protocols Select IEEE 802.15.4, click the Decryption Keys Edit... button Create a new key entry by pressing the plus button, then set the following values and click OK       Decryption key = 00112233445566778899aabbccddeeff      Decryption key index = 1      Key hash = Thread hash Find CoAP and configure it with CoAP UDP port number = 5683 Click Thread and select Decode CoAP for Thread  with Thread sequence counter = 00000000 as shown below At the 6LoWPAN preferences, add the Context 0 value of fd00:0db8::/64 Click OK and close Wireshark Configure Kinetis Protocol Analyzer  Connect the USB-KW41Z to one of the USB ports on your computer Open the device manager and look for the device connected port Open the "Kinetis Protocol Analyzer Adapter" program Make sure, you have a USB-KW41Z connected to your PC when opening the program because the Kinetis Protocol Adapter will start looking for kinetis sniffer hardware. Once the USB-KW41Z is detected, the previously identify COM port will be displayed Select the desired IEEE 802.15.4 channel to scan in the Kinetis Protocol Analyzer window. This guide selects channel 12 as an example  Click on the Wireshark icon to open Wireshark Network Protocol Analyzer An error may appear while opening Wireshark, click OK and continue Wireshark Sniffing Wireshark Network Analyzer will be opened. On the "Capture" option of the main window, select the Local Area Connection that was created by the Kinetis Protocol Analyzer, in this example, Kinetis Protocol Analyzer created "Local Area Connection 2", then click "Start" button. USB-KW41Z will start to sniff and upcoming data will be displayed in the "Capture" window of the Wireshark Network Protocol Analyzer.
查看全文
High level description to enable a Linux + KW41Z Border Router. Similar to how it’s shown for the K64 solution in the Kinetis Thread Stack Application Development Guide.   Configure the OpenWrt router to assign the IPv6 ULA prefix 2001:2002:2003::/48. On the LAN network, the router distributes addresses from range 2001:2002:2003::/60 Plug an Ethernet cable between the OpenWrt router and the Linux box. Before creating the Thread network, the Linux box has a global address on its eth interface from range 2001:2002:2003::/60. After creating the Thread network, the BR configures on its Serial TAP interface an address from range 2001:2002:2003::/60. On its 6LoWPAN interface, the BR configures an address from range 2001:2002:2003:c::/64. This is achieved with DHCPv6 prefix delegation - the router is requested to assign a new prefix space to be used by the Thread network. The forth segment in the IPv6 range might be 2, 4, 8 or c, depending of the number of DHCP-PD requests made to the router. After 4 attempts, the router will not lease any other prefixes for some time. In order to force that, you'd require to restart the odhcpd deamon in the OpenWrt router with the following command: /etc/init.d/odhcpd restart . Join the router eligible device, which configures an address in 2001:2002:2003::1/60. We then ping the "Internet" (the LAN interface on the OpenWrt router) and it works. “threadtap0” interface must be bridged with an uplink interface connected to an OpenWrt DHCPv6-PD enabled router; it will act identically as the K64F solution.   Setup Linux PC (Ubuntu) OpenWrt AP/Router with DHCPv6-PD support (OpenWrt version used in this guide: OpenWrt Chaos Calmer 15.05.1) For reference, hardware used on this guide: TP-Link Model TL-WR741ND 150Mbps Wireless N Router OpenWRT firmware supports multiple hardware available at https://openwrt.org/ 1 FRDM-KW41Z (Host Controlled Device, connected to Linux) 1 FRDM-KW41Z (Router Eligible Device or any joiner device) Thread version 1.1.1.20 (from SDK builder at mcuxpresso.nxp.com)   Host Controlled Device firmware, make sure the following macros are enabled: THR_SERIAL_TUN_ROUTER                       /source/config.h     -> Enables TAP interface by default (not TUN) THR_SERIAL_TUN_ENABLE_ND_HOST     /app/common/app_serial_tun.h   OpenWRT router Configure IPv6 ULA-Prefix:   Linux Copy HSDK folder Create 'threadtap0' TAP interface: …/host_sdk/hsdk/demo#   sudo bash make_tap.sh Use "Thread_Shell" or modify “Thread_KW_Tun” demo to enable the SERIAL_TAP macro …/host_sdk/hsdk/demo#   nano Thread_KW_Tun.c #define SERIAL_TAP 0   modify to:  #define SERIAL_TAP  1        Note: For demo purposes, the "Thread_Shell" demo is recommended, it already uses TAP by default and allows input commands. If this is not required and only the TAP bridge is to be used, use the Thread_KW_Tun demo. Bridge the interfaces; assuming eno1 is the interface connected directly to OpenWrt: # brctl addbr br0 # brctl addif br0 eno1 # brctl addif br0 threadtap0 # ifconfig br0 up Note: (Optional) Addresses on the bridged interfaces are lost and need to be reconfigured on the actual bridge. In this example, after bridging eno1 (interface to OpenWrt router), you’d have to run #dhclient br0 to get an IPv4 address on br0 for SSH to the router and/or #dhclient -6 br0 to get an IPv6 address to the br0 interface. There's a note here https://wiki.archlinux.org/index.php/Network_bridge#With_bridge-utils  about this.   Build C demos …/host_sdk/hsdk/demo#   make Run Thread_Shell or Thread_KW_Tun demo. …/host_sdk/hsdk/demo#   sudo ./bin/Thread_Shell /dev/ttyACM0 threadtap0 25 or …/host_sdk/hsdk/demo#   sudo ./bin/Thread_KW_Tun /dev/ttyACM0 threadtap0         Note: Try to run the demo without parameters to get some help on the input parameters   ifconfig Thread_Shell demo Thread_KW_Tun demo Joiner FRDM-KW41Z (shell) Join the Thread network Verify IP addresses Ping Eth LAN interface on OpenWrt router to verify “Internet” connectivity  Regards, JC
查看全文
The attached PDF file contains two A3 format "posters". The first one summarize the contents of the SMP Pairing Request and SMP Pairing Response packets (BLE 4.2). It shows how are the sub-fields of these packets set and what do they represent. The second one contains a diagram which summarizes how the pairing method and it's properties are determined during the SMP Pairing procedure for both BLE Legacy Pairing (BLE4.0 and BLE 4.1) and BLE Secure Connections Pairing with ECDH (BLE 4.2). Some of the tables in the diagram are taken from the BLE Specification. If you find any errors or have any suggestions of improvement please leave a comment or send me a message. Preview:
查看全文
This patch fixes some minor issues with the Connectivity Software v1.0.2 when working with the Kinetis BLE Toolbox application for smartphones. Following issues are fixed. BLE OTAP Application: Fixes application failing to download the new image when the previous image upload has been interrupted due a disconnection. BLE Wireless UART: Fixes MTU exchange issue causing some characters not bein shown in the smartphone application in iOS and Android. Hybrid BLE + Thread console: Fixes MTU exchange issue causing some characters not bein shown in the smartphone application console in iOS and Android. Make sure the Connectivity Software version 1.0.2 is installed in your computer before proceeding to install this application.
查看全文
The purpose of this document is to communicate known issues with the FRDM-KW41Z development platform.  This document applies to all revisions of the FRDM-KW41Z development platform.  However, items are divided among their respective revisions and each item may or may not apply to all revisions.  Revision A The known issues, which may cause confusion for new customers, for revision A are as follows: 1) Incorrect default jumper configuration Issue:  Jumper, J24, shunt connector does not shunt pins 1 and 2, as noted in the schematic notes.   Impact:  Customers will not, by default, be able to put the OpenSDA circuit into bootloader mode.   Workaround:  There is currently only one workaround for this issue. Move shunt connector on jumper, J24, to shunt pins 1 and 2.   2) Default OpenSDA application may lose serial data Issue:  In certain situations, the serial to USB bridge portion of the default OpenSDA application may not correctly forward serial data. This problem typically only occurs after a POR of a development platform.   Impact: Customers may experience data loss when using the serial to USB converter functionality in their application.  Workaround:  There is currently one workaround for this issue.   Update to the latest JLink OpenSDA firmware.  To update to this firmware, consult sections 2.1 and 2.2 of the OpenSDA User Guide (found here:  http://cache.freescale.com/files/32bit/doc/user_guide/OPENSDAUG.pdf ).  The latest JLink OpenSDA firmware can be found here:  SEGGER - The Embedded Experts - Downloads - J-Link / J-Trace .  (Note:  Be sure to select the correct development platform.)                                                             3) Unable to measure correct IDD current when operating in buck mode and P3V3_BRD is disconnected Issue:  When configured for buck mode operation and J8 does not have a shunt connector, it is expected that P3V3_BRD will not be powered and thus, board peripherals will not be powered (thermistor, I2C line pull-ups, SPI Flash, Accelerometer, etc,).  However it should be noted that in this configuration, P3V3_BRD will be back-powered through resistor R90.  R90 is a 180kOhm resistor that connects directly to the MCU reset pin.  This R90 also connects to V_TGTMCU which is directly connected to P3V3_BRD through shorting trace SH500.  The internal pull-up on the reset pin will, in this case, power P3V3_BRD.      Impact:  Customers will not be able to isolate the MCU IDD current from the board peripherals when measuring current in the buck mode configuration.  This is a problem mostly when attempting to achieve datasheet IDD current numbers for low power modes in buck mode.   Workaround:  There are currently three (3) workarounds for this issue. Remove resistor R90. Cut shorting trace SH500. Customers should exercise caution when using this workaround.  After cutting this short trace, the OpenSDA interface buffers would no longer be powered.  Therefore, OpenSDA programming and serial communication will not be possible even when J8 shorting jumper is placed.   Disable the reset pin in the FOPT field then configure the pin, PTA2, for GPIO output functionality driven low.  Customers should exercise caution when implementing this option.  The pin, PTA2, could be used as a GPIO in the end application in this configuration, but you would not want to drive PTA2 high while SW1 was directly connected to PTA2 through pins 2 and 3 of jumper J24.  In this situation, you potentially short VDD and VSS inadvertently by pressing SW1.  If using this workaround, it is recommended to ensure the shorting jumper of J24 is either removed or connected to pins 1 and 2.    4) Incorrect routing of SWD clock for stand-alone debugger configuration Issue:  The signal SWD_CLK_TGTMCU  is incorrectly routed to pin 1 of connector J12 instead of pin 4 of the SWD connector, J9.     Impact:  With this routing, when the OpenSDA circuit is configured as a stand-alone debugger for debugging other targets (i.e., when J12's shorting trace is cut), the OpenSDA SWD clock will not be able to be present on pin 4 of connector J9. Therefore, the FRDM-KW41Z cannot act as a stand-alone debugger to facilitate debugging other systems.   Workaround:  There is currently only one workaround for this issue.  The workaround is a hardware workaround that requires a cutting tool (such as a modeler's knife), soldering iron, solder, and a spare wire.  To implement the workaround, follow these instructions.   Cut trace J12.                                                                                                                                                                            Cut the trace next to pin 2 and 4 of J9 that connects J9, pin 4 to J12, pin 2. Once this is done, be sure to use a multimeter and ensure there is no electrical connection between J12, pin 2, and J9, pin 4.                                                                                                          Solder one end of a spare wire to J9, pin 4, and the other end of the spare wire to J12, pin 1.  This should be done on the bottom of the board.  
查看全文
As know, FSK and OOK are the modulation types that can be configured in the radio by setting the bits 4-3 from the RegDataModul register, as shown in below picture taken from Reference Manual:                                                          A common inquire you could have is: what modulation should I use? Let's first understand how these modulations work. FSK: Frequency Shift Keying is a modulation type that uses two frequencies, for 0 and 1. In a spectrum analyzer we can see a spectrum similar to the next picture, where the frequency for 0's is separated from the central frequency with FDev, and same case for the frequency for the 1's: OOK: On Off Keying is a modulation type that represents a logic 1 with the presence of the carrier frequency and a logic 0 with the absence of it. In a spectrum analyzer we can see a spectrum similar to the next picture, where the central frequency represents a logic 1. We can not see a logic 0 in the spectrum due to it's represented as the absence of power. Then what modulation should I use? FSK is most commonly used because is more spectral efficient so has better sensitivity. In the other hand, OOK modulation is commonly used in applications where the frequency accuracy can not be guaranteed. It also helps in conserving battery power due to the power absence for the logic 0's. Regards, Luis Burgos.
查看全文
The RF parameters for KW01 can be changed by firmware using the KW01 connectivity software. Frequency band: The operational frequency band can be changed in app_preinclude.h file stored in Source folder. You can select the operational frequency band for your application only setting "1" to the desired band and "0" for the unused bands. In the same file also the default phy mode can be selected: Center frequency, channel spacing, number of channels, bit rate, frequency deviation, filter bandwidth, and other RF parameters: Most common RF parameters can be changed in declaration of "phyPibRFConstants" on PhyPib.c file. Search for your operational band and phy mode. For example for US ISM band in phy mode 1: Then change the desired parameters. If you want to change, for example, FDev: select "Fdev_25000", then go to declaration and change it from one of the predefined list of values: Regards, Luis Burgos.
查看全文
By default the clock configuration on the KW2xD demos is set to PLL Engaged External (PEE). In this mode the system clock is derived from the output of the PLL and controlled by an external reference clock. The modem provides a programmable clock source output CLK_OUT that can be used as the external reference clock for the PLL. In the Figure 1 we can see that the CLK_OUT modem signal is internally connected to EXTAL0 in the MCU.   The CLK_OUT output frequency is controlled by programming the modem 3-bit field CLK_OUT_DIV [2:0] in the CLK_OUT_CTRL Register. The default frequency is either 32.787 kHz or 4 MHz depending on the state of the modem GPIO5 at reset determined by the MCU. See section 4.4.2 and 5.6.2 from the MKW2xD Reference Manual for more information on the clock output feature. If the GPIO5 modem pin is low upon POR, then the frequency will be 4 MHz. If this GPIO5 modem pin is high upon POR, then the frequency will be 32.78689 kHz.   In the KW2xD demos, the GPIO5 (PTC0) is held low during the modem reset so the CLK_OUT has a frequency of 4MHz. The clock configuration structure g_defaultClockConfigRun is defined in board.c. Figure 1. Internal Functional Interconnects   In this example project, another clock configuration will be added to the Connectivity Test Project: FLL Engaged Internal (FEI). In this mode, the system clock is derived from the FLL clock that is controlled by the 32kHz Internal reference clock.   In FEI mode the MCU doesn’t need the clock source output CLK_OUT from the modem, so we can disable the radio’s clock output and then set the radio to Hibernate to save power when we are not using the radio.   If the low-power module from the connectivity framework is used to go to a low-power mode, the clock configuration is changed automatically when entering a sleep mode (See the Connectivity Framework Reference Manual for more information about the low-power library).   System Requirements Kinetis MKW2xD and MCR20A Connectivity Software (REV 1.0.0) TWR-KW24D512 IAR Embedded Workbench for ARM 7.60.1 or later Attached project files Application Description The clock configuration can be changed with shortcuts on the serial console: Press “c” to use the PEE clock configuration (default). Press “v” to use the FEI clock configuration and set the radio to Autodoze. Press “b” to use the FEI clock configuration and set the radio to Hibernate.   You must be in the main menu in order to change the radio mode, the mode automatically changes to Autodoze when entering a test menu.   Hibernate mode can only be changed when in FEI mode. This is because in hibernate the radio disables the CLK_OUT and the PEE configuration needs this clock.   Current Measurements The following measurements were done in a TWR-KW24D256 through J2 5-6 to measure the radio current. Table 1. Radio Current Measurements Clock mode/Radio mode Radio Current PEE/Autodoze 615µA FEI/Autodoze 417µA FEI/Hibernate 0.3µA   Code Modifications The following modifications to the source files were made: \boards\twrkw24d512\Board.c Added clock user configuration Added array of clock configs and configuration struct for clock callback   \boards\twrkw24d512\Board.h Include for fsl_clock_manager.h Declaration of clock callback and configuration array used in CLOCK_SYS_Init() function.   \boards\twrkw24d512\Hardware_init.c Added calibration code after BOARD_ClockInit(), this is to calibrate internal clock using the bus clock.   \examples\smac\Connectivity_Test\common\Connectivity_TestApp.c Initialize the clock manager. Disable PTC0 because it is only used at modem reset to select the CLK_OUT default frequency (4MHz). Return clock configuration on idle state. Prepare radio to go to Autodoze when entering a test menu.   \examples\smac\Connectivity_Test\twrkw24d512\common\Connectivity_Test_Platform.c Changed length of the lines to be erased in PrintTestParameters() from 65 to 80 Added clock config and radio mode to be printed in the test parameters. Added the cases in the shortcut parser to change the clock and radio configuration with the keys “c”, “v” and “b”. Added functions at end of file (Explained in the next section).   \examples\smac\Connectivity_Test\twrkw24d512\common\Connectivity_Test_Platform.h Macros for the clock and radio modes. Function prototypes from the source file.   \examples\smac\Connectivity_Test\twrkw24d512\common\ConnectivityMenus.c Shortcuts descriptions.   The modified source files can be found attached to this document.   Functions added The functions PWRLib_Radio_Enter_Hibernate() and PWRLib_Radio_Enter_AutoDoze() were taken from the file PWRLib.c located at <Connectivity_Software_Path>\ConnSw\framework\LowPower\Source\KW2xD. The PWRLib.c file is part of the low-power library from the connectivity framework.   The Clock_Callback() function was implemented to handle when the clock configuration is updated. Inside the function there is a case to handle before and after the clock configuration is changed. Before the clock configuration is changed, the UART clock is disabled and if the clock configuration is PEE, the radio is set to AutoDoze and the CLK_OUT is enabled. After the clock configuration has changed, the Timer module is notified that the clock has changed, the UART is re-initialized and if the clock configuration is FEI, the CLK_OUT is disabled. This behavior is shown in Figure 2. Figure 2. Clock callback diagram   The prepareRadio() function is used when entering a test mode to make sure the radio is set to AutoDoze in case it was in hibernate. The restoreRadio() function is used when leaving the test menu and going to hibernate if it was previously set.
查看全文
The KW41Z has support for an external 26 MHz or 32 MHz reference oscillator. This oscillator is used, among other things, as the clock for the RF operation. This means that the oscillator plays an important role in the RF operation and must be tuned properly to meet wireless protocol standards. The KW41Z has adjustable internal load capacitors to support crystals with different load capacitance needs. For proper oscillator function, it is important that these load capacitors be adjusted such that the oscillator frequency is as close to the center frequency of the connected crystal (either 26 MHz or 32 MHz in this case). The load capacitance is adjusted via the BB_XTAL_TRIM bit field in the ANA_TRIM register of the Radio block. The KW41Z comes preprogrammed with a default load capacitance value. However, since there is variance in devices due to device tolerances, the correct load capacitance should be verified by verifying that the optimal central frequency is attained.  You will need a spectrum analyzer to verify the central frequency. To find the most accurate value for the load capacitance, it is recommended to use the Connectivity Test demo application. This post is aimed at showing you just how to do that.   In this case, the Agilent Technologies N9020A MXA Signal Analyzer was used to measure, configured with the following parameters: FREQ (central frequency): 2405 MHz (test will be conducted on channel 11) SPAN (x-axis): 100 KHz AMPTD (amplitude, y-axis): 5 dBm To perform the test, program the KW41Z with the Connectivity Test application. The project, for both IAR and KDS, for this demo application can be found in the following folder: <KW41Z_connSw_1.0.2_install_dir>\boards\frdmkw41z\wireless_examples\smac\connectivity_test\FreeRTOS NOTE:  If you need help programming this application onto your board, consult your Getting Started material for the SMAC applications.  For the FRDM-KW41Z, it is located here. Once the device is programmed, make sure the device is connected to a terminal application in your PC. When you start the application, you're greeted by this screen: Press 'ENTER' to start the application. Press '1' to select the continuous tests mode. Press '4' to start a continuous unmodulated transmission. Once the test is running, you should be able to see the unmodulated signal in the spectrum analyzer. Press 'd' and 'f' to change the XTAL trim value, thus changing the central frequency. Now, considering the test in this example is being performed in 802.15.4 channel 11, the central frequency should be centered exactly in 2.405 GHz, but on this board, it is slightly above (2.4050259 GHz) by default. In order to fix this, the XTAL trim value was adjusted to a value that moves the frequency to where it should be centered. Once the adequate XTAL trim value is found, it can be programmed to be used by default. This other post explains how to do this process.
查看全文
This article will describe in detailed steps how to generate, build and test a Bluetooth low energy Heart Rate Sensor project on the FRDM-KW41Z evaluation board by using the Bluetooth Developer Studio (BDS) and the NXP Kinetis BDS Plug-in. Getting Started To use this plug-in and test its output, the following programs are required:  - Bluetooth Developer Studio v1.1.306 or newer: Bluetooth Developer Studio & Plugins | Bluetooth Technology Website   - NXP Semiconductors Kinetis Plug-in v1.0.0: Link  - Kinetis SDK 2.0 with support for MKW41Z and Bluetooth Stack version 1.2.2: Link  - Kinetis SDK 2.0 add-on for BDS (found in the same package as the plug-in)  - Kinetis BLE Toolbox Android or iOS mobile application To enable the NXP Kinetis BDS Plug-in in the Bluetooth Developer Studio, follow please the installation details in the readme.txt document included in the downloaded plug-in archive. Creating the project with BDS Create a new project by clicking FILE-> NEW PROJECT. Add project location, name and namespace as detailed below: Drag and drop an adopted Heart Rate Profile from the right hand side list. Your device should import the following services:   Next step will be to configure the GAP layer. Click on the GAP button. First tab will be the Advertising Data. Enter desired values and check which AD types you want to include in the advertising packets. A bar below will show you how much bytes your data uses. Make sure you do not use more than the 32 bytes available. Next step is to configure the GAP properties. Make sure you check at least one advertising channel and a reasonable advertising interval range, as presented below:     Click TOOLS->GENERATE CODE. Select Server as GATT side to be generated and NXP Semiconductors Kinetis v1.0.0 as the plug-in. BDS will prompt you to enter a location for the exported files. After generating the files, another window with the results log will appear. If no error messages appear, the generation is successful. Check the “Open output location when finished” box and hit the “Finish” button. A folder with the following content will open: Using the generated code Copy the contents inside the following folder:  "<SDK 2.0 installation folder>\middleware\wireless\bluetooth_1.2.2\examples\bds_template_app". To generate the “bds_template_app” embedded project and test it, follow the instructions detailed in the Bluetooth Quick Start Guide document from the SDK. Seeing the application in action Before compiling the application add the following code snippet in app.c inside BleApp_HandleKeys:         case gKBD_EventPressPB2_c:         {             mUserData.cRrIntervals = 0;             mUserData.expendedEnergy = 100;             Hrs_RecordHeartRateMeasurement(service_heart_rate, 120, &mUserData);             break;         } This will allow the board to send heart rate data of 120 bpm while in a connection and when pressing button SW3 on the FRDM-KW41Z board. The value can be seen when using Kinetis BLE Toolbox, as shown below:
查看全文
HCI Application is a Host Controller Interface application which provides a serial communication to interface with the KW40/KW41 BLE radio part. It enables the user to have a way to control the radio through serial commands. In this section will be discussed how user could send serial commands to the KW40/KW41 device. “HCI app” file is given to test the BLE functionality. User needs to open the COM port with the configuration 115200 8N1N. Then, it is needed to send commands in Hex format, user can make use of Docklight application. Once HCI application is downloaded to the board, next steps need to be followed:         Open the COM port.       Send the next command in Hex format “01 03 0C 00”. It is to perform a Reset to the radio.       Send the next command in Hex format “01 1E 20 03 26 20 00”. It is to set the radio in Transmit test mode. The number 26 specifies the number of the channel in which user wants to see the signal(valid range is from 0x00 to 0x27, this means from BLE Channel 0 to BLE Channel 39). Number 00 specifies the type of the signal that will be sent, in this case, it is a PBRS9 format. (valid range are from 0x00 to 0x07). Refer to the next table to know the meanings of each type of signal.  Finally, 20 is the number that specifies the length that will be sent in the packet or the payload, in this case, it is configured to 20 (32 bytes), VALID RANGE is from 0x00 to 0x25.       In order to set the radio in Receiver Test Mode. The next command in hex format need to be used "01 1D 20 01 04", this command means that radio would be listening in channel 04. Hence, values "01 1D 20 01" is the command to set the radio in Rx mode, the last value "04' defines the channel in which device is going to listen. As an additional example, if channel 06 is desired, command "01 1D 20 01 06" should be used.     If there is a need to change the output power of the radio. The NXP connectivity software provides the Controller_SetTxPowerLevel() which is called inside of the Controller_TaskInit(). Controller_SetTxPowerLevel() function make use of the following defines to determine the default power output in the application:   mAdvertisingDefaultTxPower_c and mConnectionDefaultTxPower_c. The value range for both is from 0 to 31. The range might be different for each device, so, it needs to be corroborated. This range is applicable only for KW41Z device. For example, for KW40Z, range is from 0 to 15.     The defines are defined in the file ble_controller_task_config.h. Finally, HCI applications can be found in the connectivity software package of your desired device. If the KW40Z is the device under test (DUT), the HCI application is called "hci_app", it can be found in the next path: "<insllation_path>\KW40Z_Connectivity_Software_1.0.1\ConnSw\examples\bluetooth\hci_app"   If the KW41Z is the device under test (DUT), the HCI application is called "hci_black_box", it can be found in the next path: "<insllation_path>\MKW41Z_ConnSw_1.0.2\boards\frdmkw41z\wireless_examples\bluetooth\hci_black_box"
查看全文
Wireless communication systems require several different components or parts to achieve reliable systems. Components like the antenna, radio and XTAL are all key elements in wireless communication. Here however, the XTAL will be discussed. In the Kinetis W series, for example, the XTAL used for wireless operation is usually the oscillator also used as a core clock. Now, while this external oscillator is connected to the MCU, it is also connected to an internal programmable capacitor bank. What is the purpose of these capacitor banks? To allow frequency trimming. And why would you want to trim the frequency provided by this oscillator? Well, to properly adjust the central frequency to where it should be operating. This option exists because not every design is going to be the same: not the same PCB, not the same components, not the same manufacturing process. Thus, having the option to adjust the frequency provided by the external oscillator allows to any possible device to operate under the same conditions is essential. Let’s say your design is using a 32 MHz external oscillator, but because of the conditions of your whole design, the operating frequency ends up being slightly different. Now, if this design transmits over the air through 802.15.4, there could be some consequences to this slight shift in frequency. This capture shows a transmission made without being centered in the desired channel. This signal should be centered exactly on 2405 MHz, as specified by IEEE 802.15.4 channel 11. As you may see, in this case the frequency is actually centered on 2405.0259 MHz. Trimming these capacitors to change the frequency obtained from the oscillator can help to adjust error. In this case, the frequency was adjusted so that it was centered in the central frequency of the desired channel, to prevent any possible mistakes while transmitting to other devices. Once the XTAL is trimmed, the signal is effectively centered on 802.15.4 channel 11's frequency, 2405 MHz. Both transmit and receive are affected by incorrect frequency trim. Receiver performance is degraded when either (or both) of the transmitting or receiving stations have a frequency offset. And if both transmitting and receiving stations have frequency offsets in opposite directions the result is the receiver experiences the sum of the frequency offsets. Now, when trimming the frequency of a design, there are two possibilities: That the board layout design, board manufacturing and component selection have repeatable values of resistance, capacitance and inductance, resulting in a stable XTAL trim – The components and manufacturing process of the board are reliable enough, allowing you to characterize the XTAL trim during the system development and then use it every board during production. That the design and component selection do not result in a stable XTAL trim – If there is considerable variation between different boards of the same design or components used in the board manufacturing, you would need to implement a XTAL trim procedure during the production process, and somehow program that trim value into the device's NVM. For evaluation purposes, a manual adjustment could be done to a single device, modifying the corresponding XTAL trim register, and then including said adjustment in the evaluation application. The two posts linked explain how to modify and use the SMAC Connectivity Test demo to find the proper XTAL trim for KW40Z and KW41Z.
查看全文
The KW40Z connectivity software stack has several demo application available, and one of them is the OTAP client. This application allows the user to reprogram the device in a wireless fashion. This can be done by both using another device with an OTAP server application, or with the Kinetis BLE Toolbox mobile application, using the OTAP tool. To create a binary file for the KW40Z, follow these next steps: Using IAR Embedded Workbench, open the application you want to send through OTAP. Right click the main project, and open the Options... menu.                                                                                                                                              In the options menu, go to the Output Converter submenu. In the Output Converter submenu, check the "Generate additional output" box, and choose Motorola as the Output format.                                                                                                                                                                            In the options menu, go to the Linker submenu. Now, in the Config tab, replace the symbols in the Configuration file symbol definitions box with these: gUseNVMLink_d=1 gUseBootloaderLink_d=1 gUseInternalStorageLink_d=0 __ram_vector_table__=1                                                                                                                                                                                              In the Linker submenu, go to the Input tab. In the Keep symbols box, add the symbol 'bootloader' (without the quotes). In the Input tab, in the Raw binary image box, in the File option, add the following path: $PROJ_DIR$\..\..\..\..\..\..\..\framework\Bootloader\Bin\BootloaderOTAP_KW40Z4.bin In the Raw binary image box, add the following options to the Symbol, Section and Align boxes: Symbol: bootloader Section: .bootloader Align: 4                                                                                                                                                                                                                         Press OK. Compile the project. The output file (*.srec) should be in the main project folder, inside the debug folder.                                                      You can now use this binary file to reprogram your device with OTAP.
查看全文
Brief Description NXP Tire Pressure Monitoring Sensors (TPMS) were preloaded the firmware libraries and test software for a variety of customer use cases. The preloaded TPMS bootloader provides wireless software update function for the aftermarket. This demo uses Kinetis KW01 and Low Frequency emitter to accomplish TPMS over-the-air software update.   Reference Picture   Block Diagram   Features 315 MHz RF 125 KHz LF FSK modulation Manchester Encoding Timer/PWM Modules IAR Embedded Workbench for ARM 7.40 CodeWarrior V6.3   NXP Parts Used MRB-KW019032 (MKW01Z128CHN) TPMS870911 (FXTH870911DT1) LF Emitter Board   Get Software MKW01_TPMS_bootloader.rar MPXY8702_TPMS_bootloader.rar TPMS-MKW01-IAR7v4-Project.zip   General Stage Prototype Launched for Alpha customers     Demo Setup   Hardware Requirements MRB-KW019032 x 2         MRB-KW019032 Board A: Connected with LF Emitter Board         MRB-KW019032 Board B: Standalone TPMS879011 x 1 LF Emitter Board x 1   Hardware Connection   Pin function MRB-KW019032 LF Emitter Board TPM1_CH0 PTB0 (J15-9) J5-20 TPM1_CH1 PTB1 (J14-8) J5-28 GND GND (J15-2) J6-4   Demo Description A prebuild TPMS870911 firmware is stored in MRB-KW019032 Board A and this firmware will be sent to TPMS870911 via 125kHz LF signal. After TPMS870911 completes the firmware update, TPMS870911 will send the information of pressure sensor to MRB-KW019032 Board B via 315 MHz RF signal.   Demo Procedure Download MKW01_TPMS_bootloader into MRB-KW019032 Board A with IAR 7.40 Download TPMS-MKW01-IAR7v4-Project into MRB-KW019032 Board B with IAR 7.40 Download MPXY8702_TPMS_bootloader into TPMS870911 with CodeWarrior V6.3 Connect USB cable between PC and both of MRB-KW019032 boards, and open the terminal with the following settings • 115200 baud rate • 8 data bits • No parity • One stop bit • No flow control    5. Press the reset button on both of MRB-KW019032 boards and then the demo message will be shown on the terminal.     6. Short Pin19 of J15 (PTD6) on MRB-KW019032 Board A as SW3 press to start TPMS870911 over-the-air software update. 7. After TPMS870911 completes software update, MRB-KW019032 Board B will print the received RF message which was sent from TPMS870911 on the terminal.                         Original Attachment has been moved to: TPMS-MKW01-IAR7v4-Project.zip Original Attachment has been moved to: MPXY8702_TPMS_bootloader.rar Original Attachment has been moved to: MKW01_TPMS_bootloader.rar
查看全文
Hello community, This time I bring to you a document which explains what are the ZigBee Test Client commands and how to use it. Before to read this guide, I widely recommend to take a look into the document Running a demo with BeeKit (802.15.4 MAC, SMAC and ZigBee BeeStack). This guide requires the BeeKit Wireless Connectivity Toolkit​ and the Test Tool for Connectivity Products applications.     I hope you find this guide useful. Enjoy this guide! Any feedback is welcome. Best regards, Earl Orlando Ramírez-Sánchez Technical Support Engineer NXP Semiconductors
查看全文
What you need: USB-KW40Z boards (at least 3 recommended) Kinetis KW40Z Connectivity Software Kinetis Protocol Analyzer Adapter Wireshark Consult the USB-KW40Z getting started guide for an in depth tutorial on how to program the boards with the sniffer software and how to install and use the Kinetis Protocol Analyzer Adapter and Wireshark. For best performance at least 3 boards are needed to continuously monitor all 3 BLE advertising channels: 37, 38 and 39. If you have more then it’s even better. Having less than 3 sniffer boards will lead to the BLE sniffer setup missing some advertising packets and connection events. If only 1 or 2 boards are present they will have to jump between the 3 advertising channels. After the initial setup is complete make sure the boards are plugged into USB ports and then start the Kinetis Protocol Analyzer Adapter software. Immediately after the application is started it will start looking for the sniffers: After the sniffers are detected the application window should look like the screenshot below. There should be a separate row shown for each sniffer board which is plugged in (3 in the example below – COM32, COM34, and COM33). Set each sniffer on a different advertising channel and (37, 38 and 39) and if you’re looking to sniff a specific device enable the Address Filter checkbox and enter the device’s address in the adjacent field as shown in the screenshot below. Use the same device address for all sniffer devices. Press the “shark fin” button in the upper right of the window to start Wireshark. After Wireshark starts select the PCAP IF shown in the Kinetis Protocol Analyzer Adapter window and start capturing packets. Local Area Connection 2 is the PCAP IF in the example. Wireshark will start showing the captured packets and the sniffers will catch Connection Request packets sent to the target device on any of the advertising channels. Useful tip: You can use the btle.advertising_header.length != 0 or btle.data_header.length != 0 filter in Wireshark to filter out empty BLE packets.
查看全文
Hello community, This time I bring to you a document which explains how to run a demo from BeeKit and how to sniff it. Before to start you need to install the BeeKit Wireless Connectivity Toolkit.     I hope you find this guide useful. Enjoy this guide! Any feedback is welcome. Best regards, Earl Orlando Ramírez-Sánchez Technical Support Engineer NXP Semiconductors
查看全文
Our customer, who is considering MKW40, is asking NXP regarding max input voltage of PSWITCH and DCDC_CFG pins. Especially they plan to use buck mode with input voltage 4.2[v] as shown below. Would you comment if max voltage of PSWITCH and DCDC_CFG pins is 4.2[v] as well as DCDC_IN pin? Regards, Koichi
查看全文