Wireless Connectivity Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

Wireless Connectivity Knowledge Base

Discussions

Sort by:
The customer wanted to update the FW of the PN7462 to an NFC cockpit. In general, we recommend that customers use MASS STORAGE MODE to update two files (including Flash and EEPROM) into memory. But there will always be customers who don’t know or how to successfully access MASS STORAGE MODE. They cannot succeed in doing so. Therefore, it is recommended to use the GUI FLASH tool to upgrade the FW to the NFC cabin. In order to clearly indicate the user how to use the GUI FLASH tool, this document describes this step by step.
View full article
The customer submitted a case through DFAE to seek support from NXP. They designed the product using PN5180, and according to feedback, about 10% of the boards could not read the card. The specific manifestation of the problem is: after the host issues the RF_ON command, RF field seems cannot be turned on and then fails to detect the card. Therefore, it can be seen that the problem should be on TX, not RX. The customer's device does not enable DPC and LPCD.
View full article
Channel Sounding 
View full article
Matter support in Visual Studio Code (VS Code) is now open to all developers. MCUXpresso extension for VS Code v24.12.71 integrates the Matter toolchain for development on Windows, macOS and Linux.  It can be installed by visiting Microsoft’s Marketplace for VS Code. The following steps will set up your Windows system to develop Matter on NXP devices. This Getting Started process takes ~1 hour.  This is similar time it takes with flawless CLI setup. Import Matter repo takes ~30 minutes (Clone Matter repo; run bootstrap setup script)  Import first project for a board takes @~10 minutes (SDK repo download - 1st time every board) Additional projects can then be quickly imported/built. 1. Install Pigweed Project Automation Tool Pigweed is used for easier automation of building, testing, and linting GN and CMake projects.  Matter uses GN, so Pigweed is used by the maintainers of the project.  Complete the following to allow the Matter Bootstrap to properly modify/install the repository. Launch a Terminal in Administrator mode to allow operations to complete successfully. Ensure that Developer Mode is enabled. This can also be done by running the following command as an administrator: REG ADD HKLM\Software\Microsoft\Windows\CurrentVersion\AppModelUnlock /t REG_DWORD /v AllowDevelopmentWithoutDevLicense /d 1 /f\"" Enable long file paths. This can be done using  regedit  or by running the following command as an administrator: REG ADD HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem /v LongPathsEnabled /t REG_DWORD /d 1 /f  Enable Git symlinks: git config --global core.symlinks true For more information on these settings visit Get started with Pigweed - Pigweed  2. Install Visual Studio Code (VS Code) Microsoft allows users to quickly install VS Code from https://code.visualstudio.com/download. The link allows the user to select the appropriate download for their OS.  The following instructions are for a Windows installation.  However, most of the following steps also apply to Mac and Linux users. It can be helpful for new users to directly install VS Code and the NXP extension.  This can be done by sharing one of two links:  vscode:extension/NXPSemiconductors.mcuxpresso https://marketplace.visualstudio.com/items?itemName=NXPSemiconductors.mcuxpresso  If VS Code exists on the system, the user will be taken to the NXP MCUXpresso for VS Code extension in the Microsoft Marketplace.  If VS Code is NOT installed on the system the user will be guided through the install of VS Code.  At this point the VS Code application should be installed on the laptop. 3. Install MCUXpresso for VS Code Extension The user can install or update the MCUXpresso for VS Code extension from within VS Code.  The following steps outline how.  A short clip is included to show the steps. Open VS Code.  Launch program from desktop. Open the Extensions Marketplace.  Click on Icon of 4 blocks in left navigation  or use Ctrl-Shft-X. Search "NXP" or "Mcuxpresso" in the Extension search window at the top left. MCUXpresso for VS Code extension will be displayed.  Click on listing. Click on blue Install button in the Extension Overview that is opened in the editor. The Extension is properly installed when the following NXP icon is shown in left navigation.  At this point the VS Code application now includes the NXP MCUXpresso extension. 4. Run MCUXpresso Installer for Tool Dependencies It is now necessary to install other tool dependencies to properly use VS Code for MCUXpresso, Zephyr and/or Matter. NXP provides the MCUXpresso Installer utility to simplify properly meeting these tool dependencies.  The following steps list how to use the installer for a Matter system.  A short clip is included to show the steps. Click on "Open MCUXpresso Installer" found under Quickstart Panel in upper left. The MCUXpresso Installer will launch if already installed.  NOTE: If the Installer is not found, the user should select the blue "Download" button in the bottom right notification. Select the following from the MCUXpresso Installer list of available tools: Matter Developer Arm GNU Toolchain Standalone Toolchain Add-ons LinkServer Click the blue "Install" button and wait until installation progress shows complete Restart VS Code so that new settings are active At this point the VS Code application now includes the NXP MCUXpresso extension, and the laptop has any other tools required to begin Matter installation. 5. Import NXP Matter Repository The MCUXpresso for VS Code extension simplifies how the user can add Matter to their workspace.  The repository import wizard automates most of the steps required for a user to get started with Matter. The following steps show how to add Matter Repository.  2 short clips are included to show the steps. Click on "Import Repository" found under Quickstart Panel in upper left. Click Repository found in the wizard's Remote tab. Select "NXP Matter".  This automatically targets the NXP/Matter repo found on GitHub. Enter a desired location to clone/store the NXP Matter repository.  Closer to C:/ is better. Select "release/v1.4.0" listed as an available version under Revision: Click Import The import process can take ~30 minutes depending on network bandwidth and IT software. NOTE: This is similar amount of time when using CLI in a terminal.   After the repo is cloned, the Matter Bootstrap script is used to setup matter environment. At this point the user laptop has a valid Matter workspace.  The workspace is now capable of importing and building Matter projects. 6. Import First Matter Project The MCUXpresso for VS Code extension includes an Import Example wizard that simplifies adding Matter projects to a workspace.  The following instructions show how to import a project from the NXP Matter repository.   A short clip is included to show the steps. Click "Import Example from Repository" from the Quickstart Panel in the upper left. Select the Matter Repository from the drop-down options for Repository. Select the desired Toolchain from the drop-down options for Toolchain.  A GNU Toolchain should be available from previous MCUXpresso Installer steps. Select the target board from the drop-down options for Board.  The listed boards are supported in the NXP Matter repo. Select the desired project from the Template drop-down options.  Currently there are "contact-sensor-app" and "lighting-app". Click Create blue button. At this point there is a Matter project in the workspace.  The project can be explored with the provided project properties and file explorer views. 7. Build Matter Project Building the project is the final step for Getting Started with a Matter project in VS Code.  The extension has properly setup the project toolchain and will build successfully.  The NXP extension reduces the setup time by not importing the SDK for all supported boards.  The board SDK is automatically imported/cloned when it is not located on the 1st build for a board.  Successive projects for the same board will not require this additional step/delay. The following steps show how to build a matter project in the workspace.  A short clip is included to show the steps.  Select the Matter project listed under the Projects pane located in the primary left sidebar.  When selected, project control icons are revealed to the left of the project name. Click on the Build icon.   Verify the build was successful by viewing the binary files with File Explorer.  Click the File Explorer icon to the right of project name or in the upper left of the side bar navigation.  The binary is found under the project's \out\debug folder. This exercise on "Getting Started with Matter" is completed.  At this point the Matter project imported to the workspace was successfully built. 
View full article
Wireless Equipment: Ellisys:  Ellisys is a leading worldwide supplier of advanced protocol test solutions for Bluetooth®, Wi-Fi, WPAN, USB 2.0, SuperSpeed USB 3.1, USB Power Delivery, USB Type-C, DisplayPort and Thunderbolt technologies.  USB, Bluetooth and WiFi Protocol Test Solutions  Bluetooth Vanguard - Advanced Bluetooth Analysis System Bluetooth Qualifier - Bluetooth Qualification System   RFcreations:     RFcreations is a core team of highly skilled and knowledgeable, professional engineers with decades of experience across the design and development of both RF and digital hardware, embedded, protocol stacks and UI software mini-moreph morephCS   Teledyne Lecroy:    offers an extensive range of test solutions to help with design, development, and deployment of devices and systems frontline-x240 Wireless Protocol Analyzer  frontline-x500e Wireless Protocol Analyzer  Rohde&Schwarz:        is a global technology group striving for a safer and connected world. Offers Test & Measurement, Technology Systems and Networks & Cybersecurity Divisions R&S CMW270 wireless connectivity tester Useful links:  Top Online Bluetooth LE learning Resource Ellisys Bluetooth Video Series RFcreations Bluetooth Sniffers and Test Tools Learn Bluetooth Low Energy in a single weekend
View full article
Aiming to increase the reach of card and mobile payment, Europay, Mastercard and Visa (EMV) point of sale (POS) terminals are getting more lightweight, replacing hardware security with software and back-end security. Off-the-shelf mobile devices, like your smart phone, can become an acceptance point for payment cards, a so-called SoftPOS.
View full article
MIFARE DESFire EV1 supports the APDU message structure according to ISO/IEC 7816-4 for an optional wrapping of the native MIFARE DESFire EV1 APDU format and for the additionally implemented 7816-4 commands from a practical point of view.
View full article
 Introduction The KW45-EVK & FRDM-MCX W71 include an RSIM (Radio System Integration Module) module with an external 32 MHz crystal oscillator and 32kHz external oscillator. 32MHz clock source reference is mainly intended to supply the Bluetooth LE Radio peripheral, but it can be used as the main clock source of the MCU as well. This oscillator includes a set of programmable capacitors to support crystals with different load capacitance needs. Changing the value of these capacitors can modify the frequency the oscillator provides, that way, the central frequency can be tuned to meet the wireless protocol standards. This configurable capacitance range is from C: 3.74pF to C: 10.67pF and it is configured through the RFMC Register XO_Test field at the CDAC. The KW45 comes preprogrammed with a default load capacitance value (0x1Eh). However, since there is variance in devices due to tolerances and parasite effects, the correct load capacitance should be checked by verifying that the optimal central frequency is attained.  You will need a spectrum analyzer to measure the central frequency. To find the most accurate value for the load capacitance, it is recommended to use the Connectivity Test demo application. 32kHz clock source reference is mainly intended to run in low power when the 32MHz clock is switched off. This 32kHz clock enable to leave the low power mode and enter in Bluetooth LE events. Adjusting 32MHz Frequency Example   Program the KW45 /MCX W71 Connectivity Test software on the device. This example can be found in SDK_2_15_000_KW45B41Z-EVK_MR5\boards\kw45b41zevk\wireless_examples\genfsk\connectivity_test folder from your SDK package. Baremetal and FreeRTOS versions are available. In case that KW45-EVK board is being used to perform the test, you should move the 15pF capacitor populated in C3 to C4, to direct the RF signal on the SMA connector.                                   3. Connect the board to a serial terminal software. When you start the application,              you will be greeted by the NXP logo screen: Press the enter key to start the test. Then press "1" to select "Continuous tests":          5. Finally, select "6" to start a continuous unmodulated RF test. At this point, you should be able to measure the signal in the spectrum analyzer. You can change the RF channel from 0 to 127 ("q" Ch+ and "w" Ch- keys), which represents the bandwidth from 2.360GHz to 2.487GHz, stepping of 1MHz between two consecutive channels. To demonstrate the trimming procedure, this document will make use of channel 42 (2.402GHz) which corresponds to the Bluetooth LE channel 37. In this case, with the default capacitance value, our oscillator is not exactly placed at the center of the 2.402GHz, instead, it is slightly deflected to 2.40200155 GHz, as depicted in the following figure:         6. The capacitance can be adjusted with the "d" XtalTrim+ and "f" XtalTrim- keys. Increasing the capacitance bank means a lower frequency. In our case, we need to increase the capacitance to decrease the frequency. The nearest frequency of 2.402 GHz was 2.40199940 GHz        7. Once the appropriate XTAL trim value has been found, it can be programmed as default in any Bluetooth LE example, changing the BOARD_32MHZ_XTAL_CDAC_VALUE constant located in the board_platform.h file:   Adjusting 32kHz Frequency Example   You could adjust the capacitor bank on the 32kHz oscillator. You need to observe the 32kHz frequency at pin 45 (PTC7) using an spectrum analyzer or a frequency meter. Inserting this below code in the main(void) in your application: Hello_world application in this example. 32kHz frequency is not active by default on pin45(PTC7). You need to configure the OSC32K_RDY at 1 in the CCM32K register Status Register (STATUS) field to observe the 32kHz frequency at pin 45 (PTC7). Configure the CAP_SEL, XTAL_CAP_SEL and EXTAL_CAP_SEL field available in the CCM32K register 32kHz Oscillator Control Register (OSC32K_CTRL).       XTAL_CAP_SEL and EXTAL_CAP_SEL values are from 0pF (0x00h) to 30pF (0x0Fh). You could configure those 2 registers in the clock_config.c file. Default values are 8pF for both registers.        
View full article
Some users want to use SDIO signals on M.2 connector for WiFi card. In default linux bsp, there is no problem using imx8mp-evk-usdhc1-m2.dts, usdch1 driver can normally loaded, and detect WiFi module, But default android bsp doesn't support it, even if using corresponding device tree, usdch1 driver can NOT be loaded correctly, Because default android bsp doesn't load pwrseq_simple.ko, which is used by usdhc1 node. Detailed steps on enabling usdhc1 in the attached document, hope it can help users who wants to use M.2 SDIO WiFi card. [Note] For other android bsp version, users can also refer to the steps in attached document.   Thanks! Regards, Weidong Sun
View full article
On the KW45 product, there is a way to enable the 32kHz clock without using a crystal externally. Indeed, a FRO32K can be used instead. this article proposes to show you at a glance how to activate it and which performances to expect in comparison to a 32kHz crystal.  This Crystal-Less mode allows to reduce the cost of the system, without compromising the 32 kHz clock accuracy thanks to a software calibration mechanism called SFC standing for Smart Frequency Calibration. One other advantage of the FRO32K is the shorter start up time, including the calibration. The FRO32K clock is calibrated against the 32 MHz RF oscillator through the Signal Frequency Analyzer (SFA) module of KW45. Software enablement: The Crystal-less feature is available since the SDK version 2.12.7 (MR4) , all measurements in this document are done with softwares based on this version of SDK. To enable the Crystal-Less mode, simply define the compilation flag gBoardUseFro32k_d to 1 in board_platform.h or in app_preinclude.h. In this mode, the SFC module measures and recalibrates the FRO32K output frequency when necessary. This typically happens at a Power On Reset, or when the temperature changes, or periodically when the NBU is running. By using this mode, higher power consumption is expected. The FRO32K consumes more power than the XTAL32K in low power mode (around 350nA), and the NBU wakes up earlier while FRO32K is used, which also entails a higher power consumption.   FRO32K vs Xtal32K performances: For these measurements, we used an early FRO32K delivered feature but, even if it is still in experimental phase, the results below will already give you some information.    Clock accuracy at room temperature:    In steady state, the output frequency of the FRO32K is even more stable than that of the XTAL32K thanks to the SFC module. The clock frequency accuracy of the XTAL32K is a bit better than the FRO32K, however, both are within the permitted accuracy range and are compliant with the Bluetooth Low Energy specification. Clock accuracy after recalibration (triggered by a temperature variation):   This test proved that the FRO32K provided a source clock that is within the target accuracy range even during a temperature variation. Throughput test at room temperature: Throughput measurements are performed using two different clock sources to verify if there is any connection lost due to the potential clock drift entailed by using the FRO32K as a clock source. The BLE_Shell demo application is used for the throughput measurement. (refer to KW45-EVK Software Development Kit). The DUT is programmed with software using either the XTAL32K or the FRO32K as the source clock. After the communication establishment, the bit rate measurement is triggered manually, and the result is displayed on the prompt window.  Results: Two clock configurations show identical performance, which proves that the 32 kHz crystal-less mode presents no disconnection and no performance degradation. Throughput test over a temperature variation: it is the same test set up as above but within a 60 °C temperature variation. The results are identical to previous ones. No disconnection or performance degradation is detected. Conclusion Various tests and measurements proved that the FRO32K can be used as the 32 kHz clock source instead of the XTAL32K, with the help of the SFC module. It is capable of providing an accurate and stable 32 kHz clock source that satisfies the requirements of connectivity standards. However, please note that this feature is still in experimental phase, tests are still ongoing to ensure that the feature is robust in any circumstances. Customers who want to enable this feature in production must validate this solution according to their own use cases. For more detailed information, a draft version of the application note is attached to this article but an updated version will be available on NXP.com website when a new SDK is released.
View full article
Generality on the Oscillation Margin Outline It is a margin to the oscillation stop and the most important item in the oscillation circuit. This margin is indicated by ratio based on the resistance of crystal, and it shows how amplification oscillation capability the circuit has. The oscillation circuit can theoretically operate if the oscillation margin is 1 or more. However, if oscillation margin is close to 1, the risk of operation failure will increase on module due to a too long oscillation start up time and so on. Such problems will be able to be solved by a larger oscillation margin. It is recommended to keep 3 times or more as oscillation margin during the startup of the oscillation. Factor of 10 is commonly requested for Automotive at startup and 5 for IoT market. However, some providers accept to have 3 times as oscillation margin for steady state. Here below is an oscillation example to explain better the phenomenon: At start up, the configuration is set internally by the hardware in order to be sure to start the oscillation, the load capacitor is 0pF. After this time, it is the steady state and the load capacitor from the internal capabank is taken into account.     If load capacitor is not set correctly with the right oscillator gain, the oscillation will not be maintained after the start up.   The oscillator gain value will also depend on the resisting path on the crystal track.  A good way to evaluate it is to add a resistor on the crystal path and try to launch the oscillation. In the SDK, the gain and the load capacitor can set directly in the application code.   Calculation The oscillation margin is able to be calculated as follows: The oscillation margin calculation is based on the motional resistor Rm by formula below :               Example: for the EVK board’s 32kHz crystal (NX2012SE) ESR   80000,0 ohm Rm1   79978,2 ohm Lm1    3900 H Cm1   6,00E-15 F C0      1,70E-12 F CL      1,25E-08 F fr        32901,2 Hz fosc    32771 Hz Series Resistor Rsmax      7,50E+05 Ohm Oscillation Margin   10,3   Measurement Requirements for measurement PCB Crystal unit (with equivalent circuit constants data) Resistors (SMD) Measurement equipment (Oscilloscope, Frequency counter or others capable to observe oscillation) Add a resistor to the resonator in serial and check if the oscillation circuit works or not. If the oscillation is confirmed by 2), change the resistor to larger. If there is no oscillation, change the resistor to smaller. Find out the maximum resistor (=Rs_max) which is the resistor just before the oscillation stop. Measure the oscillating frequency with Rs_max. Calculate the oscillation margin based on the Rs_max.   Notes The Oscillation margin is affected not only by crystal characteristics but also parts that compose the oscillation circuit (MCU, capacitor and resistor). Therefore, it is recommended to check the oscillation margin after the MCU functionality is checked on your module. The series resistor is only for the evaluation. Please do not use this resistor in actual usage. It is recommended to check the functionality of your module also. It is possible that the module does not work correctly due to a frequency shift on oscillation circuit and so on. Jig and socket could be used in measurement, but stray of them will give influence for oscillation margin.   KW45/K32W1 product oscillation margin overview 32MHz crystal NXP recommends to use the quartz NDK NX1612SA (EXS00A-CS14160) or NDK NX2016SA (EXS00A-CS14161) to be compliant with the +/-50ppm required in Bluetooth LE. Using the current SDK, NXP guarantees an oscillation margin of 10 for startup commonly used by Automotive customers and 3 for steady state. Higher oscillation margin can be reached by using higher ISEL and CDAC parameters with some drawback respectively on the power consumption and the clock accuracy. ( the load capacitance bank (CDAC) and the oscillator amplifier current (ISEL)) NDK recommended / target values for oscillation margin is informed case by case. On general basis requested oscillation margin has to be between recommended value and 3 times this value. "NDK quartz provider (FR) explains this oscillation margin specification is only mandatory at the start-up phase, not at the steady state. Starting the oscillation is the phase that needs more energy. That's why the gain of the oscillator gain is at the maximum value which means not optimal consumption. When the oscillation stability is reached, the gain could be reduced to save power. The oscillation will not be affected.  Keep in mind a quartz oscillates by mechanical effect. So, when the oscillation is starting you need the highest energy to emulate it. By its own inertial, you need less energy to maintain the mechanical oscillation. NDK provides a good picture of this. Starting up a crystal into oscillation is like a train what you would like to start moving. At the beginning the train is stopped and you need a lot of energy to start running. When the train is running at its nominal speed, you need less effort to maintain that movement and a very big effort to stop it completely."   Example: for the oscillation margin 10 (Series Resistor Rsmax = 560W) The CDAC/ISEL area where the oscillation starts and propagates in the internal blocks is defined (‘oscill’) in the table below.     32kHz crystal NXP recommends to use the quartz NDK NX2012SE (EXS00A-MU01517) or NDK NX2012SA (EXS00A-MU00801) to be compliant with the +/-500ppm required in Bluetooth LE. using the current SDK, the oscillation margin with this quartz is 10 with some limitation on the Crystal load capacitance selection (Cap_Sel) and the Oscillator coarse gain amplifier (ESR_Range) values, with some drawback respectively on the power consumption and the clock accuracy. For an oscillation margin at 10 for instance, the Capacitor value from the databank (CapSel) is limited (green area) as shown in the graph below: Example:  for an oscillation margin at 6.4, if the load cap is set at 14pF and the ESR_Range to 3, the 32kHz frequency accuracy will be around 91ppm. From this point, the oscillation margin can be enlarged to 10.3 by decreasing the load cap to 10pF but the accuracy will be degraded (183ppm). For an Oscillation margin at 10, the graph below is showing the ESR_Range versus the load cap. The possible load cap variation range (in green) is larger when the ESR_Range increases:   Example: at oscillation margin 10.3, the clock accuracy can be improved from 213ppm to 183ppm by setting the ESR_range 2 to an ESR_Range 3 but the current consumption will be increased to 169.5nA. An other important point is that for a given ESR_Range value, getting higher the load cap is much more increasing the current than in the example above.   Remark: Under a high oscillation margin condition, the crystal voltage will be smaller.   Other possible ways to improve the oscillation margin exist: - Use external capacitor instead of internal capacitor banks. Oscillation margin goes up to 10. - Use the internal 32kFRO is supported for BLE (target:+/-500ppm)
View full article
       The article will describe how to configure A2DP audio application Based On NXP platform and WIFI/BT chipset step by step. Users can easily make her A2DP audio based on NXP WIFI module work normally by following steps in the article. Environment for the validation Hardware Platform        i.MX8MN-EVK Software Kernel version: L5.4.70_2.3.0 rootfs : imx-image-multimedia WiFi module        AW-CM358SM: NXP 88W8987 chipset   For more detailed information, see attachment, please!   NXP CAS-TIC wireless MCU team Weidong Sun    
View full article
This article describes how to use the tcpdump tool to capture wireless network data packets. The test block diagram is as follows: For more detailed information, See attachment,please!   NXP CAS-TIC Wireless MCU team Weidong Sun
View full article
Based on i.MX8MN-EVK And Linux 5.4.70_2.3.0 BSP As an example of NXP Bluetooth Bluetooth application, this article describes how to use Bluetooth to realize file transfer between windows PC and i.MX8MN-EVK (linux), and between Android mobile phone and i.MX8MN-EVK. The test architecture used in this example is as follows: The following steps are for the application example: Step 1 Preparation  --Downloading DEMO Image For i.MX8MN-EVK  --Downloading uuu tool  --Compiling L5.4.70_2.3.0 BSP for i.MX8MN-EVK  --Copying rootfs to the DEMO Image directory  --Modifying example_kernel_emmc.uuu as uuu programming script  --Programming images to i.MX8MN-EVK board  Booting i.MX8MN-EVK board Step 2 Loading WIFI/BT driver and Enable Bluetooth Step 3 File Transter between Windows 10 PC and i.MX8MN-EVK board Step 4 File Transter between Android Mobile and i.MX8MN-EVK board [Summary] More detailed information, see attachment, please!
View full article
This article describes how to compile the Linux BSP of the i.MX platform under ubuntu 18.04, 20.04 LTS and debian-10. This is a necessary step to integrate WIFI/BT to the I.MX platform. See the attachment for detailed steps.
View full article
The QN9090 is a Bluetooth Low Energy device that achieves ultra-low-power consumption and integrates an Arm ® Cortex ® -M4 CPU with a comprehensive mix of analog and digital peripherals. If the developer is working with the Development platform for QN9090 wireless MCUs for the first time, it is recommended to follow the QN9090-DK Development kit Getting Started (this guide can be found in QN9090DK Documentation section). This Quick Start document provides an overview about the QN9090 DK and its software tools and lists the steps to install the hardware and the software. For this document, Temperature Sensor and Temperature Collector examples will be used to demonstrate the implementation of a custom profile (both examples can be found in the SDK). This article will explain how to add the Humidity Profile and how to modify the code to get the Humidity Sensor and Collector working.   Introduction   Generic Attribute Profile (GATT) GATT defines the way that profile and user data are exchanged between devices over a BLE connection. GATT deals with actual data transfer procedures and formats. All standard BLE profiles are based on GATT and must comply with it to operate correctly, making it a key section of the BLE specification since every single item of data relevant to applications and users must be formatted, packed and sent according to the rules. There are two GATT roles that define the devices exchanging data: GATT Server This device contains a GATT Database and stores the data transported over the Attribute Protocol (ATT). The Server accepts ATT requests, commands and confirmations sent by the Client; and it can be configured to send data on its own through notifications and indications. GATT Client This is the “active” device that accesses data on the remote GATT Server via read, write, notify, or indicate operations. Notify and indicate operations are enabled by the client but initiated by the server, providing a way to push data to the client. Notifications are unacknowledged, while indications are acknowledged. Notifications are therefore faster, but less reliable. GATT Database establishes a hierarchy to organize attributes and is a collection of Services and Characteristics exposing meaningful data. Profiles are high level definitions that define how Services can be used to enable an application; Services are collections of Characteristics. Descriptors define attributes that describe a characteristic value.   Server (Sensor)   The Temperature Sensor project will be used as base to create our Humidity Custom Profile Server (Sensor). BLE SIG profiles Some Profiles or Services are already defined in the specification, and we can verify this in the Bluetooth SIG profiles document. Also, we need to check in the ble_sig_defines.h files (${workspace_loc:/${ProjName}/bluetooth/host/interface}) if this is already declared in the code. In this case, the Service is not declared, but the Characteristic of the humidity is declared in the specification. Then, we need to check if the Characteristic is already included in ble_sig_defines.h. Since the characteristic is not included, we define it as shown: /*! Humidity Characteristic UUID */ #define gBleSig_Humidity_d                   0x2A6FU GATT Database The Humidity Sensor will act as GATT Server since it will be the device containing all the information for the GATT Client. Temperature Sensor demo already implements the Battery Service and Device Information, so we only have to change the Temperature Service to Humidity Service.   In order to create the demo, we need to define a Service that must be the same as in the GATT Client, this is declared in the gatt_uuid128.h. If the new service is not the same, Client and Server will not be able to communicate each other. All macros, functions or structures in the SDK have a common template which helps the application to act accordingly. Hence, we need to define this service in the gatt_uui128.h as shown next: /* Humidity */ UUID128(uuid_service_humidity, 0xfe, 0x34, 0x9b, 0x5f, 0x80, 0x00, 0x00, 0x80, 0x00, 0x10, 0x00, 0x02, 0x00, 0xfa, 0x10, 0x10) Units All the Services and Characteristics are declared in gatt_db.h. Descriptor are declared after the Characteristic Value declaration, but before the next Characteristic declaration. In this case the permission is the CharPresFormatDescriptor that have specific description by the standard. The Units for Humidity Characteristic is Percentage, defined in the Bluetooth SIG profiles document as 0x27AD. Descriptor Client Characteristic Configuration Descriptor (CCCD) is a descriptor where Clients write some of the bits to activate Server notifications and/or indications. PRIMARY_SERVICE_UUID128(service_humidity, uuid_service_humidity)        CHARACTERISTIC(char_humidity, gBleSig_Humidity_d, (gGattCharPropNotify_c))              VALUE(value_humidity, gBleSig_Humidity_d, (gPermissionNone_c), 2, 0x00, 0x25)              DESCRIPTOR(desc_humidity, gBleSig_CharPresFormatDescriptor_d, (gPermissionFlagReadable_c), 7, 0x0E, 0x00, 0xAD, 0x27, 0x00, 0x00, 0x00)              CCCD(cccd_humidity) Humidity service and interface Create a folder named “humidity” in path ${workspace_loc:/${ProjName}/bluetooth/profiles}. In the same path you can find the “temperature” folder; copy the temperature_service.c file and paste it inside the “humidity” folder with another name (humidity_service.c). After this, go back to the “temperature” folder and copy the temperature_interface.h file; paste it inside the “humidity” folder and rename it (humidity_interface.h). You will need to include the path of the created folder. Go to Project properties > C/C++ Build > Settings > Tool Settings > MCU C Compiler > Includes: Humidity Interface The humidity_interface.h file should include the following code, where the Service structure contains the Service handle and the initialization value: /*! Humidity Service - Configuration */ typedef struct humsConfig_tag {        uint16_t serviceHandle;        int16_t initialHumidity; } humsConfig_t; /*! Humidity Client - Configuration */ typedef struct humcConfig_tag {        uint16_t hService;        uint16_t hHumidity;        uint16_t hHumCccd;        uint16_t hHumDesc;        gattDbCharPresFormat_t humFormat; } humcConfig_t; Humidity service At minimum, humidity_service.c file must contain the following code: /*! Humidity Service - Subscribed Client*/ static deviceId_t mHums_SubscribedClientId; The Service stores the device identification for the connected client. This value is changed on subscription and non-subscription events. Initialization Initialization of the Service is made by calling the start procedure. This function is usually called when the application is initialized. In this case, this is done in the BleApp_Config() function. bleResult_t Hums_Start(humsConfig_t *pServiceConfig) {     mHums_SubscribedClientId = gInvalidDeviceId_c;     /* Set the initial value of the humidity characteristic */     return Hums_RecordHumidityMeasurement(pServiceConfig->serviceHandle,                                             pServiceConfig->initialHumidity); } Stop & Unsubscribe On stop function, the unsubscribe function is called. bleResult_t Hums_Stop(humsConfig_t *pServiceConfig) {     /* Stop functionality by unsubscribing */     return Hums_Unsubscribe(); } bleResult_t Hums_Unsubscribe(void) {     /* Unsubscribe by invalidating the client ID */     mHums_SubscribedClientId = gInvalidDeviceId_c;     return gBleSuccess_c; } Subscribe The subscribe function will be used in the main file to subscribe the GATT client to the Humidity Service. bleResult_t Hums_Subscribe(deviceId_t clientDeviceId) {     /* Subscribe by saving the client ID */     mHums_SubscribedClientId = clientDeviceId;     return gBleSuccess_c; } Record Humidity Depending on the complexity of the Service, the API will implement additional functions. For the Humidity Sensor will only have one Characteristic. The measurement will be saved on the GATT Database and send the notification to the Client. This function will need the Service handle and the new value as input parameters. bleResult_t Hums_RecordHumidityMeasurement(uint16_t serviceHandle, int16_t humidity) {        uint16_t handle;        bleResult_t result;        bleUuid_t uuid = Uuid16(gBleSig_Humidity_d);        /* Get handle of Humidity characteristic */        result = GattDb_FindCharValueHandleInService(serviceHandle,                      gBleUuidType16_c, &uuid, &handle);        if (result == gBleSuccess_c)        {              /* Update characteristic value */              result = GattDb_WriteAttribute(handle, sizeof(uint16_t), (uint8_t *)&humidity);              if (result == gBleSuccess_c)              {                     /* Notify the humidity value */                     Hts_SendHumidityMeasurementNotification(handle);              }        }        return result; } Remember to add/update the prototype for Initialization, Subscribe, Unsubscribe, Stop and Record Humidity Measurement functions in humidity_interface.h. Send notification After saving the measurement on the GATT Database by using the GattDb_WriteAttribute function, we can send the notification. To send this notification, first we have to get the CCCD and check if the notification is active after that; if it is active, then we send the notification. static void Hts_SendHumidityMeasurementNotification (              uint16_t handle ) {        uint16_t hCccd;        bool_t isNotificationActive;        /* Get handle of CCCD */        if (GattDb_FindCccdHandleForCharValueHandle(handle, &hCccd)                     != gBleSuccess_c)              return;        if (gBleSuccess_c == Gap_CheckNotificationStatus                     (mHums_SubscribedClientId, hCccd, &isNotificationActive) &&                     TRUE == isNotificationActive)        {              GattServer_SendNotification(mHums_SubscribedClientId, handle);        } } Remember to add or modify the prototype for Send Humidity Measurement Notification function.   Main file There are some modifications that need to be done in the Sensor main file: Add humidity_interface.h in main file /* Profile / Services */ #include "humidity_interface.h" Declare humidity service There are some modifications that have to be done in order to use the new Humidity Profile in the Sensor example. First, we need to declare the Humidity Service: static humsConfig_t humsServiceConfig = {(uint16_t)service_humidity, 0};   Rename BleApp_SendTemperature -> BleApp_SendHumidity static void BleApp_SendHumidity(void); After this, we need to add or modify the following functions and events: Modify BleApp_Start /* Device is connected, send humidity value */        BleApp_SendHumidity();   Ble_AppConfig Start Humidity Service and modify the Serial_Print line. /* Start services */ humsServiceConfig.initialHumidity = 0; (void)Hums_Start(&humsServiceConfig); (void)Serial_Print(gAppSerMgrIf, "\n\rHumidity sensor -> Press switch to start advertising.\n\r", gAllowToBlock_d);   BleApp_ConnectionCallback events - Event: gConnEvtConnected_c (void)Hums_Subscribe(peerDeviceId);   - Event: gConnEvtDisconnected_c (void)Hums_Unsubscribe();   Notify value in BleApp_GattServerCallback function /* Notify the humidity value when CCCD is written */ BleApp_SendHumidity(); Add the Hums_RecordHumidityMeasurement function and modify the initial value update in BleApp_SendHumidity function /* Update with initial humidity */ (void)Hums_RecordHumidityMeasurement((uint16_t)service_humidity,                                            (int16_t)(BOARD_GetTemperature())); Note: in this example, the Record Humidity uses the BOARD_GetTemperature to allow the developer to use the example without any external sensor and to be able to see a change in the collector, but in this section, there should be a GetHumidity function.   app_config.c file There are some modifications that need to be done inside app_config.c file: Modify Scanning and Advertising Data {     .length = NumberOfElements(uuid_service_humidity) + 1,     .adType = gAdComplete128bitServiceList_c,     .aData = (uint8_t *)uuid_service_humidity }   *Optional* Modify name {     .adType = gAdShortenedLocalName_c,     .length = 9,     .aData = (uint8_t*)"NXP_HUM" }   Modify Service Security Requirements {     .requirements = {         .securityModeLevel = gSecurityMode_1_Level_3_c,         .authorization = FALSE,         .minimumEncryptionKeySize = gDefaultEncryptionKeySize_d     },     .serviceHandle = (uint16_t)service_humidity }   Client (Collector)   We will use the Temperature Collector project as base to create our Humidity Custom Profile Client (Collector). BLE SIG profiles As mentioned in the Server section, we need to verify if the Profile or Service is already defined in the specification. For this, we can take a look at the Bluetooth SIG profiles document and check in the ble_sig_defines.h file (${workspace_loc:/${ProjName}/bluetooth/host/interface}) if this is already declared in the code. In our case, the Service is not declared, but the Characteristic of the Humidity is declared in the specification. Then, we need to check if the Characteristic is already included in ble_sig_defines.h. Since the Characteristic is not included, we need to define it as shown: /*! Humidity Characteristic UUID */ #define gBleSig_Humidity_d                    0x2A6FU GATT Database The Humidity Collector is going to have the GATT client; this is the device that will receive all new information from the GATT Server. The demo provided in this article works in the same way as the Temperature Collector. When the Collector enables the notifications from the Sensor, received notifications will be printed in the seral terminal. In order to create the demo, we need to define or develop a Service that must be the same as in the GATT Server, this is declared in the gatt_uuid128.h file. If the new Service is no the same, Client and Server will not be able to communicate each other. All macros, functions or structures in the SDK have a common template which helps the application to act accordingly. Hence, we need to define this service in the gatt_uui128.h as shown next: /* Humidity */ UUID128(uuid_service_humidity, 0xfe, 0x34, 0x9b, 0x5f, 0x80, 0x00, 0x00, 0x80, 0x00, 0x10, 0x00, 0x02, 0x00, 0xfa, 0x10, 0x10) Includes After that, copy the humidity profile folder from the Sensor project and paste it into the Collector project inside ${workspace_loc:/${ProjName}/bluetooth/profiles}. Also, include the path of the new folder.   Main file In the Collector main file, we need to do some modifications to use the Humidity Profile Include humidity_interface.h /* Profile / Services */ #include "humidity_interface.h"   Modify the Custom Info of the Peer device humcConfig_t     humsClientConfig;   Modify BleApp_StoreServiceHandles function static void BleApp_StoreServiceHandles {     APP_DBG_LOG("");     uint8_t i,j;     if ((pService->uuidType == gBleUuidType128_c) &&              FLib_MemCmp(pService->uuid.uuid128, uuid_service_humidity, 16))     {         /* Found Humidity Service */        mPeerInformation.customInfo.humsClientConfig.hService = pService->startHandle;         for (i = 0; i < pService->cNumCharacteristics; i++)         {             if ((pService->aCharacteristics[i].value.uuidType == gBleUuidType16_c) &&                     (pService->aCharacteristics[i].value.uuid.uuid16 == gBleSig_Humidity_d))             {                 /* Found Humidity Char */             mPeerInformation.customInfo.humsClientConfig.hHumidity = pService->aCharacteristics[i].value.handle;                 for (j = 0; j < pService->aCharacteristics[i].cNumDescriptors; j++)                 {                     if (pService->aCharacteristics[i].aDescriptors[j].uuidType == gBleUuidType16_c)                     {                         switch (pService->aCharacteristics[i].aDescriptors[j].uuid.uuid16)                         {                             /* Found Humidity Char Presentation Format Descriptor */                             case gBleSig_CharPresFormatDescriptor_d:                             {                                 mPeerInformation.customInfo.humsClientConfig.hHumDesc = pService->aCharacteristics[i].aDescriptors[j].handle;                                 break;                             }                             /* Found Humidity Char CCCD */                             case gBleSig_CCCD_d:                             {                                 mPeerInformation.customInfo.humsClientConfig.hHumCccd = pService->aCharacteristics[i].aDescriptors[j].handle;                                 break;                             }                             default:                                 ; /* No action required */                                 break;                         }                     }                 }             }         }     } }   Modify BleApp_StoreDescValues function if (pDesc->handle == mPeerInformation.customInfo.humsClientConfig.hHumDesc) {        /* Store Humidity format*/        FLib_MemCpy(&mPeerInformation.customInfo.humsClientConfig.humFormat,                     pDesc->paValue,                     pDesc->valueLength); }   Implement BleApp_PrintHumidity function static void BleApp_PrintHumidity (     uint16_t humidity ) {     APP_DBG_LOG("");     shell_write("Humidity: ");     shell_writeDec((uint32_t)humidity);     /* Add '%' for Percentage - UUID 0x27AD.        www.bluetooth.com/specifications/assigned-numbers/units */     if (mPeerInformation.customInfo.humsClientConfig.humFormat.unitUuid16 == 0x27ADU)     {         shell_write(" %\r\n");     }     else     {         shell_write("\r\n");     } }   Modify BleApp_GattNotificationCallback function if (characteristicValueHandle == mPeerInformation.customInfo.humsClientConfig.hHumidity) { BleApp_PrintHumidity(Utils_ExtractTwoByteValue(aValue)); }   Modify CheckScanEvent function foundMatch = MatchDataInAdvElementList(&adElement, &uuid_service_humidity, 16);   Some events inside BleApp_StateMachineHandler need to be modified: BleApp_StateMachineHandler - Event: mAppIdle_c if (mPeerInformation.customInfo.humsClientConfig.hHumidity != gGattDbInvalidHandle_d)   - Event: mAppServiceDisc_c if (mPeerInformation.customInfo.humsClientConfig.hHumDesc != 0U)  mpCharProcBuffer->handle = mPeerInformation.customInfo.humsClientConfig.hHumDesc;   - Event: mAppReadDescriptor_c if (mPeerInformation.customInfo.humsClientConfig.hHumCccd != 0U)   Modify BleApp_ConfigureNotifications function mpCharProcBuffer->handle = mPeerInformation.customInfo.humsClientConfig.hHumCccd;   Demonstration   In order to print the relevant data in console, it may be necessary to disable Power Down mode in app_preinclude.h file. This file can be found inside source folder. For this, cPWR_UsePowerDownMode and cPWR_FullPowerDownMode should be set to 0. Now, after connection, every time that you press the User Interface Button on QN9090 Humidity Sensor is going to send the value to QN9090 Humidity Collector. Humidity Sensor   Humidity Collector  
View full article
This document describes how to update and sniff Bluetooth LE wireless applications on the USB-KW41 Programming the USB-KW41 as sniffer   It was noticed that there are some issues trying to follow a Bluetooth LE connection, even if the sniffer catches the connection request. These issues have been fixed in the latest binary file which can be found in the Test Tool for Connectivity Products 12.8.0.0 or newest.   After the Test Tool Installation, you’ll find the sniffer binary file at the following path. C:\NXP\Test Tool 12.8.1.0\images\KW41_802.15.4_SnifferOnUSB.bin   Programming Process. 1. Connect the USB-KW41Z to your PC, and it will be enumerated as Mass Storage Device 2. Drag and drop the "KW41_802.15.4_SnifferOnUSB.bin" included in Test tool for Connectivity Products.    "C:\NXP\Test Tool 12.8.0.0\images\KW41_802.15.4_SnifferOnUSB.bin"   3. Unplug the device and hold the RESET button of the USB-KW41Z, plug to your PC and the K22 will enter in bootloader mode. 4. Drag and drop the "sniffer_usbkw41z_k22f_0x8000.bin" included in Test tool for Connectivity Products.    "C:\NXP\Test Tool 12.8.5.9\images\sniffer_usbkw41z_k22f_0x8000.bin"   5. Then, unplug and plug the USB-KW41Z to your PC.                                                                                                          Note: If the USB-KW41 is not enumerated as Mass Storage Device, please look at the next thread https://community.nxp.com/thread/444708   General Recommendations   Software Tools  Kinetis Protocol Analyzer Wireshark version (2.4.8) Hardware Tools 1 USB-KW41 (updated with KW41_802.15.4_SnifferOnUSB.bin from Test Tool 12.8 or later)   The Kinetis Protocol Analyzer provides the ability to monitor the Bluetooth LE Advertisement Channels. It listens to all the activity and follows the connection when capturing a Connection Request.   Bluetooth LE Peripheral device transmits packets on the 3 advertising channels one after the other, so the USB-KW41 will listen to the 3 channels one by one and could or not catch the connection request.   Common use case The USB-KW41 will follow the Bluetooth LE connection if the connection request happens on the same channel that It is listening. If is listening to a different channel when the connection request is sent, it won't be able to follow it.   A Simple recommendation is the Bluetooth LE Peripheral should be set up to send the adv packets only to one channel and the sniffer just capturing on the same channel.   Improvement Use 3 USB-KW41, each of them will be dedicated to one channel and will catch the connection request.   Configure Kinetis Protocol Analyzer and Wireshark Network Analyzer   Note: For better results, address filter can be activated. When you are capturing all the packets in the air, you will notice 3 adv packets. Each packet will show the adv channel that is getting the adv frame.       One of the three sniffers will capture the Connection Request. In this case, it happens on channel 38.       You will be able to follow the connection, see all the data exchange.   For a better reference, you can look at the USB-KW41 Getting Started     Hope it helps   Regards, Mario
View full article
Introduction Over The Air Programming (OTAP) is a Bluetooth LE custom NXP's service that provides a solution to upgrade the software running in the microcontroller. This document guides to load a new software image in a KW38 device through (Over The Air Programming) OTAP Bluetooth LE service. Software Requirements MCUXpresso IDE or IAR Embedded Workbench IDE. FRDM-KW38 SDK. IoT Toolbox App, available for Android and iOS. You can also download the APK of the IoT Toolbox App from this post: IoT Toolbox for Android  Hardware Requirements FRDM-KW38 board. A smartphone with IoT Toolbox App. KW38 Flash Memory Used by the OTAP Client Software During the Update Process By default, the 512KB KW38 flash memory is partitioned into: One 256KB Program Flash array (P-Flash) divided into 2KB sectors with a flash address range from 0x0000_0000 to 0x0003_FFFF. One 256KB FlexNVM array divided into 2KB sectors with address range from 0x1000_0000 to 0x1003_FFFF. Alias memory with address range from 0x0004_0000 to 0x0007_FFFF. Writes or reads at the Alias memory modifies or returns the FlexNVM content, respectively. In other words, Alias memory is another way to refer to FlexNVM memory using different addresses. The following statements simplify how does the OTAP service work:   The OTAP application consists of two independent parts, OTAP bootloader, and OTAP client. The OTAP bootloader verifies if there is a new image available in the OTAP client to reprogram the device. The OTAP client software, on the other hand, provides the Bluetooth LE custom service needed to communicate the OTAP client device (device to be reprogrammed) with the OTAP server device (device that contains the image to reprogram the OTAP client device). Therefore, to prepare the software for the first time, the OTAP client device needs to be programmed twice, first with the OTAP bootloader, and then with the OTAP client software. The mechanism created to have two different software coexisting in the same device is storing each one in different memory regions. This is achieved by indicating to the linker file different memory regions on each individual software. For the KW38 device, the OTAP bootloader has reserved an 8KB slot from 0x0000_0000 to 0x0000_1FFF, thus the rest of the memory is reserved, among other things, by the OTAP client software.     When generating the new image file for the OTAP client device, we need to specify to the linker file that the code will be placed with an offset of 8KB (as the OTAP client software does), since these address range must be preserved to do not overwrite the OTAP bootloader. The new application should also contain the bootloader flags at the corresponding address to work properly (later we will return to this point).     While OTAP client and OTAP server devices are connected, and the download is in progress, the OTAP server device sends the image packets (known as chunks) to the OTAP client device via Bluetooth LE. The OTAP client device can store these chunks, in the external SPI flash (which is already populated on the FRDM-KW38) or in the on-chip FlexNVM region. The destination for these chunks is selectable in the OTAP client software (This post will give the instructions to modify the destination).     When the transfer of the image has finished, and all chunks were sent from the OTAP server device to the OTAP client device, the OTAP client software writes information such as the source of the software update (either external flash or FlexNVM) in a portion of memory known as bootloader flags. Then the OTAP client performs a software reset on the MCU to execute the OTAP bootloader code. Then, the OTAP bootloader code reads the bootloader flags to get the information needed to reprogram the device with the new application. See the following flow diagram which explains the flow of both applications.   Because the new application was built with an offset of 8KB, the OTAP bootloader programs the device starting from the 0x0000_2000 address, so, in consequence, the OTAP client application is overwritten by the new image. Then, the OTAP bootloader moves the flow of the application to start the execution of the new code.     In practice, the boundary between the OTAP client software and the software update when FlexNVM storage is enabled described in statement 3 is not placed exactly in the boundary of the P-Flash and FlexNVM memory regions, moreover, these values might change depending on your linker settings. To know where is located the boundary, you should inspect the effective memory addressing in your project.        Configuring and Programming OTAP Client Software in IAR Embedded Workbench IDE As mentioned in the last section, to complete the software for OTAP implementation, there are required two software programmed in your FRDM-KW38, OTAP bootloader and OTAP client. This section guides you to program and configure the settings to choose between external or internal storage using the IAR Embedded Workbench IDE. 1- The first step is to program the OTAP bootloader in your KW38. Unzip your SDK and then locate the OTAP bootloader software in the following path: <KW38_SDK>\boards\frdmkw38\wireless_examples\framework\bootloader_otap\bm\iar\bootloader_otap.eww 2- Program the OTAP bootloader project on your board by clicking on the "Download and Debug" icon (Ctrl + D) . Once the KW38 was programmed and the debug session begun, abort the session (Ctrl + Caps Lock + D)  to stop the MCU safely. 3- At this point, you have programmed the OTAP bootloader in your KW38. The next is to program and configure the OTAP client software. Locate the OTAP client software at the following path: Freertos project version: <KW38_SDK>\boards\frdmkw38\wireless_examples\bluetooth\otac_att\freertos\iar\otap_client_att_freertos.eww Baremetal project version: <KW38_SDK>\boards\frdmkw38\wireless_examples\bluetooth\otac_att\bm\iar\otap_client_att_bm.eww 4- Then, configure the OTAP client to select external or internal storage. To select the external storage, follow the next steps (this is the default configuration in the SDK project): 4.1- Locate the "app_preinclude.h" header file in the source folder of your workspace. Search the "gEepromType_d" define and set its value to "gEepromDevice_AT45DB041E_c". /* Specifies the type of EEPROM available on the target board */ #define gEepromType_d gEepromDevice_AT45DB041E_c 4.2- Open the project options window (Alt + F7). Go to Linker->Config window and set "gUseInternalStorageLink_d=0".   To select the internal storage, follow the next steps: 4.1- Locate the "app_preinclude.h" header file in the source folder of your workspace. Search the "gEepromType_d" define and set its value to "gEepromDevice_InternalFlash_c". /* Specifies the type of EEPROM available on the target board */ #define gEepromType_d gEepromDevice_InternalFlash_c 4.2- Open the project options window (Alt + F7). Go to Linker->Config window and set "gUseInternalStorageLink_d=1".   5- Once you have configured the storage settings, save the changes in the project. Then program the software on your board by clicking on the "Download and Debug" icon (Ctrl + D)  . Once the KW38 was programmed and the debug session began, abort the session (Ctrl + Caps Lock + D)  to stop the MCU safely. Creating an SREC Image to Update the Software in OTAP Client in IAR Embedded Workbench IDE This section shows how to create an image compatible with OTAP to reprogram the KW38 OTAP Client using as a starting point, our wireless examples with IAR Embedded Workbench IDE. 1- Select any example from your SDK package in the Bluetooth folder and open it using the IAR IDE. Bluetooth examples are located in the following path: <KW38_SDK>\boards\frdmkw38\wireless_examples\bluetooth  In this example, we will use the glucose sensor project: <KW38_SDK>\boards\frdmkw38\wireless_examples\bluetooth\glucose_s\freertos\iar\glucose_sensor_freertos.eww 2- Open the project options window in IAR (Alt + F7). In Linker->Config window, edit the options to include the "gUseBootloaderLink_d=1" flag and update the "gEraseNVMLink_d=0" flag. When the gUseBootlaoderLink_d flag is true, it indicates to the linker file that the image must be addressed after the first flash sector, to do not overwrite the OTAP Bootloader software (as we stated previously). On the other hand, the gEraseNVMLink_d symbol is used to fill with a 0xFF pattern the unused NVM flash memory region. Disabling this flag, our software image will not contain this pattern, in consequence, the image reduces its total size and it improves the speed of the OTAP download and memory usage. 3- Go to "Output Converter" window. Deselect the "Override default" checkbox, then expand the "Output format" combo box and select "Motorola S-records" format. Click the "OK" button to finish. 4- Build the project. 5- Locate the S-Record file (.srec) in the following path, and save it to a known location on your smartphone. <KW38_SDK>\boards\frdmkw38\wireless_examples\bluetooth\glucose_s\freertos\iar\debug\glucose_sensor_freertos.srec Configuring and Programming OTAP Client Software in MCUXpresso IDE As mentioned in a previous section, to complete the software for OTAP implementation, there are required two software programmed in your FRDM-KW38, OTAP bootloader and OTAP client. This section guides you to program and configure the settings to choose between external or internal storage using the MCUXpresso IDE. 1- Open MCUXpresso IDE. Click on "Import SDK example(s)" in the "Quickstart Panel". 2- Select the FRDM-KW38 icon and click "Next >". 3- Import the OTAP bootloader project. It is located in "wireless_examples -> framework -> bootloader_otap -> bm -> bootloader_otap". Click on the "Finish" button. 4- Program the OTAP bootloader project on your board by clicking on the "Debug" icon  . Once the KW38 was programmed and the debug session begun, abort the session  (Ctrl + F2) to stop the MCU safely. 5- Repeat steps 1 to 3 to import the OTAP client software on MCUXpresso IDE. It is located at "wireless_examples -> bluetooth -> otac_att -> freertos -> otap_client_att_freertos" for freertos version, or "wireless_examples -> bluetooth -> otac_att -> bm -> otap_client_bm_freertos" if you prefer baremetal instead. 6- Then, configure the OTAP client to select external or internal storage. To select the external storage, follow the next steps (this is the default configuration in the SDK project): 6.1- Locate the "app_preinclude.h" file under the source folder in your workspace. Search the "gEepromType_d" define and set its value to "gEepromDevice_AT45DB041E_c". /* Specifies the type of EEPROM available on the target board */ #define gEepromType_d gEepromDevice_AT45DB041E_c 6.2- Navigate to "Project -> Properties -> C/C++ Build -> MCU settings -> Memory details". Edit the Flash fields as shown in the figure below, and leave intact the RAM. To select the internal storage, follow the next steps: 6.1- Locate the "app_preinclude.h" file under the source folder in your workspace. Search the "gEepromType_d" define and set its value to "gEepromDevice_InternalFlash_c". /* Specifies the type of EEPROM available on the target board */ #define gEepromType_d gEepromDevice_InternalFlash_c 6.2- Navigate to "Project -> Properties -> C/C++ Build -> MCU settings -> Memory details". Edit the Flash fields as shown in the figure below, and leave intact the RAM. 7- Once you have configured the storage settings, save the changes in the project. Then program the software on your board by clicking on the "Debug" icon  . Once the KW38 was programmed and the debug session begun, abort the session  (Ctrl + F2) to stop the MCU safely. Creating an SREC Image to Update the Software in OTAP Client in MCUXpresso IDE This section shows how to create an image compatible with OTAP to reprogram the KW38 OTAP Client using as a starting point, our wireless examples with MCUXpresso IDE. 1- Import any example from your SDK package in the Bluetooth folder as explained previously. Bluetooth examples are located in "wireless_examples -> bluetooth" folder in the SDK Import Wizard. This example will make use of the glucose sensor project in "wireless_examples -> bluetooth -> glucose_s -> freertos -> glucose_sensor_freertos". See the picture below. 2- Navigate to "Project -> Properties -> C/C++ Build -> MCU settings -> Memory details". Edit the Flash fields as shown in the figure below, and leave intact the RAM. The last fields indicate to the linker file that the image must be addressed after the first flash sector, to do not overwrite the OTAP bootloader software, as we stated in the introduction of this post. 3- Unzip your KW38 SDK package. Drag and drop the "main_text_section.ldt" linker script from the following path to the "linkscripts" folder on your workspace. The result must be similar as shown in the following figure. <KW38_SDK>\middleware\wireless\framework\Common\devices\MKW38A4\mcux\linkscript_bootloader\main_text_section.ldt 4- Open the "end_text.ldt" linker script file located in the linkscripts folder in MCUXpresso IDE. Locate the section shown in the following figure and remove "FILL" and "BYTE" statements. BYTE and FILL lines are used to fill with a 0xFF pattern the unused NVM flash memory region. Removing this code, our software image will not contain this pattern, in consequence, the image reduces its total size and it improves the speed of the OTAP download and memory usage. 5- Open the "app_preinclude.h" file, and define "gEepromType_d" as internal storage. This is a dummy definition needed to place the bootloader flags in the proper address, so this will not affect the storage method chosen before when you programmed the OTAP client and the OTAP bootloader software in your MCU. /* Specifies the type of EEPROM available on the target board */ #define gEepromType_d gEepromDevice_InternalFlash_c 6-  Include in your project, the "OtaSupport" folder and its files in the "framework" folder of your project. Include as well the "External" folder and its files in the "framework -> Flash" folder of your project. "OtaSupport" and "External" folders can be found in your SDK. You can easily drag those folders from your SDK download path and drop it into your workspace in MCUXpresso to include them. "OtaSupport" and "External" folders are located at: OtaSupport <KW38_SDK>middleware\wireless\framework\OtaSupport External <KW38_SDK>middleware\wireless\framework\Flash\External The result must look like the following picture:  7- Go to "Project -> Properties -> C/C++ Build -> Settings -> Tool Settings -> MCU C Compiler -> Includes". Click on the icon next to "Include paths" (See the picture below). A new window will be displayed, then click on the "Workspace" button. 8- Deploy the directory of the project in the "Folder selection" window, and select "framework -> Flash -> External -> interface" and "framework -> OtaSupport -> interface" folders. Click the "OK" button to save the changes. 9- Ensure that "OtaSupport" and "External" folders were imported in the "Include paths" window. Then save the changes by clicking on the "Apply and Close" button. 10- Save and build the project by clicking this icon  . Then, deploy the "Binaries" icon in your project. Click the right mouse button on the ".axf" file and select the "Binary Utilities -> Create S-Record" option. The S-Record file generated will be saved in the Debug folder in your workspace with ".s19" extension. Save the S-Record file in a known location on your smartphone.    Testing the OTAP Client with IoT Toolbox App This section explains how to test the OTAP client software using the IoT Toolbox App. 1- Open the IoT Toolbox App on your smartphone. Select OTAP and click "SCAN" to start scanning for a suitable OTAP Client device.  2- Press the ADV button (SW2) on your FRDM-KW38 board to start advertising. 3- Once your smartphone has found the FRDM-KW38 board, it will be identified as "NXP_OTAA". Connect your smartphone with this device. Then a new window will be displayed on your smartphone.  4- Click the "Open" button and search for the SREC software update. 5- Click "Upload" to start the transfer. Wait while the download is completed. A confirmation message will be displayed after a successful update.  6- Wait a few seconds until the software update was programmed on your MCU. The new code will start automatically.   Please let me know any questions about this topic.
View full article
This guide explains how to configure Wi-Fi as Access Point using the i.MX8M Plus EVK (8MP) as the AP device and the i.MX8M Mini EVK (8MM) as the connected device.
View full article