S32 Design Studio Knowledge Base

cancel
Showing results for 
Search instead for 
Did you mean: 

S32 Design Studio Knowledge Base

Discussions

When a new application project is created using the New Project Wizard, it is possible to select the debugger to be used. This results in the associated debugger configurations being created within the new project. But what if support for multiple debuggers is required or it is desired to switch to a different debugger? There are easy ways to resolve this. One is as simple as creating a new debug configuration. Another method is by creating new application project, selecting the new debugger to be supported. Then either repurposing the associated debug configuration or duplicating then modifying the debug configuration to support instead the previously existing project. This minimizes the effort by benefiting from the automation of the New Project Wizard.   Detailed below are the steps to add a new debug configuration.  Create A New S32 Debugger Configuration Load the existing project. For this demonstration, the SDK project ‘hello_world_s32v234’ will be used. Select the project so it appears highlighted in blue. Notice that the other project, ‘New_App_Project’, is bold text. This is because the main.c file open in the editor window to the right is the currently selected source file and is from this project. This has no effect on the process detailed in this document. Check that the existing project has been build and the executable is present. If the executable is not present, then an error will be displayed within the Debug Configurations menu and the executable file will need to be selected in a later additional step after it has been created. Open the Debug Configurations menu. Run -> Debug Configurations   Now select the Debugger Group for which you wish to create the new configuration. In this case, we will select ‘S32 Debugger’. Next, click ‘New Launch Configuration’ Now a new Debug Configuration has been created for your project and for the S32 Debugger. Most of the fields are already completed for you. Select the Debugger tab to see the source of the error message. The error message indicates ‘Specify Device and Core’. So click on ‘Select device and core’. Now expand the lists until the Device and Core are visible. Select the correct core for your project. In the demonstration example, the correct Device and Core are ‘S32V234’ and ‘M4’, respectively. Click OK, when done. If you have a debug probe connected, it may have been detected. If not, the Debug Probe Connection section will need to be completed. Now select the ‘Common’ tab to setup the storage location for this new Debug Configuration. Select ‘Shared file’ and then ‘Browse…’ Expand the lists until ‘Project_Settings/Debugger’ is open. Select ‘Debugger’, then click OK. Now the basic debug configuration settings are complete. It is now ready to be used and the Debug button could be clicked to start debug. Otherwise, you may have more customizations to make, such as for Attach Mode. Repurpose S32 Debugger Configuration From A New Project Create new project New -> S32DS Application Project New Project Wizard, processor and toolchain page Enter a project name Select the device and core to match the existing project If necessary, select the toolchain to match the existing project Click Next New Project Wizard, cores and parameters page Select the number of cores to match the existing project Select the debugger, S32 Debugger If necessary, select other parameters to match the existing project Click Finish Open existing project which does not already have the S32 Debugger debug configurations (for this demonstration, we will use the hello_world_s32v234 example project from the S32 SDK) Copy debug configurations and modify settings to adapt to existing project Run -> Debug Configurations... Debug Configurations window Within the S32 Debugger grouping, select the debug configuration for the new project which corresponds to the build configuration and core of the existing project Change the name of the debug configuration. Change the portion of the name containing the project name to match the name of the existing project. Main tab Project field Click Browse... Select existing project C/C++ Application Click Search Project... Select the Elf file Common tab Save as field Click Browse... Select {existing_project_name}\Project_Settings\Debugger Debugger tab, Debug Probe Connection Setup connection parameters Click Apply Repeat as needed for all core/build config options The existing project now has the S32 Debugger configurations and is ready for debug with the S32 Debug Probe.
View full article
Trace functionality is supported in the S32 Debugger for A53 cores on the S32V, RAM-target builds. With Trace, you can record some execution data on an application project and then review it to determine the actions and data surrounding an event of interest.   This document outlines the method to begin using Trace on the S32V234 device. We start by creating a project on which to execute the trace, however, you may start at step 2, if you are starting with an existing project. Please note, you will need to have debug configurations for the S32 Debugger setup for each core which you intend to capture trace. If you do not already have such configurations, you may copy them from another project and adapt them to the new project as shown in HOWTO: Add a new debugger configuration to an existing project.   Create a new application project, selecting the 'S32V234 Cortex-A53' processor and 'S32 Debugger' options.  There should now be 4 new application projects in your workspace. One for each A53 core. The first core of the S32V234, A53_0_0, is also a possible boot core, so this project will have build configurations for RAM and FLASH. The other A53 cores (0_1, 1_0, 1_1) will not. Build all projects for Debug_RAM and check that they build clean before proceeding. Open 'Debug Configurations...' and select the 'Debug_RAM' configuration for the first core (A53_0_0_Debug_RAM_S32Debug). Select the 'Debugger' tab. Enter the Debug Probe Connection settings as appropriate for your hardware setup. Now select the Launch Group configuration for 'Debug_RAM'. It is important to use the launch group to start the debug for each core, not just because it makes it easier, but also because it is necessary to allow for some delay after the first A53 core is started before bringing the other A53 cores from reset to debug state. Press Debug Once the code is loaded to the target and the debugger has started each core and executed to the first line within main(), then it is ready to perform any of the standard debug functions including Trace. Trace does not start automatically, it must be turned on before it will start logging data. To do this, it is necessary to add the view 'Trace Commander'. It can be found by either Window -> Show View -> Other, then search for 'Trace Commander' or enter 'Trace Commander' in the Quick Access field of the toolbar and select Trace Commander from the list. The Trace Commander view will show in the panel with the Console, Problems, etc. Double-click on the tab to enlarge it. Click on the configure button to change settings. Click on the Advanced Trace Generators configuration button For each core to be logged, set the associated ELF file. Select the core, click Add, then '...', and select the elf file for that core. Select Data Streams. Now it is possible to change how the data is captured. Since the buffers have finite memory, they can be set to collect data until full, or to overwrite. If set to One buffer, the data will be collected until the buffer is full, then data collection stops. It is useful to gather data when starting logging from a breakpoint to gather data during execution of a specific section of code. If set to Overwrite, the data collection continues and starts overwriting itself once the buffer is full. This is useful when trying to gather data prior to a breakpoint triggered by a condition.  To turn on the Trace logging, click on the 'Close this trace stream' button. The Trace is now enabled. To collect trace data, the cores must be executing. First double-click the Trace Commander tab to return to the normal Debug Perspective view. Then, one by one, select the main() thread on each core and press Resume to start them all. If collecting from a breakpoint, start the code first with Trace disabled, wait for the breakpoint to be reached, then enable the Trace. Allow the cores to run for a period of time to gather the data, then press Suspend on each one until they are all suspended. Look to the Trace Commander tab to see that the data icon is no longer shaded and click on it to upload the trace data. A new tab, Analysis Results, has appeared. Double-click this tab to see it better. Click on the arrow next to ETF 0 to show the data collected in the trace buffer. Notice there are 5 separate views on the captured data: Trace (raw data), Timeline, Code Coverage, Performance, and Call Tree. Trace - this is the fully decoded trace data log Timeline - displays the functions that are executed in the application and the number of cycles each function takes, separate tabs for each core Code Coverage - displays the summarized data of a function in a tabular form, separate tabs for each core Performance - displays the function performance data in the upper summary table and the call pair data for the selected function and it's calling function Call Tree - shows the call tree for identification of the depth of stack utilization See the S32DS Software Analysis Documentation for more details on settings, ways to store the logged data, etc.
View full article
Hi: I just wonder whether I can use S32 debug probe for S32K3 EVB in S32DS 3.4? I couldn't locate script and algorism for S32K3xx. Thanks.
View full article
        Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio v3.4 Vision Extension Package for S32V23x 1.3.0           What is new? Integrated VSDK 1.7.0   Installation instructions The update is available f or online installation (via S32DS Extensions and Updates) or  offline  installation (direct download link)   installation:  go to menu  "Help" -> " S32DS Extensions and Updates " dialog  select from available items and click "Install/Update" button offline   installation:    go to S32 Design Studio for S32 Platform product page -> Downloads section or use direct link  to download the update archive zip file         Start S32 Design Studio and go to "Help" -> "S32DS Extensions and Updates", then click 'Add Update Sites' link Select the downloaded update archive zip file you downloaded in the previous step       Select the 'Vision extension package for S32V23x' package and click "Install/Update" button.   This will start the update installation process.
View full article
**************************************************************************************** IDE: S32 Design Studio Version 3.4 Workspace: C:\Projects\S32DS_3_4 Project name: S32K314_00_blank_00 Project location: C:\Projects\S32DS_3_4\S32K314_00_blank_00 **************************************************************************************** 1. After you finish the edit on your codes, please close S32DS 2. Input the command(as below) at your clean_and_build_s32k3_commandLine.bat 3. Run command prompt with Administrator right. 4. Run clean_and_build_s32k3_commandLine.bat at command prompt   You will get the *.elf under the folder of C:\Projects\S32DS_3_4\S32K314_00_blank_00\Debug_FLASH Cheers! Oliver
View full article
S32 Design Studio Versions     S32DS IDE for S32 Platform S32DS IDE for Arm® S32DS IDE for Power Architecture® S32DS IDE for Vision Devices Supported S32V23x S32K1xx MPC56xx S32V234 S32S247TV KEA MPC57xx   S32 Platform Devices MAC57D54H S32R2xx/S32R3xx   Integrated NXP Tools S32 Flash Tool FreeMASTER FreeMASTER DDR stress tool DDR stress tool       Integrated Configuration Tools S32 Configuration Tools Processor Expert Configuration Tool Processor Expert Configuration Tool  DDR configuration tool Pins Wizard Pins Wizard Pins Wizard   Clocks configuration Peripheral/Drivers configuration   Peripheral/Drivers configuration   Peripheral/Drivers configuration   DCD/IVT configuration       DDR configuration tool       Integrated NXP Software S32 SDK S32K1 SDK S32 SDK Vision SDK FreeRTOS FreeRTOS FreeRTOS Linux BSP AMMCLib for S32V23x AMMCLib for KEA and S32K AMMCLib for MPC56xx and MPC57xx MCUs   Vision SDK KEA SDK Radar SDK   Linux BSP MQX OS/MQX Drivers for MAC57D54H     Compilers: NXP GCC 6.3.1* NXP GCC 9.2 NXP GCC 6.3.1* NXP GCC 4.9* NXP GCC 6.3.1* GreenHills GreenHills GreenHills   IAR IAR Diab     GCC 4.9*     DEBUGGERS Built-in GDB interface : S32 Debugger/ S32 Debug Probe P&E Multilink/Cyclone/OpenSDA P&E   Multilink/Cyclone/OpenSDA S32 Debugger/S32 Debug Probe P&E Multilink/Cyclone/OpenSDA Segger J-Link   P&E Multilink/Cyclone/OpenSDA DEBUGGERS supported: Lauterbach Lauterbach Lauterbach Lauterbach   iSystem iSystem     IAR PLS   Host Operating Systems: Microsoft Windows®   7/8/10 64-bit OS (with 32-bit binaries)  – Ubuntu 14.04, 16.04 (64 bit) – Debian 8 (64 bit) – CentOS 7 (64 bit) Microsoft Windows®   7/8/10 32/64-bit OS (with 32-bit binaries)  – Ubuntu 14.04, 16.04 (64 bit) – Debian 8 (64 bit) – CentOS 7 (64 bit) Microsoft Windows®   7/8/10 32/64-bit OS (with 32-bit binaries)  – Ubuntu 14.04, 16.04 (64 bit) – Debian 8 (64 bit) – CentOS 7 (64 bit) Microsoft Windows®   7/8/10 32/64-bit OS (with 32-bit binaries)  – Ubuntu 14.04, 16.04 (64 bit) – Debian 8 (64 bit) – CentOS 7 (64 bit) Vision specific tools : NXP APU Compiler     NXP APU Compiler ISP assembler     ISP assembler ISP and APEX graph tools     ISP and APEX graph tools Radar specific tools :     SPT assembler       SPT Explorer/ SPT graph tool       S32 Design Studio for S32 Platform S32 Design Studio for S32 Platform 3.4 (Windows/Linux) S32 Design Studio for S32 Platform 3.3 (Windows/Linux)  S32 Design Studio for S32 Platform 3.2 (Windows/Linux)  S32 Design Studio 3.2 - Update 191226 S32 Design Studio 3.2 - Update 191219 S32 Design Studio 3.1 (Windows/Linux) S32 Design Studio 3.1 - Update 2    S32 Design Studio 3.1 - Update 190708  S32 Design Studio 3.1 - Update 190508  S32 Design Studio 2018.R1 (Windows/Linux)   Development packages S32K1xx dev package and S32 SDK for S32K1xx RTM 4.0.0 (S32 Design Studio 3.3) S32S2xxTV 3.1.0 S32V2xx Development Package 3.1.0 S32V2xx 2018.R1   Extension packages Vision Extension Package for S32V234 1.2.0 (S32 Design Studio 3.3) Vision Extension Package for S32V2xx 1.0.0 (for S32 Design Studio 3.1)   S32DS for Vision S32 Design Studio for Vision 2018.R1 (Windows/Linux)  S32 Design Studio for Vision v2.0 (Windows/Linux)    S32DS for Arm S32 Design Studio for Arm 2.2 (Windows/Linux)  S32 Design Studio for Arm 2.2 - Update 1 S32 Design Studio for Arm 2018.R1 (Windows/Linux)  S32 Design Studio for Arm 2018.R1 - Update 11  S32 Design Studio for Arm 2018.R1 - Update 10  S32 Design Studio for Arm 2018.R1 - Update 9  S32 Design Studio for Arm 2018.R1 - Update 8  S32 Design Studio for Arm 2018.R1 - Update 7 S32 Design Studio for Arm 2018.R1 - Update 6  S32 Design Studio for Arm 2018.R1 - Update 5 S32 Design Studio for Arm 2018.R1 - Update 4  S32 Design Studio for Arm 2018.R1 - Update 3 S32 Design Studio for Arm 2018.R1 - Update 2 S32 Design Studio for Arm 2018.R1 - Update 1 S32 Design Studio for Arm v2.0 (Windows/Linux) S32 Design Studio for Arm v2.0 - Update 3 S32 Design Studio for Arm v2.0 - Update 2 S32 Design Studio for Arm v2.0 - Update 1 S32 Design Studio for Arm v1.3 (Windows/Linux)  S32 Design Studio for Arm v1.3 - Update 3 & 4 S32 Design Studio for Arm v1.3 - Update 2 S32 Design Studio for Arm v1.3 - Update 1 S32 Design Studio for ARM v1.2 (Windows/Linux)    S32DS for Power S32 Design Studio for Power Architecture v2.1 (Windows/Linux)  S32 Design Studio for Power Architecture v2.1 - Update 14 S32 Design Studio for Power Architecture v2.1 - Update 13 S32 Design Studio for Power Architecture v2.1 - Update 12 S32 Design Studio for Power Architecture v2.1 - Update 10  S32 Design Studio for Power Architecture v2.1 - Update 8  S32 Design Studio for Power Architecture v2.1 - Update 7  S32 Design Studio for Power Architecture v2.1 - Update 2  S32 Design Studio for Power Architecture v2.1 - Update 1  S32 Design Studio for Power Architecture 2017.R1 (Windows/Linux)  S32 Design Studio for Power Architecture 2017.R1 - Update 11  S32 Design Studio for Power Architecture 2017.R1 - Update 10  S32 Design Studio for Power Architecture 2017.R1 - Update 9 S32 Design Studio for Power Architecture 2017.R1 - Update 8 S32 Design Studio for Power Architecture 2017.R1 - Update 7  S32 Design Studio for Power Architecture 2017.R1 - Updates 5 and 6  S32 Design Studio for Power Architecture 2017.R1 - Update 4 S32 Design Studio for Power Architecture 2017.R1 - Update 3  S32 Design Studio for Power Architecture 2017.R1 - Update 2 S32 Design Studio for Power Architecture 2017.R1 - Update 1 S32 Design Studio for Power v1.2 (Windows/Linux)   S32 Design Studio for Power v1.2 - Update 3 S32 Design Studio for Power v1.2 - Update 2 S32 Design Studio for Power v1.2 - Update 1 S32 Design Studio for Power v1.1 (Windows, Linux)  S32 Design Studio for Power v1.1 - Update 1 S32 Design Studio for Power v1.0 (Windows)    Other Hot Fixes S32 Design Studio Offline activation issue hot fix 
View full article
Installation & Activation HOWTO: Install Lauterbach TRACE32 debugger plug-in into S32 Design Studio HOWTO: Install IAR Eclipse plug-in into S32 Design Studio for ARM  HOWTO: Activate S32 Design Studio     Getting Started HOWTO: Create a New Project in S32 Design Studio for ARM  HOWTO: Create S32DS Project from Example 'Hello World' for S32K144 (w/o SDK)    Build tools & Standard libraries  HOWTO: Build a Project and Setup a Debug Configuration for debugging in S32 Design Studio  HOWTO: Add a static library file into S32 Design Studio GCC project HOWTO: Place custom data into flash memory  HOWTO: Link a binary file(s) into the application project using GNU build tools HOWTO: Execute a library function from RAM memory using GNU build tools  NEW!   Debug  & Flash Programming HOWTO: download separate elf/srec/hex file to microcontroller using S32 Design Studio  HOWTO: Update OpenSDA Firmware on EVB Using GDB Server Monitor Commands from Eclipse GDB Console   HOWTO: Debug multiple elf files in S32 Design Studio with GDB  HOWTO: Reset MCU in S32 Design Studio debugger (Pemicro/OpenSDA interface) Debugging the Startup Code with Eclipse and GDB | MCU on Eclipse   https://community.nxp.com/docs/DOC-345344  HOWTO: Program multiple memory types in single debug session  NEW!   S32 SDK & Other SDKs HOWTO: Create FreeRTOS project in S32 Design Studio How to change package on S32DS Processor Expert  HOWTO: Create the Blinking LED example project using S32K144 SDK  HOWTO: Show FreeRTOS Threads in Eclipse Debug View with Segger J-link and NXP S32 Design Studio  Tutorial: FreeRTOS 10.0.1 with NXP S32 Design Studio 2018.R1  Using custom FreeRTOS with S32K SDK and OSIF for ARM | MCU on Eclipse  Implementing FreeRTOS Performance Counters on ARM Cortex-M | MCU on Eclips e   HOWTO: Change the CPU Derivative in an SDK-Based Application Project  HOWTO: Working with AMMCLib SDKs  HOWTO: Working with FreeMASTER SDKs  HOWTO: Add custom SDK into existing project   HOWTO: Use SDK based example code as standalone (usable for GIT, SVN...)  NEW!   General Usage HOWTO: S32 Design Studio Command Line Interface  HOWTO: Add user example into S32DS HOWTO: Generate S-Record/Intel HEX/Binary file  HOWTO: Update S32 Design Studio  HOWTO: Set project optimization level  HOWTO: Export S32DS Project to IAR EW (S32K14x/S32K11x)    NEW!   Troubleshooting Troubleshooting: PEmicro Debug Connection: Target Communication Speed  Troubleshooting: Indexer errors on header file  S32 Design Studio Offline activation issue hot fix  Troubleshooting: Installer rolls back immediately following activation code entry  Troubleshooting: Activation fails with error message FNP ERROR 0 
View full article
Installation & Activation HOWTO: Install Wind River compiler Eclipse plug-in into S32 Design Studio  HOWTO: Install Lauterbach TRACE32 debugger plug-in into S32 Design Studio  HOWTO: Install PLS UDE debugger plug-in into S32 Design Studio HOWTO: Activate S32 Design Studio    Getting Started HOWTO: Create a Blinking LED Project (MPC5748G)  HOWTO: Build a Project and Setup a Debug Configuration for debugging in S32 Design Studio   Build tools & standard libraries HOWTO: Run a routine from RAM in S32 Design Studio   HOWTO: Use printf() function and EWL library  HOWTO: Migrate project created in S32DS Power v1.x into v1.2+  HOWTO: Add a static library file into S32DS GCC project  HOWTO: Link a binary file(s) into the application project using GNU build tools  HOWTO: Execute a library function from RAM memory using GNU build tools  NEW!   Debug & Flash Programming HOWTO: download separate elf/srec/hex file to microcontroller using S32 Design Studio  HOWTO: Program data flash (DFLASH) in S32 Design Studio for Power  HOWTO: Program DCF record into UTEST flash in S32 Design Studio for Power  HOWTO: debug multi-core project in S32 Design studio  HOWTO: Update OpenSDA Firmware on EVB  HOWTO: MPC5777C - Low/Mid Flash block erase via PE Micro    HOWTO: Use RappID BL tool with MPC5744p EVB  HOWTO: Debug multiple elf files in S32 Design Studio   HOWTO: Reset MCU in S32 Design Studio debugger (Pemicro/OpenSDA interface)  HOWTO: Program multiple memory types in single debug session   NEW!   SDKs HOWTO: Working with AMMCLib SDKs  HOWTO: Working with FreeMASTER SDKs  HOWTO: Add custom SDK into existing project  HOWTO: Use SDK based example code as standalone (usable for GIT, SVN...) NEW!   General Usage HOWTO: S32 Design Studio Command Line Interface  HOWTO: Add user example into S32DS  HOWTO: Generate S-Record/Intel HEX/Binary file  HOWTO: Update S32 Design Studio  How to export Generated Code to S32 Design Studio IDE (applicable for MBDT for MPC5744P v2.0)   HOWTO: Install update from 3rd party vendor  S32 Design Studio for Power Architecture v2.1 Migration Guide  https://community.nxp.com/docs/DOC-342290    Troubleshooting Troubleshooting: Issue opening documents from Getting Started page  Troubleshooting: PEmicro Debug Connection: Target Communication Speed  Troubleshooting: Indexer errors on header file  S32 Design Studio Offline activation issue hot fix  Troubleshooting: Installer rolls back immediately following activation code entry  Troubleshooting: Activation fails with error message FNP ERROR 0 
View full article
Project created by S32 Design Studio (S32DS) new project wizard typically contains the debugger configurations to load  and debug the project into the code memory (Flash/RAM). However there might be situations that require also to load a content/data (e.g. calibration values) into a special on-chip memory (such as shadow flash, data flash, utest flash...) or an external memory (QSPI). This document describes how to program multiple memory types (using different programming algorithms) just by single click on the debug button. The decription applies to PEMICRO probes (Multilink Universal, Multilink FX or OpenSDA) anyway a similar approach might be applicable for other vendor probes. The process can be splitted into two steps: 1. create a separate debugger configurations to program a specific memory modules(QSPI,  data flash,..) 2. associate the program and debug configurations into the single launch group  - this alows to execute multiple actions by invoking the single debug launch . Let's demonstrate this on MPC5744P and program code and data flash memory using S32DS for Power v2.1 (similar approach can be applied also to other architectures/versions of S32DS). •  Create a new empty project for MPC5744P. Such a project typically contains Debug/Debug_RAM debugger configuration. First we will add a dummy code  (see below) that creates a record to be stored into the data flash memory (different to code flash memory block). • The project linker file (MPC57xx_flash.ld) should have the data flash memory block and a linker section associated with data flash (.dflash) defined: MEMORY { dflash : org = 0x00800000, len = 0x1F /* not entire dflash - just for test*/ flash_rchw : org = 0x00FA0000, len = 0x4 cpu0_reset_vec : org = 0x00FA0004, len = 0x4 m_text : org = 0x1000000, len = 2048K m_data : org = 0x40000000, len = 384K local_dmem : org = 0x50800000, len = 64K } SECTIONS { .dflash : { KEEP(*(.dflash)) } > dflash … • Add a test code into main.c that results in creating a dummy data record in data flash memory (0x0800000) __attribute__((section(".dflash"))) volatile char dflash_data[]="DTEST String"; // place the string into .dflash segment int main(void) { volatile int counter = 0; volatile char test_str[10]; test_str[0] = dflash_data[0]; // use DFLASH data (to avoid deadstripping) /* Loop forever */ for(;;) { counter++; } } Now if you build the project you can see the data that belong to dflash and code flash in the .map or srec file. If you debug the project using the default debug configuration data flash (DFLASH) memory is not programmed. To program DFLASH you should create another debug configuration simply by duplicating the existing one and changing the programming algorithm to dflash one: nxp_mpc5744p_1x32x20k_dflash.pcp. Note: There are many flash programming algorithms available in PEMICRO eclipse plugin folder typically located here (version of plugin may vary): "C:\NXP\S32DS_Power_v2.1\eclipse\plugins\com.pemicro.debug.gdbjtag.ppc_2.0.2.202005132054\win32\gdi\P&E\" S32DS: Duplicate Debug Configuration S32DS: Load parameters S32DS: Choose alternative programming algorithm Now the new debug configuration (MPC5744P_code_dflash_Debug_DFLASH) is able to program data flash memory. The final step is to create a launch group configuration and associate it with all the programming/debugging configurations that should be executed once debug is started. Add the debug configuration used just for programming purpose as flash type and code debug  configuration as debug type. In order to avoid interference between programming of various memories select post launch action -> "Wait until terminated" Finally  as soon as the debug session is established by launching the launch group created above - all the memories are programmed and you can debug the code. Note: There is an information about executed flash configurations in the debug context view. Since the programming has alredy finished the thread is terminated and could be cleared by double cross icon. Enjoy single click programming&debugging in S32 Design Studio!
View full article
          Product Release Announcement Automotive Processing S32 Design Studio for S32 Platform  v3.4           Austin, Texas, USA Dec 22, 2020   The Automotive Processing's Software Development Tools Engineering Team at NXP Semiconductors is pleased to announce the release of the  S32 Design Studio v3.4 Here are some of the major features: Eclipse Neon 2019.12 Framework GNU tools: GCC version 6.3.1 20170509, build 1620 revision g01b30c3 GCC version 9.2.0 20190812, build 1649 revision gaf57174 NPW support for GCC 9.2 toolchain (available for selected devices only) S32 Configuration Tool framework 1.3 with the Pin, Clock, Peripheral, DCD, IVT, DDR and QuadSPI Configuration tools (SDK/RTD packages required to get support for particular device)  The wizards for creating application, library projects and projects from project examples for the supported processor families The S32DS Extensions and Updates tool S32 Trace Tool S32 Debugger support PEMicro® debugger support Lauterbach Trace32 ® support Green Hills compiler support S32 Flash Tool Peripheral and System Registers view SDK management Support for importing MCAL configuration to a custom SDK Support for migration: project with GCC 6.3.1 toolchain to GCC 9.2 toolchain S32DS for ARM  projects for S32K1 device to S32DS 3.3, including SDK* *  available with S32K1 package, not yet released,  more details could be found in Release Notes  Release is available for download on  NXP web  and from S32DS 3.4. Please make sure that you get new activation ID for this version. Support for S32S247TV and S32V23x is available on public update site and release location. S32V23x support: S32SDK S32V234 RTM 1.0.1  S32 Configuration tools - Pins, Clocks, Peripheral (installed with SDK package) S32 Debugger (with S32 Debug Probe) support for ARM cores S32 Trace for A53 cores GCC version 6.3.1 20170509, build 1574 S32 Flash Tool support AMMCLIB 1.1.20 P&E and Lauterbach debuggers support Note : Vision Extension package 1.2.0 with support for S32 Design Studio 3.4 is not yet available, if you need to work with VSDK and Vision tools - it is recommended to stay on S32DS 3.3 until a new version of Vision Extension package is released   S32S247TV support: Support for S32S247TV new project wizards, GCC 6.3.1 and GHS compilers S32SDK S32S247TV EAR 0.8.1  S32 Configuration tools - Pins, CLocks, Peripheral, DCD, IVT (installed with SDK package) S32 Debugger (with S32 Debug Probe) support  S32 Flash Tool support Lauterbach support S32K1 support: Support for S32K1xx new project wizards, GCC 6.3.1, IAR and GHS compilers NXP GCC version 6.3.1 20170509, build 2017 S32SDK S32K1xx RTM 4.0.1 AMMCLIB 1.1.22 S32 Configuration tools - Pins, CLocks, Peripheral (installed with SDK package) PEmicro, iSystem, Segger, IAR, Lauterbach  debuggers support Support for S32V23x, S32S247TC, S32K1xx is provided on update site and archive SW32_S32DS_3.4.0_D2012.zip for offline use    Complete S32 Design Studio for S32 Platform v3.4 release notes and Installation Guide are attached.   Installation To download the installer please visit the S32 Design Studio product page download section or click the direct here.     The installer requires the Activation ID to be entered. You should receive a notification email including the Activation ID after the download of the installation package starts.   The installer installs just the base tools/package. In order to start development it is necessary to install at least one Development package. Currently the only development packages available are S32S2xxTV and S32V2xx. The application packages are managed by S32DS Extensions and Updates.         Technical Support S32 Design Studio issues are tracked through the S32DS Public NXP Community space. https://community.nxp.com/community/s32/s32ds  
View full article
      Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio for Power Architecture v2.1   Update 14           What is new? S32R294 support updated for rev 2 Integrated S32 SDK for S32R294 RTM 1.0.0 This is a cumulative update - it includes all the content of previous updates (Update 1,Update 2, Update 7, Update 8, Update 10, Update 12, Update 13)   Installation instructions The update is available f or online installation (via S32DS Extensions and Updates) or  offline  installation (direct download link)   installation:  go to menu  "Help" -> " S32DS Extensions and Updates " dialog  select from available items and click "Install/Update" button offline   installation:    go to S32 Design Studio for Power product page -> Downloads section or use direct link  to download the update archive zip file         Start S32 Design Studio and go to "Help" -> "S32DS Extensions and Updates", then click 'Go to Preferences' link And a dd a new site "Add..." repository and browse to select the downloaded update archive zip file you downloaded in the previous step   Select the 'S32R294 development package' and 'Update with S32 SDK 1.0.0 RTM for S32R294 for Power Architecture' packages and click "Install/Update" button.   This will start the update installation process.
View full article
Installation & Activation HOWTO: Install Lauterbach TRACE32 debugger plug-in into S32 Design Studio HOWTO: Activate S32 Design Studio   HOWTO: S32 Design Studio - Offline Install of Extensions and Updates  S32DS Extensions & Updates: Explanation and How To Use    Getting Started HOWTO: S32 Design Studio - Create a New S32DS Project from Example  HOWTO: S32 Design Studio - Create a New Application Project  HOWTO: Create a simple blinking LED project using S32 Config Tool (S32V2xx)  NEW! HOWTO: Create APEX2 Project From Example in S32DS for S32 Platform  HOWTO: Create An ISP Project From Example in S32DS for S32 Platform   Build tools & Standard libraries  HOWTO: Build a Project and Setup a Debug Configuration for debugging in S32 Design Studio  HOWTO: Add a static library file into S32 Design Studio GCC project HOWTO: Link a binary file(s) into the application project using GNU build tools     Debug  & Flash Programming HOWTO: Setup S32V234 EVB for debugging with S32DS for Vision and Linux BSP  Using GDB Server Monitor Commands from Eclipse GDB Console HOWTO: Setup static IP address for S32 debug probe  HOWTO: Build a Project and Setup a Debug Configuration for debugging in S32 Design Studio  Debugging the Startup Code with Eclipse and GDB | MCU on Eclipse  HOWTO: Start Trace with S32 Debugger and S32 Debug Probe  NEW! HOWTO: Add a new debugger configuration to an existing project  NEW!   S32 SDK & Other SDKs HOWTO: Working with AMMCLib SDKs  HOWTO: Add custom SDK into existing project  Implementing FreeRTOS Performance Counters on ARM Cortex-M | MCU on Eclipse    General Usage HOWTO: S32 Design Studio Command Line Interface  HOWTO: Generate S-Record/Intel HEX/Binary file  HOWTO: Migrate Application Projects from S32DS for Vision 2018.R1 to S32DS 3.x    Troubleshooting Troubleshooting: PEmicro Debug Connection: Target Communication Speed  Troubleshooting: Indexer errors on header file  Troubleshooting: PEMicro Debugging: PIT and STM modules cannot count when Debug Mode is entered  Troubleshooting: PEMicro Debugging: Problems resuming from breakpoint in vTaskDelay  Troubleshooting: Quick Fix Option in Problems View  Troubleshooting: S32 Design Studio exits unexpectedly or Installer rolls back immediately following activation code entry  Troubleshooting: Activation fails with error message FNP ERROR 0 
View full article
**************************************************************************************** IDE: S32 Design Studio for ARM Version 2.2 Workspace: C:\Projects\S32DS_ARM_22 Project name: S32K142_08_CommandLine Project location: C:\Projects\S32DS_ARM_22\S32K142_08_CommandLine **************************************************************************************** 1. After you finish the edit on your codes, please close S32DS 2. Input the command(as below) at your command_line.bat  3. Run command prompt with Administrator right. 4. Run command_line.bat at command prompt   You will get the *.elf under the folder of C:\Projects\S32DS_ARM_22\S32K142_08_CommandLine\Debug_FLASH   Cheers! Oliver
View full article
A typical debug session will begin by downloading code to Flash and then debugging from main() onwards. However, to explore an already running system a debug connection (attach) can be made to the target MCU without affecting the code execution (at least until the user chooses to halt the MCU!).   Note: Source level debug of a running target is only possible if the sources of the project to be attached exactly match the binary code running on the target.   Click the (Debug As) button on the toolbar, then click Debug Configurations from the drop-down menu. In the left pane of the Debug Configurations dialog box, expand the debugging interface specified in the project settings and click the required launch configuration. After you click the configuration in the left pane, the configuration settings appear in the right pane grouped in tabs. PEmicro Select the Startup tab, then set the ‘Attach to Running Target’ check box as below: When a debug connection is made, the target will continue running until it is paused.   SEGGER J-Link Select the Debugger tab, then set the ‘Connect to running target’ check box as below: Unfortunately, this feature currently not supported.
View full article
Watchpoints are Breakpoints for Data and are often referred to as Data Breakpoints. Watchpoints are a powerful aid to debugging and work by allowing the monitoring of global variables, peripheral accesses, stack depth etc. The number of watchpoints that can be set varies with the MCU family and implementation. Watchpoints are implemented using watchpoints units which are data comparators within the debug architecture of an MCU/CPU and sit close to the processor core. When configured they will monitor the processor’s address lines and other signals for the specific event of interest. This hardware is able to monitor data accesses performed by the CPU and force it to halt when a particular data event has occurred. The method for setting Watchpoints is rather more hidden within the IDE than some other debugging features. One of the easiest ways to set a Watchpoint is to use the Outline View. From this view you can locate global and static variables then simply select Toggle Watchpoints.     Once set, they will appear within the Breakpoints pane alongside any breakpoints that have been set.     Watchpoints can be configured to halt the CPU on a Read (or Load), Write (or Store), or both. Since watchpoints ‘watch’ accesses to memory, they are suitable for tracking accesses to global or static variables, and any data accesses to memory including those to memory mapped peripherals.   Note : To easily distinguish between Breakpoints and Watchpoints within the Breakpoint view, you can choose to group entries by Breakpoint type. From within the Breakpoints view, click the Eclipse Down Arrow Icon Menu, then you can select to Group By Breakpoint Types as shown below:   As you can see from the above graphic, the option to set a Watchpoint is also available directly from the Breakpoint view.   When set from here, you will be offered an unpopulated dialogue – simply entering an address will cause a watchpoint to be created, monitoring accesses to that location.     Another place to set Watchpoints within the IDE is from the context sensitive menu within a Memory view.   Unfortunately, the conditional watchpoints in S32 Design Studio for S32 Platform 3.3 may not work in some cases.
View full article
      Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio for Power Architecture v2.1   Update 13           What is new? Integrated Radar SDK RTM 1.5.0 (replacing 1.4.0) This is a cumulative update - it includes all the content of previous updates (Update 1,Update 2, Update 7, Update 8, Update 10, Update 12)   Installation instructions The update is available f or online installation (via S32DS Extensions and Updates) or  offline  installation (direct download link)   installation:  go to menu  "Help" -> " S32DS Extensions and Updates " dialog  select from available items and click "Install/Update" button offline   installation:    go to S32 Design Studio for Power product page -> Downloads section or use direct link  to download the update archive zip file       Start S32 Design Studio and go to "Help" -> "S32DS Extensions and Updates", then click 'Go to Preferences' link And a dd a new site "Add..." repository and browse to select the downloaded update archive zip file you downloaded in the previous step   Select the 'S32 Design Studio for Power Architecture Device Package' and 'Update with S32 SDK 3.0.2 for Power Architecture' packages and click "Install/Update" button.   This will start the update installation process.
View full article
        Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio v3.3 Vision Extension Package for S32V234 1.2.0           What is new? Integrated VSDK 1.6.0   Installation instructions The update is available f or online installation (via S32DS Extensions and Updates) or  offline  installation (direct download link)   installation:  go to menu  "Help" -> " S32DS Extensions and Updates " dialog  select from available items and click "Install/Update" button offline   installation:    go to S32 Design Studio for S32 Platform product page -> Downloads section or use direct link  to download the update archive zip file         Start S32 Design Studio and go to "Help" -> "S32DS Extensions and Updates", then click 'Go to Preferences' link And a dd a new site "Add..." repository and browse to select the downloaded update archive zip file you downloaded in the previous step       Select the 'S32 Design Studio for Power Architecture Device Package' and 'Update with S32 SDK 3.0.2 for Power Architecture' packages and click "Install/Update" button.   This will start the update installation process.
View full article
UART communication is supported in the KEA64 Bootloader .rbf file  + Supported UART0: PTA2-PTA3 pins(Speed: 115200b/s) Tested on the dev board:   Development Board TRK-KEA64 Processor PKEAZN64 MLH 2N22J
View full article
KEA64 RAppID Bootloader rbf file for KEA64    MPC57xx RAppID Bootloader rbf file for MPC5744P   https://community.nxp.com/docs/DOC-344948  RAppID Bootloader rbf file for MPC5777C  RAppID Bootloader rbf file for MPC5777C - BookE (non-VLE) 
View full article
There are situations that require debugging multiple executable files within one debug session. Typical example is debugging the bootloader + application together where each one is a separate executable elf file or S32DS eclipse project. S32DS project loads the debug information of the generated executable file by default. Anyway GDB supports command to add additional elf files debug information into same debug session. If the executable source files are present on the same machine then the source level debugging of all the elf files is possible. Let's assume there are two elf files (bootloader and application) and both are built with debug information enabled - build configuration is named "Debug". Generation of the debug information for GCC compiler could be set in the Project Properties -> C/C++ Build -> Settings -> Standard  S32DS C Compiler -> Debug Level  Each debug configuration in S32 Design Studio supports loading or ignoring debug information. "Load symbols" loads just the debug information whereas "Load executable" basically loads program/code/data sections into MCU memory without debug information. Both options are enabled by default. Before starting the debugger it's necessary to load both executable files into your MCU memory. This could be easily achieved in S32DS (GDB) debug configuration where you specify to add the additional object files. In this specific case we need just 1 additional file - bootloader elf. The bootloader project in this example is actually another project in the same workspace (workspace relative path to elf file entered). After starting debugger the Debugger Console view now shows the details about programming of two elf files instead of one including load address of each section. When loading is finished the debug information for bootloader is not yet available ("No source available..." message displayed in the source level debug view) In order to display source and symbols for the bootloader elf please enter "add-symbol-file"  GDB command into Debugger Console View: add - symbol - file "C:/Users/NXA21306/workspaceS32DS.ARM.2018.R1/s32K144_Bootloader/Debug/s32K144_Bootloader.elf" 0x0000000 ‍‍‍‍ ‍ The GDB client command could be executed automatically when launching a debug session: The first argument is path to the elf file and the second argument (0x00000000) is the load address of the elf file (see the first bootloader load address ). Finally the debug session needs to be refreshed in order to display changes from just added symbol file. The refresh can be forced by performing a single step or issuing the target reset from the debugger.
View full article