恩智浦设计知识库

取消
显示结果 
显示  仅  | 搜索替代 
您的意思是: 

NXP Designs Knowledge Base

讨论

排序依据:
  Overview   Libraries strive to provide great service and to ensure easy access to media products. With thousands of visitors choosing from copious books, CDs, videos, and computer games, storing and controlling inventory poses huge challenges. To reduce the waiting time for visitors and to relieve staff, most libraries that use RFID rely on RFID-powered self-service media checkout stations. This approach reduces labor, ensures that books are returned to shelves quickly, shortens wait times and encourages more people to visit the library. Taking inventory with the aid of RFID takes only a fraction of the time required with traditional systems. With RFID labels easily applied to all types of media, library staff can use handheld RFID readers to quickly, conveniently and reliably locate misplaced books or other items. New systems such as Smart Shelves enable real-time location of all media within the library. Features   Faster check-out and 24/7 self return service Fast and automated sorting of returned books Improved inventory management Identification of misplaced books Reliable theft protection with Electronic Article Surveillance (EAS) Unique serialized identification No line-of-sight requirement Easily applicable to all media types Reliable, fast and convenient identification   Video     Recommended Products   Category Name ICODE ICODE SLIX SL2S2002; SL2S2102 | NXP  Standard: ISO 18000-3M1 User Memory (bit): 896 EAS protection: 32-bit password AFI protection: 32-bit password Longest read range of any standards-based passive HF RFID technology ICODE SLIX2 NFC Forum Type 5 Tag with originality signature SL2S2602 | NXP  Standard: ISO 18000-3M1 User Memory (bit): 2528 EAS protection: 32-bit password AFI protection: 32-bit password Longest read range of any standards-based passive HF RFID technology Persistent quiet and Originality signature enabled   Related Information   For publishers and retailers: How NFC will merge physical with online book sales ICODE Family data protection for Libraries
查看全文
Overview   RFID enhances theft protection by giving each animal a unique, encrypted identification. Meat industry stakeholders can improve disease control by storing and updating vaccination and movement data directly into each animal’s chip, or by correlating the identification number with this information in the backend system. Such traceability ensures consumers healthy and tasty meat, with clear proof of origin. The ability to track livestock and their movements allows governments to trace what occurs in the supply chain, and to tax each player appropriately. In the case of disease outbreaks, the technology makes it possible to identify which flocks have been affected, which helps to avoid unnecessary waste. Application Benefits of RFID Livestock Management   Provides proof of origin Verifies age and supports disease control Automates handling at farm and auction house Provides theft protection Supports storage and updating of vaccination and movement data   RFID Features Beneficial to Application Permanent identification No line-of-sight requirement Simultaneous multiple identification Robust and suitable for harsh environments Compliance with government mandates   Recommended Products   RFID Link HITAG 2 transponder IC HT2x | NXP  HITAG µ / Advanced / Advanced+ HTMS1x01 HTMS8x01 | NXP 
查看全文
Demo NXP has released the 1500 W MRF1K50H and MRF1K50N. The industry’s highest power transistors for ISM, FM broadcast and sub-GHz aerospace applications. These are pin-compatible so can be situated on the same PCB as existing solutions on the market Demo / product features MRF1K50H 1.5 kW LDMOS Transistor 1–500 MHz, 1500 W CW 74% efficiency 23.5 dB gain Extremely rugged  (65:1 VSWR) MRF1K50N 1.5 kW LDMOS Transistor 1–500 MHz, 1500 W CW 73% efficiency 23 dB gain 30% lower thermal resistance compared to ceramic package Extremely rugged  (> 65:1 VSWR) NXP Recommends MRF1K50H MRF1K50N
查看全文
Overview New technologies added to existing applications like Elevators, help improve user experience, quality and safety. This application summary focuses on the human machine interface of the elevator in cabin control and floor control modules. NXP ®  technologies and products enhance different features, like NFC for access control, 2-wire Ethernet provides floor to floor connectivity, and PMICs provide power supply with safety features. With NXP’s wide connectivity portfolio, Elevators can have wireless cloud connectivity as back-up communication channel that supplement cellular radio communication for data logging, monitoring & maintenance or even to handle emergencies. Block Diagram Elevator Cabin Control Module Elevator Control Module Recommended Products Category Link MPU i.MX 8M Applications Processor | Arm® Cortex®-A53, Cortex-M4 | 4K display resolution | NXP  MCU i.MX RT1050 MCU/Applications Crossover MCU| Arm® Cortex-M7, 512KB SRAM | NXP  Audio Amp Audio Amplifiers | NXP  PMIC 12-channel configurable PMIC | NXP  LED Controller LED Drivers | NXP  CAN Transceiver TJA1051 | High-speed CAN Transceiver | NXP  Ethernet PHY Automotive Ethernet PHY Transceivers | NXP  MiFARE SAM MIFARE SAM AV3 | NXP  Signal Conditioner MSDI | NXP  CD1020|Multiple Switch Detect Interface | NXP  Contact Reader Low power single card reader | NXP  NFC Controller CLRC663 plus family | High-performance NFC frontends | NXP  MiFARE DESfire MIFARE DESFire | NXP  Safety Power Management FS4500 | fail silent safety SBC compliant grade1 & grade 0 automotive qualification | NXP  Voltage Level Translator Voltage Level Translators (Level Shifters) | NXP  Motor Drivers BLDC, H-Bridge, and Stepper Motor Drivers | NXP 
查看全文
  Overview NXP solutions enable AD/DC chargers in hybrid electric vehicles (HEV). The AD/DC charger interfaces with the battery management system to ensure a proper charge of electricity of the cells until it fulfills high-voltage (HV) requirements. Our comprehensive portfolio provides the critical building blocks for high-performance, efficient and safe pawer management control system for electric traction motors.   Use Cases This solution can be applied and various sectors of the industry, specially in the automotive field. NXP solutions enable Hybrid and Electric Vehicles applications as: Converters and Chargers Stop/Start Systems Power inverters   Block Diagram Products Category MCU Product URL S32K144EVB: S32K144 Evaluation Board  Product Description The S32K144EVB is a low-cost evaluation and development board for general purpose automotive applications.   Category Safety SBC Product URL 1 FS6500: Grade 1 and Grade 0 Safety Power System Basis Chip with CAN Flexible Data Transceiver  Product Description The NXP® FS6500 system basis chip (SBC) provides power to MCUs and optimizes energy consumption through DC/DC switching regulators, linear regulators, and ultra-low-power saving modes.   Category RTC Product URL PCA85073A: Automotive tiny Real-Time Clock/Calendar with alarm function and I2C-bus  Product Description The PCA85073A is a CMOS1 Real-Time Clock (RTC) and calendar optimized for low power consumption.   Category Serial Interface Product URL  MC33660: ISO K Line Serial Link Interface  Product Description The NXP® MC33660 is a serial link bus interface device designed to provide bi-directional half-duplex communication interfacing in automotive diagnostic applications.
查看全文
Description Earlier this year NXP organized a promotional opportunity for amateur radio enthusiasts to use their creativity and build their own power amplifier designs. NXP received numerous creative submissions in this competitive Homebrew RF Design Challenge. We appreciate the dedication and enthusiasm from the community that made this contest a success. First place winner An MRF101AN broadband amplifier design with 1 W Input, 100 W Output 1.8-54 MHZ Amplifier deck. (For more information visit:NXP MRF-101 - RFPowerTools )  It is an amplifier with a bandwidth of 1.8MHz to 54MHz. Maximum output power of 100W up to 30MHz and 70W up to 50MHz. Maximum power supply 50V to 4A, with a Voltage Standing Wave Ratio of 1.5:1 maximum. The design dimensions of the PCB is 5x5 cm (2x2 in). and 310g weight including fan and heat sink. Second place winner A 600W broadband HF amplifier using affordable LDMOS devices (For more information visit: https://qrpblog.com/2019/10/a-600w-broadband-hf-amplifier-using-affordable-ldmos-devices/  ) This project is meant to demonstrate the capabilities of the MRF300 transistors as linear broadband devices in the 2-50MHz range and to be used by radio amateurs as a starting point for a medium-high power amplifier. This is also my entry to the NXP Homebrew RF Design Challenge 2019. To achieve the target of 600W output while also minimizing the level of even-number harmonics, a “push-pull” configuration of two transistors is used. Luckily, the manufacturer made it easy to design the PCB layout for such a thing by offering two versions (the MRF300AN & MRF300BN) that have mirrored pinout. The common TO-247 package is used, with the source connected to the tab. Each individual MRF300 LDMOS transistor is specified at 330W output over a 1.8-250MHz working frequency range, a maximum 28dB of gain and over 70% efficiency. The recommended supply range is 30-50Vdc. By studying the specifications, it looks like with correct broadband matching and some operational safety margin we can get close to 600W output at a voltage of around 45V across a resonably large bandwidth; the aim is to cover 1.8 to 54MHz. Main challenges when designing this amplifier are related to achieving good input and output matching over the entire frequency range as well as maintaining high and flat gain. Good linearity and a low level of harmonic products are mandatory. As the TO-247 is not a package specifically designed for high-power RF, there are some challenges with thermal design and PCB layout as well. Information taken from the essay by the winner. Third place winner A High Efficiency Switchmode RF Amplifier using a MRF101AN LDMOS Device for a CubeSat Plasma Thruster (For more information visit: Research - SuperLab@Stanford ) The Class E amplifier utilizes the active device as a switch, operating in only cutoff (off) and saturated (on) conditions. This minimizes the overlap of voltage and current, reducing losses in the active device. To further reduce loss the Class E amplifier utilizes an inductively tuned resonant network to achieve zero voltage switching, bringing the voltage across the switch to zero before turn on, eliminating energy stored in the output capacitance of the active device that would otherwise be dissipated. This is achieved with an inductively tuned series resonant output filter.  In the Class E amplifier losses are almost entirely determined by the current conducted by the active device so a high drain impedance is desired to maximize efficiency. The drain impedance is ultimately limited by the voltage rating of the switch. For our desired output power of 40W and the maximum voltage rating of 133V for the MRF101AN this impedance is still less than 50 ohms, so a L match circuit is used to match the drain impedance to 50 ohms. The load network in our design provides a drain impedance of 15.4+12.8j. As the MRF101AN will operate in saturation a high drive level is desired. To eliminate the need for a preamplifier and allow for digital control, we use a high speed gate drive chip typically used in switch-mode power supplies, LMG1020, to drive the MRF101AN instead of a RF preamplifier. A resonant network is used to provide voltage gain at the fundamental and third harmonic, providing a quasi-square wave on the gate which helps insure the device remains in saturation. Conclusion It was a close call and highly competitive! Each participant had their own creative, unique and impressive way of displaying the capabilities of these new parts. NXP is always up for new design challenges. Ready for the next challenge?
查看全文
  Overview With the expansion of IoT technologies, it is required to count with special devices that allow, to the users, to count with the necessary tools to develop IoT-related projects in order to acquire an edge that allows improvement and optimization in the execution of any task. Use Cases IoT Gateway / Communication HUB devices can be used to work with: Cloud Services Network commissioning Encrypted Data Storage Block Diagram Product Category MCU Product URL LPC540XX: Power-Efficient Microcontrollers (MCUs) with Advanced Peripherals Based on Arm® Cortex®-M4 Core  Product Description Offering flashless design and security integration, the LPC540xx family of MCUs combines a 180 MHz Arm® Cortex®-M4 core with a power-efficient and unique architecture, advanced HMI and flexible communication peripherals for real-time performance in the next-generation IoT.   Category NFC Product URL CLRC663 plus family: High-performance NFC frontends  Product Description If you need high NFC performance or the lowest power consumption, use this remarkably efficient yet highly flexible frontend family to push your design further.   Category Secure Product URL A71CH: Plug and Trust - The fast, easy way to deploy secure IoT connections  Product Description A71CH is a ready-to-use secure element for IoT devices providing a root of trust at the IC level and delivers, chip-to-cloud security right out of the box, so you can safely connect to IoT clouds and services, including AWS, IBM Watson IoT™ Platform, and Google Cloud™ IoT Core without writing security code or exposing keys.   Category Wireless Product URL JN5169: ZigBee and IEEE802.15.4 wireless microcontroller with 512 kB Flash, 32 kB RAM  Product Description The JN5169 is an ultra low power, high performance wireless microcontroller suitable for ZigBee applications.
查看全文
Description Drones, Rovers, and other Unmanned Vehicles (UVs) are being utilized across various industries including first responders, municipalities, and agriculture, as well as continued support and system development for the Department of Defense. As time progresses, more exciting practical uses are being uncovered. Whether the system is expected to deliver special payloads or protect people from malicious activities, UV systems require a high level of security, reliability, and performance. Block Diagram Products Category Name Product URL Microprocessor QorIQ® Layerscape Processors Based on Arm® Technology | NXP  Secure Authenticator A1006 | Secure Authenticator IC: Embedded Security Platform | NXP  A71CH | Plug and Trust for IoT | NXP  Motor Controllers (MCU) Arm® Cortex®-M7|Kinetis® KV5x Real-time Control MCUs | NXP  Arm® Cortex®-M4|Kinetis KV4x Real-time Control MCUs | NXP  i.MX RT1020 MCU/Applications Crossover Processor | Arm® Cortex-M7 | NXP  i.MX RT1050 MCU/Applications Crossover Processor| Arm® Cortex-M7, 512KB SRAM | NXP  i.MX RT1060 MCU/Applications Crossover Processor | Arm® Cortex®-M7, 1MB SRAM | NXP  Motor Controllers (DSC) MC56F84xxx|Digital Signal Controllers | NXP  Performance Level Digital Signal Controllers, USB FS OTG, CAN-FD | NXP  MC56F82xxx | NXP  Radar MCU S32R Radar Microcontroller - S32R27 | NXP  Camera Sensor MCU i.MX RT1050 MCU/Applications Crossover Processor| Arm® Cortex-M7, 512KB SRAM | NXP  BLE MCU Arm® Cortex®-M0+|Kinetis® KW41Z 2.4 GHz Bluetooth Low Energy Thread Zigbee Radio MCUs | NXP  Electronic Speed Controller MCU Arm® Cortex®-M4|Kinetis KV4x Real-time Control MCUs | NXP  Led Driver ASL150ySHN | Single-phase Auto LED Boost Driver | NXP  AVB Switch SJA1105TEL | Five-Ports AVB and TSN Automotive Ethernet Switch | NXP  Battery Monitor MC33772 | 6-Channel Li-ion Battery Cell Controller IC | NXP  Wireless Charger 15 Watt Wireless Charging Transmitter ICs | NXP  Accelerometer Digital Sensor - 3D Accelerometer | NXP  Related Demos from Communities URL Hands-On Workshop: HoverGames Drone - Commercial Open-Source Small Autonomous Vehicle for Robotic Drones and Rovers  An NXP DroneCode Platform for Developing Low-Cost Small Autonomous Vehicles and Leveraging High-Reliability Automotive Components  Related Communities URL HoverGames Drone Challenge 
查看全文
this doc and project explain how to integrate S32G M stby demo and Linux STR demo to one demo to achieve the fast boot, chinese version: 本文说明如何在S32G2 RDB2板上搭建 一个M7 MCAL Standby Fullboot GPIO resume Demo加A53 Suspend to RAM的Demo,主要的 应用场景是电动汽车的快速启动。 G3与更新版本BSP的支持情况与此类 似,不再另外说明,客户可以自行参考开发。 请注意本文为培训和辅助文档,本文不是 官方文档的替代,请一切以官方文档为准。     目录 1 参考资料说明与声明 .................................................. 2 2 STBY+STR的硬件注意点 .......................................... 3 3 修改M7 MCAL Standby Demo代码 ............................ 5 3.1 Clock相关修改 ........................................................ 5 3.2 MCU相关修改 ......................................................... 5 3.3 UART Clock相关修改 ............................................. 7 3.4 Port相关修改 .......................................................... 7 3.5 I2C相关修改 ........................................................... 7 3.6 实现M核进入STDY状态等待功能 ........................... 8 3.7 Main函数的修改 ..................................................... 8 4 修改Bootloader工程来支持同时Boot M/A核Demo ... 10 4.1 I2C Clock相关修改 ............................................... 10 4.2 Port相关修改 ........................................................ 11 4.3 其它修改 ............................................................... 12 5 修改A53 Linux代码 .................................................. 13 6 Demo 运行测试 ........................................................ 13 6.1 硬件连接 ............................................................... 13 6.2 镜像烧写 ............................................................... 13 6.3 Demo运行 ............................................................ 14 7 工程发布包............................................................... 15 8 未来开发建议 ........................................................... 17 8.1 M/A核同步机制 ..................................................... 17 8.2 功能安全与信息安全 ............................................. 17 9 遗留问题 .................................................................. 17 9.1 IPCF STR支持 ...................................................... 18 9.2 PFE Slave STR支持 ............................................. 18 注意以下说明与声明: 说明: 汽车网关有快速启动要求,而电动车因为驻车时有更大的电池提供待机电源,所以希望是使 用Linux 的suspend to ram 的功能来实现Linux 的快速启动,而在S32G 上则需要考虑将M 核的 Standby 功能 与A 核的STR 功能 结合起来,目前可用的资源包括:  从BSP32 起支持ATF,可以支持Linux 端的STR 功能,文档《S32G_Linux_STR_V1-*.pdf》 (John.Li)说明linux STR 的原理和与M7 Standby Demo 结合时所需要的修改。  NXP 的M7 内部standby demo,可以支持M 核端的standby 功能,支持full boot 和standby ram boot。文档《S32G_Standby_Demo_V4-*.pdf》(John.Li)有详细说明,本文使用MCAL full boot+GPIO resume Demo。  本Demo 与本文主要说明如何将这两个Demo 结合起来,形成一个整体的Demo。  由于需要Boot M 核加A 核,所以也需要Bootloader 工程的支持,文档 《S32G_Bootloader_V1-*.pdf》(John.Li)说明了如何创建一个MCAL sample 加Linux 的 Bootloader 工程。 声明: 请注意:  M7 standby demo 本来为NXP 内部Demo,不保证运行质量。而Linux 本身也是reference software。  Linux STR 本身会引入比较复杂的电源管理切换,也会引起系统级的不稳定性。  本文所说的方法也是实验性质,不保证运行质量。 所以客户应该谨慎决定其产品功能并自行保证其产品质量,本文及本Demo 仅为Demo 性质。   This article explains how to build a demo of M7 MCAL Standby Fullboot GPIO resume Demo plus A53 Suspend to RAM on the S32G2 RDB2 board. The main application scenario is the quick start of electric vehicles. The support situation of G3 and the newer version of BSP is similar to this, no further explanation is given, customers can refer to it for development by themselves.  Please note that this article is a training and auxiliary document. This article is not a substitute for the official document. Please refer to the official document. Contents 1    Reference materials and statement 2 2    STBY+STR hardware checkpoints. 3 3    Modified M7 MCAL Standby Demo codes. 5 3.1  Clock modification. 5 3.2  MCU related modification. 6 3.3  UART Clock related modificaiton. 7 3.4  Port related modification. 8 3.5  I2C related modification. 8 3.6  Enable the waiting function of M core entering STDY. 9 3.7  Main function modification. 9 4    Modify the Bootloader project to support simultaneous M/A core demo  11 4.1  I2C Clock related modification. 11 4.2  Port related modifcaiton. 11 4.3  Others modificaiton. 13 5    Modify A53 Linux codes. 14 6    Demo running and testing. 14 6.1  Hardware link. 14 6.2  Image burning. 14 6.3  Demo running. 15 7    Project release package. 16 8    Suggestion for the future development 17 8.1  M/A core sync mechanism.. 17 8.2  Function safety and Information security. 17 9    Remaining issues. 18 9.1  IPCF STR support 18 9.2  PFE Slave STR support 18   as need refer:   S32G_Linux STR This doc explain S32G Linux STR details and modify to integrate with M stdy demo https://community.nxp.com/t5/NXP-Designs-Knowledge-Base/S32G-Linux-STR/ta-p/1652680 S32G Standby Demo the project build a new Mcal standby demo and explain its details https://community.nxp.com/t5/NXP-Designs-Knowledge-Base/S32G-M-kernel-Standby-demo-and-how-to-porting-to-Mcal/ta-p/1556313 S32G Boot customization doc how to run bootloader to run mcal&linux https://community.nxp.com/t5/NXP-Designs-Knowledge-Base/S32G-Bootloader-Customzition/ta-p/1519838
查看全文
Most of the Ethernet PHY support multi-functions and provide much more flexible configure capability to fine tune timing or function enable by configure their registers. Ethernet PHY registers tool provide a simple way to read/write PHY registers by MDC/MDIO. This will help in development or issue debug. 
查看全文
This doc explain how to support a new QSPI nor for boot, SDK and Linux, Contents as follows: 目录 1 硬件设计 .................................................................... 2 2 所需工具和相关资料 .................................................. 5 3 ROM Code的启动流程 ............................................... 5 4 S32G QSPI NOR flash配置表头定制 ......................... 7 4.1 S32G QSPI NOR启动配置表信息 .......................... 7 4.2 目前支持的配置表头分析说明 ............................... 10 4.3 LUT构成与Flash write Data说明 ........................... 16 4.4 具体分析已有的配置表头的LUT与Flash write Data的 配置方法 ...................................................................... 22 4.5 支持一款新的QSPI NOR Flash示例1:Micron........ 28 4.6 支持一款新的QSPI NOR Flash示例2:Winbond .... 31 5 使用IVT打包配置头 .................................................. 33 6 使用IVT工具中的flash image工具烧写镜像到QSPI NOR 中 34 7 软件定制M7 ............................................................. 35 8 软件定制uboot ......................................................... 37 9 软件定制Linux Kernel .............................................. 40 9.1 支持美光8bit DDR 模式(未验证) .......................... 44 9.2 支持1bit SDR fast read 模式 ............................... 46 10 Debug过程中需要注意的几点 .................................. 49 10.1 启动时ROM Code读取QSPI NOR时钟仅有12Mhz左 右 49 10.2 比较大的镜像如果不加参数头,无法从QSPI-NOR上启 动 55   add a new doc for lauterbach driver: S32G How to Develop the QSPI-Nor Lauterbach Script 目录 1    背景和参考资料... 2 1.1  背景说明... 2 1.2  参考资料... 2 2    高速读开发流程... 3 2.1  时钟相关修改... 5 2.2  Lut配置说明... 6 2.3  QSPI NOR控制器配置... 12 2.4  QuadSPI_Write32BytesDOPI读函数分析... 15 2.5  增加AHB read寄存器配置... 17 2.6  测试结果... 18 3    高速写开发流程... 19 3.1  Erase lut分析及调用... 19 3.2  Write lut分析及调用... 21 3.3  测试结果... 22 3.4  Lauterbach烧写镜像脚本说明... 22
查看全文
Demo Owner AngelC This demo shows the ability to control various wireless devices within a home network with a smart phone / Tablet. This is done by having a so-called gateway system consisting in Tower System TWR K60 Kinetis development module connected via Ethernet/Wi-Fi with a wireless router,  plus a Kinetis KW2x MCU device controls a ZigBee-based home automation 1.2 and a TCP/IP network using a single radio (Dual PAN) . In brief, the Android application running in the tablet connects via Wi-Fi to the gateway, which translates every command to both ZigBee HA 1.2 and TCP/IP networks, thus enabling any Wi-Fi enabled device to control several devices even if using different communication protocols. Features ZigBee and TCP/IP connection Android application Featured NXP Products Product Link Kinetis® K60-100 MHz, Mixed-Signal Integration Microcontrollers based on Arm® Cortex®-M4 Core Arm® Cortex®-M4|Kinetis K60 100 MHz 32-bit Microcontrollers|NXP | NXP  Kinetis K60 100 MHz MCU Tower System Module TWR-K60D100M|Tower System Board|Kinetis MCUs | NXP 
查看全文
Demo See how NXP integrates automotive and microcontroller technology to develop next-generation drones including high reliability, industrial quality, and additional security with drone-code compliant flight management unit running PX4. Video Features Electronic speed controllers with Field Oriented Control of BLDC (Brushless DC motors) TJA110 2-wire  Automotive Ethernet PHY Transceiver|NXP  SCM-i.MX6 Training https://register.gotowebinar.com/rt/9153317036356506113  Find our more at www.nxp.com/uav
查看全文
Description   The convergence of an aging population and breakthrough technological advances has created endless opportunities for automated medical devices. These devices help ensure the future health of millions of people by providing advances in diabetes care, cardiac care, therapy adherence and general health and wellness applications. Regardless of the end use, developers of healthcare/medicals devices face similar challenges–the need to balance processing requirements with power consumption, a fast time-to-market, secure wireless connections and product longevity.   The application patient monitoring senses the vital signs of a patient and displays them. If any of the vital signs drops below a secure range the device will send an alert to the medical staff. For the entry version of this application an i.MX 6 ULL applications processor is recommended for its low power consumption, touch screen driver integration and low cost. Features   Checks patient vital signs and uploads them to the cloud Quick alerts if the patient is in danger Gathers the information of all the sensors in the human body Secure wireless connections Displays vital signs   Block Diagram       Products   Category Name 1: MCU and MPU Product URL 1 i.MX 6ULL Applications Processor | Single Arm® Cortex®-A7 @ 900 MHz | NXP  Product Description 1 The i.MX 6ULL applications processor includes an integrated power management module that reduces the complexity of an external power supply and simplifies power sequencing. Product URL 2 i.MX 6Quad Applications Processors | Quad Arm® Cortex®-A9 | NXP  Product Description 2 The i.MX 6 series of applications processors combines scalable platforms with broad levels of integration and power-efficient processing capabilities particularly suited to multimedia applications. Product URL 3 Arm® Cortex®-M0+|Kinetis® KM1x 50 MHz 32-bit MCUs | NXP  Product Description 3 The Kinetis® KM1x supports high-precision internal voltage reference with low temperature drift.   Category Name 2: Power Management Product URL 1 PMIC with 1A Li+ Linear Battery Charger | NXP  Product Description 1 The PF1550 is a Power Management Integrated Circuit (PMIC) designed specifically for use with i.MX processors on low-power portable, smart wearable and Internet-of-Things (IoT) applications. Product URL 2 14-Channel Configurable Power Management IC | NXP  Product Description 2 The PF0100 SMARTMOS PMIC provides a highly programmable/configurable architecture, with fully integrated power devices and minimal external components. Product URL 3 MC33772 | 6-Channel Li-ion Battery Cell Controller IC | NXP  Product Description 3 The MC33772 is a Li-Ion battery cell controller IC designed for automotive and industrial applications such as HEV, EV, ESS, UPS systems.   Category Name 3: Audio Product URL 1 Ultra-Low-Power Audio Codec | NXP  Product Description 1 The SGTL5000 is a low-power stereo codec is designed to provide a comprehensive audio solution for portable products that require line-in, mic-in, line-out, headphone-out and digital I/O. Product URL 2 TDA8932B | NXP  Product Description 2 The TDA8932B is a high efficiency class-D amplifier with low power dissipation.   Category Name 4: Peripherals Product URL 1 TJA1101 | 2nd generation PHY Transceiver | NXP  Product Description 1 TJA1101 is a high-performance single port, IEEE 100BASE-T1 compliant Ethernet PHY Transceiver. Product URL 2  PCF85263A | NXP  Product Description 2 The PCF85263A is a CMOS Real-Time Clock (RTC) and calendar optimized for low power consumption and with automatic switching to battery on main power loss.   Product URL 3 -50 to 50kPa, Differential and Gauge Pressure Sensor | NXP  Product Description 3 On-chip, bipolar op amp circuitry and thin film resistor networks to provide a high output signal and temperature compensation   Documentation Designing a Homemade Digital Output for Analog Voltage Output Sensor: https://www.nxp.com/docs/en/application-note/AN1586.pdf    Product Link MCIMX6ULL-EVK: Evaluation kit for the i.MX 6ULL and 6ULZ Applications Processor MCIMX6ULL-EVK|i.MX6ULL Evaluation Kit | NXP  FRDM-PF1550EVM: PF1550 Evaluation Board for low power application processors FRDM-PF1550EVM | PF1550 Evaluation Board | NXP  SABRE for Automotive Infotainment Based on the i.MX 6 Series SABRE|Automotive-Infotainment|i.MX6 | NXP  KITPF0100EPEVBE: Evaluation Kit - MMPF0100, 14 Channel Configurable PMIC EVB- MMPF0100, 14 Channel Configurable PMIC | NXP  TWR-KM34Z50M: Kinetis M Series Tower System Module TWR-KM34Z50M|Tower System Board|Kinetis MCUs | NXP  KITSGTL5000EVBE: Evaluation Kit - SGTL5000, Low Power Stereo Codec SGTL5000, Low Power Stereo Codec EVB | NXP  FRDM33772BTPLEVB: Evaluation Board for MC33772 with Isolated Daisy Chain Communication FRDM33772BTPLEVB | MC33772 TPL EVB | NXP  OM13516UL: PCF85263B Evaluation board OM13516UL: PCF85263B Evaluation board | NXP 
查看全文
  i.MXRT系列具有内部ROM,并且ROM中暴露出了一些功能接口可供用户直接使用。 本文介绍了Flexspi Nor ROM APIs, 并且列举了API相关的参数及示例程序。 通过这些API可以很方便的操作外部Flexspi Nor Flash。用户无需关系细节。   Products Product Category NXP Part Number URL MCU MIMXRT1060 https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-... MCU MIMXRT600 https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-...   Tools NXP Development Board URL i.MX RT1060 Evaluation Kit https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/mimxrt1060-evk-... i.MX RT600 Evaluation Kit https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt600-eval...   SDK SDK Version URL MCUXpresso SDK Builder https://mcuxpresso.nxp.com/en/welcome
查看全文
  Overview China stopped providing analog walkie talkie licenses which consequently has created a high demand for more digital walkie talkie applications. The digital walkie talkies transmits speech in the form of digital encoding. DMR (time division),is more widely used and has a communication speed of 9.6kbps so efficient compression algorithms are necessary. Digital walkie-talkie advantages: Less bandwidth than analog walkie talkie Can use encryption algorithm for higher security Easy networking High quality speech The Airfast® RF power portfolio brings extreme ruggedness and high gain to mobile radio applications. The high gain of our devices helps eliminate amplification stages and reduce system cost. Plus, the high efficiency of the portfolio allows customers to use smaller heatsinks and housing while improving reliability. The broadband capability of the mobile radio devices enables full performance across each band. Block Diagram Products Category MCU Product URL K24_120: Kinetis® K24-120 MHz, Full-Speed USB, 256KB SRAM Microcontrollers (MCUs) based on Arm® Cortex®-M4 Core  Product Description The Kinetis® K24 120 MHz MCU family targets low-power, cost-sensitive applications requiring high-performance processing efficiency and large memory densities.   Category Accelerometer Product URL MMA8653FC: ±2g/±4g/±8g, Low g, 10-Bit Digital Accelerometer  Product Description The NXP® MMA8653FC 10-bit accelerometer has industry leading performance in a small DFN package.   Category Secure Element Product URL A1006: Secure Authenticator IC - Embedded Security Platform  Product Description The Secure Authenticator IC is manufactured in a high-density submicron technology.   Category Audio Amplifier Product URL TDF8530TH: I2C-Bus Controlled Quad Channel 45 W / 2 Ω Class-D Power Amplifier with Full Diagnostics  Product Description The TDF8530 is a quad Bridge-Tied Load (BTL) car audio amplifier comprising an NDMOST-NDMOST output stage based on SOI BCDMOS technology.
查看全文
  Overview Factory automation systems connect with each other through robust communication paths and with the user through intuitive HMIs. To meet these needs and the demand for greener, more efficient industrial processes, these systems require ultra-reliable solutions for fast connectivity and solid security. NXP®, a longtime leader in industrial applications, enables flexible design cycles and provides industrial system designers with longevity programs and innovative security features. We’re focused on customer success, next-gen IoT tech and Industry 4.0. Computer numeric control (CNC) machines are electro-mechanical devices that manipulate machine shop tools using computer programming inputs. CNC is one of two common methods (3D printing is the other) to generate product (typically metal or plastic) from a digital software file. CNC is a subtractive technique; excess material is removed in manufacturing the final product. Block Diagram Products Category MPU Product URL Layerscape® 1028A Industrial Applications Processor  Product Description The Layerscape LS1028A industrial applications processor includes a TSN-enabled Ethernet switch and Ethernet controllers to support converged IT and OT networks.   Category Power Management Product URL MC34VR500: Multi-Output DC/DC Regulator  Product Description The NXP® MC34VR500 power management solution for network processor systems is a high-efficiency, quad buck regulator with up to 4.5 A output and five user-programmable LDOs.   Category Temperature Sensor Product URL SA56004X: SMBus-Compatible, 8-Pin, Remote/Local Digital Temperature Sensor  Product Description The NXP Semiconductors SA56004X is an SMBus compatible, 11-bit remote/local digital temperature sensor with over-temperature alarms.   Category USB Type C Product URL PTN5150: CC logic for USB Type-C applications  Product Description PTN5150 is a small thin low power CC Logic chip supporting the USB Type-C connector application with Configuration Channel (CC) control logic detection and indication functions.   Category Logic Controller Product URL NX5P2190UK: Logic controlled high-side power switch  Product Description The NX5P2190 is an advanced power switch with adjustable current limit. It includes under-voltage and over-voltage lockout, over-current, over-temperature, reverse bias and in-rush current protection circuits.
查看全文
  Overview NXP has a broad portfolio of software and processors for security. Regarding software, NXP has complete Turnkey solutions or optimized software components; Regarding processors, NXP has scalable solution from 1xA53 to 16xA72. LS1043A is a good candidate for Low-end UTM, it comes with the option for 5 Gbps single pass cryptographic offload and 10 Gbps data path parse, classification and distribution which helps in delivering flows to cores for additional security processing. Use Cases Network security is a large, growing market. UTM Key System Features are as following: Enterprise FW features Antivirus Content filtering Spam filtering Block Diagram Products Category MPU Product URL Layerscape LS1043A Reference Design Board  Product Description The LS1043A reference design board (RDB) is a computing, evaluation, and development platform that supports the Layerscape LS1043A architecture processor.   Category Wi-Fi Product URL 88W8997: 2.4/5 GHz Dual-Band 2x2 Wi-Fi® 5 (802.11ac) + Bluetooth® 5 Solution  Product Description The 88W8997 is the industry’s first 28nm, 802.11ac wave-2, 2x2 MU-MIMO combo solution with full support for Bluetooth 5.   Category Temperature Sensor Product URL SA56004X: SMBus-Compatible, 8-Pin, Remote/Local Digital Temperature Sensor  Product Description The NXP Semiconductors SA56004X is an SMBus compatible, 11-bit remote/local digital temperature sensor with over-temperature alarms.   Category Power Management Product URL MC34VR500: Multi-Output DC/DC Regulator  Product Description The NXP® MC34VR500 power management solution for network processor systems is a high-efficiency, quad buck regulator with up to 4.5 A output and five user-programmable LDOs.   Category RTC Product URL PCF85063TP: Tiny Real-Time Clock/calendar  Product Description The PCF85063TP is a CMOS Real-Time Clock (RTC) and calendar optimized for low power consumption. An offset register allows fine-tuning of the clock.   Category Transceiver Product URL 1 NTS0101: Dual supply translating transceiver; open drain; auto direction sensing  Product Description 1 The NTS0101 is a 1-bit, dual supply translating transceiver with auto direction sensing, that enables bidirectional voltage level translation. Product URL 2 NTS0302JK: 2-bit dual supply translating transceiver; open drain; auto direction sensing  Product Description 2 The NTS0302 is a 2-bit, dual supply translating transceiver family with auto direction sensing, that enables bidirectional voltage level translation. Product URL 3 NTS0304E: 4-bit dual supply translating transceiver; open drain; auto-direction sensing  Product Description 3 The NTS0304E is a 4-bit, dual supply translating transceiver family with auto-direction sensing, that enables bidirectional voltage level translation.
查看全文
Demo The demo session focuses on demonstrating the transport of human voice over the Bluetooth Smart protocol on Kinetis Wireless platforms running the Kinetis Bluetooth Low Energy stack. The intended setup is made up of two Kinetis Wireless KW41Z evaluation boards connected to an audio codec board with a headset (headphones + microphone) connected at each end. The audience can use the headsets for a full duplex voice communication experience. This demo session is aimed at showcasing the performance of the Kinetis KW41Z platform Demo Features Full duplex voice samples transport over Bluetooth LE transport using Kinetis KW41Z enabled with the Kinetis BLE v4.2 stack SGTL5000 audio codec for sample processing and Kinetis K24F for used for compression Interactive component through a pair of headsets for demonstrating the full duplex voice capabilities NXP Recommends Product Link Kinetis® KW41Z-2.4 GHz Dual Mode: Bluetooth® Low Energy and 802.15.4 Wireless Radio Microcontroller (MCU) based on Arm® Cortex®-M0+ Core https://www.nxp.com/products/wireless/thread/kinetis-kw41z-2.4-ghz-dual-mode-bluetooth-low-energy-and-802.15.4-wireless-radio-microcontroller-mcu-based-on-arm-cortex-m0-plus-core:KW41Z?&fsrch=1&sr=1&pageNum=1 Ultra-Low-Power Audio Codec https://www.nxp.com/products/audio/audio-converters/ultra-low-power-audio-codec:SGTL5000?&fsrch=1&sr=1&pageNum=1 Kinetis® K24 120 MHz MCU Tower® System Module TWR-K24F120M|Tower System Board|Kinetis® MCUs | NXP 
查看全文
Demo         This was a super fun project to work on and is popular around the office and on the road.  Now I have two of these for a truly amazing barrage of Nerf darts!  It's also always a lot of fun to tear things down and the Nerf gun had some cool plastic work and the shooting mechanism is more simple than what I originally guess.  But I digress, this post is about how you can build one of these yourself.  Please leave any questions or comments in the section below and I will try to answer and make refinements to this guide as we go.   The shopping list (aka Bill of Materials or BOM)   If you shop around you might be able to find better prices or substitute parts.   Type Part Qty Price URL UBEC HKU5 1 $             5.33 http://www.hobbyking.com/hobbyking/store/__16663__HobbyKing_HKU5_5V_5A_UBEC.html LiPo TURNIGY 2200mAh 3S 20C 1 $             7.89 http://www.hobbyking.com/hobbyking/store/__8932__Turnigy_2200mAh_3S_20C_Lipo_Pack.html Servo S5030DX 1 $           28.63 http://www.hobbyking.com/hobbyking/store/__18862__Hobbyking_S5030DX_Digital_MG_Servo_X_Large_HV_164g_0_20s_30kg.html Servo HK15138 1 $             3.12 http://www.hobbyking.com/hobbyking/store/__16269__HK15138_Standard_Analog_Servo_38g_4_3kg_0_17s.html Relay PCB COM-11041 1 $             3.95 https://www.sparkfun.com/products/11041 Relay Components Various 1 $             3.00 https://www.sparkfun.com/wish_lists/36307 Nerf Gun Nerf Dart Tag Swarmfire Blaster 1 $           44.99 http://www.toysrus.com/product/index.jsp?productId=11267568 Controller FRDM-K64F 1 $           29.00 FRDM-K64F | mbed Servo Arm Double Servo Arm X-Long 1 $             3.20 http://www.hobbyking.com/hobbyking/store/__19468__CNC_Alloy_Double_Servo_Arm_X_Long_Futaba_.html Servo Arm Heavy Duty Alloy Arm 1 $             5.63 http://www.hobbyking.com/hobbyking/store/__18350__Heavy_Duty_Alloy_1in_Servo_Arm_Futaba_Red_.html Servo Linkage Alloy Pushrod with Ball-Link 65mm 1 $             2.10 http://www.hobbyking.com/hobbyking/store/__25834__Alloy_Pushrod_with_Ball_Link_65mm.html Lazy Susan Shepherd 6 in. Lazy-Susan Turntable 1 $             4.49 http://www.homedepot.com/p/Shepherd-6-in-Lazy-Susan-Turntable-9548/100180572#.UYk5UqLql8E Metal Rod 3/8 in. x 36 in. Zinc Threaded Rod 1 $             2.87 http://www.homedepot.com/p/3-8-in-x-36-in-Zinc-Threaded-Rod-17340/202183465#.UYk5pqLql8E Frame 1/2 MDF 2ftx4ft 1 $           10.45 http://www.homedepot.com/p/1-2-in-x-2-ft-x-4-ft-Medium-Density-Fiberboard-Handy-Panel-1508108/202089097?N=btn1#.UYk6CqLql8E   The build   Two main pieces to construct in this phase.  The base turret and the actual hacking of the Nerf gun.   All your base.. The base of the turret is pretty rudimentary, lot's of room for improvement here.  I used 1/2 MDF and some carpentry skills.  Here is some instruction on how to build a MDF box.  Atop the box is a lazy Susan (ball bearing ring) so that the top-plate can rotate smoothly.  We considered leaving this element out, but worried that it would put to much strain on the servo.   On the subject of servos, a few tidbits of wisdom for you as you build this thing.  First, the left/right servo needs to be dead center of the lazy susan, if your off too much things will start to bind which is not good for your servo.  Second, I used large higher torque servos which cost a bit more, they might be overkill, but it certainly performs well.   I did a quick dimensionally accurate rendering of the design in Sketchup. Files are here.   Hacking the Nerf   Now for the fun stuff.   There is no shortage of screws with this Nerf Gun.  So get out your Phillips screwdriver and go to town. There are two electrical systems in the Nerf that we are going to tap into.  One is the power switch and the other is the electrical trigger. This is the electrical trigger.  The trigger goes to our relay, which is either on or off.  We did try at first to use a 7.2V R/C car battery, but the Nerf draws too much power and didn't fire.  Going up to a 11.1V LiPo fixed that right up. This is the power switch. In Nerfinator 1.0 everything was hardwired together, which prevented us from completely pulling the Nerf from the base and made repairs difficult to say the least.  Nerfinator 2.0 we put this handy connector which allowed us to completely and easily remove the Nerf from the base.  Shipping this thing around the country will take a toll on it!  On that subject, Nerf 1.0, stopped cycling to the next position for us at the Austin Mini Maker Faire.  After a through inspection of the operational mechanics inside the Nerf (really cool BTW) it was a little bitty spring that was causing the piston not to fully retract.  We replaced the spring with 1/2 a ballpoint pin spring and to our surprise it all worked again. Electrical Connection Diagram   Added High-Level Block Diagram.  Need to add pinouts.  You'll have to read the code for now to figure it out.     Code   Mbed was the programming tool of choice for this build.   Receive Side (RX) - The receiver is the base side.  This one takes input from the remote and controls the servo movement. NerfGun_nRF24L01P_RX - a mercurial repository | mbed Transmit Side (TX) - The transmitter is the remote side.  This one senses the users movement (accelerometer) and sends that data to the base station. NerfGun_nRF24L01P_TX - a mercurial repository | mbed   Finishing Touches   In the first passes of this build we just used a bare development board as the remote control.  We found that when given the remote they would not orientate it properly, so 3D Printed Controller STL files   Development Team John McLellan - Amplification/Motivation Clark Jarvis - Software/Hardware Iain Galloway and Angus Galloway - Design and print of controller FRDM_case_sunday_PART_REV_001.STL.zip
查看全文