NXP Designs ナレッジベース

キャンセル
次の結果を表示 
表示  限定  | 次の代わりに検索 
もしかして: 

NXP Designs Knowledge Base

ディスカッション

ソート順:
Overview This reference design describes the design of a 3-phase sensorless brushless DC (BLDC) motor control with back-EMF (electromotive force) zero-crossing sensing using an AD converter for the NXP® 56F80X and 56F83XX Digital Signal Controller (DSCs) dedicated for motor control applications. It can also be adapted to Our 56F81XX Digital Signal Controllers The system is designed as a motor drive for three-phase BLDC motors and is targeted for applications in both industrial and appliance fields (e.g. compressors, air conditioning units, pumps or simple industrial drives) The reference design incorporates both hardware and software parts of the system including hardware schematic Features BLDC sensorless motor 115 or 230V AC Supply Targeted for 56F80x, 56F83XX, and 56F81XX Digital Signal Controllers Running on 3-phase BLDC Motor EVM at 12V, 3-Phase BLDC Low-Voltage Power Stage Speed control loop Motor mode in both direction of rotation Manual interface (RUN/STOP switch, UP/DOWN push buttons control, LED indication) Overvoltage, undervoltage, overcurrent and overheating fault protection PC remote control interface (speed set-up) FreeMASTER software remote monitor Block Diagram Design Resources
記事全体を表示
Demo Owner michaelestanley By monitoring the vibration signature of a rotating machinery we can predict the remaining useful life of that machine. Features Condition monitoring Visual characterization of the fundamental frequency of a  motor along with its harmonics Features that can be observed: wavelength, transfer coefficients, statistical measures, standard deviations, variances Preparing work flows where users can use machine learning algorithms to to figure out what feature sets are important, focusing only on the features that are needed to predict the remaining useful life of the machine Links Sensors
記事全体を表示
Overview This reference design is based on 32-bit DSC MC56F82748, to demo a BPM Sensorless FOC Washing Machine. This reference design jump-starts your ability to leverage the NXP ®  DSCs' advanced feature sets via complete software, tools and hardware platform. Three-Phase BPM/PMASR drive with sensorless FOC IEC60730 certified controller Speed range 200RPM – 18000RPM (motor speed), 20RPM – 1600RPM (drum speed) Position and speed detection using extended Flux observer and DQ Back-EMF observer and tracking observer Non-recuperative braking and deceleration control Ultra low speed operation with rated torque, and ultra high speed operation with advanced field-weakening algorithm Over-current, over-temperature, over-voltage and under-voltage protection Serial RS232 control interface FreeMASTER GUI for easy debugging Features MC56F82748 BPM Sensorless FOC Washing Machine HVP-MC3PH HVP-56F82748 Block Diagram Design Resources
記事全体を表示
Demo Owner Daniel Viza   Features Tools that Integrates discrete instrumentation equipment into a single box along with an intuitive graphical user interface (GUI) Ability to see and store settings while the circuit operates in real time Featured NXP Products RF Power Tool Design Resources RF Power Tool Web page RF Power Tool Info document Block Diagram  
記事全体を表示
A user's guide introducing how to use windowed aatchdog timer in JN5189. 文档介绍了如何在JN5189中使用 WDT窗口看门狗。
記事全体を表示
Demo i.MX RT1050 from NXP showing three different Storyboard Suite demo applications; Washing Machine, Home Automation and Medical demos. Based on the Arm ®  Cortex ® -M7, the i.MX RT series bridges the gap between the performance of applications processors and the usability of MCUs, without compromising low-power or low cost. Video Overview (Click here) NXP Products Product Link i.MX RT1050 Evaluation Kit i.MX RT1050 Evaluation Kit | NXP  4.3" LCD Panel 4.3" LCD Panel RK043FN02H-CT | NXP 
記事全体を表示
Demo Owner Mike Stanley   Tire Pressure Monitoring Systems (TPMS) help drivers with precise direct tire pressure measurement by providing individual tire readings – including the spare. NXP's world’s smallest, lowest-power, with highest memory for customer use TPMS is highly integrated with a pressure sensor, temperature sensor, accelerometer, MCU and a transmitter. Watch Mike Stanley explain the pressure sensor readings, temperature sensor display and the accelerometer/motion readings. These readings are time based periodic measurements where the data is given as an output to the driver.   Features Simulation that portraits the TPMS as if it were inside the vehicles tires and sending reports to the vehicle's display unit about tire pressure Module has the following: Pressure sensor, accelerometer, temperature sensor, low-frequency radio, Microcontroller   Featured NXP Products FXTH87 product page FXTH87 Fact Sheet Links Tire Pressure Monitoring Sensors Pressure Sensors Block Diagram  
記事全体を表示
Overview This application creates a vector control PMSM drive with optional speed closed-loop using a quadrature encoder, and serves as an example of a PMSM vector control system design based on the cost-effective 32-MIPS NXP® digital signal controller MC56F80XX. Dedicated algorithms such as transformations, PI controllers and space vector modulation, are implemented using NXP’s Motor Control Library This cost-effective and highly reliable solution minimizes system cost, as the algorithm implements a single shunt current sensing, reducing 3 current sensors to one The reference manual provides a detailed description of the application, including the design of the hardware and the software Features Designed to fit into consumer and industrial applications Uses 56F8013 or 56F8023 32 MIPS Digital Signal Controller Running on a 3-phase High Voltage Power Stage Vector control of PMSM using theQuadrature Encoder as a position sensor Control technique incorporates: Vector control with speed closed-loop with position encoder Rotation in both direction Start from any motor position with rotor alignment 4-quadrant operation Reconstruction of three-phase motor currents from DC-Bus shunt resistor Wide speed range FreeMASTER Control Interface Fault protection - overcurrent, overvoltage, undervoltage Block Diagram Board Design Resources
記事全体を表示
Overview Heating, ventilation, and air conditioning (HVAC) systems are based on inputs from a variety of sensors, controlling different types of motors such as stepper motors for flaps and DC/BLDC blower fan motors. NXP broad portfolio of 32-bit, 16-bit S12, and 8-bit S08 families of microcontrollers enables designers to meet the needs of a variety of HVAC applications. System basis chips (SBCs) combine physical network connection with power management. Intelligent eXtreme switches complete the system solution for DC motor blowers. BLDC motor control requires more complex algorithms. NXP’s MagniV products combine MCU with SBC functionality, network connection, and motor control, specific drivers, into a single package, providing a cost-effective small footprint system solution. Interactive Block Diagrams https://www.nxp.com/video/building-automation:BUILDING-AUTOMATION-V02Recommended Products Category Products Features MCU MPC560xB|32-bit MCU|Body-Electronic | NXP  32-bit single-core Power Architecture® MCU. 32-bit Automotive General Purpose MCUs | NXP  Arm Cortex-M0+|Kinetis KEA 32-bit Automotive MCUs | NXP  System Basis Chip (SBC) MC33742 | SBC with Enhanced High-Speed CAN Transceiver | NXP  System basis chip with high-speed CAN Interface. SBC Gen2 with High-speed CAN | NXP  System basis chip with high-speed CAN Interface. MC33905 | SBC Gen2 with High-Speed CAN and LIN | NXP  System basis chip with high-speed CAN Interface. LIN SBC | NXP MC33910  System basis chip with LIN interface (Entry Level). LIN SBC | NXP MC33911 System basis chip with LIN interface (Medium Level). LIN SBC | NXP MC33912 System basis chip with LIN interface (High-end Level). CAN Interface MC33897 | Single-Wire Can Transceiver | NXP  CAN interface with protection features LIN Interface TJA1021 | LIN2.1/SAE J2602 Transceiver | NXP  LIN interface with low emission. MC33662 | LIN 2.1 / SAEJ2602-2, LIN Physical Layer | NXP  LIN 2.1 and SAEJ2602-2 interface. Switch Monitoring MC33972 | MSDI with Suppressed Wakeup | NXP  Multiple switch detection interface with sleep mode. MSDI | NXP  Multiple switch detection interface with sleep mode. Motor Control MagniV® S12ZVM Mixed-Signal MCUs | NXP  Single-chip BLDC motor control solution. MC33937 | Field Effect Transistor | NXP  Three phase field effect transistor (FET) pre-driver. MC33932 | H-Bridge Motor Driver | NXP  Dual 5.0 A throttle control H-bridge. High Side Switches MC33937 | Field Effect Transistor | NXP  Three phase field effect transistor (FET) pre-driver. MC33932 | H-Bridge Motor Driver | NXP  Dual 5.0 A throttle control H-bridge. Tools and Software Link Features Development Kit for sensorless BLDC | NXP  Based on the 32-bit Arm Cortex-M4F S32K144, the MTRDEVKSBNK144 is a development kit engineered for sensorless applications requiring one Brushless Direct Current (BLDC).
記事全体を表示
Overview The NXP® MPC8349E-mITX Media Server-in-a-Box solution is a turnkey hardware/software reference platform for home media servers with advanced NAS capabilities. Based on the MPC8349E PowerQUICC® II Pro processor containing a core built on Power Architecture technology and standards-compliant software from Mediabolic This platform solution is designed to help OEMs and ODMs accelerate the development process and speed time-to-market for next-generation home media servers Designed to enable consumers to share and store multimedia files, such as video, DVD backups, music and photos, throughout the digital home Features MPC8349E mITX reference platform features: In addition to the highly integrated MPC8349E processor, the reference platform leverages external components to support these additional features: 10/100/1000 Ethernet port, a 5-port Gigabit Ethernet switch Four-port USB 2.0 interface On-board 4-port PCI serial advanced technology attachment (SATA) controller 32-bit PCI slot, and a 32-bit MiniPCI slot FLASH memory slot Robust memory subsystem Two-port RS-232C interface Power supply SATA hard drive Mediabolic Media Server Sofware Features: Interoperability UPnP AV 1.0 compliant Designed to meet DLNA guidelines Synchronization Synchronizes content from any selected directory, local or networked Continuous directory monitoring for content updates, local or networked Optimized for Networked Media Aggregates all media resources on the network into a single, unified end-user presentation Can present multiple servers in a single content directory Unlimited simultaneous media streams Enjoyable End-User Experience Access to available music and photo metadata Automatic generation of photo thumbnails Detection of music thumbnails (album art) Block Diagram Board Design Resources
記事全体を表示
For showing text, graphics, animations in the LED panel, I decided to use the well known eGUI graphic library, porting the code to Kinetis SDK 1.3 + FreeRTOS and develop an eGUI low level driver for the LED panel.   http://www.nxp.com/egui http://github.com/Gargy007/eGUI   This porting will have two goals:   Use the eGUI for controlling the LED panel Use a QVGA display connected to FRDM-K82 to develop and simulate applications that will work in the LED panel   FRDM-K82 + Uctronics display:     eGUI Demo running:   I also ported PEG to FRM-K82 and Uctronics display in case could be used for bigger panels, 30 x 16 is not supported by PEG, so eGUi will be used as graphic library in this project. http://www.nxp.com/peg   PEG running in this platform:     Emulating the application that  will work on the LED panel is possible using the QVGA display:   Find attached  : eGUI Porting to FRDM-K82 with KSDK 1.3 and FreeRTOS running the eGUI demo application eGUI Porting to FRDM-K82 with KSDK 1.3 and FreeRTOS running the same application we will run in the LED panel. It also includes SEGGER_SYSVIEW.   Part 2: LED control method using the FlexIO Part 4: Software for panel control Or Return to Project page: LED Panel control with FlexIO
記事全体を表示
Overview In the industrial world, it is critical to incorporate fail-safe technology where possible in applications such as crane steering machines, robotic lift, and assembly line robots to name a few. By doing so, you ensure you meet Safety Integrity Level (SIL) standards as found in the IEC 61508 standard. Also, you significantly increase human safety and protect products and property. This fail Safe Motor Control solution incorporates the MPC574xP family of MCUs that delivers the highest functional safety standards for industrial applications. The MPC574xP family incorporates a lockstep function that serves as a watchdog function to flag any problems with the MCU including a programmable Fault Collection and Control Unit (FCCU) that monitors the integrity status of the MCU and provides flexible safe state control. Also, this device is a part of the SafeAssure® program, helping manufacturers achieve functional safety standard compliance. Block Diagram Recommended Products Category Products Features Power Switch 12XS2 | 12 V Low RDSON eXtreme Switch | NXP  Watchdog and configurable Fail-safe mode by hardware Authentication time (on-chip calculations) < 50 ms Programmable overcurrent trip level and overtemperature protection, undervoltage shutdown, and fault reporting Output current monitoring Pressure Sensor MPXHZ6130A|Pressure Sensor | NXP  The MPXHZ6130A series sensor integrates on-chip, bipolar op amp circuitry and thin-film resistor networks to provide a high output signal and temperature compensation for automotive, aviation, and industrial applications. Temperature Sensor https://www.nxp.com/products/sensors/silicon-temperature-sensors/silicon-temperature-sensors:KTY8X High accuracy and reliability Long-term stability Positive temperature coefficient; fail-safe behavior MOSFET Pre-driver GD3000 |3-phase Brushless Motor Pre-Driver | NXP  Fully specified from 8.0 to 40 V covers 12 and 24 V automotive systems Extended operating range from 6.0 to 60V covers 12 and 42 V systems Greater than 1.0 A gate drive capability with protection Power Management and Safety Monitoring MC33908 | Safe SBC | NXP  Enhanced safety block associated with fail-safe outputs Designed for ASIL D applications (FMEDA, Safety manual) Secured SPI interface   Evaluation and Development Boards   Link Description MPC5744P Development Kit for 3-phase PMSM | NXP  The NXP MTRCKTSPS5744P motor control development kit is ideal for applications requiring one PMSM motor, such as power steering or electric powertrain. Evaluation daughter board - NXP MPC5744P, 32-bit Microcontroller | NXP  The KITMPC5744DBEVM evaluation board features the MPC5744P, which is the second generation of safety-oriented microcontrollers, for automotive and industrial safety applications
記事全体を表示
Demo Owner: b14714 The motor control development toolbox is a comprehensive set of tools that plug into the MATLAB™/Simulink™ model-based design environment for rapid application development on MCUs.  The SFIO Toolbox is a new addition that can control Simulink system models by SFIO algorithms running directly on NXP DSC and Kinetis MCU hardware. NXP FreeMASTER debug monitor and data visualization tool interfaces provide an interface to monitor signals in real time for data logging and signal calibration. Features The motor control development toolbox is a comprehensive set of tools that plug into the MATLAB™/Simulink™ model-based design Auto code generation straight to the Micro. NXP developed a library and embedded target to interface with MATLAB and SimuLink Customers can directly go from the model based environment to the MCU without having to write C code by hand Featured NXP Products Motor Control
記事全体を表示
Description In this demo we show how to create a zumo robot basic controller. For this we will use the FRDM-KW41 card, an H bridge, and a cell phone with the NXP IoT toolbox application. From the application we will send the characters F forward, S to stop, B to back, L to left, R to right. The FRDM-KW41Z highly-sensitive, optimized 2.4 GHz radio features a PCB F-antenna which can be bypassed to test via SMA connection, multiple power supply options, push/capacitive touch buttons, switches, LEDs and integrated sensors. Video Diagram and Schematic Step by Step guide First, we need to have MCUXpresso installed and open. Download and load the Zumo Robot project in MCUXpresso. Install NXP IoT Toolbox app. Compile the project, connect the board and load it. Connect the card as indicated in the schematic Connect the power supply. Press switch 4 on the board. Open NXP IoT Toolbox, select Wireles UART and connect with the board. Now you can send the characters mentioned in the description. NXP Product Link Freedom Development Kit for Kinetis® KW41Z/31Z/21Z MCUs FRDM-KW41Z |Bluetooth Thread Zigbee enabled Freedom Development Kit | NXP 
記事全体を表示
Demo This demonstration features an Unmanned Aerial Vehicle (UAV) using the powerful Kinetis KV46 MCU controlling four GD3000 Brushless DC pre-drivers to spin the four motors which drive the propellers.   Features KV5x 240MHz ARM Cortex-M7 MCU with high speed ADCs & timers controlling all 4 BLDC motors GD3000 BDLC motor pre-driver featuring fast switching to drive low Q MOSFETs Single MCU solution unique in the market – reduced component count and BOM cost with superior performance   Featured NXP Products KV5x|Kinetis KV5x Connected Control MCUs|NXP 3-Phase Brushless Motor Pre-Driver|NXP   Links Quadcopter Demonstrating UAV Speed Control Using Kinetis KV5x MCUs and GD3000 Motor Pre-Drivers
記事全体を表示
App-based accessory demo for an EKG (Electrocardiogram) using the Tower System with TWR-DOCK module. Combines an EKG probe and a microcontroller to acquire and monitor heart rate data and passes the data to an iOS device where an app displays the data.     NXP Recommend Product Link Tower System Dock Module Tower System Dock Module | NXP  Kinetis K53 Tower System Module TWR-K53N512|Tower System Board|Kinetis MCUs | NXP  Tower System Elevator Module Tower System Elevator Module | NXP  Electrocardiograph Development Kit for Tower System Electrocardiograph Development Kit for Tower System | NXP    Featured NXP Products App-based accessory demo for an EKG (Electrocardiogram) using the Tower System with TWR-DOCK module Combines an EKG probe and a Microcontroller to acquire and monitor heart rate data and passes the data to an iOS device where an app displays the data
記事全体を表示
  Overview   NXP provides full solutions to power high-end payment terminals. NXP is at the forefront of contact and contactless payment solutions and is a leader in providing security solutions for the banking and payment industries. Combining NXP's portfolio of microprocessors, microcontrollers, interface peripherals and connectivity solutions can help to create a feature rich and easy-to-use payment terminal or tablet solution.   Block Diagram     Recommended Products   Category Name MCU Arm® Cortex®-M4|Kinetis K81 150 MHz 32-bit MCUs | NXP  Arm® Cortex®-M4 core + DSP up to 150 MHz, 16 kB CPU CacheAdvanced public key crypto and tamper detection. Low-power peripherals and DMA for continuous system operation in reduced power stat. Ideal for entry level, highly secure POS terminals. i.MX 6UltraLite Applications Processor | Single Arm® Cortex®-A7 @ 696 MHz | NXP  Cortex-A7 @ 696 MHz, 128 kB L2 cache. Security Block: TRNG, Crypto Engine (AES with DPA, TDES/SHA/RSA), Tamper Monitor, Secure Boot, SIMV2/EVMSIM X 2, OTF DRAM. Encryption, PCI4.0 precertification. Ideal for high-end, high-quality HMI POS terminals. LPC55S6x|Arm® Cortex®-M33|32-bit Microcontrollers (MCUs) | NXP  Cortex-M33 processor, running at a frequency of up to 100 MHz. Security features: Arm TrustZone, PRINCE module, AES-256, SHA2, Physical Unclonable Function, RNG, 128-bit UUID, and Secure GPIO. Ideal for entry level, highly secure POS terminals.   Category Name NFC Contact Readers | NXP  Highly versatile family of ISO7816 compatible contact reader ICs. NFC - Near Field Communication | NXP  Wide range of NFC and reader ICs for physical access systems, POS terminals, PC solutions, eGovernment applications, public transport schemes, Pay TV solutions, eMetering, gaming, industrial and white goods applications. PN5180 | Full NFC Forum-compliant frontend IC | NXP  Optimized for POS terminal applications, allows to achieve compliancy to EMVCo 3.0 analog and digital and implements a high-power NFC frontend.   Category Name Power Management DC-to-DC Solutions | NXP  Highly integrated and cost-effective power conversion solution. BC3770 | 2 A Switch-Mode Li-ion/polymer Battery Charger | NXP  Power Supplies and Package Programmable charge parameters via I2C compatible interface High-efficiency synchronous switching regulator Extensive protection Power Management Integrated Circuits (PMICs) | NXP  The new PF series of PMICs brings advanced levels of configurability and programmability in a system level PMIC solution, enabling a single device to be easily configured to provide power to a wide range of processors and peripherals.   Category Name Secure Arm® Cortex®-M0+|Kinetis KL8x Ultra-Low Power MCUs | NXP  The K8x Arm® Cortex®-M4 MCUs are designed with expandable memory & advanced security capabilities targeting IOT applications such as payment & identification. Kinetis® K8x Secure Microcontrollers (MCUs) based on Arm® Cortex®-M4 Core | NXP  The K8x Arm® Cortex®-M4 MCUs are designed with expandable memory & advanced security capabilities targeting IOT applications such as payment & identification.   Category Name Peripheral I²C LED Controllers ICs | NXP  Our I2C LED controllers enable core functions in some of today’s most ubiquitous devices and applications. Load Switches | NXP  Integrated Type C functionality, Fast Reverse Current Protection and Recovery, High Voltage Tolerance. Bluetooth®Smart/Bluetooth Low Energy | NXP  Highly integrated SoCs with up to 512 KB Flash and 128 KB RAM utilizing Arm® Cortex®-M4F cores. Ultra-low-power, 1.8 V, 1 deg. C accuracy, digital temperature sensor with I2C bus interface | NXP  Tiny WLCSP6 package Accuracy: 0.5 °C from 0 °C to +85 °C Low quiescent current: 30 μA Active and 1 μA Shut-down Supply range: 1.8 V ± 0.15 V Resolution: 12 bits
記事全体を表示
JN516x-EK004 ZigBee Smart Home Kit with NFC Commissioning All necessary hardware components to demonstrate, evaluate and develop ZigBee wireless network solutions with IoT connectivity and NFC commissioning Firmware pre-loaded with demonstration software for both ZigBee nodes and IoT Gateway Free support resources for developing ZigBee applications for the JN516x microcontrollers Expandable with the addition of extra ZigBee nodes, available separately             JN516x-EK004 Evaluation Kit                               NFC Controller on Raspberry Pi Board Physical Components The JN516x-EK004 ZigBee Smart Home Evaluation Kit includes the following hardware components: Gateway Component Raspberry Pi single-board computer to act as IoT Gateway Host JN5169 USB dongle (OM15020) to act as ZigBee Control Bridge Wi-Pi Raspberry Pi dongle for Wi-Fi connectivity NFC controller (PN7120) for NFC commissioning of ZigBee nodes ZigBee Node Components Carrier boards (OM15022) to accommodate expansion board and ZigBee JN5169 module, and incorporating NFC connected tag (NTAG I 2 C) including NFC antenna ZigBee modules (JN5169-001-T00/T01) providing processing platform and RF interface Generic expansion board (DR1199) with switch and level control functionality Lighting/Sensor expansion board (DR1175) with white light, colour light and sensor functionality Software Pre-loaded ZigBee Smart Home demonstration Flash programming utility for firmware re-programming Software Developer’s Kits (SDKs) for developing applications for JN516x microcontrollers Eclipse-based Integrated Development Environment (IDE) for easy application development Application Notes containing example applications and templates This Demo Is Probably of Interest If You: Work with Home Automation, Smart Energy or other similar IoT applications Need a state-of-the-art ZigBee solution Need a secure and convenient way to commission devices to your ZigBee network Key Benefits of Kit All-in-one kit to rapidly get started with your ZigBee application development Leverages NXP NFC solution to commission ‘smart nodes’ out of the box, securely and in just one tap Comprehensive support software and collateral for developing custom ZigBee solutions with IoT connectivity Video Link : 4980 JN516x-EK004 Evaluation Kit Leaflet JN516x-EK004 Evaluation Kit User Guide JN5169 ZigBee Wireless Microcontroller JN5169 USB Dongle for ZigBee (OM15020) ZigBee 3.0 Wireless Network Protocol ZigBee Generic Node Expansion Kit (JN5169XK010) ZigBee Lighting/Sensor Node Expansion Kit (JN5169XK020) NFC Controller (PN7120) NFC Connected Tags (NTAG I 2 C)
記事全体を表示
Description Factory automation systems connect with each other through robust communication paths and with the user through intuitive HMIs. To meet these needs and the demand for greener, more efficient industrial processes, these systems require ultra-reliable solutions for fast connectivity and solid security. NXP’s robot motion control solution provides the computing performance, embedded connectivity, low latency and a real-time open source operating system to address the requirements for multi-axis motion. The Layerscape LS1043A family provides a huge range of computing performance, with 2 and 4 core SoCs with either the power efficient A53 ARM core. In addition, the LS1043A includes integrated connectivity options that enable the low latency and low jitter required in the motion control and robotics space. Features High-accuracy Rot-Vector High-end PLC Industrial security gateway High-performance moto and driver Block Diagram Products Category Name 1: MCU Product URL 1 QorIQ® Layerscape 1043A | NXP  Product Description 1 The QorIQ LS1043A and LS1023A processor includes a four-lane, 10 GHz multi-protocol SerDes providing support for high-speed interfaces, including up to six Gigabit Ethernet ports with IEEE® 1588 support, three DMA controlled PCI Express® generation 2.0 ports and a single SATA 3.0 port. Category Name 2: Transceiver Product URL 1 TJA1057 | High speed CAN transceiver | NXP  Product Description 1 The TJA1057 is part of the Mantis family of high-speed CAN transceivers. It provides an interface between a Controller Area Network (CAN) protocol controller and the physical two-wire CAN bus. Product URL 2 22-bit bi-directional low voltage translator | NXP  Product Description 2 The GTL2000 allows bi-directional voltage translations between 1.0 V and 5.0 V without use of a direction pin. Category Name 3: Sensor Product URL 1 PCT2075: I2C-bus Fm+, 1 Degree C Accuracy | NXP  Product Description 1 The PCT2075 is a temperature-to-digital converter featuring ±1 °C accuracy over ‑25 °C to +100 °C range. Category Name 4: RTC Product URL 1 PCF85363A | NXP  Product Description 1 The PCF85363A is a CMOS Real-Time Clock (RTC) and calendar optimized for low power consumption and with automatic switching to battery on main power loss. Tools Product Link QorIQ® LS1043A Development Board QorIQ® LS1043A Development Board | NXP  OM13257: Universal Temperature Sensor Daughter Card for the Fm+ Development Kit Universal Temperature Sensor Daughter Card for the Fm+ Development Kit | NXP  OM13514: PC evaluation board for the I²C-bus RTC PCF85363A PC evaluation board for the I²C-bus RTC PCF85363A | NXP 
記事全体を表示
  Features 2.7 kHz Maximum bandwidth Operates up to 105 Celsius Ranges: +/- 2G to +/- 8G Ranges: +/- 4G to +/- 16G Sample at Output Data rate: 125 samples / second to 5000 samples / second   Links Sensors  
記事全体を表示