NXP Designs Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

NXP Designs Knowledge Base

Discussions

Sort by:
Demo Owner: Eduardo Montanez   Watch how Kinetis K Series and Kinetis L Series MCUs beat out the competition.     Features Latest Kinetis K2 microcontrollers running a CoreMark benchmark from EEMBC 4 different Microcontrollers are put to the test. Running all the same iteration benchmark with same capacity for all of the products Featured NXP Products K22F KL02 Links Kinetis MCUs|ARM® Cortex®-M Cores|NXP Kinetis L Series MCUs: Energy-Efficiency Benchmark Demo Kinetis L Series MCUs Energy Efficiency Benchmark - YouTube  
View full article
IEEE 1588协议简单理解        IEEE 1588 是一个精密时间协议 (PTP),用于同步计算机网络中的时钟。 在局域网中,它能将时钟精确度控制在亚微秒范围内,使其适于测量和控制系统。 IEEE 1588 标准为时钟分配定义了一个主从式架构,由一个或多个网段及一个或多个时钟组成。 ​       TSN 网络中时间同步协议使用 IEEE 802.1AS 协议,它基于 IEEE 1588 协议进行精简和修改,也称为 gPTP 协议。 ​       IEEE 1588 协议简称精确时钟协议 PTP(Precision Timing Protocol),它的全称是“网络测量和控制系统的精密时钟同步协议标准”(IEEE 1588 Precision Clock Synchronization Protocol)。其工作的基本原理,是通过主从节点之间进行同步数据帧的发送,记录数据帧的发送时间和接收时间信息进行,并且将该时间信息添加到该数据帧中。从节点获取这些时间信息,并计算从节点本地时钟与主时钟的时间偏差和网络节点之间的传输延时,对本地时钟进行纠正,使之与主节点时钟同步。一个 PTP 网络只能存在一个主时钟。 ​ PTP 协议主要分为两大部分来实现时钟同步功能: ​ 1、建立同步体系: ​       协议使用最佳主时钟算法(Best Master Clock Algorithm,BMCA),通过选取主时钟,建立主从拓扑关系,进而在整个 PTP 网络中建立起同步体系。 ​ 2、同步本地时钟: ​       协议使用本地时钟同步算法(Local Clock Synchronization Algorithm,LCS),通过 PTP 数据报文在网络主从节点之间的交换,计算各从节点本地时钟与主时钟间的时间偏差,调整本地时钟,使之与主时钟同步。 IEEE 1588v1 ​       整个 PTP 网络内的时钟可按照其上 PTP 通信端口的数目来划分成普通时钟(Ordinary Clock,OC)与边界时钟(Boundary Clock,BC):普通时钟只存在一个,而边界时钟则存在多个。一般在确定性不高的网络节点处使用边界时钟,例如交换机或者路由器一般用作边界时钟,如下图所示。在每个端口上,PTP 通信都是独立进行的。 1、边界时钟: ​      边界时钟上只允许存在一个从端口,与上级节点的主端口通信,将其本地时钟与级主端口进行同步。其余端口为主端口,与下游节点的从端口进行通信。边界时钟可以连接不同的网络协议。 ​ 2、同步体系建立流程: ​   (1)初始状态,各个节点端口会在指定的时间内侦听网络中的 Sync 数据帧; 若接收到 Sync 数据帧,节点端口将根据最佳主时钟算法决定端口状态。若没有收到 Sync 数据帧,该节点状态变更为 Pre_Master,并将自己假定为主时钟节点。此时节点端口状态表现为主时钟,但是并不发送 Sync 帧。 ​   (2)端口状态在一定时间内保持 Pre_Master: 若在端口指定时间内接收到 Sync 数据帧,则该端口状态由最佳主时钟算法决定。 若判定端口为主时钟,则将周期性地发送 Sync 帧;若判定为从时钟,则接受 Sync 帧,并计算偏差,纠正本地时钟。 ​ 若在该时间段内端口没有收到 Sync 数据帧,则将状态变更为主时钟,并且开始定时发送 Sync 数据帧。 ​   (3)主时钟和从时钟的状态随着时钟性能与运行状态的变化而变化。下图展示了 BMCA 中状态转移。 3、时间同步建立流程: ​ 如下图PTP同步原理         如图所示,Master为网路中的同步时钟源,可以认为其与UTC或者GPS时无限接近。Slave为网络中需要被同步设备。假设从Master到Slave的路径符合对称路径,那么路径上的延时我们设Delay,然后设备Master和设备Slave之间待同步的时间差值为Offset,即Slave比Master在同一时刻慢Offset。         Slave设备根据算出的Offset即可以进行本地时钟校准。但是1588V1协议依赖于链路的对称性,即Master到Slave与Slave到Master时延一致,这在实际网络状况下很难满足,故需要额外的不对称算法进行链路延时差计算和补偿校准。   IEEE 1588v2 ​IEEE1588V2在IEEE1588V1版本上做了改进和扩展。主要包括: ​ 1.新增点到点路径延时测量的独立消息模式。 端口 A 与端口 B 间的路径延迟时间 Delay 为: ​        在 PTPv1 中,平均路径延迟测量时通过 Sync 帧与 Delay_Req 帧配合使用的,但是在 PTPv2 中却不需要 Sync 帧的参与,仅通过 PDelay_Req 数据帧系列来进行测量。这是一个独立的延迟测量过程,不依赖 Sync 帧和同步体系建立的参与,使得测量精度有所提高,并且可以经过多次测量求得平均值得到更为准确的路径延迟。另一方面,如果网络中的同步体系发生改变,这时不需要重新计算该节点间的路径延迟,直接使用之前已测得的延迟数据,大大增强了协议执行的效率,使得协议更为方便灵活。在PTPv2 中,利用 PDelay_req 数据帧系列已成为主要的测量路径延迟方法。 ​ 2、新增透明时钟模型 ​        在 PTPv1 中,网络中间节点均采用边界时钟模型。与网络中唯一的主时钟,即一个普通时钟连接的边界时钟,其上唯一的从端口接收主节点发送的同步数据帧,与主时钟实现同步,其余的主端口和与之相连的其他边界时钟发送同步数据帧,最后同步到网络边缘的普通时钟,这样便实现了整个网络的时间同步。这种方法虽然可行,但是由于这种方式是逐级同步,所以距离主时钟越远的节点,同步精度越低。 ​        当网络中的一些节点不需要进行时钟同步或者不具备同步功能时,便可采用透明时钟模型。透明时钟不像 BC/OC 模式那样,需要每个节点都与主时钟进行同步,它的端口只对协议数据帧进行转发,并将计算出的数据帧滞留时间添加在校正域中。这种方式将 PTP 数据帧的处理变得更为简单,降低了网络中 PTP 协议的实施难度,同时提高了各从节点的同步精度。 ​ 透明时钟有模型两种:端对端透明时钟,和点对点透明时钟。 ​     (1)端对端(E2E)透明时钟 ​ E2E 透明时钟对网络中普通数据帧不做任何处理,仅进行转达让其正常通过。但是对于 PTP 事件数据帧,则将他们从接收端口到发送端口间的驻留延迟时间累加到数据帧中的修正域,用以弥补 PTP 数据帧在经过其自身所带来的延迟误差。 ​     (2)点对点(P2P)透明时钟 ​ 点对点(P2P)透明时钟只转发特定的 PTP 报文,包括 Sync 帧、Follo_Up 帧和Announce 帧等。并且会采用 Pdelay_Req 数据帧系列计算每个端口与所连接的端口间的路径延迟时间,再与端口间延迟时间合并添加到时间修正域,来补偿数据帧从源端口到点对点透明时钟出端口的时间延迟。 ​ 3、增加单步时钟模型 ​        单步时钟模型解决了 Follow_Up 帧与 Sync 帧匹配问题。PTP 协议基本的同步过程采用双步模式,即主时钟节点发送 Sync 帧,和带有 Sync 帧发送时间的Follow_Up帧。这种方式虽然能提高 Sync 帧时间戳标记的精度,提高同步效果,但是在网络负载较大的情况下,数据帧很有可能发生丢失或者阻塞,造成两种数据帧的匹配出现差错。 ​        在 PTP 数据帧中设置一个标志,来使用单步模式,将 Sync 帧的发送时间与数据帧中的时间标签的差值作为传输延迟,并将其累加到修正域中。这样主时钟便通过单独的 Sync 帧而不需要 Follow_Up 进行时间的同步校准工作。 ​        单步模式可以减少网络流量,提高网络负载较大时同步的可靠性。单步模式需要额外的辅助硬件,来帮助计算时间修正值并将其累加到校正域中,这对网络的实时性有比较高的要求。 BMCA ​        BMCA,即最佳主时钟算法,它选择网络中性能最佳的时钟作为主时钟,并以 此建立网络拓扑,生成同步体系,进而实现时钟同步功能。 ​        最佳主时钟的选取是通过Announce帧在网络中各节点的传输,比较各个节点上的时钟属性(比如是否将时钟指定为主或者从时钟),用于标识精度的时钟等级,以及用于标识时钟源类型的时钟类型(比如铷钟、铯钟等),还有表示时钟偏移、方差等的时钟特性、时钟地址以及时钟端口号等特征来选择最佳主时钟,当其他时钟特征都一样是,协议会将端口号最小的节点时钟作为主时钟。IEEE 1588协议会以主时钟节点作为根节点形成树形拓扑结构,并且为避免生成回路,那些竞争失败的节点端口,协议将他们定义为被动或者禁用状态。
View full article
FAST BOOT FOR lx2160 IN adas •Objective To speed ​​​​up bringup of LX2 chip-based systems •Pain Points to Address The bringup time is much longer than 3s, which is very sensitive in ADAS systems or time-sensitive systems. •Value Proposition / Key Features The guide can help customers shorten uboot time from 5s to less than 1.5s, saving more than 70% bootup time. •Deliverables Demo based on LX2160ARDB board. Reference codes and patches. Guide for Fast boot document. Fast boot 广泛用于嵌入式设备,现以lx2160ardb板为例进行相关探索。 启动流程: 优化思路: 1.适当提高FSPI时钟速率 diff --git a/lx2160asi/flexspi_divisor_32.rcw b/lx2160asi/flexspi_divisor_32.rcw index 422139c..0f8d5c9 100644 --- a/lx2160asi/flexspi_divisor_32.rcw +++ b/lx2160asi/flexspi_divisor_32.rcw @@ -7,8 +7,10 @@ * Modify FlexSPICR1 register, to increase FlexSPI clock closer to 50MHz, * with divisor value as 32. * => 750 * 2 / 32 ==> 46.875MHz + *write 0x1e00900,0x00000013 + * 0f -12 =125M */ .pbi -write 0x1e00900,0x00000013 +write 0x1e00900,0x0f .end ​ 2.关键路径优化 固化spd参数 固化ddrc参数 BL33 裁剪 详细patch和测试结果参考附件。
View full article
This doc explain our Linux BSP driver and how to custom them. Contests as follows: include bsp30/32 目录 1 S32G Linux文档说明 ................................................. 2 2 创建S32G RDB2 Linux板级开发包编译环境 .............. 2 2.1 创建yocto编译环境: ................................................ 2 2.2 独立编译 ................................................................. 8 3 Device Tree ............................................................. 11 3.1 恩智浦的device Tree结构 ..................................... 11 3.2 device Tree的由来(no updates) ............................ 13 3.3 device Tree的基础与语法(no updates) ................. 15 3.4 device Tree的代码分析(no updates) .................... 37 4 恩智浦S32G BSP 包文件目录结构 .......................... 70 5 恩智浦Linux BSP的编译(no updates) ...................... 72 5.1 需要编译哪些文件 ................................................ 72 5.2 如何编译这些文件 ................................................ 73 5.3 如何链接为目标文件及链接顺序 ........................... 74 5.4 kernel Kconfig ...................................................... 76 6 恩智浦BSP的内核初始化过程(no updates) .............. 76 6.1 初始化的汇编代码 ................................................ 78 6.2 初始化的C代码 ..................................................... 82 6.3 init_machine ......................................................... 94 7 恩智浦BSP的内核定制 ............................................. 97 7.1 DDR修改 .............................................................. 98 7.2 IO管脚配置与Pinctrl驱动 .................................... 100 7.3 新板bringup ........................................................ 121 7.4 更改调试串口 ...................................................... 125 7.5 uSDHC设备定制(eMMC flash,SDcard, SDIOcard) 129 7.6 GPIO驱动 ........................................................... 137 7.7 GPIO_Key 驱动定制 .......................................... 145 7.8 GPIO_LED 驱动定制 ......................................... 150 7.9 芯片内thermal驱动 ............................................. 155 7.10 CAN接口驱动 ..................................................... 157 7.11 I2C及外设驱动 .................................................... 162 7.12 SPI与SPI Slave驱动 ........................................... 183 7.13 Watchdog test. ................................................... 190 7.14 汽车级以太网驱动定制 (未验证) (未完成) ........... 191
View full article
目录 1 S32G Linux文档说明 .................................................. 3 2 创建S32G RDB2 Linux板级开发包编译环境 .............. 4 2.1 创建yocto编译环境: ................................................. 4 2.2 独立编译 ................................................................. 9 3 FSL Uboot 定制 ........................................................ 14 3.1 FDT支持 ............................................................... 14 3.2 DM(driver model)支持 ........................................... 20 3.3 Uboot目录结构 ...................................................... 31 3.4 Uboot编译 ............................................................. 34 3.5 Uboot初始化流程 .................................................. 35 3.6 使能了ATF后对Uboot初始化流程的影响 ............... 40 4 Uboot 定制 ............................................................... 41 4.1 修改 DDR大小 ....................................................... 41 4.2 修改调试串口与IOMUX说明 .................................. 44 4.3 DM I2C与PMIC初始化 .......................................... 53 4.4 通用GPIO ............................................................. 59 4.5 启动eMMC定制 ..................................................... 69 4.6 Ethernet定制 ......................................................... 78 5 Uboot debug信息 ..................................................... 89 5.1 Print env ............................................................... 89 5.2 dm - Driver model low level access ...................... 92 5.3 fdt .......................................................................... 95 5.4 I2C测试 ................................................................. 95 5.5 芯片寄存器访问 ..................................................... 98 updated to V5
View full article
  本文说明S32G  RDB2板Linux板级开发包BSP32 的ATF细节,以帮助客户了解S32G的ATF是如何运行的,以及如何修改到客户的新板上。   从BSP32开始,默认启动需要ATF支持,所以部分定制需要移动到ATF中,Uboot会简单很多。 请注意本文为培训和辅助文档,本文不是官方文档的替代,请一切以官方文档为准。   目录如下: 目录 1    S32G Linux文档说明... 2 2    创建S32G RDB2 Linux板级开发包编译环境... 3 2.1  创建yocto编译环境: 3 2.2  独立编译... 8 3    NXP ATF 原理... 13 3.1  AArch64 Exception Leve: 13 3.2  ATF原理... 14 3.3  ATF目录 结构... 16 3.4  ATF初始化流程... 25 3.5  NXP ATF的SCMI支持... 28 3.6  NXP ATF的PSCI支持... 32 3.7  NXP ATF OPTEE接口(未来增加)... 36 4    ATF 定制... 36 4.1  修改 DDR配置... 36 4.2  修改调试串口与IOMUX定制说明... 39 4.3  启动eMMC定制说明... 48 4.4  I2C与PMIC定制说明... 58
View full article
This doc explain how to configure a new LPDDR4 and test it on S32G, contents as follows: 目录 1    硬件资源,文档及工具下载... 2 1.1    硬件资源... 2 1.2    内存配置测试相关的文档... 2 1.3    内存配置与压力测试工具. 3 2    内存设计要求... 3 3    LPDDR4基础... 3 3.1    基本知识... 3 3.2    Inline ECC.. 4 4    硬件连接... 6 5    S32G+LPDDR4内存配置与测试步骤... 8 5.1    配置LPDDR4初始化寄存器设置... 9 5.2    使用内存测试工具初始化PHY及生成DDRC配置Uboot源代码    11 5.3    生成DDRC配置ATF源代码(从BSP32开始) 14 5.4    测试内存... 18 5.5    其它尺寸的LPDDR4配置... 19 6    测试失败的DEBUG.. 24 7    内存参数应用到Uboot中... 25 8    内存参数应用到ATF中... 25 9    附录... 25 9.1    一个重要的DDR TOOL bug Fix. 25 9.2    Uboot DDR测试工具... 26 9.3    Kernel DDR测试工具... 27 9.4    附DDR tool测试项截图... 28   Contents 1    Hardware Materials, Docs and Tools Needed. 2 1.1    Hardware resource. 2 1.2    Related docs of memory configuration and test 2 1.3    Memory configuration and test tools. 3 2    Memory Hardware Design Requirement 3 3    LPDDR4 Basics. 3 3.1    Basic Knowledge. 3 3.2    Inline ECC.. 5 4    Hardware Design. 7 5    S32G+LPDDR4 Memory Configuration and Test Steps. 8 5.1    Configure LPDDR4 DDRC Register Settings. 9 5.2    Use the Memory Test Tool to Initialize the PHY and Generate the DDRC Configuration Uboot Source Code  12 5.3    Generate ddrc configuration ATF source code (starting from bsp32) 15 5.4    Memory Test 19 5.5    Other size LPDDR4 configurations. 20 6    Debug of the Fails of Test 25 7    Modify the DDRC register settings in Uboot 26 8    Modify the DDRC register settings in ATF. 26 9    Appendix. 26 9.1    A importance DDR TOOL bug Fix. 26 9.2    Uboot DDR Test Tools. 27 9.3    Kernel DDR Test Tool 28 9.4    Attached Screenshot of DDR Tool Test Items. 29
View full article
This project include the codes and doc to support optimize the EMI of S32G by frequency changing and SSC. Contents as follows: 目录 1 展频的基本概念 ......................................................... 2 2 获取测试用uboot源代码 ............................................. 5 3 DDR_PLL的改频 ........................................................ 5 4 DDR_PLL的展频 ........................................................ 9 5 总结修改后的源代码 ................................................ 17
View full article
This doc explain how to optimize the Linux boot time, Contents as follows: 目录 1 默认BSP28 Linux内核的启动时间分析和优化方向 ..... 2 2 UBoot的优化 .............................................................. 3 2.1 缩小Uboot的DTS尺寸 ............................................ 3 2.2 缩小Uboot的尺寸 .................................................... 4 2.3 去掉等待3S输入时间 .............................................. 4 2.4 配合内核修改的Uboot参数 ..................................... 4 2.5 关闭串口调试信息 .................................................. 5 2.6 MMC read的方法来读取内核和DTB ....................... 5 3 Kernal的优化 ............................................................. 5 3.1 DTB中去掉不用的驱动和代码 ................................. 5 3.2 内核中去掉不用的平台与驱动及相关代码 ............... 6 3.3 内核中去掉不用功能,缩小内核大小 ...................... 7 3.4 去掉initramfs支持 ................................................... 7 3.5 关闭调试信息 .......................................................... 7 3.6 提前eMMC驱动加载时间 ........................................ 7 3.7 将Kernel与DTB打包在一起..................................... 8 4 Rootfs+应用程序的优化 ............................................. 8 5 最终全部启动时间比较 ............................................. 12
View full article
This doc expain how to use eMMC from user space, contents as follows: 目录 1 eMMC的分区情况 ...................................................... 2 2 S32G+BSP29上默认的eMMC启动 ............................ 3 2.1 eMMC硬件设计 .................................................. 3 2.2 eMMC的镜像烧写办法与启动 ............................. 6 2.3 增加MMC内核测试工具 .................................... 10 3 eMMC GP功能的测试 .............................................. 10 3.1 eMMC GP功能的说明 ....................................... 10 3.2 eMMC GP功能的测试 ....................................... 11 4 eMMC RPMB功能的测试 ......................................... 13 4.1 eMMC RPMB功能的说明 ................................. 13 4.2 eMMC RPMB功能的测试 ................................. 15
View full article
        S32G just support serial download a M7 image to run by internal rom codes, our S32G DS IDE have a flash tools to use this feature to burn the image to external device. So current image burn method will divide into 2 step: 1: burn a uboot into the external device by S32G DS flash tools. 2: reboot the codes with uboot and run with network to burn the linux image into external device.      which need two working place on manufacture line, and customer wish to have a one time on-line tools, which means we need use serial port to boot uboot directly but S32G rom codes do not support it.       We have a reference tools of S32V but which IP difference is big between on S32V and S32G, So we can not reuse it and have to develop a new one.       The development working include: 序号 开发工作 说明 开发者 1 开发 根据S32G的serial boot协议要求,开发PC端的串口工具来下载M7镜像 John.Li 2 开发 根据自定义协议要求,开发PC端的串口工具来下载A核Bootloader到SRAM中 John.Li 3 开发 根据自定义协议要求,开发M7镜像的串口接收与Checksum逻辑 John.Li 4 开发 修改M7镜像支持串口0 John.Li 5 开发 开发实现M7镜像的串口单字节同步收发函数 John.Li 6 开发 开发实现A53启动功能 John.Li 7 调试与Debug 调试解决串口接收乱码问题(Serial boot rom codes仍然在回送消息串口) John.Li 8 调试与Debug 提供 解决A核启动串口halt思路(Serial boot rom codes仍然占用串口) John.Li 9 调试与Debug 优化M7镜像,缩小大小 Tony.Zhang 10 调试与Debug 根据M7镜像和A核 Uboot在SRAM中的内存分配要求,重排M7镜像位置,避免冲突 Tony.Zhang 11 调试与Debug 在M7中初始化SRAM空间 Tony.Zhang 12 调试与Debug 在M7中设置SRAM可执行空间 Tony.Zhang 13 调试与Debug 调试解决由于cache没有及时回写导致的下载镜像错误的问题 Tony.Zhang 14 调试与Debug 集成,调优与文档 John.Li   Pls check the attachment for the doc/codes/binary release which include:    Release      |->M7: Linflexd_Uart_Ip_Example_S32G274A_M7: S32DS M7工程。      |->PC: s32gSerialBoot_Csharp: PC端的Visual Studio的C#的串口工具工程。      |->Test:      |    |-> 115200_bootloader.bin: S32DS M7工程编译出来的bin文件,波特率为115200      |    |-> 921600_bootloader.bin: S32DS M7工程编译出来的bin文件,波特率为921600      |    |->load_uboot.bat: 运行工具的批处理文件,运行成功后打开串口可以看到Uboot执行,默认使用的波特率是115299         |    |->readme.txt:其它测试命令 |    |->s32gSerialBoot.exe:编译出来的PC端串口工具 |    |->u-boot.bin: BSP29默认编译出来的u-boot.bin.      Product Category NXP Part Number URL Auto MPU     S32G274     https://www.nxp.com/s32g    
View full article
本文说明在S32G2 RDB2板上实现LLCE to PFE Demo的搭建过程。本Demo目前包括:  CANtoEth:CAN0发送,用硬件回环到 CAN1接收,然后通过PFE_EMAC1, 再通过RGMII接口发出。  CANtoEth:CAN0发送,用硬件回环到 CAN1接收,然后通过PFE_EMAC1, 再通过SGMII接口发出。  EthtoCAN:PC通过PFE_EMAC1的 RGMII发出,接收到CAN1,再硬件 回环到CAN0  CANtoCAN Logging to Eth: CAN0发 送,用硬件回环到CAN1接收,然后 通过PFE_EMAC1,再通过SGMII接 口发出,同时LLCE内部硬件把CAN1 再发送到CAN15_TX,再用硬件回环 到CAN14_RX 软件版本为 RTD3.0.0+LLCE1.0.3+PFE0.9.6/0.9.5。
View full article
This doc explain how to install S32G design studio& RTD SDK. contributed by Tony.Zhang
View full article
This doc explain our Mcal driver and how to custome them. contents as follows: 目录 1 AutoSAR MCAL基本概念 .......................................... 2 1.1 AutoSAR目标 ......................................................... 2 1.2 AutoSAR概念 ......................................................... 2 1.3 AutoSAR基本方法 .................................................. 2 1.4 BSW(Basic Software) ............................................. 4 1.5 NXP Basic AutoSAR软件 ....................................... 4 1.6 RTE与BSW的配置 ................................................. 5 1.7 BSW的配置流程 ..................................................... 6 1.8 MCAL驱动 .............................................................. 7 2 MCAL工具 ................................................................. 7 3 MCAL说明 ................................................................. 8 3.1 MCAL的下载与说明 ................................................ 8 3.2 EB Tresos的下载,安装 ....................................... 13 3.3 RTD-MCAL安装 ................................................... 16 3.4 Trace32的下载与安装 .......................................... 18 3.5 样例工程的编译,运行 ......................................... 20 4 MCAL驱动配置与定制 ............................................. 40 4.1 MCU ..................................................................... 45 4.2 PORT ................................................................... 59 4.3 DIO ....................................................................... 69 4.4 FlexCAN ............................................................... 71 4.5 FlexLin ................................................................. 87 4.6 GMAC .................................................................. 93 4.7 I2C ..................................................................... 101 4.8 PMIC .................................................................. 108 4.9 PMIC WDOG ...................................................... 127 4.10 WDOG ............................................................... 137 4.11 UART ................................................................. 144 4.12 SPI ..................................................................... 149 4.13 PWM .................................................................. 165 4.14 ADC ................................................................... 171 4.15 Thermal .............................................................. 177
View full article
This doc explain how to use S32G design studio and SDK, contributed by Gary.Yuan yuan.yuan@nxp.com.
View full article
This doc explain  where is the design resource and what they are of S32G in Chinese,  Contents as follows: 目录 1 www.nxp.com 官网资源 ............................................. 2 1.1 www.nxp.com Documentation ................................ 4 1.2 www.nxp.com Tools&Software ............................. 10 2 Flexera资源 ............................................................. 18 2.1 Automotive HW-S32G Evaluation Board .............. 21 2.2 Automotive HW-S32G GoldBox ........................... 22 2.3 Automotive HW-S32G RDB2(RDB不再说明) ....... 22 2.4 Automotive SW-S32G2 Standard Software.......... 23 2.5 Automotive SW-S32G2 reference Software ......... 28 2.6 Automotive SW-S32G2 Tools .............................. 30 3 Docstore资源 ........................................................... 31
View full article
第一章 简介 MCU 闪存加载器是一个可配置的闪存烧写实用程序,可通过 MCU 上的串行通讯进行操作。 它可以在整个产品生命周期(包括应用程序开发和最终产品制造等)中对 MCU 进行快速轻 松编程。 MCU 闪存加载器将以高度可配置的二进制或完整源代码形式提供。主机端命令行 和 GUI 工具可用于与闪存加载器进行通信。用户可以利用主机工具通过闪存加载器上传和/ 或下载应用程序代码。 第二章 闪存加载器协议 本节介绍主机和 MCU 闪存加载器之间数据包传输的通用协议。介绍包括不同事务的数据包 传输,例如无数据阶段的命令以及带传入或传出数据阶段的命令。 第三章 闪存加载器数据包类型 MCU 闪存加载器设备以从机模式工作。所有数据通信均由主机发起,该主机可以是 PC 主 机,也可以是嵌入式主机。 MCU 闪存加载器设备是接收命令或数据包的目标机。主机和目 标机之间的所有数据通信均采用分包形式。 第四章 MCU闪存加载器API 所有 MCU 闪存加载器命令 API 均遵循由成帧数据包打包的命令数据包格式,如前几小节所 述。 第五章 支持的外设 本小节介绍 MCU 闪存加载器支持的外设。 第六章 外部存储器的支持 本小节介绍 MCU 闪存加载器支持的外部存储器设备。要正确使用外部存储器设备,必须使 用相应的配置文件启用该设备。闪存加载器无法访问未启用的外部存储设备。 MCU 闪存加 载器使用存储器标识符启用特定的外部存储设备,如下所示。 第七章 安全实用程序 MCU 闪存加载器支持某些安全实用程序,用于轻松生成与安全性相关的块。请注意,必须 首先对闪存加载器本身进行签名才能正确启用安全实用程序。
View full article
         LittleVgl作为一款开源免费的嵌入式GUI得到越来越多工程师的厚爱,我们可以看到很多小型HMI项目或者一些开源社区都在使用它作为GUI的框架,同时也受益于用户群的不断扩大以及一些半导体原厂的青睐(通俗点就是说有赞助有钱儿了),LittleVgl本身也在快速的不断更新迭代,易用的组件和相关的辅助开发工具在不断的增加,而RT1050/1060/1170系列作为一款带有LCD控制器的平台,自然成为了LittleVgl最佳的载体之一了。         LittleVgl本身的组件已经很丰富了,但是遗憾的是一直没有加入对中文输入法Keyboard的支持(看了下它在Github上的Contributor List没有华人),这让它在我们国内的应用有了一些限制(注意在某组件上显示中文和真正的中文输入法是不同的概念),所以本项目旨在解决该问题,即把一个简单轻量的中文输入法框架嵌入到LittleVgl并跑在RT1050平台上,并把它开源开放出来,所以不要小看了我的“公益心”,哈哈。下图是该示例设计的UI界面        下面进入正题,首先把测试环境给出来,方便有兴趣有能力的朋友可以自行搭建(当然应一部分偷懒的强烈需求,我随本文档也附赠了完整的移植好的工程),然后我再一步一步地给出如何移植这套框架到用户自己的工程里,当然我已经把代码本身做了很多优化,尽量减小环境依赖,力求最少步骤的移植过程,理论上来讲不太会出现移植后编译出一堆Error的问题,咳咳。。。下面我们赶紧开整吧: 测试环境: SDK版本:SDK_v2.9.1 SDK参考例程:boards\evkbimxrt1050\littlevgl_examples\littlevgl_demo_widgets LittleVgl版本:v7.4.0 IDE工具:Keil_v5.31 开发板:MIMXRT1050-EVK + 480*272 RGB LCD屏 软件说明: 我们先看下这套中文输入法所需的几个文件,如下图所示,.c和.h文件加起来一共7个,其中nxp_logo.c只是我额外加的一个NXP的官方logo图标转成的C数组文件供littleVgl调用显示,属于锦上添花的东西,可有可无,真正跟输入法相关的是剩下的6个文件,下面我们逐一介绍下这几个文件的作用: 1. qwerty_py.c/.h:        实际上这两个文件才是这套全键盘拼音中文输入法的核心框架,实现了对输入的拼音字母进行索引匹配对应的汉字候选列表,这部分我是移植了如下链接中网友分享的代码,所以这两个文件我的角色只是一个大自然搬运工,不过说实话我是很感激该网友的无私分享的(这也是我一直推崇开源分享精神的源动力),之前对平时使用的各种输入法里面的算法原理一直充满好奇,直到看了这篇文章后才豁然开朗,“So that is what it is!”,让我获益匪浅(可能人的学习曲线和知识体系就是这样一点一滴的积累吧),而且更关键的是,如果让我继续往下开发诸如拼音联想和多汉字输入等功能的话,我更多关心的可能只是逻辑搭建的工作量问题,而不是纠结于Yes or No的问题了,因为咱已经了解了其最底层的工作原理了,所以很多复杂的事情,我们如果能抽丝剥茧的找到其最底层的本质(虽然这真的很难),那很多让人抓耳挠腮的问题很快就可以理清思路。说到这里我思维又发散了,呵呵,我想起让Linus Torvalds等一波老大神们一直头疼的Linux内核维护后继无人的问题,其实我的个人理解有很大一部分原因是如今的Linux太庞大了以至于几乎没有后辈的人对Linux的理解能赶上这些老辈大神,而这些老辈大神的最大优势是他们创建了Linux最早期的底层框架而且难能可贵的是一直在follow Linux每个版本的历史。总之,推荐大家看看如下这篇文章吧(实际上主要内容也都是代码),希望能各有所获; https://www.amobbs.com/thread-5668320-1-1.html?_dsign=0939dcbd 2. lv_chs_keyboard.c/.c文件:        这部分就是我的工作了(咱也不能啥都搬运…,这是体现咱的value的东西不是),我把它当作littleVgl的一个补充组件来写的,里面的大多数API参考官方littlevgl的lv_keyboard.c,所谓的文章开头的嵌入中文输入法到LittleVgl GUI环境中实际上就是这两个文件干的活,即将上面提到qwerty.c/.h实现的拼音输入法与LittleVgl框架结合到一块,起到一个桥梁的作用,所以如果你想把这套中文输入法嵌入到其他GUI环境中的话(比如emWin,GUIX,TouchGFX等),那主要的工作就是参考这两个文件的内容了; 3. lv_font_NotoSansCJKsc_Regular.c字体文件:        虽然littleVgl官方源码包里自带了一个中文字体文件(\lvgl\src\lv_font\lv_font_simsun_16_cjk.c),但是它只包含了1000个左右最常用的字,我实际体验了下很多我们想用的字都找不到,所以这个时候就需要自己去做一个更全一点的字体库了。这里面涉及到两个问题需要考虑,第一是很多我们常见的中文字体是收费的(咱PC机的Microsoft Office套件里的中文字体都是微软付费买的,所以咱也理解下早年正版Windows为啥辣么贵了,那你问为啥现在便宜了?因为人家现在不靠这个赚钱了呗),第二个是字体转换工具的问题,我们网上找到的字体都是TTF或者OTF格式的,但littleVgl是不认的,需要转换成它支持的字体格式。        对于第一个问题,我网上搜了好久最终选择了目前用的比较多的Google开源免费的字体,Google真乃金主也,它维护的网站里面字体各种各样啥都有且是开源免费的,如下链接,我选择的是NotoSansCJKsc字体(最后面的sc表示simplified Chinese,简体中文),然后它里面又包含了各种字形(regular, bold, light等),可以根据需要自行选择,整个包很大(100多MB),拆分成不同字形的就小了(每个14~16MB左右); https://www.google.com/get/noto/        对于第二个字体转换工具的问题,LittleVgl官方自带了一个字体转换工具(online font converter),我个人觉着不太好用(对OTF字体支持的不行),这里推荐阿里大神自己做的一个LittleVgl字体转换工具(LvglFontTool),非常方便好用,且支持加入Awesome图标; http://www.lfly.xyz/forum.php?mod=viewthread&tid=24&extra=page%3D1        关于字体这部分我需要再补充个问题,就是它占用的memory大小,毕竟我们是在嵌入式MCU平台Flash和RAM的资源是受限的,如下图所示,该字体文件占用大概1Mbytes的rodata空间(即可寻址的Flash空间,当然该大小可以通过在上图转换工具中增减一些文字来调 整),所以在移植本套输入法之前需要预留足够的Flash空间,当然对RT平台来说这部分还好,毕竟其本身就外扩至少几MB空间的QSPI Flash作为存储空间的。 4. lv_demo_chineseinput.c/.h文件:        这两个文件属于应用层实现了,主要关注该文件中下图的ta_event_cb函数(即textarea事件的callback,点击文本框的输入时回调),在里面我们需要按照1,2,3去调用即可(这三步的API均在lv_chs_keyboard.c/h文件里实现);        至此,这套全键盘拼音中文输入法框架所需的几个文件就介绍完了,用户只需要把这几个文件放到自己的工程设置好文件搜索路径,并参考随本文档附带的代码工程示例,再结合自己产品的GUI样式,把这套中文输入法嵌入到自己应用当中。
View full article
KW36 - 32kHz RTC外部振荡器的微调调节 USL:https://community.nxp.com/docs/DOC-342672     引言 FRDM-KW36包含带有32 kHz晶体振荡器的RTC模块。RTC模块以极低功耗模式运行并为MCU提供32 kHz时钟源。该振荡器包括一组可编程调节的负载电容C LOAD ,改变这些负载电容的值可以调整振荡器提供的频率。 此可配置电容的范围为0 pF(禁用电容器组)至30 pF,步长为2 pF。 这些值是通过组合启用的电容器获得的。可用值为2 pF,4 pF,8 pF和16 pF。这四个数值可以任意组合。如果外部电容可用,建议禁用这些内部电容器(将RTC控制寄存器SFR中的SC2P,SC4P,SCS8和SC16位设置为0)。 要调整振荡器提供的频率,必须首先能够测量该频率。最好使用频率计数器测了频率,因为它提供了比示波器更精确的测量。另外还需要KW36通过IO输出振荡器频率。要输出振荡器频率,以任意一个低功耗蓝牙演示应用程序为例,执行以下操作: 调整频率示例 本示例将利用低功耗蓝牙演示应用程序的心率传感器演示(freertos版本),并假定开发人员具有从SDK到IDE导入或打开项目的知识。 从SDK中打开或克隆“心率传感器”项目。       在工作区的board文件夹中找到board.c和board.h文件。 如下图所示在board.h文件中声明一个void函数。该函数将是为了把RTC时钟多路复用到PTB3,以使其能够输出32kHz频率用于测量。 /* Function to mux PTB3 to RTC_CLKOUT */void BOARD_EnableRtcClkOut (void); 如下所示在board.c文件中添加BOARD_EnableRtcClkOut函数。    void BOARD_EnableRtcClkOut(void){/* Enable PORTB clock gating */CLOCK_EnableClock(kCLOCK_PortB);/* Mux the RTC_CLKOUT to PTB3 */PORT_SetPinMux(PORTB, 3u, kPORT_MuxAlt7);/* Select the 32kHz reference for RTC_CLKOUT signal */ SIM->SOPT1 |= SIM_SOPT1_OSC32KOUT(1); } 在hardware_init函数中(board.c文件),在调用BOARD_BootClockRUN函数之后立即调用BOARD_EnableRtcClkOut函数。       在工作区的board文件夹中找到clock_config.c文件。 在文件顶部添加以下定义。 #define RTC_OSC_CAP_LOAD_0 0x0U /*!< RTC oscillator, capacitance 0pF */#define RTC_OSC_CAP_LOAD_2 0x2000U /*!< RTC oscillator, capacitance 2pF */#define RTC_OSC_CAP_LOAD_4 0x1000U /*!< RTC oscillator, capacitance 4pF */#define RTC_OSC_CAP_LOAD_6 0x3000U /*!< RTC oscillator, capacitance 6pF */#define RTC_OSC_CAP_LOAD_8 0x800U /*!< RTC oscillator, capacitance 8pF */#define RTC_OSC_CAP_LOAD_10 0x2800U /*!< RTC oscillator, capacitance 10pF */#define RTC_OSC_CAP_LOAD_12 0x1800U /*!< RTC oscillator, capacitance 12pF */#define RTC_OSC_CAP_LOAD_14 0x3800U /*!< RTC oscillator, capacitance 14pF */#define RTC_OSC_CAP_LOAD_16 0x400U /*!< RTC oscillator, capacitance 16pF */#define RTC_OSC_CAP_LOAD_18 0x2400U /*!< RTC oscillator, capacitance 18pF */#define RTC_OSC_CAP_LOAD_20 0x1400U /*!< RTC oscillator, capacitance 20pF */#define RTC_OSC_CAP_LOAD_22 0x3400U /*!< RTC oscillator, capacitance 22pF */#define RTC_OSC_CAP_LOAD_24 0xC00U /*!< RTC oscillator, capacitance 24pF */#define RTC_OSC_CAP_LOAD_26 0x2C00U /*!< RTC oscillator, capacitance 26pF */#define RTC_OSC_CAP_LOAD_28 0x1C00U /*!< RTC oscillator, capacitance 28pF */#define RTC_OSC_CAP_LOAD_30 0x3C00U /*!< RTC oscillator, capacitance 30pF */ 在BOARD_BootClockRUN函数内(也在clock_config.c文件中)找到对函数CLOCK_CONFIG_EnableRtcOsc的调用,然后通过上述任意定义来设置函数入参。 最后,在项目源文件夹中的“app_preinclude.h”文件中禁用低功耗选项和LED Support: #define cPWR_UsePowerDownMode 0#define gLEDSupported_d 0     此时,可以用频率计数器测量PTB3输出的频率,并进行频率调整。每次对电路板进行编程时,都需要执行POR以获得正确的测量值。下表是从FRDM-KW36板rev B获得的,可用作调整频率的参考。 请注意,电容不仅由启用的内部电容组成,还包括封装、焊线、焊垫和 PCB 走线中的寄生电容。因此,尽管下面给出的参考测量值应接近实际值,但您还应该在电路板上进行测量,以确保频率是专门针对您的电路板和布局进行调整的。 启用的电容器 CLOAD 电容定义 频率 - 0pF RTC_OSC_CAP_LOAD_0 (bank disabled) 32772.980Hz SC2P 2pF RTC_OSC_CAP_LOAD_2 32771.330Hz SC4P 4pF RTC_OSC_CAP_LOAD_4 32770.050Hz SC2P, SC4P 6pF RTC_OSC_CAP_LOAD_6 32769.122Hz SC8P 8pF RTC_OSC_CAP_LOAD_8 32768.289Hz SC2P, SC8P 10pF RTC_OSC_CAP_LOAD_10 32767.701Hz SC4P, SC8P 12pF RTC_OSC_CAP_LOAD_12 32767.182Hz SC2P, SC4P, SC8P 14pF RTC_OSC_CAP_LOAD_14 32766.766Hz SC16P 16pF RTC_OSC_CAP_LOAD_16 32766.338Hz SC2P, SC16P 18pF RTC_OSC_CAP_LOAD_18 32766.038Hz SC4P, SC16P 20pF RTC_OSC_CAP_LOAD_20 32765.762Hz SC2P, SC4P, SC16P 22pF RTC_OSC_CAP_LOAD_22 32765.532Hz SC8P, SC16P 24pF RTC_OSC_CAP_LOAD_24 32765.297Hz SC2P, SC8P, SC16P 26pF RTC_OSC_CAP_LOAD_26 32765.117Hz SC4P, SC8P, SC16P 28pF RTC_OSC_CAP_LOAD_28 32764.940Hz SC2P, SC4P, SC8P, SC16P 30pF RTC_OSC_CAP_LOAD_30 32764.764Hz  
View full article
从MKW36Z512VHT4到MKW36A512VFT4的软件迁移指南 USL:https://community.nxp.com/docs/DOC-345487 由 Edgar Eduardo Lomeli Gonzalez于 2020-09-14 创建的文档   引言 这篇文章将指导您如何从MKW36Z512VHT4迁移到MKW36A512VFT4 MCU。本示例将使用“信标(beacon)” SDK例程。 SDK下载和安装 1- 前往MCUXpresso网页:MCUXpresso网页 2- 使用您的注册帐户登录。 3- 搜索“ KW36A”设备。点击推荐的处理器,然后单击“Build MCUXpresso SDK”。   4- 点击后将显示另一页面。在“Toolchain / IDE”框中选择“All toolchains”,并提供名称以标识软件包。然后点击“Download SDK”。   5- 接受许可协议。等待几分钟直到系统将软件包放入您的配置文件中。 单击“下载SDK存档”(Download SDK Archive),下载SDK,如下图所示。   6- 如果使用MCUXpresso IDE,‘请将KW36A SDK 压缩文件夹拖放到“Installed SDKs”视图中以安装软件包。   至此,您已经下载并安装好KW36A设备的SDK软件包。 在MCUXpresso IDE中进行软件迁移 1- 在 MCUXpresso工作区导入“信标(beacon)”示例。单击“Import SDK examples(s)…”选项,将出现一个新窗口。然后选择“ MKW36Z512xxx4”,单击FRDM-KW36图像。点击“Next >”按钮。   2- 查找“beacon(信标)”例程并选择是否支持FreeRTOS。   3- 转到Project/Properties。展开C / C ++ Build / MCU设置,然后选择MKW36A512xxx4 MCU。单击“Apply and Close”按钮以保存配置。   4- 通过单击鼠标右键并选择“重命名”将以下MKW36Z文件夹重命名为MKW36A,            framework/DCDC/Interface -> MKW36Z framework/DCDC/Source -> MKW36Z framework/LowPower/Interface -> MKW36Z framework/LowPower/Source -> MKW36Z framework/XCVR -> MKW36Z4     5- 在MCUXpresso IDE中打开“Project/Properties”窗口。 转到C / C ++ Build / Settings,然后在Tool Settings窗口中选择MCU C Compiler / Includes文件夹。在创建之前,根据MKW35文件夹编辑与MKW36 MCU相关的所有路径。结果类似如下所示:   ../framework/LowPower/Interface/MKW36A ../framework/LowPower/Source/MKW36A ../framework/DCDC/Interface/MKW36A ../framework/XCVR/MKW36A4         6- 在工具设置中选择MCU Assembler/General文件夹。 编辑与MKW36 MCU相关的路径。结果类似如下所示: ../framework/LowPower/Interface/MKW36A ../framework/LowPower/Source/MKW36A ../framework/DCDC/Interface/MKW36A ../framework/XCVR/MKW36A4         7- 转到Project/Properties。展开MCU CCompiler/Preprocessor窗口。编辑“ CPU_MKW36Z512VHT4”和“ CPU_MKW36Z512VHT4_cm0plus”符号,分别将其重命名为“ CPU_MKW36A512VFT4”和“ CPU_MKW36A512VFT4_cm0plus”。保存更改。   8- 转到工作区。删除位于CMSIS文件夹中的“ fsl_device_registers,MKW36Z4,MKW36Z4_features,system_MKW36Z4.h和system_MKW36Z4.c”文件。然后解压缩MKW35Z SDK软件包并在以下路径中搜索“ fsl_device_registers,MKW36A4,MKW36A4_features,system_MKW36A4.h和system_MKW36A4.c”文件并复制到CMSIS文件夹中: <SDK_folder_root>/devices/MKW36A4/fsl_device_registers.h <SDK_folder_root>/devices/MKW36A4/MKW36A4.h <SDK_folder_root>/devices/MKW36A4/MKW36A4_features.h <SDK_folder_root>/devices/MKW36A4/system_MKW36A4.h <SDK_folder_root>/devices/MKW36A4/system_MKW36A4.c     9-  将位于路径<SDK_folder_root> /devices/MKW36A4/mcuxpresso/startup_mkw36a4.c中的“ startup_mkw36a4.c”覆盖” startup”文件夹中的“ startup_mkw36z4.c”。 您可以简单的将文件拖放到“startup”文件夹中,然后删除旧的文件。   10- 在CMSIS文件夹中打开“ fsl_device_registers.h”文件。在以下代码(文件的第18行)中添加“ defined(CPU_MKW36A512VFT4)”: /* * Include the cpu specific register header files. * * The CPU macro should be declared in the project or makefile. */#if (defined(CPU_MKW36A512VFP4) || defined(CPU_MKW36A512VFT4) || defined(CPU_MKW36A512VHT4) || defined(CPU_MKW36A512VFT4))‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍  11- 在bluetooth->host->config文件夹中打开“ ble_config.h”文件。在以下代码中添加“ defined(CPU_MKW36A512VFT4)”(文件的第146行): /* The maximum number of BLE connection supported by platform */#if defined(CPU_QN9080C) #define MAX_PLATFORM_SUPPORTED_CONNECTIONS 16#elif (defined(CPU_MKW36Z512VFP4) || defined(CPU_MKW36Z512VHT4) || defined(CPU_MKW36A512VFP4) || defined(CPU_MKW36A512VHT4) || defined(CPU_MKW36A512VFT4) || \ defined(CPU_MKW35Z512VHT4) || defined(CPU_MKW35A512VFP4) || \ defined(CPU_K32W032S1M2CAx_cm0plus) || defined(CPU_K32W032S1M2VPJ_cm0plus) || \ defined(CPU_K32W032S1M2CAx_cm4) || defined(CPU_K32W032S1M2VPJ_cm4) || \ defined(CPU_MKW38A512VFT4) || defined (CPU_MKW38Z512VFT4) || defined(CPU_MKW39A512VFT4) || \ defined(CPU_MKW37A512VFT4) || defined(CPU_MKW37Z512VFT4))‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍  12- 在source-> common文件夹中打开“ ble_controller_task.c”文件。在以下代码(文件的第272行)中添加“ defined(CPU_MKW36A512VFT4)”: #elif (defined(CPU_MKW35A512VFP4) || defined(CPU_MKW35Z512VHT4) || defined(CPU_MKW36A512VFP4) || defined(CPU_MKW36A512VFT4) ||\ defined(CPU_MKW36A512VHT4) || defined(CPU_MKW36Z512VFP4) || defined(CPU_MKW36Z512VHT4))/* Select BLE protocol on RADIO0_IRQ */ XCVR_MISC->XCVR_CTRL = (uint32_t)((XCVR_MISC->XCVR_CTRL & (uint32_t)~(uint32_t)( XCVR_CTRL_XCVR_CTRL_RADIO0_IRQ_SEL_MASK )) | (uint32_t)( (0UL << XCVR_CTRL_XCVR_CTRL_RADIO0_IRQ_SEL_SHIFT) )); 13-生成项目。 至此,该工程项目已经迁移完成。 在IAR Embedded Workbench IDE中进行软件迁移 1- 打开位于以下路径的信标(Beacon)项目: 2- 在工作区中选择项目,然后按Alt + F7打开项目选项。   3- 在General Options/Target 窗口中,单击设备名称旁边的图标,再选择适当的芯片NXP / KinetisKW / KW3x / NXP MKW36A512xxx4,然后单击“确定”按钮。   4- 在以下路径中创建一个名为MKW36A的新文件夹: <SDK_root>/middleware/wireless/framework_5.4.6/DCDC/Interface <SDK_root>/middleware/wireless/framework_5.4.6/DCDC/Source <SDK_root>/middleware/wireless/framework_5.4.6/LowPower/Interface <SDK_root>/middleware/wireless/framework_5.4.6/LowPower/Source <SDK_root>/middleware/wireless/framework_5.4.6/XCVR     5- 复制位于上述路径的MKW36Z文件夹内的所有文件,然后粘贴到MKW36A文件夹中。   6- .在工作区中选择信标项目,然后按Alt + F7打开项目选项窗口。 在“ C/C++ Compiler/Preprocessor”窗口中,将所有路径里的MKW36Z文件夹的重命名为MKW36A文件夹。在已定义的符号文本框中,将CPU_MKW36Z512VHT4宏重命名为CPU_MKW36A512VFT4。结果如下图所示:然后单击确定按钮。 $PROJ_DIR$/middleware/wireless/framework_5.4.2/LowPower/Interface/MKW36A $PROJ_DIR$/../../../../../../../devices/MKW36A4/drivers $PROJ_DIR$/../../../../../../../middleware/wireless/framework_5.4.2/DCDC/Interface/MKW36A $PROJ_DIR$/../../../../../../../middleware/wireless/framework_5.4.2/XCVR/MKW36A4 $PROJ_DIR$/../../../../../../../devices/MKW36A4 $PROJ_DIR$/../../../../../../../devices/MKW36A4/utilities     7- 展开startup文件夹,选择所有文件,单击鼠标右键,然后选择“Remove”选项。在文件夹上单击鼠标右键,然后选择““Add/Add files”。添加位于以下路径的startup_MKW36A4.s: <SDK_root>/devices/MKW36A4/iar/startup_MKW36A4.s 另外,将system_MKW36A4.c和system_MKW36A4.h添加到startup文件夹中。 这两个文件都位于以下路径: <SDK_root>/devices/MKW36A4   8- 在bluetooth->host->config文件夹中打开“ ble_config.h”文件。在以下代码中添加“ defined(CPU_MKW36A512VFT4)”: /* The maximum number of BLE connection supported by platform */#if defined(CPU_QN9080C) #define MAX_PLATFORM_SUPPORTED_CONNECTIONS 16#elif (defined(CPU_MKW36Z512VFP4) || defined(CPU_MKW36Z512VHT4) || defined(CPU_MKW36A512VFP4) || defined(CPU_MKW36A512VHT4) || defined(CPU_MKW36A512VFT4) || \ defined(CPU_MKW35Z512VHT4) || defined(CPU_MKW35A512VFP4) || \ defined(CPU_K32W032S1M2CAx_cm0plus) || defined(CPU_K32W032S1M2VPJ_cm0plus) || \ defined(CPU_K32W032S1M2CAx_cm4) || defined(CPU_K32W032S1M2VPJ_cm4) || \ defined(CPU_MKW38A512VFT4) || defined (CPU_MKW38Z512VFT4) || defined(CPU_MKW39A512VFT4) || \ defined(CPU_MKW37A512VFT4) || defined(CPU_MKW37Z512VFT4))‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍  9- 在source-> common文件夹中打开“ ble_controller_task.c”文件。在以下代码中添加“ defined(CPU_MKW36A512VFT4)”: #elif (defined(CPU_MKW35A512VFP4) || defined(CPU_MKW35Z512VHT4) || defined(CPU_MKW36A512VFP4) || defined(CPU_MKW36A512VFT4) ||\ defined(CPU_MKW36A512VHT4) || defined(CPU_MKW36Z512VFP4) || defined(CPU_MKW36Z512VHT4))/* Select BLE protocol on RADIO0_IRQ */ XCVR_MISC->XCVR_CTRL = (uint32_t)((XCVR_MISC->XCVR_CTRL & (uint32_t)~(uint32_t)( XCVR_CTRL_XCVR_CTRL_RADIO0_IRQ_SEL_MASK )) | (uint32_t)( (0UL << XCVR_CTRL_XCVR_CTRL_RADIO0_IRQ_SEL_SHIFT) ));  10-生成项目。 至此,该项目已经迁移完成。  
View full article