i.MX Solutions Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

i.MX Solutions Knowledge Base

Labels

Discussions

Sort by:
Freescale i.MX6 UltraLite processor, 528MHz Up to 1GB DDR3 and 32GB on-board eMMC Dual-band 802.11a/b/g/n WiFi and BT 4.1 BLE Ethernet, 5x USB, 8x UART, 2x CAN, SDIO, 78x GPIO Miniature size - 36 x 68 x 5 mm               CL-SOM-iMX6UL​ is a tiny System-on-Module (SoM) / Computer-on-Module (CoM) board designed to serve as a building block in embedded applications. CL-SOM-iMX6UL is build around the Freescale i.MX6 UltraLite system-on-chip featuring an advanced Cortex-A7 ARM CPU. The SoC is coupled with up-to 1GB DDR3 and 32GB of on-board eMMC storage. The processor is supplemented with up-to 4GB DDR3 and 32GB of on-board SSD. Measuring only 36 x 68 x 5 mm CL-SOM-iMX6UL features a wide range of industry standard interfaces - Ethernet, WiFi 802.11, Bluetooth, USB, CAN bus, serial ports, I/O lines and ADC inputs. Low price makes CL-SOM-iMX6UL an ideal selection for cost-sensitive systems, while its small size and low power consumption facilitate integration into portable and space-constrained designs. CL-SOM-iMX6UL is provided with comprehensive documentation​ and full ready-to-run SW support for Linux operating system. CL-SOM-iMX6UL Detailed Spec​ CL-SOM-iMX6UL Block Diagram​ CL-SOM-iMX6UL Development Kit​ CL-SOM-iMX6UL Online Pricing​
View full article
Use our i.mx6D evb board. takingwang@gmail.com  IMX6D dual display different video.
View full article
MYIR introduces a 7-inch HMI display panel with capacitive touch screen, the MYD-Y6ULX-CHMI, which is based on NXP’s i.MX6 ULL ARM Cortex-A7 processor and ready to run Linux, specially designed for HMI systems for POS, Intelligent access control and more other applications.   MYD-Y6ULX-CHMI Display Panel The MYD-Y6ULX-CHMI Display Panel consists of an MYD-Y6ULX-HMI Development Board and a 7-inch capacitive LCD mounting on its top. The MYD-Y6ULX-HMI is built around MYIR’s MYC-Y6ULX CPU Module with 528MHz i.MX6 ULL SoC, 256MB DDR3 and 256MB Nand Flash. Many peripheral interfaces are available from the base board including RS232, RS485, Ethernet, USB Host/Device, LCD, Camera, TF card slot and etc. The 7-inch capacitive LCD offers 800x480 pixels display resolution.   MEasyHMI QT demo   MYD-Y6ULX-HMI Development Board Apart from the hardware, MYIR also provides software resources to help with customers’ development. The MYD-Y6ULX-CHMI is preloaded with Linux OS. MYIR provides plenty of resources including kernel and drivers in source code, application examples and an MEasyHMI QT demo for developers to start their development rapidly. The MYD-Y6ULX-HMI development board has two 2.0mm pitch 2*20-pin male headers for IO extension. User can customize their own IO boards to connect with the MYD-Y6ULX-HMI to further explore more functions. MYIR offers an IO board MYB-Y6ULX-HMI-4GEXP as an option for users which has extended WiFi & BT, USB based 4G LTE Module interface, Audio and GPIOs. Thus, making the MYD-Y6ULX-CHMI Display Panel a complete solution for HMI applications. MYB-Y6ULX-HMI-4GEXP IO Board   MYD-Y6ULX-CHMI Display Panel + MYB-Y6ULX-HMI-4GEXP IO Board The MYD-Y6ULX-CHMI is only pricing at USD99/pc and the optional MYB-Y6ULX-HMI-4GEXP is USD35/pc. More information about the product can be found at: http://www.myirtech.com/list.asp?id=604
View full article
iWave Systems, AI/ML demo shows a low power smart door running eIQ heterogeneously on NXP i.MX 8M Mini Development kit. The demo application is built around the Django framework running on the board. In addition to face recognition, the MPUs are able to run a Django server to manage the user’s database, a QT5 application for the graphical interface, and perform training on the edge.
View full article
ConnectCore® i.MX53 / Wi-i.MX53 Freescale i.MX53 Cortex A8 system-on-module The network-enabled ConnectCore for i.MX53 is a highly integrated and future-proof system-on-module (SoM) solution based on the new Freescale i.MX53 application processor with a high performance 1 GHz ARM Cortex-A8 core, wired and wireless connectivity, powerful 1080p/720p video encoding/decoding capabilities, dual-CAN bus interface and a complete set of peripherals.   The ConnectCore for i.MX53 family builds on the successful ConnectCore for i.MX51 modules by providing a form factor compatible option with significantly improved processing, memory, video and connectivity capabilities. It is a scalable and energy-efficient module family that is ideal for medical devices, security/surveillance equipment, industrial applications, kiosk systems and digital signage integration. Modules in the ConnectCore i.MX family feature the design, development and administrative advantages offered by the iDigi® Device Cloud™. This secure, highly scalable platform seamlessly ties enterprise applications and remote devices together.   iDigi Manager Pro empowers IT, network operations and customer support organizations to conquer the challenges of managing equipment in their device networks. Network managers can remotely configure, upgrade, monitor and troubleshoot remote devices, and create applications that improve productivity, speed and efficiency.   Integrated secure wireless 802.11a/b/g/n Wi-Fi WLAN Powerful 2D/3D graphics, 1080p video Support for Embedded Linux, Microsoft Windows Compact 7 and Android Industrial operating temperature system-on-module (SoM) Secure, anywhere management using iDigi Manager Pro™   http://www.digi.com/products/wireless-wired-embedded-solutions/solutions-on-module/connectcore/connectcore-wi-mx53#overview
View full article
This document is an overview file for introducing MYIR's CPU Module MYC-Y6ULX, which is starting at only $18, delivered with shield cover and powered by NXP i.MX 6UltraLite / 6ULL ARM Cortex-A7 processor. It is part of a MYD-Y6ULX development board, capable of running Linux and supports -40 to 85°C working temperature for industrial embedded applications.   The MYC-Y6ULX CPU Module has a compact sizeof 37mm by 39mm, carrying out as many as peripheral signals and IOs through 1.0mm pitch 140-pin stamp hole expansion interface. It is integrated with 528 MHz i.MX 6UltraLite / i.MX 6ULL processor, 256MB DDR3, 256MB Nand Flash (4GB eMMC Flash is optional) and Ethernet PHY. It is populated on MYD-Y6ULX development board base board as the core controller board, thus rich peripherals and interfaces have been extended through connectors and headers to the base board like Serial ports, USB, Ethernet, CAN, Micro SD card, WiFi module, LCD/Touch screen, Camera, Audio as well as a Mini PCIe interface for optional USB based 4G LTE module. The MYD-Y6ULX is a versatile platform and solid reference design delivered with necessary cable accessories and detailed documentations ideal for prototype and evaluation based on i.MX 6UL/6ULL solutions.                                  MYC-Y6ULX CPU Module (delivered with shield cover)   MYIR offers three models with different configurations and features to meet various requirements from customers. MYD-Y6ULX MYD-Y6ULG2-256N256D-50-I MYD-Y6ULY2-256N256D-50-C MYD-Y6ULY2-4E512D-50-C MYC-Y6ULX MYC-Y6ULG2-256N256D-50-I MYC-Y6ULY2-256N256D-50-C MYC-Y6ULY2-4E512D-50-C Processor MCIMX6G2CVM05AB MCIMX6Y2DVM05AA MCIMX6Y2DVM05AA RAM 256MB DDR3 256MB DDR3 512MB DDR3 Flash <span "="" style="font-family: arial, 宋体;">256MB Nand Flash 256MB Nand Flash 4GB eMMC WiFi Support Support Cannot support Reuse SDIO with eMMC Working Temp. -40 to +85 Celsius 0 to +70 Celsius 0 to +70 Celsius WiFi Module can only support -20 to +65 Celsius.                                                                                                        Device Options                                                                  MYD-Y6ULX Development Board The launch of the MYC-Y6ULX CPU Module and MYD-Y6ULX development board provide an expansion solution for development based on NXP’s i.MX 6UltraLite / 6ULL processor after MYIR’s release of the MYS-6ULX Single Board Computer in April.
View full article
e-con Systems announces the launch of eSOMiMX7 System on Module. The eSOMiMX7 is based on NXP/Freescale i.MX7 processor. eSOMiMX7 is a ready to use System-On-Module using Solo / Dual core ARM® Cortex™ A7 @ 1GHz along with dedicated real time ARM® Cortex™ - M4 MCU. It encompasses eMMC Flash whose capacity ranges from 4GB to 64GB, LPDDR3 with capacity as high as 2GB. To cater to the customer's demand of a small SOM for building IoT Applications, Industrial HMI, Test and Measurement, Industrial HMI, eBook Reader and  Wearables, eSOMiMX7 is launched with a small form factor of 55mm x30mm. eSOMiMX7 is an ultra-low power system on module which consumes only 3mA current during the deep sleep mode. eSOMiMX7 System-On-Module is available with latest Linux Kernel version v4.9.11, latest Yocto rootfs version 2.2 and Free RTOS version 8. Pricing and Availability: The eSOMiMX7 at volumes is available at USD34 onwards and samples can be bought from the Webstore. Evaluation kit: Customers  willing to evaluate the eSOMiMX7, can evaluate using the EVM, Acacia - eSOMiMX7 development kit from e-con Systems' Webstore.
View full article
We are delighted to announce the launch of a very special Micro SOM, eSOMiMX6-micro. This high performance system on module is based on NXP i.MX6 Quad/Dual ARM Cortex-A9 Processor. Meissa-I, the evaluation kit for this iMX6 Micro SOM is also the smallest RDK in the industry. The customer who wanted a low power micro SOM for building their ultra-compact devices like Wearables, Medical Imaging, Handhelds etc, we have our eSOMiMX6-micro system on module which based on NXP i.MX6 Quad/Dual Core ARM Cortex-A9 processor in a small form factor of 54mm x 20mm with 10mA in suspend current. eSOMiMX6-micro: iMX6 Micro System-on-Module To get more details on this product, please visit: https://www.e-consystems.com/iMX6-micro-som-system-on-module.asp
View full article
NXP MCU-level face recognbition solution is implemented by using i.MX RT106F, which makes the developers add face recognition capabilities to their MCU-based IoT products. This ultra-small size, integrated software algorithm and hardware solution can facilitate developers for rapid evalution and proof of concept development. This solution minimizes time to market, reduces risk and reduces development work, which can make it easier for many OEMs to add face recogtion functions. It provides advanced user interface and access control functions for smart homes, smart appliances, smart toys and smart industries without the need for Wi-Fi and cloud connectivity, solving the privacy issues of many consumers. i.MX RT106F is a member of the i.MX RT1060 series. It will be officially mass-produced in April 2020. It is mainly aimed at low-cost face recognition applications. It is based on the Arm Coretx-M7 core and a high-performance real-time processor with a frequency up to 600MHz. In addition to the face recognition function, the i.MX RT106F also has a large number of available peripherals, which can be used as the main chip for a variety of applications. i.MX RT106F has been licensed to run NXP OASIS runtime for face recognition, including: ● Camera Driver ● Image capture and preprocessing ● Face Detection ● Face Tracking; ● Face Contrast; ● Face Recognition; ● Anti-fraud; ● Face Configuration; ● Confidence; ● Face recognition authenticat results; ● Built-in secure bootloader, application verification; ● Automatic Verification Script; ● Support MCUXpresso SDK, IDE and configuration tools. Hardware Framework Software Framework Core Process of Software
View full article
NXP’s i.MX6UL3 Cortex A7 based power efficient CPU integrates comprehensive security features such as TRNG, Crypto Engine (AES with DPA, TDES/SHA/RSA), Tamper Monitor, Secure Boot, SIMV2/EVMSIM interfaces, OTF DRAM Encryption, PCI4.0 pre-certification etc. This makes the i.MX6UL3 CPU as very ideal solution for the electronic point of sale (ePOS) applications. iWave Systems being one of the early adaptor of the i.MX6UL CPU, launched cost effective i.MX6UL3 based SOM for POS applications where power consumption, small form factor and security features are very critical. The IMX6UL3 SOM module is equipped with 256MB of DDR3 RAM, which is expandable up to 1GB. 256MB of NAND flash is supported on the SOM which is also expandable higher memory configuration. All the IO peripheral interfaces supported by imx6 ultra lite CPU is available through 200 pin SODIMM edge connector. i.MX6UL SODIMM Module By using the proven i.MX6UL3 SOM, a POS unit can be quickly realized by developing an application specific base board with the following features; EMV compliant Smart card, magnetic swipe reader, Thermal Printer, key pad, Finger print sensor, TFT display, 2G/3G module, Wi-Fi/BT modules, NFC reader, Micro SD card, USB OTG and battery support. iWave’s i.MX6UL development board can be used for quick POS prototyping and application development. The development kit includes Imx6ul3 SOM module,base board with multiple USB ports, Micro SD, RGB display, camera port, audio In/Out, multiple UARTs, PWM interface, I2C, GPIOs etc.This is ideal starter kit for connecting all the necessary POS specific interface modules and quick prototyping of POS application. You can kick start your POS product design with this Industry latest i.MX6UL3 SOM now by ordering the i.MX6UL development board from the following link; http://www.iwavesystems.com/product/development-platform/i-mx6ul-development-kit.html​
View full article
i.MX6 quad-core Cortex-A9 CPU, 1.2GHz Up to 4GB DDR3 and 32GB on-board SSD storage Integrated GPU and 1080p VPU, dual display support WiFi, BT 3.0, GbE, PCIe, SATA, 5x USB, 5x UART, 2x CAN Linux, Android ICS and Windows Embedded Compact 7 Miniature size - 75 x 65 x 6 mm CM-FX6-iMX6 is a tiny System-on-Module (SoM) / Computer-on-Module (CoM) designed to serve as a building block in embedded applications. CM-FX6 is based on the i.MX6 application processor featuring a highly scalable single/dual/quad core Cortex-A9 CPU at up to 1.2GHz coupled with powerful graphics and video processing units. The processor is supplemented with up-to 4GB DDR3 and 32GB of on-board SSD. In addition, CM-FX6 features a wide range of industry standard interfaces – Gigabit Ethernet, WiFi 802.11, Bluetooth, PCIe, SATA, USB, RS232 and CAN bus. CM-FX6 is provided with comprehensive documentation and full ready-to-run SW support for Linux, Android and Windows Embedded Compact 7 operating systems. CM-FX6-iMX6 Detailed Spec CM-FX6-iMX6 Block Diagram CM-FX6-iMX6 Development Kit CM-FX6-iMX6 Online Pricing
View full article
The documentation has summerized some FAQs for development based on NXP's i.MX 6UL/6ULL ARM Cortex-A7 processors. MYIR provides a series of i.MX 6UL/6ULL based products including SoM, SBC, development board and HMI display panel. MYD-Y6ULX-CHMI | 7-inch HMI Display Solution based on NXP i.MX 6UL/6ULL-Welcome to MYIR  MYS-6ULX | NXP i.MX 6UL / 6ULL SBC Board for IoT and Industry Applications-Welcome to MYIR  MYC-Y6ULX CPU Module | NXP i.MX 6UL, i.MX 6ULL SOM | ARM Cortex-A7 Processor-Welcome to MYIR   MYD-Y6ULX | NXP i.MX 6UL, i.MX 6ULL Development Board / SOM, ARM Cortex-A7 Processor-Welcome to MYIR  MYD-Y6ULX-HMI Development Board | NXP i.MX 6UL/6ULL Board for HMI Applications-Welcome to MYIR  MYIR is pleased to share the experience with more developers. 
View full article
This post is about adding cellular modem support on the Boundary Devices i.MX6 boards under Ubuntu.  Many customers have requested cellular modem support on our i.MX6 boards (BD-SL-i.MX6, Nitrogen6X, Nitrogen6_Lite and Nitrogen6_MAX).  Since most cell modems are USB or PCIe devices, configuration is a software task, and mostly done in userspace. The steps are also different for Android, embedded Linux and desktop distributions.  In other words, its complicated. In this post, we’ll walk through all of the steps needed to configure a specific set of modems under Ubuntu as a reference. If you’re using another modem or another userspace, the details may be different, but the fundamentals will be the same. We used the Huawei E3131 USB dongle , and Huawei MU609 Mini-PCIe during this process, and will be adding them to our default kernels going forward. As you can see in this patch, we did have to add some USB device ids and make minor updates to the kernel as provided by the vendor. In the process, we should now also support the following Huawei models for various regions and carriers: MC323   CDMA: Downlink:153.6 kbps, Uplink: 153.6 kbps MU509   WDCMA: Downlink:3.6 Mbps, Uplink: 384 kbps MC509   EVDO: Downlink:3.1 Mbps, Uplink: 1.8 Mbps MU609   HSPA+: Downlink:14.4 Mbps, Uplink: 5.76 Mbps MU709   HSPA+: Downlink:21.6 Mbps, Uplink: 5.76 Mbps ME906   LTE: Downlink:100 Mbps, Uplink: 50 Mbps ME909   LTE: Downlink:100 Mbps, Uplink: 50 Mbps ME936   LTE: Downlink:100 Mbps, Uplink: 50 Mbps For more details including links to images as well as detailed descriptions on how to implement, please visit this blog post:  http://boundarydevices.com/cellular-modems-on-i-mx6-boards/
View full article
Connect any Android-based M2M device seamlessly with Device Cloud by Etherios and instantly build solutions for the Internet of Things (IoT). This set of libraries, plug-ins, samples and tools simplifies the development of Device Cloud applications for Android devices (Android version 2.2 and later). Easy and immediate integration of IoT cloud connectivity into applications Supports any Android device version 2.2 and greater Two-way messaging for full cloud-to-device messaging and control Device management and troubleshooting tools including configuration edits, firmware updates and device reboots Application development tools Remote file system management Secure connections Installation via Eclipse Update Manager The download includes:  Eclipse plug-ins that extend the functionality of the IDE, simplifying development Cloud Connector for Android library, including an API that allows Device Cloud communication with just a few lines of code Examples and demos (Android and Web applications), with source code included Comprehensive documentation, including a Getting Started Guide, a General Users Manual and an API reference Visit Cloud Connector for Android and download the free Cloud Connector for Android. For an overview of the Device Cloud by Etherios IoT solution, please also take a look at Device Cloud: Driving the Internet of ANYthing
View full article
     See a connected Android demo on an i.MX53 in action -  http://www.youtube.com/watch?v=1R1kbya77eE   
View full article
The WunderBar is the easiest way to create innovative and useful apps to connect smart devices. It works out-of-the-wrapper, contains 6 awesome Beacons (BLE), sensors, and Wifi, and is dead-simple to program. Sensors include: Light, color, distance, temperature, humidity, remote control (IR), accelerometer, and gyroscope, a Grove Connector, and noise/sound sensor which was chosen by the community! Open Source We want everyone involved, that's why we are sharing the layouts on GitHub. If you've got an improvement - fork us, make a change, and send a pull request. If you need to build your own board to integrate with existing systems, be our guest. The liberal Apache License makes this possible. Secure Security for low energy devices over domestic networks is a challenge. We are working with partners to build the highest possible level of security into devices. Our device registration harnesses the security in your smart phone or tablet to create a permanent connection with the OpenSensor Cloud Flexible The WunderBar comes shipped with our own firmware which seemlessly integrates with the OpenSensor Cloud, however you can work with Arduino, or roll your own solution. We have libraries for Arduino, and examples for building your own solution. Read more about it WunderBar by relayr Think this is a cool project?  Rank it below and leave us your comments!
View full article
Hi all.  The display does not output normally. 1. This is the screen of the problem. 2. This is a screen that should come out normally.  Therefore, it is necessary to review whether the settings are correct in the bootloader and the kernel. Below are the system information and tasks. - Hardware system Module: Apalis iMX6, Ixora Carrier Board v1.1 LVDS 2 port : LA123WF4-SL05, 12.3”WU (1920 X RGB X 720) TFT- LCD - Operation system boot2qt : Boot to Qt for Embedded Linux 2.3.4 bootloader: U-Boot 2016.11-dirty kernel : Linux version 4.1.44-2.7.5+g18717e2 - LCD timing - Device Tree of kernel, arch/arm/boot/dts/imx6qdl-apalis.dtsi mxcfb1: fb@0 { compatible = "fsl,mxc_sdc_fb"; disp_dev = "ldb"; interface_pix_fmt = "RGB24"; default_bpp = <24>; int_clk = <0>; late_init = <0>; status = "disabled"; // "okey" in arch/arm/boot/dts/imx6qdl-apalis-ixora-v1.1.dtsi }; &ldb { status = "okay"; split-mode; // dual-mode; lvds-channel@0 { reg = <0>; fsl,data-mapping = "spwg"; /* "jeida"; */ fsl,data-width = <24>; crtc = "ipu2-di1"; primary; status = "okay"; display-timings { native-mode = <&timing01>; timing01: 1920x720 { clock-frequency = <89400000>; hactive = <1920>; vactive = <720>; hback-porch = <96>; hfront-porch = <30>; vback-porch = <3>; vfront-porch = <3>; hsync-len = <2>; vsync-len = <2>; }; }; }; lvds-channel@1 { reg = <1>; fsl,data-mapping = "spwg"; fsl,data-width = <24>; crtc = "ipu1-di0"; status = "okay"; display-timings { timing02: 1920x720 { clock-frequency = <89400000>; hactive = <1920>; vactive = <720>; hback-porch = <96>; hfront-porch = <30>; vback-porch = <3>; vfront-porch = <3>; hsync-len = <2>; vsync-len = <2>; }; }; }; }; - u-boot env vidargs=video=mxcfb0:dev=ldb,1920x720@60,if=RGB24, video=mxcfb1:off video=mxcfb2:off video=mxcfb3:off - kernel log : [ 0.244330] MIPI DSI driver module loaded [ 0.244682] ldb 2000000.aips-bus:ldb@020e0008: split mode [ 0.244951] ldb 2000000.aips-bus:ldb@020e0008: split mode or dual mode, ignoring second output [ 0.245615] 20e0000.hdmi_video supply HDMI not found, using dummy regulator [ 0.247074] mxc_sdc_fb fb@0: registered mxc display driver ldb [ 0.262134] mxc_sdc_fb fb@0: 1920x720 h_sync,r,l: 2,30,96 v_sync,l,u: 2,3,3 pixclock=89405000 Hz [ 0.272800] imx-ipuv3 2800000.ipu: IPU DMFC DP HIGH RESOLUTION: 1(0,1), 5B(2~5), 5F(6,7) [ 0.306740] mxc_sdc_fb fb@0: 1920x720 h_sync,r,l: 2,30,96 v_sync,l,u: 2,3,3 pixclock=89405000 Hz [ 0.354510] Console: switching to colour frame buffer device 240x45 [ 0.389237] mxc_sdc_fb fb@1: mxcfb1 is turned off! [ 0.389484] mxc_sdc_fb fb@2: mxcfb2 is turned off! [ 0.389720] mxc_sdc_fb fb@3: mxcfb3 is turned off! : - Run fbset of target root@b2qt-apalis-imx6:~# fbset mode "1920x720-60" # 😧 89.405 MHz, H: 43.655 kHz, V: 59.966 Hz geometry 1920 720 1920 1440 24 timings 11185 96 30 3 3 2 2 accel false rgba 8/16,8/8,8/0,0/0 endmode Is there anything else to check? Thanks.
View full article
Bitcoin is a cryptocurrency which is quite popular among many investors, tech enthusiasts, and some digital sellers/buyers due to its flexible, anonymous and robust nature.  BFG Miner is a bitcoin miner which has the ability to mine bitcoins on a range of devices from ASIC, to FPGA, to GPU, to obsolete CPU systems. This article will guide you step by step to do bitcoin mining on a i.MX8x platform by using the bfgminer. 1) Download the necessary software. bfgminer https://github.com/luke-jr/bfgminer.git jansson https://github.com/akheron/jansson.git uthash https://github.com/troydhanson/uthash.git 2) Cross compile the software: bfgminer: ./configure --prefix=${YourDirectory} --host=aarch64-linux-gnu --enable-scrypt --enable-cpumining --without-libevent --without-libmicrohttpd make jansson ./configure --prefix=${YourDirectory} --host=aarch64-linux-gnu make If everything runs correctly, you should get the following binaries and libraries: Ubuntu14:/opt/output$ ls -R .: bin include lib sbin share ./bin: bfgminer bfgminer-rpc start-bfgminer.sh ./include: jansson_config.h jansson.h libbase58.h libblkmaker-0.1## ./include/libblkmaker-0.1: blkmaker.h blkmaker_jansson.h blktemplate.h ./lib: libbase58.la libbase58.so.0 libblkmaker-0.1.la libblkmaker-0.1.so.6 libblkmaker_jansson-0.1.la libblkmaker_jansson-0.1.so.6 libjansson.a libjansson.so libjansson.so.4.10.0 libbase58.so libbase58.so.0.0.2 libblkmaker-0.1.so libblkmaker-0.1.so.6.1.0 libblkmaker_jansson-0.1.so libblkmaker_jansson-0.1.so.6.1.0 libjansson.la libjansson.so.4 pkgconfig 3) Install those binaries and libraries onto the i.MX8x target filesystem under directory /usr/bin and /usr/lib. Run the following command to start mining: #bfgminer -o stratum+tcp://us.ss.btc.com:1800 -u nxa001.001 -p ""  
View full article
Hi nxp,      imx6q  mfgtools not work, can't open;      I download the mfgtools for android 7.1.2_2.0.0, but the size of mfgtools.zip only 4.28Mbytes, the sub dir is clean, no firmware and ucl;     the download from this: https://www.nxp.com/webapp/sps/download/preDownload.jsp  thanks
View full article