i.MX Processors Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

i.MX Processors Knowledge Base

Discussions

Sort by:
Sometime need standalone compile device tree. Only Linux headers and device tree directory are needed.         
View full article
Design Check Lists: HW Design Checking List for i.MX6DQSDL HW Design Checking List for i.Mx53 Hardware Design Checklist for i.MX28 HW_Design_Checking_List_for_i.MX6SoloX i.MX6UL Hardware design checklist   DDR Design Tool: I.MX53 DDR3 Script Aid imx53 DDR stress tester V0.042 i.Mx6DQSDL DDR3 Script Aid MX6DQP DDR3 Script Aid i.Mx6DQSDL LPDDR2 Script Aid i.Mx6SL LPDDR2 Script Aid i.MX6SX DDR3 Script Aid I.MX6UL DDR3 Script Aid i.MX6UL_LPDDR2_Script_Aid i.MX6ULL_DDR3_Script_Aid  i.MX6ULL_LPDDR2_Script_Aid  MX6SLL_LPDDR2_Script_Aid  MX6SLL_LPDDR3_Script_Aid  i.MX6 DDR Stress Test Tool V1.0.3 i.MX6/7 DDR Stress Test Tool V3.00 i.MX8MSCALE DDR Tool Release  i.MX8M DDR3L register programming aid  i.MX 8/8X Family DDR Tools Release   Application Notes: MX_Design_Validation_Guide I.MX6 series USB Certification Guides
View full article
Important: If you have any questions or would like to report any issues with the DDR tools or supporting documents please create a support ticket in the i.MX community. Please note that any private messages or direct emails are not monitored and will not receive a response.   These are the detailed programming aids for the registers associated with MMDC DDR3 and LPDDR2 initialization for the MX6DQ SoC. The last sheet formats the register settings for use with ARM RealView ICE. It can also be used with the windows executable for the DDR Stress Test. This programming aid was used for internal NXP boards.  
View full article
    Xenomai is real-time framework, which can run seamlessly side-by-side Linux as a co-kernel system, or natively over mainline Linux kernels (with or without PREEMPT-RT patch). The dual kernel nicknamed Cobalt, is a significant rework of the Xenomai 2.x system. Cobalt implements the RTDM specification for interfacing with real-time device drivers. The native linux version, an enhanced implementation of the experimental Xenomai/SOLO work, is called Mercury. In this environment, only a standalone implementation of the RTDM specification in a kernel module is required, for interfacing the RTDM-compliant device drivers with the native kernel. You can get more detailed information from Home · Wiki · xenomai / xenomai · GitLab       I have ported xenomai 3.1 to i.MX Yocto 4.19.35-1.1.0, and currently support ARMv7 and tested on imx6ulevk/imx6ull14x14evk/imx6qpsabresd/imx6dlsabresd/imx6sxsabresdimx6slevk boards. I also did stress test by tool stress-ng on some boards.      You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm.git, and git checkout Linux-4.19.35-1.1.0. (which inlcudes all patches and bb file) and add the following variable in conf/local.conf before build xenomai by command bitake xenomai.  XENOMAI_KERNEL_MODE = "cobalt"  PREFERRED_VERSION_linux-imx = "4.19-${XENOMAI_KERNEL_MODE}" IMAGE_INSTALL_append += " xenomai" DISTRO_FEATURES_remove = "optee" or XENOMAI_KERNEL_MODE = "mercury" PREFERRED_VERSION_linux-imx = "4.19-${XENOMAI_KERNEL_MODE}" IMAGE_INSTALL_append += " xenomai" DISTRO_FEATURES_remove = "optee" If XENOMAI_KERNEL_MODE = "cobalt", you can build dual kernel version. And If XENOMAI_KERNEL_MODE = "mercury", it is single kernel with PREEMPT-RT patch. The following is test result by the command (/usr/xenomai/demo/cyclictest -p 50 -t 5 -m -n -i 1000 😞 //Mecury on 6ULL with stress-ng --cpu 4 --io 2 --vm 1 --vm-bytes 128M --metrics-brief policy: fifo: loadavg: 6.08 2.17 0.81 8/101 534 T: 0 (  530) P:99 I:1000 C:  74474 Min:     23 Act:  235 Avg:   77 Max:    8278 T: 1 (  531) P:99 I:1500 C:  49482 Min:     24 Act:   32 Avg:   56 Max:    8277 T: 2 (  532) P:99 I:2000 C:  36805 Min:     24 Act:   38 Avg:   79 Max:    8170 T: 3 (  533) P:99 I:2500 C:  29333 Min:     25 Act:   41 Avg:   54 Max:    7069 T: 4 (  534) P:99 I:3000 C:  24344 Min:     24 Act:   51 Avg:   60 Max:    7193   //Cobalt on 6ULL with stress-ng --cpu 4 --io 2 --vm 1 --vm-bytes 128M --metrics-brief policy: fifo: loadavg: 7.02 6.50 4.01 8/100 660 T: 0 (  652) P:50 I:1000 C: 560348 Min:      1 Act:   10 Avg:   15 Max:      71 T: 1 (  653) P:50 I:1500 C: 373556 Min:      1 Act:    9 Avg:   17 Max:      78 T: 2 (  654) P:50 I:2000 C: 280157 Min:      2 Act:   14 Avg:   20 Max:      64 T: 3 (  655) P:50 I:2500 C: 224120 Min:      1 Act:   12 Avg:   15 Max:      57 T: 4 (  656) P:50 I:3000 C: 186765 Min:      1 Act:   31 Avg:   19 Max:      53   //Cobalt on 6qp with stress-ng --cpu 4 --io 2 --vm 1 --vm-bytes 512M --metrics-brief policy: fifo: loadavg: 8.11 7.44 4.45 8/156 1057 T: 0 (  917) P:50 I:1000 C: 686106 Min:      0 Act:    3 Avg:    5 Max:      53 T: 1 (  918) P:50 I:1500 C: 457395 Min:      0 Act:    3 Avg:    5 Max:      49 T: 2 (  919) P:50 I:2000 C: 342866 Min:      0 Act:    2 Avg:    4 Max:      43 T: 3 (  920) P:50 I:2500 C: 274425 Min:      0 Act:    3 Avg:    5 Max:      58 T: 4 (  921) P:50 I:3000 C: 228682 Min:      0 Act:    2 Avg:    6 Max:      46   //Cobalt on 6dl with stress-ng --cpu 2 --io 2 --vm 1 --vm-bytes 256M --metrics-brief policy: fifo: loadavg: 3.35 4.15 2.47 1/122 850 T: 0 (  729) P:50 I:1000 C: 608088 Min:      0 Act:    1 Avg:    3 Max:      34 T: 1 (  730) P:50 I:1500 C: 405389 Min:      0 Act:    0 Avg:    4 Max:      38 T: 2 (  731) P:50 I:2000 C: 304039 Min:      0 Act:    1 Avg:    4 Max:      45 T: 3 (  732) P:50 I:2500 C: 243225 Min:      0 Act:    0 Avg:    4 Max:      49 T: 4 (  733) P:50 I:3000 C: 202683 Min:      0 Act:    0 Avg:    5 Max:      38   //Cobalt on 6SX stress-ng --cpu 4 --io 2 --vm 1 --vm-bytes 512M  --metrics-brief policy: fifo: loadavg: 7.51 7.19 6.66 8/123 670 T: 0 (  598) P:50 I:1000 C:2314339 Min:      0 Act:    3 Avg:    8 Max:      60 T: 1 (  599) P:50 I:1500 C:1542873 Min:      0 Act:   15 Avg:    8 Max:      72 T: 2 (  600) P:50 I:2000 C:1157152 Min:      0 Act:    4 Avg:    9 Max:      55 T: 3 (  601) P:50 I:2500 C: 925721 Min:      0 Act:    5 Avg:    9 Max:      57 T: 4 (  602) P:50 I:3000 C: 771434 Min:      0 Act:    6 Avg:    6 Max:      41   //Cobalt on 6Solo lite stress-ng --cpu 4 --io 2 --vm 1 --vm-bytes 512M  --metrics-brief policy: fifo: loadavg: 7.01 7.04 6.93 8/104 598 T: 0 (  571) P:50 I:1000 C:3639967 Min:      0 Act:    9 Avg:    7 Max:      60 T: 1 (  572) P:50 I:1500 C:2426642 Min:      0 Act:    9 Avg:   11 Max:      66 T: 2 (  573) P:50 I:2000 C:1819980 Min:      0 Act:   11 Avg:   10 Max:      57 T: 3 (  574) P:50 I:2500 C:1455983 Min:      0 Act:   12 Avg:   10 Max:      56 T: 4 (  575) P:50 I:3000 C:1213316 Min:      0 Act:    7 Avg:    9 Max:      43   //Cobalt on 7d with stress-ng --cpu 2 --io 2 --vm 1 --vm-bytes 256M --metrics-brief policy: fifo: loadavg: 5.03 5.11 5.15 6/107 683 T: 0 (  626) P:50 I:1000 C:6842938 Min:      0 Act:    1 Avg:    2 Max:      63 T: 1 (  627) P:50 I:1500 C:4561953 Min:      0 Act:    4 Avg:    2 Max:      66 T: 2 (  628) P:50 I:2000 C:3421461 Min:      0 Act:    0 Avg:    2 Max:      69 T: 3 (  629) P:50 I:2500 C:2737166 Min:      0 Act:    3 Avg:    2 Max:      71 T: 4 (  630) P:50 I:3000 C:2280969 Min:      0 Act:    2 Avg:    1 Max:      33   //////////////////////////////////////// Update for Yocto L5.10.52 2.1.0  /////////////////////////////////////////////////////////// New release for Yocto release L5.10.52 2.1.0. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm and git checkout xenomai-5.10.52-2.1.0. Updating: 1, Upgrade Xenomai to v3.2 2, Enable Dovetail instead of ipipe. Copy xenomai-arm to <Yocto folder>/sources/meta-imx/meta-bsp/recipes-kernel, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL_append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL_append += " xenomai" Notice: If XENOMAI_KERNEL_MODE = "cobalt", you can build dual kernel version. And If XENOMAI_KERNEL_MODE = "mercury", it is single kernel with PREEMPT-RT patch. //////////////////////////////////////// Update for Yocto L5.15.71 2.2.0  /////////////////////////////////////////////////////////// New release for Yocto release L5.15.71 2.2.0. You need to git clone https://gitee.com/zxd2021-imx/xenomai-arm and git checkout xenomai-5.15.71-2.2.0. Updating: 1, Upgrade Xenomai to v3.2.2 Copy xenomai-arm to <Yocto folder>/sources/meta-imx/meta-bsp/recipes-kernel, and add the following variable in conf/local.conf before build Image with xenomai enable by command bitake imx-image-multimedia. XENOMAI_KERNEL_MODE = "cobalt" IMAGE_INSTALL:append += " xenomai" or XENOMAI_KERNEL_MODE = "mercury" IMAGE_INSTALL:append += " xenomai" Notice: If XENOMAI_KERNEL_MODE = "cobalt", you can build dual kernel version. And If XENOMAI_KERNEL_MODE = "mercury", it is single kernel with PREEMPT-RT patch.   ///////// Later update for Later Yocto release, please refer to the following community post //////////// 移植实时Linux方案Xenomai到i.MX ARM64平台 (Enable real-time Linux Xenomai on i.MX ARM64 Platform)   
View full article
Symptoms   Trying to initialize a repo, for example:  $repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-mickledore -m imx-6.1.36-2.1.0.xml we have the below log: File "/home/username/bin/repo", line 51 def print(self, *args, **kwargs): ^ SyntaxError: invalid syntax   Workaround (1)   The first workaround consist in change the python alternatives (caused when you have installed two or more python versions). NOTE: in my case, the python version that i want to change as first priority is python3.8 $sudo update-alternatives --install /usr/bin/python python /usr/bin/python3.8 1   Then we run: $sudo update-alternatives --config python    To verify if your python priority was changed successfully try: $python --version   You should see the version configured as priority number 1.     Workaround (2)   The workaround is very simple, only we need modify the repo file $ nano ~/bin/repo   and we will change the python interpreter in the first line (from python to python3): ORIGINAL FILE   EDITED FILE   After to do this change, repo will works fine again.     I hope this can helps to you!   Best regards.
View full article
Hello there. Here is a good way to use U-boot in an efficient way with custom scripts. The bootscript is an script that is automatically executed when the boot loader starts, and before the OS auto boot process. The bootscript allows the user to execute a set of predefined U-Boot commands automatically before proceeding with normal OS boot. This is especially useful for production environments and targets which don’t have an available serial port for showing the U-Boot monitor. This information can be find in U-Boot Reference Manual.   I will take the example load a binary file in CORTEX M4 of IMX8MM-EVK. In my case, I have the binary file in MMC 2:1 called gpio.bin and I will skip those steps because that is not the goal.   First, you need the u-boot-tools installed in your Linux machine: sudo apt install u-boot-tools   That package provide to us the tool mkimage to convert a text file (.src, .txt) file to a bootscript file for U-Boot.   Now, create your custom script, in this case a simple script for load binary file in Cortex M4: nano mycustomscript.scr  and write your U-Boot commands: fatload mmc 2:1 0x80000000 gpio.bin cp.b 0x80000000 0x7e0000 0x10000 bootaux 0x7e0000   Now we can convert the text file to bootscript with mkimage. Syntax: mkimage -T script -n "Bootscript" -C none -d <input_file> <output_file> mkimage -T script -n "Bootscript" -C none -d mycustomscript.scr LCM4-bootscript   This will create a file called LCM4-bootscript (Or as your called it).   A way to load this bootscript file to U-Boot is using the UUU tool, in U-Boot set the device in fastboot with command: u-boot=> fastboot 0 Then in linux with the board connected through USB to PC run the command: sudo uuu -b fat_write LCM4-bootscript mmc 2:1 LCM4-bootscript   Now we have our bootscript in U-Boot in MMC 2:1.   Finally, we can run the bootscript in U-Boot: u-boot=> load mmc 2:1 ${loadaddr} LCM4-bootscript 158 bytes read in 2 ms (77.1 KiB/s) u-boot=> source ${loadaddr} ## Executing script at 40400000 6656 bytes read in 5 ms (1.3 MiB/s) ## No elf image at address 0x007e0000 ## Starting auxiliary core stack = 0x20020000, pc = 0x1FFE02CD...   And the Cortex M4 booted successfully:    I hope this can helps to you.   Best regards.   Salas.  
View full article
In some cases, such as mass production or preparing a demo. We need u-boot environment stored in demo sdcard mirror image.  Here is a way: HW:  i.MX8MP evk SW:  LF_v5.15.52-2.1.0_images_IMX8MPEVK.zip The idea is to use fw_setenv to set the sdcard mirror as the operation on a real emmc/sdcard. Add test=ABCD in u-boot-initial-env for test purpose. And use fw_printenv to check and use hexdump to double confirm it. The uboot env is already written into sdcard mirror(imx-image-multimedia-imx8mpevk.wic). All those operations are on the host x86/x64 PC. ./fw_setenv -c fw_env.config -f u-boot-initial-env Environment WRONG, copy 0 Cannot read environment, using default ./fw_printenv -c fw_env.config Environment OK, copy 0 jh_root_dtb=imx8mp-evk-root.dtb loadbootscript=fatload mmc ${mmcdev}:${mmcpart} ${loadaddr} ${bsp_script}; mmc_boot=if mmc dev ${devnum}; then devtype=mmc; run scan_dev_for_boot_part; fi arch=arm baudrate=115200 ...... ...... ...... splashimage=0x50000000 test=ABCD usb_boot=usb start; if usb dev ${devnum}; then devtype=usb; run scan_dev_for_boot_part; fi vendor=freescale hexdump -s 0x400000 -n 2000 -C imx-image-multimedia-imx8mpevk.wic 00400000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| hexdump -s 0x400000 -n 10000 -C imx-image-multimedia-imx8mpevk.wic 00400000 5f a4 9b 97 20 6a 68 5f 72 6f 6f 74 5f 64 74 62 |_... jh_root_dtb| 00400010 3d 69 6d 78 38 6d 70 2d 65 76 6b 2d 72 6f 6f 74 |=imx8mp-evk-root| 00400020 2e 64 74 62 00 20 6c 6f 61 64 62 6f 6f 74 73 63 |.dtb. loadbootsc| 00400030 72 69 70 74 3d 66 61 74 6c 6f 61 64 20 6d 6d 63 |ript=fatload mmc| 00400040 20 24 7b 6d 6d 63 64 65 76 7d 3a 24 7b 6d 6d 63 | ${mmcdev}:${mmc| 00400050 70 61 72 74 7d 20 24 7b 6c 6f 61 64 61 64 64 72 |part} ${loadaddr| 00400060 7d 20 24 7b 62 73 70 5f 73 63 72 69 70 74 7d 3b |} ${bsp_script};| 00400070 00 20 6d 6d 63 5f 62 6f 6f 74 3d 69 66 20 6d 6d |. mmc_boot=if mm| ...... ...... ...... 00401390 76 3d 31 00 73 6f 63 3d 69 6d 78 38 6d 00 73 70 |v=1.soc=imx8m.sp| 004013a0 6c 61 73 68 69 6d 61 67 65 3d 30 78 35 30 30 30 |lashimage=0x5000| 004013b0 30 30 30 30 00 74 65 73 74 3d 41 42 43 44 00 75 |0000.test=ABCD.u| 004013c0 73 62 5f 62 6f 6f 74 3d 75 73 62 20 73 74 61 72 |sb_boot=usb star| 004013d0 74 3b 20 69 66 20 75 73 62 20 64 65 76 20 24 7b |t; if usb dev ${| 004013e0 64 65 76 6e 75 6d 7d 3b 20 74 68 65 6e 20 64 65 |devnum}; then de| flash the sdcard mirror into i.MX8MP evk board emmc to check uuu -b emmc_all imx-boot-imx8mp-lpddr4-evk-sd.bin-flash_evk imx-image-multimedia-imx8mpevk.wic  The first time boot, the enviroment is already there.  How to achieve that: a. fw_setenv/fw_printenv: https://github.com/sbabic/libubootenv.git Note: Please do not use uboot fw_setenv/fw_printenv Compile it on the host x86/x64 PC. It is used on host. b. u-boot-initial-env Under uboot, make u-boot-initial-env Note: Yocto deploys u-boot-initial-env by default c. fw_env.config  imx-image-multimedia-imx8mpevk.wic 0x400000 0x4000 0x400000 0x4000 are from uboot-imx\configs\imx8mp_evk_defconfig CONFIG_ENV_SIZE=0x4000 CONFIG_ENV_OFFSET=0x400000 Now, you can run  ./fw_setenv -c fw_env.config -f u-boot-initial-env
View full article
Hello everyone, We have recently migrated our Source code from CAF (Codeaurora) to Github, so i.MX NXP old recipes/manifest that point to Codeaurora eventually will be modified so it points correctly to Github to avoid any issues while fetching using Yocto. Also, all repo init commands for old releases should be changed from: $ repo init -u https://source.codeaurora.org/external/imx/imx-manifest -b <branch name> [ -m <release manifest>] To: $ repo init -u https://github.com/nxp-imx/imx-manifest -b <branch name> [ -m <release manifest>] This will also apply to all source code that was stored in Codeaurora, the new repository for all i.MX NXP source code is: https://github.com/nxp-imx For any issues regarding this, please create a community thread and/or a support ticket. Regards, Aldo.
View full article
    OpenSSL is popular software library for applications that secure communications over computer networks against eavesdropping or need to identify the party at the other end. It is widely used in internet web servers, serving a majority of all web sites. OpenSSL contains an open-source implementation of the Transport Layer Security (TLS) and Secure Sockets Layer (SSL) protocols, it is a robust, commercial-grade, and full-featured toolkit for the SSL and TLS protocols. OpenSSL is also a general-purpose cryptography library. Its core library, written in the C programming language, implements basic cryptographic functions and provides various utility functions. Wrappers allowing the use of the OpenSSL library in a variety of computer languages are available. More and more embeded systems, like IoT gateway, ePOS, based on i.MX use OpenSSL for their secure communications and cryptographic operations. But it's cryptography library is pure software implementation which need to occupy lots of CPU resouce and the perfermance is very weak than dedicated hardware IP (like CAAM).    CAAM is the i.MX's cryptographic acceleration and assurance module, which serves as NXP's latest cryptographic acceleration and offloading hardware. It combines functions previously implemented in separate modules to create a modular and scalable acceleration and assurance engine. It also implements block encryption algorithms, stream cipher algorithms, hashing algorithms, public key algorithms (i.MX6UL/i.MX7D/S), and a hardware random number generator.   The official Yocto release (L4.1.15_2.0.0-ga) of the i.MX only enable cryptodev for accelerating symmetric algorithms and hashing algorithms, not support asymmetric algorithms(RSA, ECC). And its engine in OpenSSL(version 1.0.2h) also miss some features which is used to support symmetric algorithms and hashing algorithms, for example, AES ECB, SHA224/256, etc. These patches in the post will close the above gaps for i.MX Linux system. The software environments as the belows: Linux kernel: imx_4.1.15_2.0.0_ga cryptodev: 1.8 OpenSSL: 1.0.2h The patches include the following key features: 1, Add public key cryptography part in CAAM driver, through protocol commands, to implement a number of public (and private) key functions. These are DSA and ECDSA sign/verify, Diffie-Hellman (DH) and ECDH key agreement, ECC key generation, DLC key generation, RSA encryption/decryption, RSA key-generation finalization. 2, Add big number operation and elliptic curve math in CAAM driver to implement addition, subtraction, multiplication, exponentiation, reduction, inversion, greatest common divisor, prime testing and point add, point double, point multiply. 3, Add API in cryptodev to support RSA encryption/decryption, DSA/ECDSA sign/verify, DH/ECDH key agreement, ECC & DLC & RSA key generation and big number operation and elliptic curve math. 4, Add public key cryptography functions, hardware rng, and missing hash symmetric algorithms in OpenSSL crytodev engine. Note: 1, You can refer to ecdhtest.c, ecdsatest.c, dhtest.c, dsatest.c, rsa_test.c for how to use crytodev engine in your applications based on libcryto.so. You can also find their executable programs in folder openssl-1.0.2h/test after compiling. 2, If you want to call crytodev API directly to accelerate public key cryptography operations, please refer to asymmetric_cipher.c in cryptodev-linux-1.8/tests. Current Limitation: 1, CAAM driver don't support AES GCM/CCM but hardware supporting. I plan to add the feature next version. 2, ECDSA sign/verify will fail on some binary curves (sect163r1, sect163r2, sect193r1, sect193r2, sect233r1, sect283r1, sect409r1, sect571r1 and X9.62 binary curves). I will try to find the root cause and fix it.   ==================================== for  some binary curves (sect163r1, sect163r2, sect193r1, sect193r2, sect233r1, sect283r1, sect409r1, sect571r1 and X9.62 binary curves)  are rarely used, so i will try to find the root cause when i'm free.  +++++++++++++++++++++++    updating for Linux-4.14.78-1.1.10 ++++++++++++++++++++++++++++ This updating is for Yocto release of Linux -4.14.78-1.1.10. The new software environments as the belows: Linux kernel: imx_4.14.78_1.1.10 cryptodev: 1.9 OpenSSL: 1.0.2p HW platform: i.MX6UL, i.MX7D/S, i.MX8M/8M Mini, i.MX8/8X. The patches include the following new features: 1, support  RSA key generation but defaultly use openssl build-in function (BN_generate_prime_ex) to create prime p, q for higher security. If need to use CAAM accelerating,  please comment Macro USE_BUILTIN_PRIME_GENERATION, but don't confirm its security. 2, Add Manufacturing-protection feature, and you can refer to manufacturing_protection_test function in asymmetric_cipher.c. 3, Support AES GCM in cryptodev. 4, git clone https://gitee.com/zxd2021-imx/meta-openssl-caam.git, git checkout Linux-4.14.78-1.1.10 and copy meta-openssl-caam to folder <Yocto 4.14.78-1.1.10 dir>/sources/ 5, Run DISTRO=fsl-imx-wayland MACHINE=imx6ulevk source fsl-setup-release.sh -b build-imx6ulevk and add BBLAYERS += " ${BSPDIR}/sources/meta-openssl-caam " into /build-imx6ulevk/conf/bblayers.conf 6, bitbake fsl-image-validation-imx 7, Run the below command on your i.MX6UL EVK board. modprobe cryptodev openssl genrsa -f4 -engine cryptodev 512 -elapsed openssl speed dsa -engine cryptodev -elapsed openssl genrsa -f4 -engine cryptodev 1024 -elapsed openssl speed rsa -engine cryptodev -elapsed openssl genrsa -f4 -engine cryptodev 2048 -elapsed openssl speed ecdsa -engine cryptodev -elapsed openssl genrsa -f4 -engine cryptodev 3072 -elapsed openssl speed ecdh -engine cryptodev -elapsed openssl genrsa -f4 -engine cryptodev 4096 -elapsed openssl speed -evp sha256 -engine cryptodev -elapsed openssl speed -evp aes-128-cbc -engine cryptodev -elapsed openssl speed -evp aes-128-ecb -engine cryptodev -elapsed openssl speed -evp aes-128-cfb -engine cryptodev -elapsed openssl speed -evp aes-128-ofb -engine cryptodev -elapsed openssl speed -evp des-ede3 -engine cryptodev -elapsed openssl speed -evp des-cbc -engine cryptodev -elapsed openssl speed -evp des-ede3-cfb -engine cryptodev -elapsed +++++++++++++++++++++++    updating for Linux-4.14.98-2.3.3 ++++++++++++++++++++++++++++ This updating is for Yocto release of Linux -4.14.98-2.3.3. The new software environments as the belows: Linux kernel: imx_4.14.98-2.3.3 cryptodev: 1.9 OpenSSL: 1.0.2p HW platform: i.MX6UL, i.MX7D/S, i.MX8M/8M Mini/8M Nano, i.MX8/8X. The patches include the following new features: 1, git clone https://gitee.com/zxd2021-imx/meta-openssl-caam.git, git checkout Linux-4.14.98-2.3.3 and copy meta-openssl-caam to folder <Yocto 4.14.98-2.3.3 dir>/sources/ 2, Run DISTRO=fsl-imx-wayland MACHINE=imx8mmevk source fsl-setup-release.sh -b build-imx8mmevk and add BBLAYERS += " ${BSPDIR}/sources/meta-openssl-caam " into /build-imx8mmevk/conf/bblayers.conf 3, bitbake fsl-image-validation-imx 4, Run the below command on your i.MX8M Mini EVK board. modprobe cryptodev openssl genrsa -f4 -engine cryptodev 512 -elapsed openssl speed dsa -engine cryptodev -elapsed openssl genrsa -f4 -engine cryptodev 1024 -elapsed openssl speed rsa -engine cryptodev -elapsed openssl genrsa -f4 -engine cryptodev 2048 -elapsed openssl speed ecdsa -engine cryptodev -elapsed openssl genrsa -f4 -engine cryptodev 3072 -elapsed openssl speed ecdh -engine cryptodev -elapsed openssl genrsa -f4 -engine cryptodev 4096 -elapsed openssl speed -evp sha256 -engine cryptodev -elapsed openssl speed -evp aes-128-cbc -engine cryptodev -elapsed openssl speed -evp aes-128-ecb -engine cryptodev -elapsed openssl speed -evp aes-128-cfb -engine cryptodev -elapsed openssl speed -evp aes-128-ofb -engine cryptodev -elapsed openssl speed -evp des-ede3 -engine cryptodev -elapsed openssl speed -evp des-cbc -engine cryptodev -elapsed openssl speed -evp des-ede3-cfb -engine cryptodev -elapsed +++++++++++++++++++++++    updating for Linux-4.19.35-1.1.2 ++++++++++++++++++++++++++++ This updating is for Yocto release of Linux 4.19.35-1.1.2​​.  Software environments as the belows: Linux kernel: imx_4.19.35-1.1.2 cryptodev: 1.10 OpenSSL: 1.1.1l HW platform: i.MX6UL, i.MX7D/S, i.MX8M/8M Mini/8M Nano, i.MX8/8X. How to build: 1, git clone https://gitee.com/zxd2021-imx/meta-openssl-caam.git, git checkout Linux-4.19.35-1.1.2 and copy meta-openssl-caam to folder <Yocto 4.19.35-1.1.2 dir>/sources/ 2, Run DISTRO=fsl-imx-wayland MACHINE=imx8mmevk source imx-setup-release.sh -b build-imx8mmevk and add BBLAYERS += " ${BSPDIR}/sources/meta-openssl-caam " into <Yocto 4.19.35-1.1.2 dir>/build-imx8mmevk/conf/bblayers.conf. 3, Run bitbake fsl-image-validation-imx. 4, Run the below command on your i.MX8M Mini EVK board. modprobe cryptodev openssl speed dsa openssl speed rsa openssl speed ecdsa openssl speed ecdh openssl genrsa -f4 -engine devcrypto 512 openssl genrsa -f4 -engine devcrypto 1024 openssl genrsa -f4 -engine devcrypto 2048 openssl genrsa -f4 -engine devcrypto 3072 openssl genrsa -f4 -engine devcrypto 4096 openssl speed -evp sha256 -engine devcrypto -elapsed openssl speed -evp aes-128-cbc -engine devcrypto -elapsed openssl speed -evp aes-128-ecb -engine devcrypto -elapsed openssl speed -evp aes-128-cfb -engine devcrypto -elapsed openssl speed -evp aes-128-ofb -engine devcrypto -elapsed openssl speed -evp des-ede3 -engine devcrypto -elapsed openssl speed -evp des-cbc -engine devcrypto -elapsed openssl speed -evp des-ede3-cfb -engine devcrypto -elapsed +++++++++++++++++++++++    updating for Linux-5.4.70-2.3.4 ++++++++++++++++++++++++++++ This updating is for Yocto release of Linux 5.4.70_2.3.4​​.  Software environments as the belows: Linux kernel: imx_5.4.70_2.3.4 cryptodev: 1.10 OpenSSL: 1.1.1l HW platform: i.MX6UL, i.MX7D/S, i.MX8M/8M Mini/8M Nano/8M Plus, i.MX8/8X. How to build: 1, git clone https://gitee.com/zxd2021-imx/meta-openssl-caam.git, git checkout Linux-5.4.70-2.3.4  and copy meta-openssl-caam to folder <Yocto 5.4.70_2.3.4 dir>/sources/ 2, Run DISTRO=fsl-imx-wayland MACHINE=imx8mmevk source imx-setup-release.sh -b build-imx8mmevk and add BBLAYERS += " ${BSPDIR}/sources/meta-openssl-caam " into <Yocto 5.4.70_2.3.4 dir>/build-imx8mmevk/conf/bblayers.conf. 3, Run bitbake imx-image-multimedia. 4, Run the below command on your i.MX8M Mini EVK board. modprobe cryptodev openssl speed dsa openssl speed rsa openssl speed ecdsa openssl speed ecdh openssl genrsa -f4 -engine devcrypto 512 openssl genrsa -f4 -engine devcrypto 1024 openssl genrsa -f4 -engine devcrypto 2048 openssl genrsa -f4 -engine devcrypto 3072 openssl genrsa -f4 -engine devcrypto 4096 openssl speed -evp sha256 -engine devcrypto -elapsed openssl speed -evp aes-128-cbc -engine devcrypto -elapsed openssl speed -evp aes-128-ecb -engine devcrypto -elapsed openssl speed -evp aes-128-cfb -engine devcrypto -elapsed openssl speed -evp aes-128-ofb -engine devcrypto -elapsed openssl speed -evp des-ede3 -engine devcrypto -elapsed openssl speed -evp des-cbc -engine devcrypto -elapsed openssl speed -evp des-ede3-cfb -engine devcrypto -elapsed     +++++++++++++++++++++++    updating for Linux-5.10.52-2.1.0 ++++++++++++++++++++++++++++ This updating is for Yocto release of Linux 5.10.52_2.1.0​​.  Software environments as the belows: Linux kernel: lf-5.10.y cryptodev: 1.12 OpenSSL: 1.1.1l HW platform: i.MX6UL, i.MX7D/S, i.MX8M/8M Mini/8M Nano/8M Plus, i.MX8/8X. How to build: 1, git clone https://gitee.com/zxd2021-imx/meta-openssl-caam.git, git checkout Linux-5.10.52-2.1.0 and copy meta-openssl-caam to folder <Yocto 5.10.52_2.1.0 dir>/sources/ 2, Run DISTRO=fsl-imx-xwayland MACHINE=imx8mmevk source imx-setup-release.sh -b build-imx8mmevk and add BBLAYERS += " ${BSPDIR}/sources/meta-openssl-caam " into <Yocto 5.10.52_2.1.0 dir>/build-imx8mmevk/conf/bblayers.conf. 3, Run bitbake imx-image-multimedia. 4, Run the below command on your i.MX8M Mini EVK board. modprobe cryptodev openssl speed dsa openssl speed rsa openssl speed ecdsa openssl speed ecdh openssl genrsa -f4 -engine devcrypto 512 openssl genrsa -f4 -engine devcrypto 1024 openssl genrsa -f4 -engine devcrypto 2048 openssl genrsa -f4 -engine devcrypto 3072 openssl genrsa -f4 -engine devcrypto 4096 openssl speed -evp sha256 -engine devcrypto -elapsed openssl speed -evp aes-128-cbc -engine devcrypto -elapsed openssl speed -evp aes-128-ecb -engine devcrypto -elapsed openssl speed -evp aes-128-cfb -engine devcrypto -elapsed openssl speed -evp aes-128-ofb -engine devcrypto -elapsed openssl speed -evp des-ede3 -engine devcrypto -elapsed openssl speed -evp des-cbc -engine devcrypto -elapsed openssl speed -evp des-ede3-cfb -engine devcrypto -elapsed   +++++++++++++++++++++++    updating for Linux-5.15.71-2.2.0 ++++++++++++++++++++++++++++ This updating is for Yocto release of Linux 5.15.71-2.2.0​​.  Software environments as the belows: Linux kernel: lf-5.15.71-2.2.0 cryptodev: 1.12 OpenSSL: 3.1.0 HW platform: i.MX6UL, i.MX7D/S, i.MX8M/8M Mini/8M Nano/8M Plus, i.MX8/8X. How to build: 1, git clone https://gitee.com/zxd2021-imx/meta-openssl-caam.git, git checkout Linux-5.15.71-2.2.0 and copy meta-openssl-caam to folder <Yocto 5.15.71_2.2.0 dir>/sources/ 2, Run DISTRO=fsl-imx-xwayland MACHINE=imx8mmevk source imx-setup-release.sh -b build-imx8mmevk and add BBLAYERS += " ${BSPDIR}/sources/meta-openssl-caam " into <Yocto 5.15.71_2.2.0 dir>/build-imx8mmevk/conf/bblayers.conf. 3, Run bitbake imx-image-multimedia. 4, Run the below command on your i.MX8M Mini EVK board. modprobe cryptodev openssl speed sm2 openssl speed dsa openssl speed rsa openssl speed ecdsa openssl speed ecdh openssl genrsa -f4 -engine devcrypto 512 openssl genrsa -f4 -engine devcrypto 1024 openssl genrsa -f4 -engine devcrypto 2048 openssl genrsa -f4 -engine devcrypto 3072 openssl genrsa -f4 -engine devcrypto 4096 openssl speed -evp sha256 -engine devcrypto -elapsed openssl speed -evp aes-128-cbc -engine devcrypto -elapsed openssl speed -evp aes-128-ecb -engine devcrypto -elapsed openssl speed -evp aes-128-cfb -engine devcrypto -elapsed openssl speed -evp aes-128-ofb -engine devcrypto -elapsed openssl speed -evp des-ede3 -engine devcrypto -elapsed openssl speed -evp des-cbc -engine devcrypto -elapsed openssl speed -evp des-ede3-cfb -engine devcrypto -elapsed    
View full article
We will build a remote debug environmet of Qt Creator in this user guide.   Contents 1 Change local.conf file in Yocto 2 2 Build and deploy Yocto SDK 2 2.1 Build full image SDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Deploy SDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 Configure QT Kit 2 3.1 Setup device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3.2 Configure QT version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.3 Configure gcc and g++ manually . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.4 Configure gdb manually . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.5 Configure Kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.6 Very important thing!! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Test result
View full article
Important: If you have any questions or would like to report any issues with the DDR tools or supporting documents please create a support ticket in the i.MX community. Please note that any private messages or direct emails are not monitored and will not receive a response. i.MX 6/7 Family DDR Stress Test  The i.MX6/7 DDR Stress Test Tool is a PC-based software to fine-tune DDR parameters and verify the DDR performance on a non-OS, single-task environment(it is a light-weight test tool to test DDR performance). It performs write leveling, DQS gating and read/write delay calibration features. The tool described on this page cover the following i.MX 6/7 series SoCs: i.MX 6DQP (Dual/Quad Plus) i.MX 6DQ (Dual/Quad) i.MX 6DL/S (Dual Lite/Solo) i.MX 6SoloX i.MX 6SL i.MX 6SLL i.MX 6UL i.MX 6ULL/ULZ i.MX 7D/S i.MX 7ULP Note that the DDR Stress test tool supports the all of the above i.MX SoCs, however, some of the supported i.MX SoCs named in the tool support multiple i.MX SoCs as follows: MX6DQ – when selected, this supports both i.MX 6DQ and i.MX 6DQP (Plus) MX6DL – when selected, this supports both i.MX 6DL and i.MX 6S (i.MX 6DLS family) MX6ULL – when selected, this supports both i.MX 6ULL and i.MX6 ULZ MX7D – when selected, this supports both i.MX 7D and i.MX 7S The purpose of the i.MX 6/7 series DDR Tools is to enable users to generate and test a custom DRAM initialization based on their device configuration (density, number of chip selects, etc.) and board layout (data bus bit swizzling, etc.). This process equips the user to then proceed with the bring-up of a boot loader and an OS. Once the OS is brought up, it is recommended to run an OS-based memory test (like Linux memtester) to further verify and test the DDR memory interface. The i.MX 6/7 series DDR Tools consist of: DDR Register Programming Aid (RPA): i.MX 6/7 Series DDR Tool Release DDR Stress test: Described below There are three options to run the DDR Stress test. Each of these options are provided in the attached zip files. The following is a high-level overview of each option along with the naming convention of the associated zip file: Option 1 GUI based: Run the GUI executable and connect your board to the host PC via USB Archive file: ddr_stress_tester_vX.xx.zip The tool will first need to run a DDR initialization script for the specified i.MX SoC (refer to Load Init Script in the GUI tool).  Example initialization scripts based on NXP's development boards can be found in this zip file under the script folder.  Note, these scripts may need to be modified for your custom board and memory.   Option 2 DDR Stress Tester: JTAG Interface A hardware debugger connected to the board via the JTAG interface is used to download an elf file into the i.MX SoC OCRAM (internal RAM) and then begin execution. Results are shown on the UART serial port (115200-8-n-1). Archive file: ddr_stress_tester_jtag_vX.xx.zip As with the GUI tool, the JTAG/debugger option will first need to run a DDR initialization script for the specified i.MX SoC. Refer to the GUI tool description above for the location of the example scripts (which are found in the ddr_stress_tester_vX.xx.zip file). Note that the scripts are available either in the RealView ICE format (.inc file) or the DS-5 DSTERAM format (.ds). For other debuggers, the user will have to modify the script's command syntax for their specific debugger. This is also true if converting from a RealView Ice (.inc) format to a DS-5 DSTREAM (.ds) format and vice versa. The DDR Stress Tester executable (starting with V2.20) has an auto UART detection feature. If a different UART port for the serial console has been chosen than used on the NXP development tool (EVK, SABRE) specific commands can be added to the DDR initialization script that allows you to configure for the specific UART and then load and run the elf executable. Refer to the FAQ section of this community post and the txt file found in the JTAG archive file for instructions.   Option 3 U-Boot: The boot loader u-boot is running and commands in u-boot are used to download the bin file into SoC OCRAM and begin execution. Results are shown on the UART serial port (115200-8-n-1) Archive file: ddr_stress_tester_uboot_vX.xx.zip When downloading the DDR Stress Tool by u-boot, please copy the ddr-test-uboot-jtag-mxxxx.bin to SD card and load it to IRAM using the 'fatload' u-boot command (see notes below when using newer versions of u-boot). For i.MX6, please load the binary to 0x00907000. For i.MX7D, please load the binary to 0x00910000.  It is imperative to first disable the I and D cache in u-boot as shown below as the DDR Stress Test re-configures and re-enables the cache and MMU page table. While this option allows the user to load and run the DDR stress test from u-boot, NXP highly recommends executing the GUI based version for system testing and debugging. The u-boot version is considered a “last resort” for systems in production which may not have USB or JTAG connectivity. The reasons behind this stance are: In the GUI version, the system starts “clean” and uninitialized, whereas u-boot initializes many SoC features outside the knowledge of the DDR stress test and may conflict with the stress test operation When running the u-boot version, the test will overwrite the contents of u-boot residing in DDR, hence the test will overwrite any data in DDR. Once the stress test is loaded and executed, u-boot itself will no longer be accessible. To return to the functionality of u-boot, a system re-boot is required. Newer versions on u-boot do not allow a direct loading of the DDR stress test code from the SD card (boot media) directly to the SoC internal OCRAM (aka IRAM). Hence, the procedure is updated to first load the DDR stress test code into DDR and then copy into OCRAM, as shown in the procedure below: u-boot> dcache off;icache off;fatload mmc 2:1 0x12000000 ddr-test-uboot-jtag-mx6dq.bin;cp.b 0x12000000 0x00907000 0x20000;go 0x00907000 As u-boot initializes many peripherals that may conflict with the operation of the DDR stress test, it is necessary to clock gate these peripherals prior to running the DDR stress test. Hence, it is highly recommended to augment the procedure above as follows: u-boot> dcache off;icache off;fatload mmc 2:1 0x12000000 ddr-test-uboot-jtag-mx6dq.bin;cp.b 0x12000000 0x00907000 0x20000; u-boot> mw 0x020c4068 0x00C0000F; u-boot> mw 0x020c406c 0x00000000; u-boot> mw 0x020c4074 0x3F300000; u-boot> mw 0x020c4078 0x0000F300; u-boot> mw 0x020c407c 0x0F000003; u-boot> mw 0x020c4080 0x000003FC; u-boot> go 0x00907000 Note, in the above procedure, it is recommended to write to each clock gate register in separate commands (refer to commands starting with “mw”). The SoC requires a finite amount of time to gate each clock hence performing this sequence with a new command line write ensures the SoC has time to gate the intended clocks.   Stress Test Revision Features Comments 3.00 Add i.MX 7ULP support in the GUI version Known issues: USB connection is unstable when under USB HUB or some PC environments 2.92 Minor correction with write leveling calibration code error check to avoid a corner case of flagging an error when none have occurred.    2.91 Resolved issue with write leveling calibration code where a race condition in the code may result in the calibration routine not being able to find any delay values.   Only applies to MX6 series SoCs that support DDR3.  2.90 Reserve write delay line register (MMDC_MPWRDLCTL) configuration as DDR script does when do write calibration. In previous releases, MMDC_MPWRDLCTL would be changed to 0x40404040 by default.      * Further details available in the release notes  _________________________________________________________________________________________________________________________________________    FAQ   Q. I see an error message that states "ERROR: DCD addr is out of valid range.", why is this and how do I resolve?   A. Sometimes, when using the register programming aid, there are registers writes that are not supported in the DCD range.  Try looking for the following items and comment them out from the DDR initialization script: wait = on setmem /16 0x020bc000 = 0x30 // disable watchdog (note the address for this may be different between i.MX6x devices)  Q. How do I select the "DDR Density" pull-down menu and what is the purpose of this?   A. The DDR Density pull-down menu gives the user the option of testing a DDR density smaller than what they actually have on their board.  The advantage of doing this is to speed up test time to allow the user to perform a "quick test" of their system.  IMPORTANT: it is imperative that the user not set this value higher than the supported density on their board, doing so will cause the stress test to fail and/or lock up. The DDR Density has a different meaning depending on the memory type being tested (DDR3 or LPDDR2): For DDR3, this is the density per CHIP SELECT.  So if your board has two chip selects, and each chip select has 512MB, you would simply select 512MB or lower.  The default setting will simply set this to the detected density per chip select. For LPDDR2, this is the density per CHANNEL.  This is only relevant for MX6 devices that support 2 channel LPDDR2 memories (MX6DQ, MX6DL).  For other MX6 devices that support only one LPDDR2 channel, then this is the total density (for the maximum setting) for that channel. Note that for LPDDR2, the number of chip selects (per channel) is irrelevant when selecting the density to test as the stress test combines both chip-selects into one combined density per channel.  For example, lets say you have a 2GB LPDDR2 device, which 2 channels and 2 chip-selects per channel.  That means you have 512MB per chip select, per channel.  Or, it also means you have 1GB per channel when combining both chip selects per channel.  In this case, you would choose (a maximum setting of) 1GB in the DDR Density drop down menu.  However, this is also the same setting as the default setting (which you are welcome to still choose 1GB to convince yourself that 1GB per channel is indeed being tested). Now let's assume you have only one channel (LPDDR2) and one chip select, with a density of 128MB; in this case, the maximum DDR Density you can select is 128MB. Let's assume you have one channel and two chip selects, each chip select is 128MB;  in this case, the maximum DDR Density you can select is 256MB (a combination of both chip selects).   Note, for the MX7D, an actual density needs to be entered. For the MX6x series, simply leaving this field as Default will cause the DDR stress test to ascertain the supported density from the DDR init script. As the MX7D DDR controller is different, this feature is not supported, hence it is required for the user to enter an actual density (for more details regarding MX7D usage of density and number of chip-selects, see the next FAQ on the DDR CS setting).   Q.  What is the purpose of the "DDR CS" pull-down option?   A.  The answer depends on which processor you are testing:   For the i.MX 6x series: This pull down menu gives you the option of testing one chip select (CS0) or ALL (both) chip selects *IF* you have a two-chip select configuration.  If you have a two-chip select configuration, then this allows you to test only one chip select for faster test time; else you can choose to test both chip selects.  Note that if you have a one-chip select configuration and you choose "ALL", the stress test will return an error.   For the iMX 7D: Because the MX7D DDR controller is different, the DDR stress test will need the user to supply the entire supported density found on their board. The chip select field should be left as is (0) as the test will naturally test one chip select to the next. For example, let’s assume you are using two chip selects, with each chip select being 512MB. In this case, you would enter 1GB for the DDR Density field ensuring that both chip selects will be tested. The user is allowed to enter a density less than the density found on their board (for quicker testing), but keeping in mind both chip selects may not be tested in this case.   Q. I run DDR calibration using the DDR Stress Test Tool to obtain the calibration results.  Are these calibration parameters are written to the uboot flash_header.S automatically or manually?   A. The calibration values obtained from the DDR Stress Test Tool will need to be manually updated in the flash_header.S file or any other DDR initialization script.   Q. When running the DDR stress test on MX7D and I try to perform calibration, I get an error stating that calibration is not supported, is this expected?   A. Yes, calibration is not supported or needed when using MX7.  The reason is, MX7 uses a different memory controller than the MX6 series.  The MX6 series memory controller has built-in support for calibration where the MX7 memory controller does not.   Q. When running the GUI version of the DDR stress test, on MX7 and I leave DDR Density as default, I get an error in the tool stating I must supply a density.  Why is this?   A. This is due to the fact that MX7 uses a different memory controller than the MX6 series.  In the MX6 series, it was possible to calculate the memory density from the memory controller register settings.  The MX7 memory controller is different and does not lend itself to easily calculate the supported density based on the register settings.  Instead, the user should verify the density on their board and selected this value in the DDR Density pull-down menu.    Q. I noticed that when I run write-leveling calibration I sometimes see a note that due to the write-leveling calibration value being greater than 1/8 clock cycle that WALAT must be set to 1.  What does this mean?   A. In the MMDC chapter of the reference manual for the specific i.MX 6 device, the need to set WALAT is described in the MDMISC register as follows: "The purpose of WALAT is to add time delay at the end of a burst write operation to ensure that the JEDEC time specification for Write Post Amble Delay (tWPST) is met (DQS strobe is held low at the end of a write burst for > 30% a clock cycle before it is released). If the value of any of the WL_DL_ABS_OFFSETn register fields are greater than ‘1F’, WALAT should be set to ‘1’ (cycle additional delay). WALAT should be further increased for any full-cycle delays added by the WL_CYC_DELn register fields." Therefore, if the write-leveling calibration routine detects any write-leveling delay value greater than 0x1F, it will note to the user that WALAT must be set and the user should update their DDR3 init script to ensure WALAT is set.  Sometimes, a user may find that the write-leveling delay value may fluctuate from one run to the next, which is quite normal.  If it is found that this delay is "borderline" meaning sometimes it is greater than 0x1F and sometimes it might be slightly less, then it is ok to go ahead and set WALAT permanently in your init script as there is no harm in doing so and will ensure you will stay within JEDEC's tWPST.   Q. I sometimes see that after running write-leveling calibration that delay values being reported back are zero'd out (0x00), and then at times I see a non-zero value being reported, why is this? A. It is quite normal to see slight variations in the delay value between write-leveling calibration runs.  The write-leveling calibration routine assumes a majority of users have designed their board such that the DDR3 memories are placed close to the i.MX 6 SoC. There’s a mechanism in NXP’s DDR Stress test write leveling calibration code that checks the returned write leveling value. If the write-leveling calibration routine detects that the returned delay value is greater than ¾ of a clock cycle, it will "zero out" the delay value. It does this because it assumes that such a large delay result is due to the fact that the DQS signal is already delayed relative to the SDCLK, and to align DQS with SDCLK requires the calibration routine to delay DQS even further to align it to the next SDCLK edge, something we ideally would like to avoid.  JEDEC specs that the DQS edge must be within 25% of a SDCLK cycle with respect to the SDCLK edge, so having DQS initially slightly delayed from SDCLK is actually ok, hence why the calibration routine “zero’s” this out when the returned value exceeds ¾ of a clock cycle.  In cases like this, the DQS edge and SDCLK edge are so close together that in some calibration runs, the DQS edge may slightly precede SDCLK (resulting in a very small write-leveling delay value) and other runs, it may be slightly delayed relative to the SDCLK (resulting in a very large write-leveling delay value that will try to align DQS to the next SDCLK edge, hence needs to be zero’d out).   Q. When using the JTAG version of the DDR stress test, how can I select a different UART port for my serial port?   A. Under the folder ddr_stress_tester_jtag_v2.52, there's a text file that describes how to add a different UART port by adding a few additional commands to your DDR init script.  The following is an outline of these commands: 1. Ungate UART module clocks (most NXP scripts ungate all of the peripheral clocks at the beginning of the script, so this part is already done) 2. Configure the IOMUX options for the pins you wish the UART to use (normally an IOMUX option for UART_TX and UART_RX, and a daisy chain option for the UART_RX input) 3. Enable the desired UART module via the register UCR1, bit UART_EN 4. Disable other UART modules (UCR1[UART_EN] = 0).  Normally disabling UART1 should be sufficient, but it doesn't hurt to disable all of the other un-used UART options for the purpose of the stress test.   Here's an example in the .ds file vernacular of a set up as follows: MX6DQ, UART4 on KEY_COL0 and KEY_ROW0 (assume clock is ungated to all peripherals): mem set 0x020E01F8 32 0x00000004   #// config_pad_mode(KEY_COL0, ALT4) mem set 0x020E01FC 32 0x00000004   #// config_pad_mode(KEY_ROW0, ALT4); mem set 0x020E0938 32 0x00000001   #// Pad KEY_ROW0 is involved in Daisy Chain. mem set 0x02020080 32 0x00000000   #//disable UART1 in UART1_UCR1 (Note, you can disable other UART modules as well) mem set 0x021F0080 32 0x00000001   #//enable UART4 in UART4_UCR1   Here's another example in the .inc file vernacular of a set up as follows: MX6SX, UART5 on SD4_DATA4 abd SD4_DATA5 (assume clock is ungated to all peripherals): setmem /32 0x020E0294 = 0x2 //IOMUXC_SW_MUX_CTL_PAD_SD4_DATA5, ALT2; UART5_TX_DATA setmem /32 0x020E0290 = 0x2 //IOMUXC_SW_MUX_CTL_PAD_SD4_DATA4, ALT2; UART5_RX_DATA setmem /32 0x020E0850 = 0x00000000 // IOMUXC_UART5_IPP_UART_RXD_MUX_SELECT_INPUT, daisy chain for UART5_RX input to use SD4_DATA4 setmem /32 0x021F4080 = 0x00000001 // Enable UART_EN in UCR1 of UART5 // Disable UART_EN in UCR1 of UART1, UART2, UART3, and UART4 setmem /32 0x02020080 = 0x00000000 // UART1 setmem /32 0x021F0080 = 0x00000000 // UART2 setmem /32 0x021EC080 = 0x00000000 // UART3 setmem /32 0x021E8080 = 0x00000000 // UART4     Related Resources Links: iMX 8M Mini Register Programming Aid DRAM PLL setting  i.MX 8/8X Series DDR Tool Release  i.MX 8M Family DDR Tool Release 
View full article
This note show how to use the open source gstreamer1.0-rtsp-server package on i.MX6QDS and i.MX8x to stream video files and camera using RTP protocol.  The i.MX 6ULL and i.MX 7 doesn't have Video Processing Unit (VPU). Real Time protocol is a very common network protocol for delivering media over IP networks. On the board, you will need a GStreamer pipeline that encodes the raw video, adds the RTP payload, and sends over a network sink. A generic pipeline would look as follows: video source ! video encoder ! RTP payload ! network sink Video source: often it is a camera, but it can be a video from a file or a test pattern, for example. Video encoder: a video encoder as H.264, H.265, VP8, JPEG and others. RTP payload: an RTP payload that matches the video encoder. Network sink: a video sync that streams over the network, often via UDP.   Prerequisites: MX6x o MX8x board with the L5.10.35 BSP installed. A host PC with either Gstreamer or VLC player installed. Receiving h.264/h.265 Encoded RTP Video Stream on a Host Machine Using GStreamer GStreamer is a low-latency method for receiving RTP video. On your host machine, install Gstreamer and send the following command: $ gst-launch-1.0 -v udpsrc port=5000 caps = "application/x-rtp, media=(string)video, clock-rate=(int)90000, encoding-name=(string)H264, payload=(int)96" ! rtph264depay ! decodebin ! videoconvert ! autovideosink sync=false   Using Host PC: VLC Player Optionally, you can use VLC player to receive RTP video on a PC. First, in your PC, create a sdp file with the following content:  stream.sdpv=0m=video 5000 RTP/AVP 96c=IN IP4 127.0.0.1a=rtpmap:96 H264/90000 After this, with the GStreamer pipepline on the device running, open this .sdp file with VLC Player on the host PC. Sending h.264 and h.265 Encoded RTP Video Stream GStreamer provides an h.264 encoding element by software named x264enc. Use this plugin if your board does not support h.264 encoding by hardware or if you want to use the same pipeline on different modules. Note that the video performance will be lower compared with the plugins with encoding accelerated by hardware. # gst-launch-1.0 videotestsrc ! videoconvert ! x264enc ! rtph264pay config-interval=1 pt=96 ! udpsink host=<host-machine-ip> port=5000 Note: Replace <host-machine-ip> by the IP of the host machine. In all examples you can replace videotestsrc by v4l2src element to collect a stream from a camera   i.MX8X # gst-launch-1.0 videotestsrc ! videoconvert ! v4l2h264enc ! rtph264pay config-interval=1 pt=96 ! udpsink host=<host-machine-ip> port=5000   i.MX 8M Mini Quad/ 8M Plus # gst-launch-1.0 videotestsrc ! videoconvert ! vpuenc_h264 ! rtph264pay config-interval=1 pt=96 ! udpsink host=<host-machine-ip> port=5000 i.MX6X The i.MX6QDS does not support h.265 so the h.264 can work: # gst-launch-1.0 videotestsrc ! videoconvert ! vpuenc_h264 ! rtph264pay config-interval=1 pt=96 ! udpsink host=<host-machine-ip> port=5000   Using Other Video Encoders While examples of streaming video with other encoders are not provided, you may try it yourself. Use the gst-inspect tool to find available encoders and RTP payloaders on the board: # gst-inspect-1.0 | grep -e "encoder"# gst-inspect-1.0 | grep -e "rtp" -e " payloader" Then browse the results and replace the elements in the original pipelines. On the receiving end, you will have to use a corresponding payload. Inspect the payloader element to find the corresponding values. For example: # gst-inspect-1.0 rtph264pay   Install rtp in your yocto different form L5.10.35 BSP, to install gstreamer1.0-rtsp-server in any Yocto Project image, please follow the steps below: Enable meta-multimedia layer: Add the following on your build/conf/bblayers.conf: BBLAYERS += "$"${BSPDIR}/sources/meta-openembedded/meta-multimedia" Include gstreamer1.0-rtsp-server into the image: Add the following on your build/conf/local.conf: IMAGE_INSTALL_append += "gstreamer1.0-rtsp-server" Run bitbake and mount your sdcard. Copy the binaries: Access the gstreamer1.0-rtsp-server examples folder: $ cd /build/tmp/work/cortexa9hf-vfp-neon-poky-linux-gnueabi/gstreamer1.0-rtsp-server/$version/build/examples/.libs Copy the test-uri and test-launch to the rootfs /usr/bin folder. $ sudo cp test-uri test-launch /media/USER/ROOTFS_PATH/usr/bin Be sure that the IPs are correctly set: SERVER: => ifconfig eth0 $SERVERIP CLIENT: => ifconfig eth0 $CLIENTIP Video file example SERVER: => test-uri file:///home/root/video_file.mp4 CLIENT: => gst-launch-1.0 playbin uri=rtsp://$SERVERIP:8554/test You can try to improve the framerate performance using manual pipelines in the CLIENT with the rtspsrc plugin instead of playbin. Follow an example: => gst-launch-1.0 rtspsrc location=rtsp://$SERVERIP:8554/test caps = 'application/x-rtp'  ! queue max-size-buffers=0 ! rtpjitterbuffer latency=100 ! queue max-size-buffers=0 ! rtph264depay ! queue max-size-buffers=0 ! decodebin ! queue max-size-buffers=0 ! imxv4l2sink sync=false   Camera example SERVER: => test-launch "( imxv4l2src device=/dev/video0 ! capsfilter caps='video/x-raw, width=1280, height=720, framerate=30/1, mapping=/test' ! vpuenc_h264 ! rtph264pay name=pay0 pt=96 )" CLIENT: => gst-launch-1.0 rtspsrc location=rtsp://$SERVERIP:8554/test ! decodebin ! autovideosink sync=false The rtspsrc has two properties very useful for RTSP streaming: Latency: Useful for low-latency RTSP stream playback (default 200 ms); Buffer-mode: Used to control buffer mode. The slave mode is recommended for low-latency communications. Using these properties, the example below gets 29 FPS without a sync=false property in the sink plugin. The key achievement here is the fact that there is no dropped frame: => gst-launch-1.0 rtspsrc location=rtsp://$SERVERIP:8554/test latency=100 buffer-mode=slave ! queue max-size-buffers=0 ! rtph264depay ! vpudec ! imxv4l2sink      
View full article
Important: If you have any questions or would like to report any issues with the DDR tools or supporting documents please create a support ticket in the i.MX community. Please note that any private messages or direct emails are not monitored and will not receive a response. i.MX 6/7 Series Family DDR Tools Overview This page contains the latest releases for the i.MX 6/7 series DDR Tools. The tools described on this page cover the following i.MX 6/7 series SoCs: i.MX 6DQP (Dual/Quad Plus) i.MX 6DQ (Dual/Quad) i.MX 6DL/S (Dual Lite/Solo) i.MX 6SoloX i.MX 6SL i.MX 6SLL i.MX 6UL i.MX 6ULL/ULZ i.MX 7D/S i.MX 7ULP The purpose of the i.MX 6/7 series DDR Tools is to enable users to generate and test a custom DRAM initialization based on their device configuration (density, number of chip selects, etc.) and board layout (data bus bit swizzling, etc.). This process equips the user to then proceed with the bring-up of a boot loader and an OS. Once the OS is brought up, it is recommended to run an OS-based memory test (like Linux memtester) to further verify and test the DDR memory interface. The i.MX 6/7 series DDR Tools consist of: DDR Register Programming Aid (RPA) DDR Stress test _________________________________________________________ i.MX 6/7 Series DDR Stress Test The i.MX 6/7 Series DDR stress test tool is a Windows-based software tool that is used as a mechanism to verify that the DDR initialization is operational prior for use in u-boot and OS bring-up. The DDR Stress Test tool can be found here: i.MX 6/7 DDR Stress Test Tool Note that the DDR Stress test tool supports all of the above i.MX SoCs, however, some of the supported i.MX SoCs named in the tool support multiple i.MX SoCs as follows: MX6DQ – when selected, this supports both i.MX 6DQ and i.MX 6DQP (Plus) MX6DL – when selected, this supports both i.MX 6DL and i.MX 6S (i.MX 6DLS family) MX6ULL – when selected, this supports both i.MX 6ULL and i.MX6 ULZ MX7D – when selected, this supports both i.MX 7D and i.MX 7S _____________________________________________________________________________ i.MX 6/7 Series DDR Register Programming Aid (RPA) The i.MX 6/7 series DDR RPA (or simply RPA) is an Excel spreadsheet tool used to develop DDR initialization for a user’s specific DDR configuration (DDR device type, density, etc.). The RPA generates the DDR initialization script for use with the DDR Stress Test tool. For a history of the previous versions of an RPA, refer to the Revision History tab of the respective RPA. To obtain the latest RPAs, please refer to the following links: i.MX 6DQP i.MX6DQP Register Programming Aids i.MX 6DQ i.MX6DQ Register Programming Aids i.MX 6DL/S i.MX6DL Register Programming Aids i.MX 6SoloX i.MX6SX Register Programming Aids i.MX 6SL i.MX6SL Register Programming Aids  i.MX6SLL i.MX6SLL Register Programming Aids i.MX 6UL/ULL/ULZ i.MX6UL/ULL/ULZ DRAM Register Programming Aids i.MX7D i.MX7D DRAM Register Programming Aids i.MX 7ULP i.MX7ULP DRAM Register Programming Aids _____________________________________________________________________________ DRAM Register Programming Aids FAQ    
View full article
  Question: How can we generate an ARM DS5 DStream format DDR initialization script using the DRAM Register Programming Aid?  Answer: Some RPAs include a  "DStream .ds file" tab for the ARM DS5 debugger specific commands. The i.MX6UL/ULL/ULZ DRAM Register Programming Aids for example already has this supported. However, the user can easily create  the .ds format from the existing .inc format. The basic steps to convert .inc files to .ds format are as follows: 1)  Replace the one instance of setmem /16 with mem set 2)  In that same line, replace 0x020bc000 = with 0x020bc000 16 3)  Use a Replace All command to change setmem /32 with mem set 4)  Use a Replace All command to change = with 32 5)  Use a Replace All command to change // with # 6)  Save as a .ds file.   Question: When using a 528MHz DRAM Controller interface with a DDR memory of a faster speed bin, which speed bin timing options should one use? Answer: For example, let’s assume our MX6DQ design is using a DDR3 memory from a DDR3-1600 speed bin.  However, the maximum speed of the MMDC interface for the MX6DQ using DDR3 is 528MHz.  Should we use the 1600 speed bin (800MHz clock speed) or the 1066 speed bin (533MHz clock speed)?  In short, the user should use the timings rated for the maximum speed (frequency) with which you are running, in this case DDR3-1066 (533MHz).  In some cases, like when using the MX6DL, the maximum DDR frequency is 400MHz.  In this case, you would want to try and use 800 timings found in the AC timing parameters table.  However, most DDR3 devices have speed bin tables that may go only as low as 1066, in which case you would use the closest speed bin to your operational frequency (i.e. the 1066 speed bin table).     Question: Some timing parameters may specify a min and max number, which should I use? Answer: In most cases, you will want to choose the minimum timings.  Some DRAM controllers may have a tRAS_MAX timing parameter, in which case you would obviously use the maximum tRAS parameter given in the DRAM data sheet. Also, for timing parameters tAONPD and tAOFPD, we also want to use the maximum values given in the DDR3 data sheet. These represent the maximum amount of time the DDR3 device takes to turn on or off the RTT (termination), therefore, we should wait at least this amount of time before issuing any commands or accesses.   Question: Some timing parameters state things like “Greater of 3CK or 7.5ns”; which should I use? Answer: This depends on your clock speed.  Say you are running at 533MHz.  At 533MHz, 7.5ns equates to 4CKs.  In this case, 7.5ns at 533MHz is GREATER than 3CK, so we would use the 7.5ns number, or 4CKs. At 400MHz, 7.5ns equates to 3CKs.  In this case, we’d simply use 3CKs.   Question: I have a design that will throttle the DDR frequency (dynamic frequency scaling).  At full speed, I plan to run at 533MHz, and then I plan to throttle down to say 400MHz whenever possible.  Do I need to re-calculate my 400 MHz timing parameters that were initially set for 533MHz? Answer: It is not necessary to re-calculate timing parameters for 400MHz, and you can re-use the ones for 533MHz.  The timings at 533 MHz are much tighter than 400 MHz, and the key here is to NOT violate timings.  Also, it may be a bit of a hassle maintaining two sets of timing parameters, especially if later in the design, you swap DDR vendors that might require you to re-calculate some timing parameters.  It’s easier to do it once and to come up with a combined worse-case timing parameters for 533MHz, which you know will work at 400MHz.  But, if you don’t mind maintaining two sets of timing parameters, and really want to optimize timings down to the last pico-second for 400MHz, then knock yourself out.   Question: Can I use these Register programming aids for both Fly by and T- Topology ? Answer Yes The DDR register programming aid is agnostic to the DDR layout. The same spreadsheet works for both topologies. We recommend running write leveling calibration for both topologies and the values returned by the Write Leveling routine from the Freescale DDR stress test should be incorporated back to the customer specific initialization script. The DDR stress test also has a feature whereby it evaluates the write leveling values returned from calibration and increments WALAT to 1 if the values exceed a defined limit. The DDR stress test informs the user when the Write Additional latency (WALAT) exceeds the limit and should be increased by 1, and reminds the user to add it back in the customer specific initialization script if required.   WALAT - 0 00000000 WALAT: Write Additional latency. Recommend to clear these bits. Proper board design should ensure that the DDR3 devices are placed close enough to the MMDC to ensure the skew between CLK and DQS is less than 1 cycle.     Question: Can I use the DEFAULT Register programming aid values for MDOR when using an Internal OSC instead of the recommended 32.768 KHZ XTAL ? Answer No, NXP recommends reprogramming these values based on the worse case frequency (Max clock) of the internal OSC of the device to guarantee JEDEC timings are met. Please refer to Internal Oscillator Accuracy considerations for the i.MX 6 Series for more details  
View full article
For iMX6DQ, there are two IPUs, so they can support up to 4 cameras at the same time. But the default BSP can only support up to two cameras at the same time. The attached patch can make the BSP support up to 4 cameras based on 3.10.53 GA 1.1.0 BSP.   The 4 cameras can be: - 1xCSI, 3xMIPI - 2xCSI, 2xMIPI - 4xMIPI   For 4xMIPI case, the four cameras should be combined on the single MIPI CSI2 interface, and each camera data should be transfered on a mipi virtual channel.   In this patch, we given the example driver for Maxim MAX9286, it was verified working on iMX6DQ SabreAuto board. The input to MAX9286 is four 720P30 cameras. The verified camera boards:     (1) Onsemi AR0140+AP0101+MAX9271 boards.     (2) OmniVision OV10635+MAX9271 boards.   The MIPI CSI2 CVBS camera surround view solution can be found at: iMX6DQ ISL79985/79987 MIPI CSI2 CVBS camera surround view solution for Linux BSP The MIPI CSI2 CVBS HD camera surround view solution can be found at: iMX6DQ TP2854 MIPI CSI2 720P CVBS camera surround view solution for Linux BSP   The kernel patches: 0001-IPU-update-IPU-capture-driver-to-support-up-to-four-.patch      Updated IPU common code to support up to four cameras.   0002-Add-Max9286-support-on-SabreAuto-board-which-can-sup.patch      MAX9286 driver, it includes MAX9271, AP0101 and AR0140 drivers.   0003-Remove-the-page-size-align-requirement-for-v4l2-capt.patch      With this patch, the mxc_v4l2_tvin test application can use overlay framebuffer as V4l2 capture buffer directly.   0004-Max9286-skip-AP0101-camera-re-initialization.patch      If the camera board's power had been kept after initialized, this patch will bypass the re-initialization to reduce the start up time.   0005-Max9286-set-I2C-speed-to-400Kbps.patch     Set I2C to 400Kbps to reduce the AP0101+AR0140 initialization time.   0006-Max9286-add-retry-for-MAX9271-I2C-access.patch     Added retry for MAX9271 I2C access.   0007-Max9286-Add-support-for-OV10635-camera.patch     Updated code for OV10635 camera.   0008-Max9286-support-auto-detect-camera-number.patch     Make the Max9286 driver can detect the camera number automatically.     How to builld the kernel with MAX9286 support:       make imx_v7_defconfig       make menuconfig (In this command, you should select the MAX9286 driver:             Device Drivers  --->                   <*> Multimedia support  --->                         [*]   V4L platform devices  --->                               <*>   MXC Video For Linux Video Capture                                       MXC Camera/V4L2 PRP Features support  --->                                           <*>Maxim max9286 GMSL Deserializer Input support                                               Select Camera Sensor (OmniVision OV10635 camera sensor)  // Or (Onsemi AP0101 and AR0140 camera sensor)                                           <*>mxc VADC support                                           <*>Select Overlay Rounting (Queue ipu device for overlay library)                                           <*>Pre-processor Encoder library                                           <*>IPU CSI Encoder library)       make zImage       make dtbs   The built out image file:       arch/arm/boot/dts/imx6q-sabreauto.dtb       arch/arm/boot/zImage   "mxc_v4l2_tvin_max9286.tar.gz" is the test application, test command to capture the four cameras and render on 1080P HDMI display: /mxc_v4l2_tvin.out -ol 0 -ot 0 -ow 960 -oh 540 -d 1 -x 0 -g2d & /mxc_v4l2_tvin.out -ol 960 -ot 0 -ow 960 -oh 540 -d 1 -x 1 -g2d & /mxc_v4l2_tvin.out -ol 0 -ot 540 -ow 960 -oh 540 -d 1 -x 2 -g2d & /mxc_v4l2_tvin.out -ol 960 -ot 540 -ow 960 -oh 540 -d 1 -x 3 -g2d &   Some hardware check point on AR0140+AP0101+MAX9271 camera board (Please get MAX9286 and OV10635 schematics from Maxim): 1. In this patch, MAX9286's I2C address is 0x4D, so ADD0 and ADD1 should be connected to high. AP0101's I2C address is 0xBA, so SADDR should be connected to high.   2. AP0101's DOUT0~DOUT7 should be connected to MAX9271's DIN7~DIN0, the order should be switched, MSB connected to LSB.   3. MAX9271's GPO pin should be connected to AP0101's FRAME_SYNC pin. The pull down resistance on FRAME_SYNC pin should not be 0 ohm.   Some known limitation: 1. AP0101's VSYNC invalid time, last video line's HSYNC to VSYNC porch's max value is 255 pixel clocks, it is not enough for MAX9286 to generate the Frame End MIPI packets for each camera. So in order to let iMX6DQ to capture 1280x720 video for each camera, we had let AP0101 output 1280*724 frame size, and iMX6 will only capture 720 lines, the remained video data and Frame End will be ignored. This solution will not impact the function, but there will be "Error matching Frame Start with Frame End for Virtual Channel x" error reported from iMX6 MIPI_CSI_ERR1 register. Maxim suggested to use MAX96705 to relace the MAX9271, it can delay the VSYNC invalid time, then the MIPI error will be fixed.     2015-11-17 update: Updated for OV10635 camera support. File: L3.10.53_GA1.1.0_MAX9286_Surroundview_Patch_2015-11-17.zip   2015-12-04 update: File: L3.10.53_GA1.1.0_MAX9286_Surroundview_Patch_2015-12-04.zip Added patch 0009-Max9286-updated-PCLK-edge-setting-for-OV10635.patch to correct the OV10635 PCLK edge setting     2016-03-07 update: File L3.14.38_GA_MAX9286_Surroundview_Patch_2016-03-07.zip Added kernel patch for L3.14.38 GA 1.1.0 BSP.   2016-07-26 update: Files: L3.10.53_GA1.1.0_MAX9286_Surroundview_Patch_2016-07-26.zip; L3.14.38_GA1.1.0_MAX9286_Surroundview_Patch_2016-07-26.zip; L3.14.52_GA1.1.0_MAX9286_Surroundview_Patch_2016-07-26.zip. Added gstreamer support. Added MAX96705 support. Added patch for L3.14.52_GA1.1.0.   2017-12-11 update: Added CVBS surround view link: iMX6DQ TP2854 MIPI CSI2 720P CVBS camera surround view solution for Linux BSP     2021-04-26 update: Some customer reported, when system loading is heavy, sometimes, some camera will flicker left and right. It is caused by SFMC FIFO data lost. The original patch used IDMAC 0 and IDMAC 1 for two cameras on one IPU, this is not the best setting.  IDMAC 1 is fixed to use 1/4 SMFC FIFO and it will cause IDMAC 0 to use 1/4 SMFC FIFO too. And another 1/2 of SMFC FIFO can't be used in this case. Some code update to improve it: For each IPU, please use IDMAC 0 and IDMAC 2 to capture the two cameras. This needs change the hard coding in "drivers\media\platform\mxc\capture\ipu_csi_enc.c", "CSI_MEM1" and "IPU_IRQ_CSI1_OUT_EOF" should be changed to "CSI_MEM2" and "IPU_IRQ_CSI2_OUT_EOF". In this case, all SMFC FIFO can be used. And in "ipu_common.c", function ipu_probe(), the followed code should be changed to make IDMAC2 use high priority too. /* Set sync refresh channels and CSI->mem channel as high priority */ - ipu_idmac_write(ipu, 0x18800003L, IDMAC_CHA_PRI(0)); + ipu_idmac_write(ipu, 0x1880000FL, IDMAC_CHA_PRI(0));
View full article
      The i.MX6UL/LL/LZ processor supports 2 USB OTG interfaces, USB OTG1 and USB OTG2, and each USB interface can be configured as a device, host or dual role mode. On the EVK board of i.MX6UL/LL, USB OTG1 is designed as dual role mode, and USB OTG2 is designed as HOST mode. This is sufficient for most customers.       However, in actual applications, we may need 2 USB HOSTs, and at the same time, we don’t want to use MicroUSB to USB TYPE-AF cable for Host-Device mode conversion. Therefore, the design of the USB circuit needs to meet such requirements: 1. USB device mode We need a USB device to download the linux image to the flash or SD card on the board. 2. 2 USB HOSTs When the system is working normally, we need the board to support 2 USB HOST. i.MX6UL/LL/LZ has only 2 USB ports. How to design to meet this requirement without increasing the USB HUB? The following scheme is used as a reference, and I hope it will be helpful to customers with similar requirement:        The logic and application description of this Diagram:: Default—device mode In the process of debugging the software, we need to use the USB OTG interface to download the linux image, so it must work in device mode. What we need to do is: (1). Pull USB OTG ID up to 3.3V (2). The USB OTG D+/D- signal is switched to the MicroUSB connector. (3). The USB OTG VBUS is provided with 5V power from the external PC USB HOST. Usage:        -Use a jumper for Pin 1 and Pin2, USB OTG ID pin will be pulled up to High.        With the operation, SEL pin of USB Muxer is High, and USB signals are switched to port B, and USB differential signals are connected to MicroUSB connector. At the same time, MIC2026-1YM output is disabled. The USB OTG1 VBUS pin of CPU is supplied by VBUS of MicroUSB connector, that is to say, supplied by PC USB HOST.        In this mode, software engineer can use it to download images to flash on board. Normal Work—Host mode After the software debugging is completed, two HOSTs are needed on the board. At this time, we need to switch the USB OTG1 from device to HOST mode. What we need to do is: (1). Pull USB OTG1 ID down to LOW (2). The USB OTG D+/D- signal is switched to the USB Type-AF connector. (3). Board should supply 5V power for USB device connected USB Type-AF connector. Usage:        -Use a jumper for Pin 2 and Pin3, USB OTG ID pin will be pulled down to Low.        With the operation, USB OTG1 ID pin is pulled down to Low, SEL pin of USB Muxer is also LOW, USB signals are switched to Port A, and connected to USB type-AF connector. At the same time, MIC2026-1YM is enabled , OUTA will output 5V , which will supply USB device connected on USB type-AF connector.   [Note] Users need to pay attention to. When using the jumper with PIN1/2/3, the board needs to be powered off. In other words, when switching between device and host, you need to switch off the power, then power on, and restart the board. The solution can also be used for i.MX processors with USB 2.0 interface.   NXP CAS team Wedong Sun 01/15/2021
View full article
i.MX evaluation board can be a simple solution to program i.MX boards in a factory for instance. i.MX evaluation board are not for industrial usage, but you can find plenty of cheap i.MX insdustrial boards on the web. Here I am using an i.MX8QXP rev B0 MEK board and I will program an i.MX6Q SABRE SD board. The first step is to generate your image. Follow the documentation steps to generate the "validation" image. You will have to customize a little bit the local.conf file (in conf/local.conf) to have git, cmake, gcc and other missing package. edit local.conf and add the following lines at the end of the file: IMAGE_INSTALL_append = " git cmake htop packagegroup-core-buildessential xz p7zip rsync"‍‍‍‍‍ I have added rsync package in local, it can replace cp (copy) but with the --progress option you can see the copy progression. P7zip replace unzip for our images archives avaialable on nxp.com as unzip as issues with big files. then rebake your image: bitbake -k fsl-image-validation-imx‍‍‍‍‍ When it is done, go in tmp/deploy/image/<your image generated> and use uuu to program your board (I use a sd card; thus I can increase the partition esily): sudo ./uuu -b sd_all imx-boot-imx8qxpmek-sd.bin-flash fsl-image-validation-imx-imx8qxpmek.sdcard.bz2/*‍‍‍‍‍ As the rootfs can be too small, use gparted under Linux for instance to increase the size of the partition. Put the SD card and start your board. Here here the dirty part... You may know archlinux|ARM websitesite (Arch Linux ARM ), you have a lots of precompiled packages. Thus on the board you can download it, and copy the file in /usr folder (you can use it to have the latest openSSL for  instance!). Plug an ethernet cable on the board and check if it is up: ifconfig -a ifconfig eth0 up‍‍‍‍‍‍‍‍‍‍ Now you should have access to the internet. On uuu webpage you can find all the packages you need (here I am using a 4.14.98_2.0.0 Linux): mkdir missinglibs cd missinglibs wget http://mirror.archlinuxarm.org/aarch64/core/bzip2-1.0.8-2-aarch64.pkg.tar.xz wget http://mirror.archlinuxarm.org/aarch64/core/nettle-3.5.1-1-aarch64.pkg.tar.xz wget http://mirror.archlinuxarm.org/aarch64/core/libusb-1.0.22-1-aarch64.pkg.tar.xz wget http://mirror.archlinuxarm.org/aarch64/extra/libzip-1.5.2-2-aarch64.pkg.tar.xz wget http://mirror.archlinuxarm.org/aarch64/core/zlib-1:1.2.11-3-aarch64.pkg.tar.xz wget http://mirror.archlinuxarm.org/aarch64/extra/p7zip-16.02-5-aarch64.pkg.tar.xz cd ..‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Wait all the archives are downloaded (otherwise you'll decompress before the archive is downloaded) as wget is running in background! Now untar the archives and copy it in the rootfs (dirty): tar -xJf libzip-1.5.2-2-aarch64.pkg.tar.xz tar -xJf libusb-1.0.22-1-aarch64.pkg.tar.xz tar -xJf nettle-3.5.1-1-aarch64.pkg.tar.xz tar -xJf bzip2-1.0.8-2-aarch64.pkg.tar.xz cp zlib-1:1.2.11-3-aarch64.pkg.tar.xz zlib tar -xJf zlib tar -xJf p7zip-16.02-5-aarch64.pkg.tar.xz cd usr sudo cp -R . /usr cd ../../ ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Download and compile uuu: git clone git://github.com/NXPmicro/mfgtools.git cd mfgtools/ cmake . make‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Download an image on nxp.com for instance. I have downloaded on the i.MX6 4.14.98_2.0.0 image and put it on a usb key. then unzip it in the uuu folder: 7z e L4.14.98_2.0.0_ga_images_MX6QPDLSOLOX.zip‍‍‍‍ As mentionned before unzip cannot hadle big files... so use 7z as me plug the i.MX6Q SABRE SD to the i.MX8X and program your i.MX6 board: ./uuu uuu.auto-imx6qsabresd‍ uuu (Universal Update Utility) for nxp imx chips -- libuuu_1.3.74-0-g64eeca1 Success 1 Failure 0 ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍
View full article
A new version of the Pins Tool for i.MX Application Processors has been released and is available for download as desktop tool from Pins Tool for i.MX Application Processors|NXP. The pins Tool for i.MX Application Processors is used for pin routing configuration, validation and code generation, including pin functional/electrical properties, power rails, run-time configurations, with the following main features: Desktop application Muxing and pin configuration with consistency checking Multicore support ANSI-C initialization code Graphical processor package view Multiple configuration blocks/functions Easy-to-use device configuration Selection of Pins and Peripherals Package with IP blocks Routed pins with electrical characteristics Registers with configured and reset values Power Groups with assigned voltage levels Source code for C/C++ applications Documented and easy to understand source code CSV Report and Device Tree File Localized for English and Simplified Chinese Mostly Connected: On-Demand device data download Integrates with any compiler and IDE What's New Added Label support to give signals a name Added ‘Log’ and ‘Problems’ view to report conflicts between settings Added support for templates to store user configurations as starting point for new configurations Added ability to download and share data for devices, especially for off-network host machines i.MX header files are now automatically part of the device data Import of legacy Processor Expert .pe files Export of register defines Various bug fixes and documentation improvements The release notes of the desktop application are attached to this article. Import Processor Expert Files A new importer has been added to import legacy Processor Expert for i.MX files: Labels Signals can now have user defined labels: Templates, Kits, Boards and Processors When creating a new configuration, it offers Templates, Boards and Processors. Custom configurations can be stored as templates and then used for new configurations. Board Specific Functions With the provided board and kit configurations, there are now pre-configured initialization functions for major blocks on the board: Export Data To simplify downloading the device specific data for the desktop tool, the 'Export' function can be used to download and export the data. The data can be copied that way to another machine or all data for a set of devices can be loaded. Export Registers With the Export command the registers can be exported as text/source: This is used to store the register values: /*FUNCTION********************************************************************** * * Function Name : init_audmux_pins * Description   : Configures pin routing and optionally pin electrical features. * *END**************************************************************************/ #define INIT_AUDMUX_PINS_IOMUXC_AUD5_INPUT_DA_AMX_SELECT_INPUT_VALUE            0x00000000   /*!< Register name: IOMUXC_AUD5_INPUT_DA_AMX_SELECT_INPUT */ #define INIT_AUDMUX_PINS_IOMUXC_AUD5_INPUT_TXCLK_AMX_SELECT_INPUT_VALUE         0x00000000   /*!< Register name: IOMUXC_AUD5_INPUT_TXCLK_AMX_SELECT_INPUT */ #define INIT_AUDMUX_PINS_IOMUXC_AUD5_INPUT_TXFS_AMX_SELECT_INPUT_VALUE          0x00000000   /*!< Register name: IOMUXC_AUD5_INPUT_TXFS_AMX_SELECT_INPUT */ #define INIT_AUDMUX_PINS_IOMUXC_SW_MUX_CTL_PAD_DI0_PIN02_VALUE                  0x00000002   /*!< Register name: IOMUXC_SW_MUX_CTL_PAD_DI0_PIN02 */ #define INIT_AUDMUX_PINS_IOMUXC_SW_MUX_CTL_PAD_DI0_PIN03_VALUE                  0x00000002   /*!< Register name: IOMUXC_SW_MUX_CTL_PAD_DI0_PIN03 */ #define INIT_AUDMUX_PINS_IOMUXC_SW_MUX_CTL_PAD_DI0_PIN04_VALUE                  0x00000002   /*!< Register name: IOMUXC_SW_MUX_CTL_PAD_DI0_PIN04 */ #define INIT_AUDMUX_PINS_IOMUXC_SW_MUX_CTL_PAD_DI0_PIN15_VALUE                  0x00000002   /*!< Register name: IOMUXC_SW_MUX_CTL_PAD_DI0_PIN15 */ #define INIT_AUDMUX_PINS_IOMUXC_SW_MUX_CTL_PAD_DISP0_DATA16_VALUE               0x00000003   /*!< Register name: IOMUXC_SW_MUX_CTL_PAD_DISP0_DATA16 */ #define INIT_AUDMUX_PINS_IOMUXC_SW_MUX_CTL_PAD_DISP0_DATA18_VALUE               0x00000003   /*!< Register name: IOMUXC_SW_MUX_CTL_PAD_DISP0_DATA18 */ #define INIT_AUDMUX_PINS_IOMUXC_SW_MUX_CTL_PAD_DISP0_DATA19_VALUE               0x00000003   /*!< Register name: IOMUXC_SW_MUX_CTL_PAD_DISP0_DATA19 */ ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ We hope you will find this new release useful. Thanks for designing with NXP! 
View full article
Using a RAW NAND is more difficult compared to eMMC, but for lower capacity it is still cheaper. Even with the ONFI (Open NAND Flash Interface) you can face initialization issue you can find by measure performance. I will take example of a non-well supported flash, I have installed on my evaluation board (SABRE AI). I wanted to do a simple performance test, to check roughly the MB/s I can expected with this NAND. One of a simplest test is to use the dd command: root@imx6qdlsolo:~# time dd if=/dev/mtd4 of=/dev/null 851968+0 records in 851968+0 records out 436207616 bytes (436 MB, 416 MiB) copied, 131.8884 s, 3.3 MB/s ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ As my RAW was supposed to work in EDO Mode 5, I could expect more than 20MB/s. To check what was wrong, read you kernel startup log: Booting Linux on physical CPU 0x0 Linux version 4.1.15-2.0.0+gb63f3f5 (bamboo@yb6) (gcc version 5.3.0 (GCC) ) #1 SMP PREEMPT Fri Sep 16 15:02:15 CDT 2016 CPU: ARMv7 Processor [412fc09a] revision 10 (ARMv7), cr=10c53c7d CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache Machine model: Freescale i.MX6 DualLite/Solo SABRE Automotive Board [...] Amd/Fujitsu Extended Query Table at 0x0040 Amd/Fujitsu Extended Query version 1.3. number of CFI chips: 1 nand: device found, Manufacturer ID: 0xc2, Chip ID: 0xdc nand: Macronix MX30LF4G18AC nand: 512 MiB, SLC, erase size: 128 KiB, page size: 2048, OOB size: 64 gpmi-nand 112000.gpmi-nand: mode:5 ,failed in set feature. Bad block table found at page 262080, version 0x01 Bad block table found at page 262016, version 0x01 nand_read_bbt: bad block at 0x00000a7e0000 nand_read_bbt: bad block at 0x00000dc80000 4 cmdlinepart partitions found on MTD device gpmi-nand Creating 4 MTD partitions on "gpmi-nand":‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ On line 13 you can read "mode:5, failed in set feature", meaning you are not in mode 5... so you have the "relaxed" timing you have at boot. After debuging your code (I have just remove the NAND back reading security check), you can redo the test: root@imx6qdlsolo:~# time dd if=/dev/mtd4 of=/dev/null 851968+0 records in 851968+0 records out 436207616 bytes (436 MB, 416 MiB) copied, 32.9721 s, 13.2 MB/s‍‍‍‍‍‍‍‍‍‍‍‍ So you multiplied the performances by 4! Anyway, you have a better tool to measure your NAND performance, it is mtd_speedtest, but you have to rebuild your kernel. In Yocto, reconfigure your kernel (on your PC of couse!): bitbake virtual/kernel -c menuconfig‍‍‍ Choose in the menu "Device Drivers" -> "Memory Technology Device (MTD) support" -> "MTD tests support", even it it not recommended! bitbake virtual/kernel -f -c compile bitbake virtual/kernel -f -c build bitbake virtual/kernel -f -c deploy‍‍‍‍‍‍‍‍‍ Then reflash you board (kernel + rootfs as tests are .ko files): Then you can do more accurate performance test: insmod /lib/modules/4.1.29-fslc+g59b38c3/kernel/drivers/mtd/tests/mtd_speedtest.ko dev=2 ================================================= mtd_speedtest: MTD device: 2 mtd_speedtest: MTD device size 16777216, eraseblock size 131072, page size 2048, count of eraseblocks 128, pages per eraseblock 64, OOB size 64 mtd_test: scanning for bad eraseblocks mtd_test: scanned 128 eraseblocks, 0 are bad mtd_speedtest: testing eraseblock write speed mtd_speedtest: eraseblock write speed is 4537 KiB/s mtd_speedtest: testing eraseblock read speed mtd_speedtest: eraseblock read speed is 16384 KiB/s mtd_speedtest: testing page write speed mtd_speedtest: page write speed is 4250 KiB/s mtd_speedtest: testing page read speed mtd_speedtest: page read speed is 15784 KiB/s mtd_speedtest: testing 2 page write speed mtd_speedtest: 2 page write speed is 4426 KiB/s mtd_speedtest: testing 2 page read speed mtd_speedtest: 2 page read speed is 16047 KiB/s mtd_speedtest: Testing erase speed mtd_speedtest: erase speed is 244537 KiB/s mtd_speedtest: Testing 2x multi-block erase speed mtd_speedtest: 2x multi-block erase speed is 252061 KiB/s mtd_speedtest: Testing 4x multi-block erase speed mtd_speedtest: 4x multi-block erase speed is 256000 KiB/s mtd_speedtest: Testing 8x multi-block erase speed mtd_speedtest: 8x multi-block erase speed is 260063 KiB/s mtd_speedtest: Testing 16x multi-block erase speed mtd_speedtest: 16x multi-block erase speed is 260063 KiB/s mtd_speedtest: Testing 32x multi-block erase speed mtd_speedtest: 32x multi-block erase speed is 256000 KiB/s mtd_speedtest: Testing 64x multi-block erase speed mtd_speedtest: 64x multi-block erase speed is 260063 KiB/s mtd_speedtest: finished =================================================‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ You can now achieve almost 16MB/s, better than the dd test. Of course you cannot achieve more than 20MB/s, but you are not that far, and the NAND driver need optimizations. To redo the test: rmmod /lib/modules/4.1.29-fslc+g59b38c3/kernel/drivers/mtd/tests/mtd_speedtest.ko insmod /lib/modules/4.1.29-fslc+g59b38c3/kernel/drivers/mtd/tests/mtd_speedtest.ko dev=2 To check your NAND is in EDO mode 5, you can check your clock tree: /unit_tests/dump-clocks.sh clock          parent   flags    en_cnt pre_cnt      rate [...] gpmi_bch_apb   ---      00000005   0       0       198000000 gpmi_bch       ---      00000005   0       0       198000000 gpmi_io        ---      00000005   0       0        99000000 gpmi_apb       ---      00000005   0       0       198000000‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ The IO are clocked now at 99MHz, thus you can read at 49.5MHz (20ns in EDO mode 5 definition).
View full article
NOTE: Always de-power the target board and the aggregator when plugging or unplugging smart sensors from the aggregator. NOTE: See this link to instrument a board with a Smart Sensor. This page documents the triple-range "smart" current sensor that's part of a larger system for profiling power on application boards. The smart sensor features a Kinetis KL05Z with three current sense amplifiers. It allows measurement currents in three ranges. Four assembly options allow measurement of rail voltages 0-3.3V (two overall current ranges), 0-6.6V, and 12V. It connects to an aggregator, which powers, controls and aggregates data from a number of smart sensor boards. One of the biggest improvements over the older dual-range measurement system is that the on-sensor microcontroller allows near-simultaneous measurement of all instrumented rails on a board. The dual range profiler can only make one measurement at a time.  These are intended to be used with a microncontroller board to act as a trigger and data aggregator. This aggregator could also be used to reprogram the sensors.  The series resistance added by the smart sensor when in run mode (highest current range) is under 11 milliOhms as measured with 4-point probes and a Keysight B2902B SMU.  A "power oscilloscope" can be made by triggering measurements at regular intervals and presenting the results graphically.... Schematic: Board Layout, Top: Board Layout, Bottom: Here's a photo of two with a nickel is included to show scale. The board measures about 0.5 by 1.3 inches. Connections: The smart sensor header connections are: 5V: powers the 3.3V regulator, which in turn powers everything else on the sensor board 12V: all the gates of all the switching FETs are pulled pulled up to 12V GND: ground connection SCL/TX: I2C clock line  SDA/RX: I2C data line  SWD_CLK:  line for triggering smart sensors to make measurements RESET_B:  line for resetting the smart sensor board SWD_IO: select line for the smart sensor Theory of operation: Three shunts and current sense amplifiers are used to measure current in three ranges. One shunt/sense amp pair has a 0.002Ω shunt integrated into the IC package (U1, INA250). The other two sense amps (U2 and U3, INA212) require an external shunt.  FETs Q1, Q2,  and Q3 are used to switch the two lower range shunt/sense amp pairs in and out of circuit. In normal run operation (highest current range), Q1 (FDMC012N03, with Rds(on) under 1.5mΩ) is turned on, which shorts leaves only U1 in circuit. FETs Q4, Q5 and Q6 translate the voltages to 3.3V so that GPIO on U4 (MCU KL05Z) can control them.  Rail voltage measurement is facilitated via resistors R3, R4, and R12 and Q7. Not all of these are populated in every assembly option. For measuring rail voltages 0-3.3V, R12 is populated. To measure 0-6.6V, R3, R4,and Q7 are populated. When turned on Q7 enables the voltage divider. All of the assembly option population info can be found in the schematic (attached). Regulator U5 (AP2210N) provides the 3.3V supply for all of the components on the board. This 1% tolerance regulator is used to provide a good reference for the ADC in U4.  Microcontroller U4 detects the assembly population option of the board via resistors R9, R10, and R11 so that the same application code can be used across all variations of the sensor boards. GPIO control the FETs and four ADC channels are used to measure the sense amplifier outputs and the rail voltage. Having a microcontroller on the sensor board allows the user to do extra credit things like count coulombs as well as allowing all similarly instrumented rails to measure at the same time via trigger line SWD_CLK. Data communication can be via I2C or UART, since these two pins can do both.  But if multiple sensor boards are to be used with an aggregator, communication needs to be over I2C. Application Code: The latest application code for the KL05Z on the smart sensor resides here: https://os.mbed.com/users/r14793/code/30847-SMRTSNSR-KL05Z/. The latest binary is attached below. In order to re-flash a smart sensor, the modification detailed in the aggregator page needs to be made. Once the modification is completed, leave the aggregator unpowered while pluging the SWD debugger into J5 and the smart sensor to be programmed into JP15. Very old UART-based application code for the KL05Z, built in the on-line MBED compiler (note that it requires the modified mbed library for internal oscillator). This code was used while testing the first smart sensor prototypes. It has since been abandoned. It's published here in the event that a user wants to use a single sensor plugged into JP15 with UART breakout connector J6. /****************************************************************************** * * MIT License (https://spdx.org/licenses/MIT.html) * Copyright 2017-2018 NXP * * MBED code for KL05Z-based "smart" current sensor board, basic testing * of functions via UART (connected via FRDM board and OpenSDA USB virtual * COM port). * * Eventual goal is to have each smart sensor communicate over I2C to an * aggregator board (FRDM board with a custom shield), allowing 1-10 power * supply rails to be instrumented. Extra credit effort is to support * sensors and aggregator with sigrok... * * Because there is no crystal on the board, need to edit source mbed-dev library * to use internal oscillator with pound-define: * change to "#define CLOCK_SETUP 0" in file: * mbed-dev/targets/TARGET_Freescale/TARGET_KLXX/TARGET_KL05Z/device/system_MKL05Z4.c * ******************************************************************************/ #include "mbed.h" // These will be GPIO for programming I2C address... // not yet implemented, using as test pins... DigitalOut addr0(PTA3); DigitalOut addr1(PTA4); DigitalOut addr2(PTA5); DigitalOut addr3(PTA6); // configure pins for measurements... // analog inputs from sense amps and rail voltage divider... AnalogIn HIGH_ADC(PTB10); AnalogIn VRAIL_ADC(PTB11); AnalogIn LOW1_ADC(PTA9); AnalogIn LOW2_ADC(PTA8); // outputs which control switching FETs... DigitalOut VRAIL_MEAS(PTA7); // turns on Q7, connecting voltage divider DigitalOut LOW_ENABLE(PTB0); // turns on Q4, turning off Q1, enabling low measurement DigitalOut LOW1(PTB2); // turns on Q5, turning off Q2, disconnecting shunt R1 DigitalOut LOW2(PTB1); // turns on Q6, turning off Q3, disconnecting shunt R2 // input used for triggering measurement... // will eventually need to be set up as an interrupt so it minimizes delay before measurement InterruptIn trigger(PTA0); // use as a trigger to make measurement... // PTB3/4 can be used as UART or I2C... // For easier development with one smart sensor, we are using UART here... Serial uart(PTB3, PTB4); // tx, rx long int count=0; int n=25; // global number of averages for each measurement int i, temp; bool repeat=true; // flag indicating whether measurements should repeat or not const float vref = 3.3; // set vref for use in calculations... float delay=0.25; // default delay between measurement bool gui = false; // flag for controlling human vs machine readable output bool statistics = false;// flag for outputting min and max along with average (GUI mode only) void enableHighRange(){ LOW_ENABLE = 0; // short both low current shunts, close Q1 wait_us(5); // delay for FET to settle... (make before break) LOW1 = 0; LOW2 = 0; // connect both shunts to make lower series resistance VRAIL_MEAS = 0; // disconnect rail voltage divider wait_us(250); // wait for B2902A settling... } void enableLow1Range(){ LOW1 = 0; LOW2 = 1; // disconnect LOW2 shunt so LOW1 can measure wait_us(5); // delay for FET to settle... (make before break) LOW_ENABLE = 1; // unshort low current shunts, open Q1 VRAIL_MEAS = 0; // disconnect rail voltage divider wait_us(250); // wait for B2902A settling... } void enableLow2Range(){ LOW1 = 1; LOW2 = 0; // disconnect LOW1 shunt so LOW2 can measure wait_us(5); // delay for FET to settle... (make before break) LOW_ENABLE = 1; // unshort low current shunts, open Q1 VRAIL_MEAS = 0; // disconnect rail voltage divider wait_us(500); // wait for B2902A settling... } void enableRailV(){ VRAIL_MEAS = 1; // turn on Q7, to enable R3-R4 voltage divider wait_us(125); // wait for divider to settle... // Compensation cap can be used to make // voltage at ADC a "square wave" but it is // rail voltage and FET dependent. Cap will // need tuning if this wait time is to be // removed/reduced. // // So, as it turns out, this settling time and // compensation capacitance are voltage dependent // because of the depletion region changes in the // FET. Reminiscent of grad school and DLTS. // Gotta love device physics... } void disableRailV(){ VRAIL_MEAS = 0; // turn off Q7, disabling R3-R4 voltage divider } // this function measures current, autoranging as necessary // to get the best measurement... void measureAuto(){ Timer t; float itemp; float tempI=0; float imin = 1.0; // used to keep track of the minimum... float imax = 0; // used to keep track of the maximum... t.start(); // use timer to see how long things take... enableHighRange(); // this should already be the case, but do it anyway... for (i = 0; i < n; i++){ itemp = HIGH_ADC; // read HIGH range sense amp output if (statistics && itemp>imax) imax = itemp; // update max if necessary if (statistics && itemp<imin) imin = itemp; // update min if necessary tempI += itemp; // add current sample to running sum } tempI = tempI/n *vref/0.8; // compute average we just took... if (gui) uart.printf("=> %5.3f ", tempI); if (statistics && gui) uart.printf("[%5.3f/%5.3f] ", imin*vref/0.8, imax*vref/0.8); // if current is below this threshold, use LOW1 to measure... if (tempI < 0.060) { if (!gui) uart.printf("... too Low: %f A, switching to low1 ==>\r\n", tempI); tempI=0; enableLow1Range(); // change FETs to enable LOW1 measurement... imin = 1.0; imax = 0; for (i = 0; i < n; i++){ itemp = LOW1_ADC; // read LOW1 sense amp output if (statistics && itemp>imax) imax = itemp; // update max if necessary if (statistics && itemp<imin) imin = itemp; // update min if necessary tempI += itemp; // add current sample to running sum } tempI = tempI/n *vref/0.05/1000; // compute average we just took... if (gui) uart.printf("%6.4f ", tempI); if (statistics && gui) uart.printf("[%6.4f/%6.4f] ", imin*vref/0.05/1000, imax*vref/0.05/1000); // if current is below this threshold, use LOW2 to measure... if (tempI < 0.0009){ if (!gui) uart.printf("... too Low: %f A, switching to low2 ==>\r\n", tempI); tempI=0; enableLow2Range(); // change FETs to enable LOW1 measurement... imin = 1.0; imax = 0; for (i = 0; i < n; i++){ itemp = LOW2_ADC; // read LOW2 sense amp output if (statistics && itemp>imax) imax = itemp; // update max if necessary if (statistics && itemp<imin) imin = itemp; // update min if necessary tempI += itemp; // add current sample to running sum } tempI = tempI/n *vref/2/1000; // compute average we just took... if (gui) uart.printf("%8.6f ", tempI); if (statistics && gui) uart.printf("[%8.6f/%8.6f] ", imin*vref/2/1000, imax*vref/2/1000); } } t.stop(); // stop the timer to see how long it took do do this... enableHighRange(); if (!gui) uart.printf("\r\nCurrent = %f A Current Measure Time = %f sec\r\n", tempI, t.read()); } // the autoranging should really be done with functions that return values, as should the // functions below... This would make for shorter and more elegant code, but the author // is a bit of a pasta programmer... void measureHigh(){ float highI=0; enableHighRange(); for (i = 0; i < n; i++){ highI += HIGH_ADC; } highI = highI/n; uart.printf("HIghI = %f A\r\n", vref*highI/0.8); } void measureLow1(){ float low1I=0; enableLow1Range(); for (i = 0; i < n; i++){ low1I += LOW1_ADC; } enableHighRange(); low1I = low1I/n; uart.printf("low1I = %f A\r\n", vref*low1I/0.05/1000); } void measureLow2(){ float low2I=0; enableLow2Range(); for (i = 0; i < n; i++){ low2I += LOW2_ADC; } enableHighRange(); low2I = low2I/n; uart.printf("low2I = %f A\r\n", vref*low2I/2/1000); } // measure the rail voltage, default being with // a divide by 2 resistor divider // It has to be switched out when not in use or it will // add to the measured current, at least in the low ranges... void measureRailV(){ float railv=0; float mult = vref*2; // since divide by 2, we can measure up to 6.6V... float vmin = 5; float vmax = 0; float vtemp; enableRailV(); // switch FETs so divider is connected... for (i = 0; i < n; i++){ vtemp = VRAIL_ADC; // read voltage at divider output... if (statistics && vtemp>vmax) vmax = vtemp; // update max if necessary if (statistics && vtemp<vmin) vmin = vtemp; // update min if necessary railv += vtemp; // add current sample to running sum } disableRailV(); // now disconnect the voltage divider railv = railv/n; // compute average (note this is in normalized ADC [0..1]) // Convert to voltage by multiplying by "mult" if (!gui) uart.printf("RailV = %5.3f V ", mult*railv); if (gui) uart.printf("%5.3f ", mult*railv); if (statistics && gui) uart.printf("[%5.3f/%5.3f] ", mult*vmin, mult*vmax); uart.printf("\r\n"); } // not sure how useful this function is... void measureAll(){ measureHigh(); measureLow1(); measureLow2(); measureRailV(); } // test function to see if trigger pin is being hit... // intended for use later to do timed triggering of measurements... void triggerIn(){ uart.printf("You're triggering me! \r\n"); measureAll(); } // main... int main() { // set up basic conditions... Timer m; uart.baud(115200); enableHighRange(); // default state - only HIGH sense amp in circuit, no divider // signal that we're alive... uart.printf("Hello World!\r\n"); // configure the trigger interrupt... trigger.rise(&triggerIn); while (true) { count++; wait(delay); if (repeat){ // if repeat flag is set, keep making measurements... m.reset(); // reset and start timer... m.start(); measureAuto(); // measuring current using auto-ranging... measureRailV(); // measure rail voltage... m.stop(); // stop the timer. if (!gui) uart.printf(" Total Measure Time = %f sec", m.read()); if (!gui) uart.printf("\r\n\r\n"); } // see if there are any characters in the receive buffer... // this is how we change things on the fly... // Commands (single keystroke... it's easier) // t = one shot automeasure // v = measure volt // h = one shot high measure // k = one shot LOW1 measure // l = one shot LOW2 measure (letter l) // r = toggle repeat // R = turn off repeat // + = faster repeat rate // - = slower repeat rate // = = set repeat rate to 0.25 sec // g = use human readable text output // G = use compressed text format for GUI // s = turn statistics output off // S = turn statistics output on (only in GUI mode) // n = decrease number of averages for each measurement // N = increase number of averages for each measurement // // these were for testing FET switching... // 1 = LOW_ENABLE = 0 (the number 1) // 2 = LOW1 = 0 // 3 = LOW2 = 0 // 4 = VRAIL_MEAS = 0 // ! = LOW_ENABLE = 1 // @ = LOW1 = 1 // # = LOW2 = 1 // $ = VRAIL_MEAS = 1 if (uart.readable()){ temp = uart.getc(); if (temp==(int) 't') { if (!gui) uart.printf("Keyboard trigger: "); measureAuto(); measureRailV(); //measureAll(); } if (temp==(int) 'v') { uart.printf("Keyboard trigger: "); measureRailV(); } if (temp==(int) 'h') { uart.printf("Keyboard trigger: "); measureHigh(); } if (temp==(int) 'k') { uart.printf("Keyboard trigger: "); measureLow1(); } if (temp==(int) 'l') { uart.printf("Keyboard trigger: "); measureLow2(); } if (temp==(int) '1') { LOW_ENABLE = 0; uart.printf("Keyboard trigger: LowEnable = %d\r\n", 0); } if (temp==(int) '2') { LOW1 = 0; uart.printf("Keyboard trigger: LOW1 = %d\r\n", 0); } if (temp==(int) '3') { LOW2 = 0; uart.printf("Keyboard trigger: LOW2 = %d\r\n", 0); } if (temp==(int) '4') { VRAIL_MEAS = 0; uart.printf("Keyboard trigger: VRAILMEAS = %d\r\n", 0); } if (temp==(int) '!') { LOW_ENABLE = 1; uart.printf("Keyboard trigger: LowEnable = %d\r\n", 1); } if (temp==(int) '@') { LOW1 = 1; uart.printf("Keyboard trigger: LOW1 = %d\r\n", 1); } if (temp==(int) '#') { LOW2 = 1; uart.printf("Keyboard trigger: LOW2 = %d\r\n", 1); } if (temp==(int) '$') { VRAIL_MEAS = 1; uart.printf("Keyboard trigger: VRAILMEAS = %d\r\n", 1); } if (temp==(int) 'r') { repeat = !repeat; uart.printf("Keyboard trigger: repeat toggle: %s \r\n", repeat ? "true" : "false"); } if (temp==(int) 'R') repeat = false; if (temp==(int) '+') { delay -= 0.05; if (delay<0.05) delay = 0.05; } if (temp==(int) '-') { delay += 0.05; if (delay>1) delay = 1; } if (temp==(int) '=') delay = 0.25; if (temp==(int) 'g') gui = false; if (temp==(int) 'G') gui = true; if (temp==(int) 's') statistics = false; if (temp==(int) 'S') statistics = true; if (temp==(int) 'n') { n -= 25; if (n<25) n = 25; } if (temp==(int) 'N') { n += 25; if (n>1000) n = 1000; } if (temp==(int) 'N' || temp==(int) 'n') uart.printf("/r/n/r/n Averages = %d \r\n\r\b", n); } } }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍
View full article